Photons and Transport at NLO

with Jacopo Ghiglieri, Juhee Hong, Aleksi Kurkela, Egang Lu, Derek Teaney

- Photon calculation "guts:" emergence of condensates
- Photon results
- Condensates from the lattice?
- $\hat{q}_{\|}$and transport
- Viscosity and diffusion: the complication

Phase space again

$$
\gamma \text { produc: } \sum_{\psi_{f}}^{\overline{\mathcal{M}}}\left\langle\psi_{i}\right| A^{\mu} \bar{\psi} \gamma_{\mu} \psi\left|\psi_{f}\right\rangle\left\langle\psi_{f}\right| A^{\nu} \bar{\psi} \gamma_{\nu} \psi\left|\psi_{i}\right\rangle
$$

In $\mathcal{M}, \psi, \bar{\psi}$ momenta $p, k-p$ must add to k of photon:

Black: way off-shell, but big phase space Blue: less phase sp, but soft enhancement Red: both can be almost on-shell.
Call these regions Hard, Soft, and Collinear.

The P_{\perp}, P_{+}plane:

ECT* Trento, 18 June 2013: Pagina 3 di 18

Collinear case

Since $P, K-P$ collinear, move in approx. same direction. J^{μ} in \mathcal{M} and J_{μ} in $\overline{\mathcal{M}}$ not at same x-point.
Collinear \Rightarrow almost on-shell \Rightarrow can have large x separation; $x^{-} \ll x_{\perp} \ll x^{+}:$

Involves condensate $\mathcal{C}\left(x_{\perp}\right)$.

Nontrivial analysis amy hep-ph/0109064, hep-ph/0111107 (see Peter's talk?)

$$
\begin{aligned}
\frac{d N_{\gamma}}{d^{3} \mathbf{k} d^{4} x}= & \frac{\alpha_{\mathrm{EM}}}{\pi^{2} k} \int_{-k / 2}^{\infty} \frac{d p^{+}}{2 \pi} \frac{n_{f}(k+p)\left[1-n_{f}(p)\right]}{2[p(p+k)]^{2}}\left[p^{2}+(p+k)^{2}\right] \times \\
& \times \lim _{\mathbf{x}_{\perp} \rightarrow 0} 2 \operatorname{Re} \partial_{\mathbf{x}_{\perp}} \mathbf{f}\left(x_{\perp}\right) \\
2 \nabla_{\perp} \delta^{2}\left(x_{\perp}\right)= & {\left[\mathcal{C}\left(x_{\perp}\right)+\frac{i k}{2 p^{+}\left(k+p^{+}\right)}\left(m_{\infty}^{2}+\nabla_{x_{\perp}}^{2}\right)\right] \mathbf{f}\left(x_{\perp}\right) }
\end{aligned}
$$

To evaluate this at NLO I need:

- $\mathcal{C}\left(x_{\perp}\right)$ at NLO [Condensates!!]
- small $p^{+} \sim g T$ behavior: $\lim _{p^{+} \ll T}$ [integrand] $\rightarrow\left(p^{+}\right)^{0}$
- higher-order-in-Eikonal corrections

Some condensates are Euclidean!

$\mathcal{C}\left(x_{\perp}\right)$: Wilson loop with space-separated lightlike lines. All points at spacelike or lightlike separation.

Soft contribution is Euclidean!! s. Caron-Huot, 0811.1603
Calculate it with simple perturbation theory (EQCD)
Calculate it on the lattice?!

NLO corrections to $\mathcal{C}\left(x_{\perp}\right)$ computed. NNLO would be nonperturbative; but may be possible via lattice.

How Things Get Euclideans. Cron-Hot

Consider correlator $G^{<}\left(x^{0}, \mathbf{x}\right)$ with $x^{z}>\left|x^{0}\right|$. Fourier representation

$$
G^{<}\left(x^{0}, \mathbf{x}\right)=\int d \omega \int d p_{z} d^{2} p_{\perp} e^{i\left(x^{z} p^{z}+\mathbf{x}_{\perp} \cdot \mathbf{p}_{\perp}-\omega x^{0}\right)} G^{<}\left(\omega, p_{z}, p_{\perp}\right)
$$

Use $G^{<}(\omega, \mathbf{p})=n_{b}(\omega)\left(G_{R}(\omega, \mathbf{p})-G_{A}(\omega, \mathbf{p})\right)$ and define $\tilde{p}^{z}=p^{z}-\left(t / x^{z}\right) \omega$:

$$
G^{<}=\int d \omega \int d \tilde{p}^{z} d^{2} p_{\perp} e^{i\left(x^{z} \tilde{p}^{z}+\mathbf{x}_{\perp} \cdot \mathbf{p}_{\perp}\right)} n_{b}(\omega)\left(G_{R}\left(\omega, \tilde{p}^{z}+\omega \frac{x^{0}}{x^{z}}, \mathbf{p}_{\perp}\right)-G_{A}\right)
$$

Perform ω integral: upper half-plane for G_{R}, lower for G_{A}, pick up poles from n_{b} :

$$
G^{<}\left(x^{0}, \mathbf{x}\right)=T \sum_{\omega_{n}=2 \pi n T} \int d p^{z} d^{2} p_{\perp} e^{i \mathbf{p} \cdot \mathbf{x}} G_{E}\left(\omega_{n}, p_{z}+i \omega_{n}\left(x^{0} / x^{z}\right), p_{\perp}\right)
$$

Large separations: $n \neq 0$ exponentially small. $n=0$ contrib. is x^{0} independent!

Soft momenta

Diagrams:

Cut diagrams: hard momentum is on-shell, $p^{-}=0$.
Write out Q, remaining P integrals and use KMS :

$$
\int_{\sim g T} d^{2} p_{\perp} d p^{+} \int_{\sim g T} d^{4} Q n_{b}\left(k^{0}\right)\left(G_{\mathrm{R}}-G_{\mathrm{A}}\right)
$$

G_{R} : retarded function of sum of all 4 diagrams' guts.
Momentum p^{+}is null. Any R / A function is analytic in upper/lower half plane for time-like or null p-variable.
Analytically continue in $p^{+}!!$

Deform p^{+}contour into complex plane

Now $p^{+} \gg p_{\perp}, Q$. (On mass-shell) Expand in $p^{+} \gg p_{\perp}, Q$

$$
G_{\mathrm{R}}[4 \text { diagrams }]=C_{0}\left(p^{+}\right)^{0}+C_{1}\left(p^{+}\right)^{-1}+\ldots
$$

C_{0} is on-shell width, gives linear in p^{+}divergence.
C_{1} is on-shell dispersion correction, $d p^{+} / p^{+}$gives const.

We can do this continuation because the J^{μ} correlators are null-separated. It becomes simple because null-separated correlators are simple.

- C_{0} term: arises at NLO. equals the small- p^{+}limit of the collinear calculation. completes treatment of that region.
- C_{1} term: real dispersion-correction. Really simple:

$$
\gamma \text {-rate } \propto \int \frac{d^{2} p_{\perp}}{(2 \pi)^{2}} \frac{m_{\infty}^{2}}{p_{\perp}^{2}+m_{\infty}^{2}}
$$

where m_{∞}^{2} is dispersion correction. Has leading-order piece (hard modes) and subleading piece (dispersion correction of soft modes). both are known.

Remaining region-similar story. Null-separation physics, all condensates.

Summing it up: two corrections

Upward correction: more scattering at NLO.
Downward correction: fewer soft gluons, less dispersion corr.
Numerical conspiracy: effects nearly cancel [Accidenta!!]

Main lesson

All the sticky IR physics shows up in a few condensates. Some are dispersion corrections - physically simple. Some are Euclidean - get directly on the lattice.

Bad news: $\mathcal{O}(g)$ corrections big even for $\alpha_{s}=0.1$ or $1000 T_{c}$.

Good news: A few condensates. Determine them nonperturbatively, maybe get down to $5 T_{c}$?

Get them on the lattice?

$\mathcal{C}\left(x_{\perp}\right)$ on the lattice

Short side: x_{\perp} Wilson line $\exp \int i A_{\perp} \cdot x_{\perp} \Rightarrow U_{\perp} U_{\perp} \ldots$
Long side: x^{+}Wilson line $\exp \int i\left(A^{z}+A^{0}\right) d z \Rightarrow U_{z} e^{a \Phi} U_{z} e^{a \Phi} U_{z} \ldots$
The latter is a new beast. Lattice renormalization properties?
Under investigation.

The two $\hat{q} s$

One thing which arises in the calculation is \hat{q}_{\perp},

$$
\hat{q}_{\perp} \equiv \int \frac{d^{2} q_{\perp}}{(2 \pi)^{2}} q_{\perp}^{2} \mathcal{C}\left(q_{\perp}\right)=\lim _{x_{\perp} \rightarrow 0} \nabla_{x_{\perp}}^{2} \mathcal{C}\left(x_{\perp}\right)
$$

\perp-momentum diffusion. Reduces to

$$
\hat{q}_{\perp}=\frac{g^{2} C_{R}}{d_{A}} \int_{-\infty}^{\infty} d x^{+} F_{+\perp}^{a}(0,0) U_{a b}\left(0,0 ; x^{+}, 0\right) F_{+\perp}^{b}\left(x^{+}, 0\right)
$$

a transverse-force-force correlator.
Can also define its cousin (not needed)

$$
\hat{q}_{\|}=\frac{g^{2} C_{R}}{d_{A}} \int_{-\infty}^{\infty} d x^{+} F_{+-}^{a}(0,0) U_{a b}\left(0,0 ; x^{+}, 0\right) F_{+-}^{b}\left(x^{+}, 0\right)
$$

correlator of force along direction of motion.

\hat{q}_{\perp} on the lattice

\hat{q} is a limit of $\mathcal{C}\left(x_{\perp}\right)$ at small x_{\perp} :

plus Φ-difference contribution. Much more UV sensitive:

- Leading-Order: quadratic divergent cancel if well-designed
- NLO (1-loop): linear divergence, requires matching
- NNLO (2-loop): log divergence, requires matching

And $\hat{q}_{\|}$?

Transverse force - "bumps" on Wilson line are to the side. Longitudinal force - "bump" in x^{+}, x^{-}plane. time direction; not all spacelike-separated.

But contour deformation method still works.
Related to hard dispersion-correction of gluons

$$
\hat{q}_{\|} \sim \int \frac{d^{2} p_{\perp}}{(2 \pi)^{2}} \frac{m_{\infty, g}^{2}}{p_{\perp}^{2}+m_{\infty, g}^{2}}
$$

With some matching, useful ingredient in other transport coeff. and in jet medium-modification

Other transport coefficients?

We want Baryon Diffusion D and (especially) shear η !
Both controlled by high-energy $E=$ several T particles
Lightlike correlators should again dominate:
$T^{x y}$ disturbs
a particle

NLO effects arise along particle's lightlike trajectory.
Problem: transfer of stress to someone else

Conclusions

- NLO corrections to transport are large but simple
- Need a few condensates at lightlike-separated points
- Most can be extracted from the lattice
- Shear and diffusion will be harder. Stay tuned

