Numerical studies of JIMWLK evolution

T. Lappi
University of Jyväskylä, Finland

Trento 2013

Outline

- CGC, Glasma, JIMWLK evolution
- JIMWLK equation in Langevin form
- Running coupling in JIMWLK t.L., H. Mäntysaari EPJC 2013
- JIMWLK as initial condition for CYM T.L., PLB 2011
- Unequal rapidity correlations in progress

JIMWLK ["gym-walk"] Jalilian-Marian, lancu, McLerran, Weigert, Leonidov, Kovner

Gluon saturation, Glass and Glasma

Small x : the hadron/nucleus wavefunction is characterized by saturation scale $Q_{\mathrm{s}} \gg \Lambda_{\mathrm{QCD}}$.

Gluon saturation, Glass and Glasma

Small x : the hadron/nucleus wavefunction is characterized by saturation scale $Q_{\mathrm{s}} \gg \Lambda_{\mathrm{QCD}}$.

$p \sim Q_{\mathrm{s}}$: strong fields $A_{\mu} \sim 1 / g$

- occupation numbers $\sim 1 / \alpha_{\text {s }}$
- classical field approximation.
- small α_{s}, but nonperturbative

Gluon saturation, Glass and Glasma

Small x : the hadron/nucleus wavefunction is characterized by saturation scale $Q_{\mathrm{s}} \gg \Lambda_{\mathrm{QCD}}$.

$p \sim Q_{\mathrm{s}}$: strong fields $A_{\mu} \sim 1 / g$

- occupation numbers $\sim 1 / \alpha_{\mathrm{s}}$
- classical field approximation.
- small α_{s}, but nonperturbative

CGC: Effective theory for wavefunction of nucleus

- Large $x=$ source ρ, probability distribution $W_{y}[\rho]$
- Small $x=$ classical gluon field $A_{\mu}+$ quantum flucts.

Gluon saturation, Glass and Glasma

Small x : the hadron/nucleus wavefunction is characterized by saturation scale $Q_{\mathrm{s}} \gg \Lambda_{\mathrm{QCD}}$.

$p \sim Q_{\mathrm{s}}$: strong fields $A_{\mu} \sim 1 / g$

- occupation numbers $\sim 1 / \alpha_{\text {s }}$
- classical field approximation.
- small α_{s}, but nonperturbative

CGC: Effective theory for wavefunction of nucleus

- Large $x=$ source ρ, probability distribution $W_{y}[\rho]$
- Small $x=$ classical gluon field $A_{\mu}+$ quantum flucts.

Glasma field configuration of two colliding sheets of CGC.

Wilson line

Classical color field described as Wilson line

$$
U(\mathbf{x})=P \exp \left\{i g \int \mathrm{~d} x^{-} A_{\text {cov }}^{+}\left(\mathbf{x}, x^{-}\right)\right\} \quad \in \operatorname{SU}(3)
$$

Relation to color charge

$$
\begin{gathered}
\nabla^{2} A_{\mathrm{cov}}^{+}\left(\mathbf{x}, x^{-}\right)=-g \rho\left(\mathbf{x}, x^{-}\right) \\
\left(\quad x^{ \pm}=\frac{1}{\sqrt{2}}(t \pm z) \quad ; \quad A^{ \pm}=\frac{1}{\sqrt{2}}\left(A^{0} \pm A^{z}\right) ; \quad \mathbf{x} 2 \mathrm{~d} \text { transverse } \quad\right)
\end{gathered}
$$

Example of usage: forward pA

- Quark from p (large x pdf), radiate gluon
- Eikonal propagation \Longrightarrow Wilson lines $U(\mathbf{x})$ Need target expectation values of operators:
$\operatorname{Tr} U(\mathbf{x}) U^{\dagger}(\mathbf{y}) \quad \operatorname{Tr} U(\mathbf{x}) U^{\dagger}(\mathbf{y}) U(\mathbf{u}) U^{\dagger}(\mathbf{v})$

JIMWLK evolution

Classical color field described as Wilson line

$$
U(\mathbf{x})=P \exp \left\{i g \int \mathrm{~d} x^{-} A^{+}\left(\mathbf{x}, x^{-}\right)\right\} \in \mathrm{SU}(3)
$$

- Energy dependent probability distribution $W_{y}[U] \quad(y \sim \ln \sqrt{s})$
- Energy/rapidity dependence of $W_{y}[U]$ from JIMWLK renormalization group equation

$$
\partial_{y} W_{y}[U(\mathbf{x})]=\mathcal{H} W_{y}[U(\mathbf{x})]
$$

JIMWLK Hamiltonian: (fixed coupling)

$$
\begin{aligned}
& \mathcal{H} \equiv \frac{1}{2} \alpha_{s} \int_{\mathbf{x y z}} \frac{\delta}{\delta A_{c}^{+}(\mathbf{y})} \mathbf{e}^{b a}(\mathbf{x}, \mathbf{z}) \cdot \mathbf{e}^{c a}(\mathbf{y}, \mathbf{z}) \frac{\delta}{\delta A_{b}^{+}(\mathbf{x})}, \\
& \mathbf{e}^{b a}(\mathbf{x}, \mathbf{z})=\frac{1}{\sqrt{4 \pi^{3}}} \frac{\mathbf{x}-\mathbf{z}}{(\mathbf{x}-\mathbf{z})^{2}}\left(1-U^{\dagger}(\mathbf{x}) U(\mathbf{z})\right)^{b a}
\end{aligned}
$$

Fokker-Planck and Langevin

Textbook example: two descriptions of Brownian motion

- 1-d diffusion eq. (כ F.-P. eq.)

$$
\partial_{t} P(x, t)=D \partial_{x}^{2} P(x, t)
$$

- $P(x, t)=$ probability for particle to be at location x at time t.
- For particle starting at $x=0$
at $t=0$ solution is

$$
P(x, t)=\frac{1}{\sqrt{4 \pi D t}} \exp \left\{-\frac{x^{2}}{4 D t}\right\}
$$

Fokker-Planck and Langevin

Textbook example: two descriptions of Brownian motion

- 1-d diffusion eq. (כ F.-P. eq.)

$$
\partial_{t} P(x, t)=D \partial_{x}^{2} P(x, t)
$$

- $P(x, t)=$ probability for particle to be at location x at time t.
- For particle starting at $x=0$ at $t=0$ solution is
- Langevin equation:

$$
\begin{aligned}
x(t) & =\sqrt{2 D} \eta(t) \\
\left\langle\eta(t) \eta\left(t^{\prime}\right)\right\rangle & =\delta\left(t-t^{\prime}\right) \\
\langle x(t)\rangle & =0 \\
\left\langle x^{2}(t)\right\rangle & =2 D t \\
& \Longrightarrow \text { same as F.-P. }
\end{aligned}
$$

- Langevin also gives $t \neq t^{\prime}$

$$
P(x, t)=\frac{1}{\sqrt{4 \pi D t}} \exp \left\{-\frac{x^{2}}{4 D t}\right\}
$$

$$
\left\langle x(t) x\left(t^{\prime}\right)\right\rangle=2 D \min \left(t, t^{\prime}\right)
$$

- Now $x \Longrightarrow U(\mathbf{x})$ and $t \Longrightarrow y$.
- $\left(N_{c}{ }^{2}-1\right) N_{\perp}^{2}$-dimensional nonlinear diffusion equation. ($N_{\perp}^{2}=$ number of lattice points in transverse plane.)

Langevin formulation

Fokker-Planck \Longrightarrow Langevin in JIMWLK Blaizot, lancu, Weigert 2002
Original Langevin form: only right derivative ($\xi_{z}^{b, i}$ is noise)

$$
U_{\mathbf{x}}(y+\mathrm{d} y)=U_{\mathbf{x}}(y) \exp \left\{i t^{a} \int_{\mathbf{z}} \varepsilon_{\mathbf{x}, \mathbf{z}}^{a b, i} \xi_{\mathbf{z}}^{b, i} \sqrt{\mathrm{~d} y}+\sigma_{\mathbf{x}}^{a} \mathrm{~d} y\right\}
$$

Simpler, equivalent (for $\mathrm{dy} \rightarrow 0$) form т.L., H.M.

$$
\begin{aligned}
& U_{\mathbf{x}}(y+\mathrm{d} y)=\exp \left\{-i \frac{\sqrt{\alpha_{\mathrm{s}} \mathrm{~d} y}}{\pi} \int_{\mathbf{z}} \mathbf{K}_{\mathbf{x}-\mathbf{z}} \cdot\left(U_{\mathbf{z}} \xi_{\mathbf{z}} U_{\mathbf{z}}^{\dagger}\right)\right\} \\
& \times U_{\mathbf{x}}(y) \exp \left\{i \frac{\sqrt{\alpha_{\mathrm{s}} \mathrm{~d} y}}{\pi} \int_{\mathbf{z}} \mathbf{K}_{\mathbf{x}-\mathbf{z}} \cdot \boldsymbol{\xi}_{\mathbf{z}}\right\} \text {, } \\
& K_{\mathbf{x}-\mathbf{z}}^{i}=\frac{(\mathbf{x}-\mathbf{z})^{i}}{(\mathbf{x}-\mathbf{z})^{2}} \\
& i=x, y
\end{aligned}
$$

Fixed α_{s} noise: $\left\langle\xi_{\mathbf{x}}\left(y_{m}\right)_{i}^{\mathrm{a}} \xi_{\mathbf{y}}\left(y_{n}\right)_{j}^{b}\right\rangle=\alpha_{\mathbf{s}} \delta^{a b} \delta^{i j} \delta_{\mathbf{x y}}^{(2)} \delta_{m n}, \quad \xi=\xi^{a} t^{a}$ Multiply from left and right \Longrightarrow remove deterministic term

Interpreting JIMWLK: derive BK

$$
U_{\mathbf{x}}(y+\mathrm{d} y)=e^{-i \frac{\sqrt{\alpha_{\mathbf{s}} \mathrm{d} y}}{\pi}} \int_{\mathbf{z}} \mathbf{K}_{\mathbf{x}-\mathbf{z}} \cdot\left(U_{\mathbf{z}} \xi_{\mathbf{z}} U_{\mathbf{z}}^{\dagger}\right) U_{\mathbf{x}} e^{i \frac{\sqrt{\alpha_{\mathbf{s}} \mathrm{d} y}}{\pi}} \int_{\mathbf{z}} \mathbf{K}_{\mathbf{x}-\mathbf{z}} \cdot \xi_{\mathbf{z}}
$$

- At $\mathrm{d} y \rightarrow 0$ develop to $\mathcal{O}\left(\xi^{2}\right)$ and take expectation values.
- BK Balitsky-Kovchegov is equation for dipole $\hat{D}_{\mathbf{x}, \mathbf{y}}=\operatorname{Tr} U^{\dagger}(\mathbf{x}) U(\mathbf{y}) / N_{\mathrm{c}}$
- Contract ξ^{\prime} 's from timestep of $U^{\dagger}(\mathbf{x})$ with one from $U(\mathbf{y})$: real terms

- Contract two ξ 's from timestep of $U^{\dagger}(\mathbf{x})$ or $U(\mathbf{y})$: virtual terms

- Result

$$
\partial_{y} \hat{D}_{\mathbf{x}, \mathbf{y}}(y)=\frac{\alpha_{\mathrm{s}} N_{\mathrm{c}}}{2 \pi^{2}} \int_{\mathbf{z}}\left(\mathbf{K}_{\mathbf{x}-\mathbf{z}}^{2}+\mathbf{K}_{\mathbf{y}-\mathbf{z}}^{2}-2 \mathbf{K}_{\mathbf{x}-\mathbf{z}} \cdot \mathbf{K}_{\mathbf{y}-\mathbf{z}}\right)\left[\hat{D}_{\mathbf{x}, \mathbf{z}} \hat{D}_{\mathbf{z}, \mathbf{y}}-\hat{D}_{\mathbf{x}, \mathbf{y}}\right] .
$$

Scale of running α_{s} in JIMWLK

BK for $\hat{D}_{\mathbf{x}, \mathbf{y}}(y)$ describes dipole splitting $\mathbf{x}-\mathbf{y} \quad \longrightarrow \quad \mathbf{x}-\mathbf{z} ; \mathbf{z}-\mathbf{y}$

- α_{s} given by parent $\mathbf{x}-\mathbf{y}$: easy in BK, but funny in JIMWLK: Langevin is only for one Wilson line
- Daughter (scale in K): easy to implement as $\sqrt{\alpha_{\mathrm{s}}}$, but why?

$$
\sqrt{\alpha_{\mathrm{s}}} \mathbf{K}_{\mathbf{x}-\mathbf{z}} \rightarrow \sqrt{\alpha_{\mathrm{s}}(\mathbf{x}-\mathbf{z})} \mathbf{K}_{\mathbf{x}-\mathbf{z}}
$$

- Used in BK: combinations of these two.
- Suggestion t.L., H.Mäntysaari 2012 : natural scale is momentum of radiated gluon.
- Implemented by modifying momentum space noise correlator

$$
\begin{aligned}
&\left\langle\xi_{\mathbf{x}}(m)_{i}^{a} \xi_{\mathbf{y}}(n)_{j}^{b}\right\rangle \sim \alpha_{\mathbf{s}} \delta_{\mathbf{x y}}^{(2)}=\alpha_{\mathrm{s}} \int \frac{\mathrm{~d}^{2} \mathbf{k}}{(2 \pi)^{2}} e^{i \mathbf{k} \cdot(\mathbf{x}-\mathbf{y})} \\
& \Longrightarrow \int \frac{d^{2} \mathbf{k}}{(2 \pi)^{2}} e^{i \mathbf{k} \cdot(\mathbf{x}-\mathbf{y})} \alpha_{\mathrm{s}}(\mathbf{k})
\end{aligned}
$$

Reinterpreting JIMWLK

$$
U_{\mathbf{x}}(y+\mathrm{d} y)=\exp \left\{-i \frac{\sqrt{\mathrm{~d} y}}{\pi} \int_{\mathbf{z}} \mathbf{K}_{\mathbf{x}-\mathbf{z}} \cdot\left(U_{\mathbf{z}} \xi_{\mathbf{z}} U_{\mathbf{z}}^{\dagger}\right)\right\}
$$

$$
\times U_{\mathbf{x}}(y) \exp \left\{i \frac{\sqrt{\mathrm{~d} y}}{\pi} \int_{\mathbf{z}^{\prime}} \mathbf{K}_{\mathbf{x}-\mathbf{z}^{\prime}} \cdot \xi_{\mathbf{z}^{\prime}}\right\}
$$

$$
\left\langle\xi_{\mathbf{x}}(m)_{i}^{a} \xi_{\mathbf{y}}(n)_{j}^{b}\right\rangle \sim \int \frac{\mathrm{d}^{2} \mathbf{k}}{(2 \pi)^{2}} e^{i \mathbf{k} \cdot(\mathbf{x}-\mathbf{y})} \alpha_{\mathrm{s}}(\mathbf{k}) \equiv \widetilde{\alpha}_{\mathbf{x}-\mathbf{y}}
$$

- Breaks time-reversal-symmetry: choose scale as momentum of gluon either before or after the target
- Two gluon coordinates instead of one

Recovering BK

- Equation for dipole now involves higher point functions:

$$
\begin{aligned}
& \partial_{y} \hat{D}=\frac{N_{c}}{2 \pi^{2}} \int_{\mathbf{u}, \mathbf{v}} \widetilde{\alpha}_{\mathbf{u}-\mathbf{v}}\left(\mathbf{K}_{\mathbf{x}-\mathbf{u}} \cdot \mathbf{K}_{\mathbf{x}-\mathbf{v}}+\mathbf{K}_{\mathbf{y}-\mathbf{u}} \cdot \mathbf{K}_{\mathbf{y}-\mathbf{v}}-2 \mathbf{K}_{\mathbf{x}-\mathbf{u}} \cdot \mathbf{K}_{\mathbf{y}-\mathbf{v}}\right) \\
& \times \frac{1}{2}\left[\hat{D}_{\mathbf{x}, \mathbf{u}} \hat{D}_{\mathbf{u}, \mathbf{y}}+\hat{D}_{\mathbf{x}, \mathbf{v}} \hat{D}_{\mathbf{v}, \mathbf{y}}-\hat{D}_{\mathbf{x}, \mathbf{y}}-\hat{D}_{\mathbf{v}, \mathbf{u}} \hat{Q}_{\mathbf{x}, \mathbf{v}, \mathbf{u}, \mathbf{y}}\right],
\end{aligned}
$$

- But recall that α_{s} is a slowly varying function of the scale:

$$
\widetilde{\alpha}_{\mathbf{x}-\mathbf{y}} \equiv \int \frac{\mathrm{d}^{2} \mathbf{k}}{(2 \pi)^{2}} e^{i \mathbf{k} \cdot(\mathbf{x}-\mathbf{y})} \alpha_{\mathrm{s}}(\mathbf{k}) \sim \alpha_{\mathrm{s}} \delta^{2}(\mathbf{x}-\mathbf{y})
$$

$\Longrightarrow \mathbf{u} \approx \mathbf{v}$ and structure simplifies to BK:

$$
\frac{1}{2}\left[\hat{D}_{\mathrm{x}, \mathrm{u}} \hat{D}_{\mathrm{u}, \mathrm{y}}+\hat{D}_{\mathrm{x}, \mathrm{v}} \hat{D}_{\mathrm{v}, \mathrm{y}}-\hat{D}_{\mathrm{x}, \mathrm{y}}-\hat{D}_{\mathrm{v}, \mathrm{u}} \hat{Q}_{\mathrm{x}, \mathrm{v}, \mathrm{u}, \mathrm{y}}\right] \approx \hat{D}_{\mathrm{x}, \mathrm{u}} \hat{D}_{\mathrm{u}, \mathrm{y}}-\hat{D}_{\mathrm{x}, \mathrm{y}}
$$

- Parametrically dominant length scale in coupling is "smallest dipole", just like in Balitsky prescription for BK.

Comparison BK/JIMWLK

Evolution with our prescription is slower than with $\sqrt{\alpha_{\mathrm{s}}}$.
This is good, data favors slower evolution

But this is still faster than with Balitsky prescription in BK
(Although parametricallly dominant scales are the same.)

Note: rcBK fits to HERA data need to take $\Lambda_{Q C D} \approx 50 \mathrm{MeV}$ to make evolution slow enough.

Evolution speed

$$
\lambda \equiv \frac{\mathrm{d} \ln Q_{\mathrm{s}}^{2}}{\mathrm{~d} y}
$$

At very IR scales also dependence on how the Landau pole is regulated (different line shapes)

Side note: scale in coordinate vs momentum space

If running coupling depends only on scale in \mathbf{K} ($\sqrt{\alpha_{s}}$-prescription), can use either coordinate or momentum space:

$$
\sqrt{\alpha_{\mathrm{s}}(\mathbf{x})} \frac{\mathbf{x}}{\mathbf{x}^{2}} \quad \text { vs. } \sqrt{\alpha_{\mathrm{s}}(\mathbf{k})} \frac{\mathbf{k}}{\mathbf{k}^{2}}
$$

Numerically verified identification (for this kernel)

$$
\ln \frac{\mathbf{k}^{2}}{\Lambda_{\mathrm{QCD}}^{2}} \sim \ln \frac{4 e^{-2 \gamma_{\mathrm{E}}}}{r^{2} \Lambda_{\mathrm{QCD}}^{2}}
$$

Gluon fields in AA collision

2 pure gauges
Classical Yang-Mills

Gluon fields in AA collision

2 pure gauges
Classical Yang-Mills

Gluon fields in AA collision

2 pure gauges
Classical Yang-Mills

$\tau>0$ Solve numerically Classical Yang-Mills CYM equations. This is the glasma field $\quad \Longrightarrow$ Then average over ρ.

Gluons with $p \sim Q_{\mathrm{s}}-$ strings of size $R \sim 1 / Q_{\mathrm{s}}$

Gluon spectrum in the glasma

T.L., Phys.Lett. B703 (2011) 325 ; 1st calculation to actually use JIMWLK in CYM calculation

Q_{s} is only dominant scale

$$
\text { Parametrically gluon spectrum } \frac{d N_{g}}{d y d^{2} \mathbf{x} \mathrm{~d}^{2} \mathbf{p}}=\frac{1}{\alpha_{\mathrm{s}}} f\left(\frac{p}{Q_{\mathrm{s}}}\right)
$$

Gluon spectrum in the glasma

T.L., Phys.Lett. B703 (2011) 325 ; 1st calculation to actually use JIMWLK in CYM calculation

Q_{s} is only dominant scale

Parametrically gluon spectrum

$$
\frac{\mathrm{d} N_{g}}{\mathrm{~d} y \mathrm{~d}^{2} \mathbf{x} \mathrm{~d}^{2} \mathbf{p}}=\frac{1}{\alpha_{\mathrm{s}}} f\left(\frac{p}{Q_{\mathrm{s}}}\right)
$$

Unintegrated gluon distribution

$$
C(\mathbf{k})=\frac{k^{2}}{N_{\mathrm{c}}} \operatorname{Tr}\left\langle U(\mathbf{k}) U^{\dagger}(\mathbf{k})\right\rangle
$$

becomes harder with evolution.

Gluon spectrum in the glasma

T.L., Phys.Lett. B703 (2011) 325 ; 1st calculation to actually use JIMWLK in CYM calculation

Q_{S} is only dominant scale

Parametrically gluon spectrum $\frac{\mathrm{d} N_{g}}{\mathrm{dyd} \mathrm{d}^{2} \mathbf{x} d^{2} \mathbf{p}}=\frac{1}{\alpha_{\mathrm{s}}} f\left(\frac{p}{Q_{\mathrm{s}}}\right)$

Unintegrated gluon distribution

$$
C(\mathbf{k})=\frac{k^{2}}{N_{\mathrm{c}}} \operatorname{Tr}\left\langle U(\mathbf{k}) U^{\dagger}(\mathbf{k})\right\rangle
$$

becomes harder with evolution.

Produced gluon spectrum: harder at higher \sqrt{s} (Here:
midrapidity, $\left.y \equiv \ln \sqrt{s / s_{0}}\right)$

Gluon multiplicity and mean p_{T}

Q_{S} is only dominant scale

$$
\text { Parametrically } \quad \frac{d N_{g}}{d y d^{2} \mathbf{x}}=c_{N} \frac{C_{F}}{2 \pi^{2} \alpha_{\mathrm{s}}} Q_{\mathrm{s}}^{2} \quad\langle p\rangle \sim Q_{\mathrm{s}}
$$

Note: in full CYM total gluon multiplicity is IR finite, no cutoff.

Gluon multiplicity and mean p_{T}

Q_{s} is only dominant scale

$$
\text { Parametrically } \quad \frac{d N_{g}}{d y d^{2} \mathbf{x}}=c_{N} \frac{C_{F}}{2 \pi^{2} \alpha_{\mathrm{s}}} Q_{\mathrm{s}}^{2} \quad\langle p\rangle \sim Q_{\mathrm{s}}
$$

Note: in full CYM total gluon multiplicity is IR finite, no cutoff.

Scaled multiplicity increases with
energy (Midrapidity, $y \equiv \ln \sqrt{s / s_{0}}$)

Gluon multiplicity and mean p_{T}

Q_{S} is only dominant scale

$$
\text { Parametrically } \quad \frac{d N_{g}}{d y d^{2} \mathbf{x}}=c_{N} \frac{C_{F}}{2 \pi^{2} \alpha_{\mathrm{s}}} Q_{\mathrm{s}}^{2} \quad\langle p\rangle \sim Q_{\mathrm{s}}
$$

Note: in full CYM total gluon multiplicity is IR finite, no cutoff.

Scaled multiplicity increases with energy (Midrapidity, $y \equiv \ln \sqrt{s / s_{0}}$)

Harder gluon spectrum \Longrightarrow higher $\langle p\rangle / Q_{\mathrm{s}}$ as scaling regime sets in.
(Still very large lattice cutoff effects.)

Side note: CYM vs. k_{T}-factorization

Blaizot, T.L., Mehtar-Tani 2010

$$
\frac{\mathrm{d} N}{\mathrm{~d}^{2} \mathbf{p} \mathrm{~d} y}=\frac{\#}{\alpha_{\mathrm{s}}} \frac{1}{\mathbf{p}^{2}} \int_{\mathbf{k}}[\theta(p-k)] \phi_{y}(\mathbf{k}) \phi_{y}(\mathbf{p}-\mathbf{k})
$$

$\mathrm{pA}: k_{T}$-factorization works

AA: no k_{T}-factorization

Not directly observable

Do not measure gluon spectrum with $\mathbf{p} \lesssim 1 \mathrm{GeV}$! Centrality, rapidity, energy dependence from $N \sim S_{\perp} Q_{s}^{2}$

Suggested interpretation Levin, 2010 : Sudakov suppression factor.

Unequal rapidity: context

Unequal rapidity correlations in glasma

Single and double inclusive gluon production

Single gluon: Need only $\left\langle\rho_{y} \rho_{y}\right\rangle$

Unequal rapidity correlations in glasma

Single and double inclusive gluon production

Unequal rapidity: ridge in AA or pp

CGC ridge phenomenology so far (Dumitru, Dusling, Gelis, Jalilian-Marian, T.L., Venugopalan, several papers) based on k_{T}-factorized approximation

$$
\begin{aligned}
& C(\mathbf{p}, \mathbf{q}) \sim \int_{\mathbf{k}}\{\overbrace{\Phi_{A_{1}}^{2}\left(y_{p}, \mathbf{k}\right) \Phi_{A_{2}}\left(y_{p}, \mathbf{p}-\mathbf{k}\right)}^{3 \text { at } y_{p}} \overbrace{\Phi_{A_{2}}\left(y_{q}, \mathbf{q}+\mathbf{k}\right)}^{1 \text { at } y_{q}} \\
&\left.+(\mathbf{k} \leftrightarrow-\mathbf{k})+\left(A_{1} \leftrightarrow A_{2}\right)\right\}
\end{aligned}
$$

Based on leading α_{s}, (i.e. no decorrelation in rapidity), MV/Gaussian approximation:

$$
\left\langle\hat{D}(\mathbf{k})_{y_{p}} \hat{D}(\mathbf{k})_{y_{q}}\right\rangle-\left\langle\hat{D}(\mathbf{k})_{y_{p}}\right\rangle\left\langle\hat{D}(\mathbf{k})_{y_{q}}\right\rangle \sim \frac{1}{N_{c}^{2}-1}\left\langle\hat{D}(\mathbf{k})_{y_{\text {min }}}\right\rangle^{2}
$$

Is this valid? Real evolution causes decorrelation; how fast?

Where did this come from?

Produce two gluons in two $2 \rightarrow 1$ processes; subtract uncorrelated

$$
\begin{aligned}
& \left\langle\rho_{A}\left(\mathbf{p}-\mathbf{k}, y_{p}\right) \rho_{A}\left(\mathbf{k}-\mathbf{p}, y_{p}\right) \rho_{B}\left(\mathbf{k}, y_{p}\right) \rho_{B}\left(-\mathbf{k}, y_{p}\right)\right. \\
& \left.\quad \times \rho_{A}\left(\mathbf{q}-\mathbf{k}^{\prime}, y_{q}\right) \rho_{A}\left(\mathbf{k}^{\prime}-\mathbf{q}, y_{q}\right) \rho_{B}\left(\mathbf{k}^{\prime}, y_{q}\right) \rho_{B}\left(-\mathbf{k}^{\prime}, y_{q}\right)\right\rangle \\
& \quad-\left\langle\rho_{A}\left(\mathbf{p}-\mathbf{k}, y_{p}\right) \rho_{A}\left(\mathbf{k}-\mathbf{p}, y_{p}\right) \rho_{B}\left(\mathbf{k}, y_{p}\right) \rho_{B}\left(-\mathbf{k}, y_{p}\right)\right\rangle \\
& \quad \times\left\langle\rho_{A}\left(\mathbf{q}-\mathbf{k}^{\prime}, y_{q}\right) \rho_{A}\left(\mathbf{k}^{\prime}-\mathbf{q}, y_{q}\right) \rho_{B}\left(\mathbf{k}^{\prime}, y_{q}\right) \rho_{B}\left(-\mathbf{k}^{\prime}, y_{q}\right)\right\rangle
\end{aligned}
$$

Where did this come from?

Produce two gluons in two $2 \rightarrow 1$ processes; subtract uncorrelated

$$
\begin{aligned}
& \left\langle\rho_{A}\left(\mathbf{p}-\mathbf{k}, y_{p}\right) \rho_{A}\left(\mathbf{k}-\mathbf{p}, y_{p}\right) \rho_{B}\left(\mathbf{k}, y_{p}\right) \rho_{B}\left(-\mathbf{k}, y_{p}\right)\right. \\
& \left.\quad \times \rho_{A}\left(\mathbf{q}-\mathbf{k}^{\prime}, y_{q}\right) \rho_{A}\left(\mathbf{k}^{\prime}-\mathbf{q}, y_{q}\right) \rho_{B}\left(\mathbf{k}^{\prime}, y_{q}\right) \rho_{B}\left(-\mathbf{k}^{\prime}, y_{q}\right)\right\rangle \\
& \quad-\left\langle\rho_{A}\left(\mathbf{p}-\mathbf{k}, y_{p}\right) \rho_{A}\left(\mathbf{k}-\mathbf{p}, y_{p}\right) \rho_{B}\left(\mathbf{k}, y_{p}\right) \rho_{B}\left(-\mathbf{k}, y_{p}\right)\right\rangle \\
& \quad \times\left\langle\rho_{A}\left(\mathbf{q}-\mathbf{k}^{\prime}, y_{q}\right) \rho_{A}\left(\mathbf{k}^{\prime}-\mathbf{q}, y_{q}\right) \rho_{B}\left(\mathbf{k}^{\prime}, y_{q}\right) \rho_{B}\left(-\mathbf{k}^{\prime}, y_{q}\right)\right\rangle
\end{aligned}
$$

Assumption: $\rho(y+\Delta y)=\rho(y)+\Delta \rho$ with

$$
\langle(\Delta \rho)(\rho(y))\rangle=0 \Longrightarrow
$$

$$
\sim \frac{1}{N_{c}{ }^{2}-1}\left\langle\rho_{A}^{2}\right\rangle_{y_{p}}\left\langle\rho_{A}^{2}\right\rangle_{y_{q}}\left(\left\langle\rho_{B}^{2}\right\rangle_{y_{p}}\right)^{2}
$$

(When y_{p} is earlier in evolution of B, i.e. $y_{p}=y_{\text {min }}$)
Then replace $\rho \rho$-correlator in linearized expression by dipole from BK.

Decorrelation in rapidity: preliminary results

Is this MV result valid in JIMWLK? Study numerically

$$
\left(N_{c}^{2}-1\right)\left[\frac{\left\langle\hat{D}(\mathbf{k})_{y} \hat{D}(\mathbf{k})_{y+\Delta y}\right\rangle}{\left\langle\hat{D}(\mathbf{k})_{y}\right\rangle\left\langle\hat{D}(\mathbf{k})_{y+\Delta y}\right\rangle}-1\right]
$$

Decorrelation speed vs. \mathbf{k}

$$
\frac{\left\langle\hat{D}(\mathbf{k})_{y} \hat{D}(\mathbf{k})_{y+\Delta y}\right\rangle-\left\langle\hat{D}(\mathbf{k})_{y}\right\rangle\left\langle\hat{D}(\mathbf{k})_{y+\Delta y}\right\rangle}{\left\langle\hat{D}(\mathbf{k})_{y}\right\rangle\left\langle\hat{D}(\mathbf{k})_{y+\Delta y}\right\rangle} \sim \exp \left\{-\zeta_{\mathbf{k}} \Delta y\right\}
$$

Compare decorrelation speed ζ to evolution speed $Q_{\mathrm{s}}^{2} \sim e^{-\lambda y}$:

Decorrelation fast, and gets faster with evolution.

Decorrelation speed weighted with \mathbf{k}

Weighted with same power of \mathbf{k} as in double inclusive spectum $\left(\Phi(\mathbf{k}) \sim \mathbf{k}^{2} D(\mathbf{k})\right.$ is the correct unintegrated distribution)

$$
\frac{\int \mathrm{d}^{2} \mathbf{k k}^{4}\left[\left\langle\hat{D}(\mathbf{k})_{y} \hat{D}(\mathbf{k})_{y+\Delta y}\right\rangle-\left\langle\hat{D}(\mathbf{k})_{y}\right\rangle\left\langle\hat{D}(\mathbf{k})_{y+\Delta y}\right\rangle\right]}{\int \mathrm{d}^{2} \mathbf{k} \mathbf{k}^{4}\left\langle\hat{D}(\mathbf{k})_{y}\right\rangle\left\langle\hat{D}(\mathbf{k})_{y+\Delta y}\right\rangle} \sim \exp \{-\zeta \Delta y\}
$$

Different symbols: different lattice size, rapidity step, initial Q_{s}, coupling freeze \Longrightarrow Fast, and seems to be IR-unsafe (depends on system size L)

Conclusions

- JIMWLK equation is beginning to be actually applied
- Provides initial state for AA collision in CYM
- Running coupling, going towards NLO ... necessary for phenomenology
- Unequal rapidity correlations? See Dionysis' talk.

