Selected, recent results in high energy factorization

Krzysztof Kutak

Supported by grant: LIDER/02/35/L-2/10/NCBiR/2011
763/N-COPIN-ECT*/2010/0

Based on work with:
Krzysztof Bożek, Andreas van Hameren, Piotr Kotko
Wieslaw Placzek, Dawid Toton, Magda Slawinska

QCD at high energies - high energy factorization

$\frac{d \sigma}{d y_{1} d y_{2} d^{2} p_{1 t} d^{2} p_{2 t}}=\sum_{a, b, c, d} \int \frac{d^{2} k_{1 t}}{\pi} \frac{d^{2} k_{2 t}}{\pi} \frac{1}{16 \pi^{2}\left(x_{1} x_{2} S\right)^{2}} \overline{\mathcal{M}} \alpha b \rightarrow \alpha d{ }^{2} \delta^{2}\left(\vec{k}_{1 t}+\vec{k}_{2 t}-\vec{p}_{1 t}-\vec{p}_{2 t}\right)$

Decreasing longitudianl momentum fractions of off-shell partons
Unintegrated gluon density

$$
\begin{gathered}
k_{1}^{\mu}=x_{1} P_{1}^{\mu}+\bar{x}_{1} P_{2}^{\mu}+k_{1 t}^{\mu} \quad k_{2}^{\mu}=x_{2} P_{2}^{\mu}+\bar{x}_{2} P_{1}^{\mu}+k_{2 t}^{\mu} \\
\bar{x}_{1}=\frac{k_{1}^{2}+\mathbf{k}^{2}}{S x_{1}} \\
\bar{x}_{2}=\frac{k_{2}^{2}+\mathbf{k}^{2}}{S x_{2}} \\
\left|\mathcal{M}_{a b \rightarrow c d}\right|^{2}=\frac{2 x_{1} k_{1}^{\mu_{1}} k_{1}^{\mu_{1}}}{k_{1}^{2}} \frac{2 x_{2} k_{2}^{\mu_{2}} k_{2}^{\nu_{2}}}{k_{2}^{2}} \mathcal{M}_{a b \rightarrow c d \mu_{1} \nu_{1}} \mathcal{M}_{a b \rightarrow o d \mu_{2} \nu_{2}}^{*}
\end{gathered}
$$

Originally derived for quarks in final state. Lipatov provided general framework.

Parton densities
"do not talk" to one another

Decreasing longitudianl momentum fractions of off-shell partons
Gribov, Levin, Ryskin '81
Ciafaloni, Catani, Hautman '93

Recently new approach consistent with Lipatov's action allowed for formulation and numerical calculation of any tree level amplitude with off-shell gluons in initial state Van Hameren, Kotko, KK '12
Attempts to generalize to p-A.
Dominguez, Huan, Marquet, Xiao '10

Gluon density - practical definition

$$
F_{2}\left(x, Q^{2}\right)=\frac{Q^{2}}{4 \pi^{2}} \alpha_{s} \sum_{q} e_{q}^{2} \int d^{2} k \mathcal{F}\left(x, k^{2}\right)\left(S_{L}\left(k^{2}, Q^{2}, m_{q}^{2}\right)+S_{T}\left(k^{2}, Q^{2}, m_{q}^{2}\right)\right)
$$

Enters also into inclusive gluon production in adjoint representation recently called
dipole gluon density
$F_{2}\left(x, Q^{2}\right)=\frac{Q^{2}}{4 \pi^{2} \alpha_{e n}} \int d^{2} b \int_{0}^{1} d z \int d^{2} r\left(\left|\psi_{L}(z, r)\right|^{2}+\mid \psi_{T}(z, r)^{2}\right) N(x, r, b)$
In the dipole formalism
$\mathcal{F}\left(x, k^{2}\right)=\frac{N_{c}}{\alpha_{s}(2 \pi)^{3}} \int d^{2} b \int d^{2} r e^{i k \cdot r} \nabla_{r}^{2} N(r, b, x)$

Impact factors from Feynman

 diagrams in momentum space

$\mathrm{F}\left(\mathrm{x}, \mathrm{k}^{2}\right)$
1.4
9.
1.2
$\mathcal{F}\left(x, k^{2}\right)=\mathcal{F}_{0}\left(x, k^{2}\right)+\bar{\alpha}_{s} \int_{x / x_{0}}^{1} \frac{d z}{z} \int_{0}^{\infty} \frac{d l^{2}}{l^{2}}\left[\frac{l^{2} \mathcal{F}\left(x / z, l^{2}\right)-k^{2} \mathcal{F}\left(x / z, k^{2}\right)}{\left|k^{2}-l^{2}\right|}+\frac{k^{2} \mathcal{F}\left(x / z, k^{2}\right)}{\sqrt{\left(44^{4}+k^{4}\right)}}\right]$

$$
-\frac{2 \alpha_{s}^{2} \pi}{N_{c} R^{2}} \int_{x / x_{0}}^{1} \frac{d z}{z}\left\{\left[\int_{k^{2}}^{\infty} \frac{d l^{2}}{l^{2}} \mathcal{F}\left(x / z, l^{2}\right)\right]^{2}+\mathcal{F}\left(x / z, k^{2}\right) \int_{k^{2}}^{\infty} \frac{d l^{2}}{l^{2}} \ln \left(\frac{l^{2}}{k^{2}}\right) \mathcal{F}\left(x / z, l^{2}\right)\right\}
$$

K.K, Kwiecinski '2003

Nikolaev, Schaffer '04

High Energy Factorization - matrix elements

-General theory given by Lipatov effective action (Lipatov' 95; Antonov, Cherednikov, Kuraev, LLipatov '05).
-Mainly analitical results. (Braun; Chachamis, Hentschinski, Madrigal, Sabio-Vera,)

- So far there is no numerical tool which generates matrix elements directly from the effective action.
-For collinear factorization there are: HELAC, Amagic++,AlpGen, MadGraph,...
-New framework which is equivalent to Lipatov effective action and which makes use of existing tools for evaluation of matrix elements

Van Hameren, Kotko, KK JHEP 1301 (2013) 078, Van Hameren, Kotko, KK JHEP 1212 (2012) 029 .

Kinematics of High Energy Factorization

$$
\begin{gathered}
k_{1}+k_{2}=p_{1}+p_{2}+p_{3}+p_{4} \\
k_{1}=x_{1} P_{A}+k_{\perp 1} \quad k_{2}=x_{2} P_{B}+k_{\perp 2} \\
P_{A} \cdot k_{\perp 1}=P_{A} \cdot k_{\perp 2}=P_{B} \cdot k_{\perp 1}=P_{B} \cdot k_{\perp 2}=0 \\
P_{A}^{2}=P_{B}^{2}=0 \\
k_{1}^{2}=k_{\perp 1}^{2} \quad k_{2}^{2}=k_{\perp 2}^{2}
\end{gathered}
$$

$\begin{array}{cl}\ell_{1}=(E, 0,0, E) & \begin{array}{l}\ell_{2}=(E, 0,0,-E) \\ p_{A}-p_{A^{\prime}}=k_{1}=x_{1} \ell_{1}+k_{1 \perp}+y_{2} \ell_{2} \quad \\ p_{B}-p_{B^{\prime}}=k_{2}=x_{2} \ell_{2}+k_{2 \perp}+y_{1} \ell_{1}\end{array}\end{array}$

Needed to keep quarks on shell. Usually neglected

Towards automation of High Energy Factorization

Van Hameren, Kotko, KK JHEP 1301 (2013) 078
Let us consider $\quad \mathcal{A}\left(g^{*} g^{*} \rightarrow X\right)$

$$
\begin{array}{r}
p_{\mathrm{A}}=\left(\Lambda+x_{1}\right) \ell_{1}+k_{13} \ell_{3} \\
p_{A^{\prime}}=\Lambda \ell_{1}-\kappa_{14 \Lambda^{\prime} / 4} \\
p_{\mathrm{A}}-p_{\mathrm{A}^{\prime}}=x_{1} \ell_{1}+k_{1 \perp}
\end{array}
$$

$$
p_{\mathrm{B}}=\left(\Lambda+\mathrm{x}_{2}\right) \ell_{2}+\mathrm{k}_{24} \ell_{4}
$$

$$
p_{B^{\prime}}=\Lambda \ell_{2}-\kappa_{23} \ell_{3}
$$

$$
p_{\mathrm{B}}-p_{\mathrm{B}^{\prime}}=x_{2} \ell_{2}+k_{2 \perp}
$$

Must be gauge invariant

$$
\begin{gathered}
\text { Introduce complex } p_{A}, p_{B}, p_{A^{\prime}} p_{B^{\prime}} \\
\ell_{3}^{\mu}=\frac{1}{2}\left\langle\ell_{2}-\right| \gamma^{\mu}\left|\ell_{1}-\right\rangle \quad \ell_{4}^{\mu}=\frac{1}{2}\left\langle\ell_{1}-\right| \gamma^{\mu}\left|\ell_{2}-\right\rangle \\
p_{A}^{\mu}=\left(\Lambda+x_{1}\right) \ell_{1}^{\mu}-\frac{\ell_{4} \cdot k_{1 \perp}}{\ell_{1} \cdot \ell_{2}} \ell_{3}^{\mu} \quad p_{A^{\prime}}^{\mu}=\Lambda \ell_{1}^{\mu}+\frac{\ell_{3} \cdot k_{1 \perp}}{\ell_{1} \cdot \ell_{2}} \ell_{4}^{\mu} \\
p_{B}^{\mu}=\left(\Lambda+x_{2}\right) \ell_{2}^{\mu}-\frac{\ell_{3} \cdot k_{2 \perp}}{\ell_{1} \cdot \ell_{2}} \ell_{4}^{\mu} \quad p_{B^{\prime}}^{\mu}=\Lambda \ell_{2}^{\mu}+\frac{\ell_{4} \cdot k_{2 \perp}}{\ell_{1} \cdot \ell_{2}} \ell_{3}^{\mu} \\
p_{A}^{\mu}-p_{A^{\prime}}^{\mu}=x_{1} \ell_{1}^{\mu}+k_{1 \perp}^{\mu} \quad p_{B}^{\mu}-p_{B^{\prime}}^{\mu}=x_{2} \ell_{2}^{\mu}+k_{2 \perp}^{\mu} \\
p_{A}^{2}=p_{A^{\prime}}^{2}=p_{B}^{2}=p_{B^{\prime}}^{2}=0
\end{gathered}
$$

For a given process amplitude is evaluated numerically.

Extraction of physical amplitude

External spinors $\left.\left.\quad \mid p_{A}\right] \left.=\frac{\sqrt{\Lambda+\chi_{1}}+\kappa_{13}}{\sqrt{\left|\sqrt{\Lambda+x_{1}}+k_{13}\right|}} \right\rvert\, \ell_{1}\right]$

$$
\left\langle\mathrm{p}_{\mathrm{B}^{\prime}}\right|=\sqrt{\left|\sqrt{\Lambda}-\mathrm{K}_{23}\right|}\left\langle\ell_{2}\right|
$$

$$
\left.\left.\mid p_{\mathrm{B}}\right] \left.=\frac{\sqrt{\Lambda+x_{2}}+\kappa_{24}}{\sqrt{\left|\sqrt{\Lambda+x_{2}}+\kappa_{24}\right|}} \right\rvert\, \ell_{2}\right]
$$

$$
\left\langle\mathrm{p}_{A^{\prime}}\right|=\sqrt{\left|\sqrt{\Lambda}-\kappa_{14}\right|}\left\langle\ell_{1}\right|
$$

For A-quark line propagator

$$
\frac{p}{p^{2}}=\frac{(\Lambda+x) \ell_{1}+y \ell_{2}+p_{\perp}}{2(\Lambda+x) y \ell_{1} \cdot \ell_{2}+p_{\perp}^{2}} \xrightarrow{\Lambda \rightarrow \infty} \frac{\ell_{1}}{2 y \ell_{1} \cdot \ell_{2}}=\frac{\ell_{1}}{2 \ell_{1} \cdot p}
$$

Gluons attach via eikonal coupling

$$
\begin{aligned}
\left.\left\langle\ell_{1}\right| \gamma^{\mu_{1}} \ell_{1} \gamma^{\mu_{2}} \ell_{1} \cdots \mid \ell_{1}\right] & \left.\left.\left.=\left\langle\ell_{1}\right| \gamma^{\mu_{1}} \mid \ell_{1}\right]\left\langle\ell_{1}\right| \gamma^{\mu_{2}} \mid \ell_{1}\right]\left\langle\ell_{1}\right| \cdots \mid \ell_{1}\right] \\
& =\left(2 \ell_{1}^{\mu_{1}}\right)\left(2 \ell_{1}^{\mu_{2}}\right) \cdots .
\end{aligned}
$$

$g^{*} g^{*} \rightarrow g, g^{*} g^{*} \rightarrow g g, g^{\star} g \rightarrow g g, .$. agree with $R R \rightarrow g, R R \rightarrow g g, R g \rightarrow g g$ from Lipatov action

Prescription to get amplitude with off-shell gluons

1. Consider the process $q_{A} q_{B} \rightarrow q_{A} q_{B} X$, where q_{A}, q_{B} are distinguishable massless quarks not occurring in X, and with momentum flow as if the momenta p_{A}, p_{B} of the initial-state quarks and $\mathrm{p}_{A^{\prime}}, \mathrm{p}_{\mathrm{B}^{\prime}}$ of the final-state quarks are given by

$$
p_{A}^{\mu}=k_{1}^{\mu} \quad, \quad p_{B}^{\mu}=k_{2}^{\mu} \quad, \quad p_{A^{\prime}}^{\mu}=p_{B^{\prime}}^{\mu}=0
$$

2. Associate the number 1 instead of spinors with the end points of the A-quark line, interpret every vertex on the \mathcal{A}-quark line as $g_{s} T_{i j} \ell_{1}^{\mu}$ instead of $-i g_{s} T_{i j}^{a} \gamma^{\mu}$, interpret every propagator on the A-quark line as $\delta_{i j} / \ell_{1} \cdot p$ instead of $i \delta_{i j} / p$.
3. Associate the number 1 instead of spinors with the end points of the B-quark line, interpret every vertex on the B-quark line as $\mathrm{g}_{\mathrm{s}} \mathrm{T}_{\mathrm{ij}} \ell_{2}^{\mu}$ instead of $-\mathrm{i} \mathrm{g}_{\mathrm{s}} \mathrm{T}_{\mathrm{ij}}^{a} \gamma^{\mu}$, interpret every propagator on the B-quark line as $\delta_{\mathrm{ij}} / \ell_{2} \cdot \mathrm{p}$ instead of $\mathrm{i} \delta_{\mathrm{ij}} / p$.
4. Multiply the amplitude with $F=\frac{i x_{1} \sqrt{-2 k_{1 \perp}^{2}}}{g_{s}} \times \frac{i x_{2} \sqrt{-2 k_{2 \perp}^{2}}}{g_{s}}$.
5. For the rest normal Feynman rules apply.

In agreement with Lipatov's effective action.

Application to some hadronic observables

Framework works well for di-hadron production at RHIC also Albacete, Marquet '10, Juan,Stasto,Xiao '11 ,...

Obtained with gluon from BK with collinear imrovements - model

Z production in $\mathrm{p}-\mathrm{p}$ vs. $\mathrm{p}-\mathrm{Pb}$

5 TeV

pt of b barb > 20GeV, y of b, barb < 2.5 Pt of lepton $>20 \mathrm{GeV}$, y of lepton < 2.1 $E t>20 \mathrm{GeV}$

Work in progress with Andreas van Hameren 10 and Piotr Kotko

Needed unification of recombination and coherence

Use reformulation of $B K$ to combine nonlinearities with coherence

Towards exclusive processes resummed form of the BK

The strategy:

-Use the BK equation for gluon number density. Simple nonlinear term
-Split linear kernel into resolved and unresolved parts
-Resumm the virtual contribution and unresolved ones in th

- Use analogy to postulate a nonlinear CCFM

The starting point:
Integration over I

$$
\begin{gathered}
\Phi\left(x, k^{2}\right)=\Phi_{0}\left(x, k^{2}\right)+\bar{\alpha}_{s} \int_{x / x_{0}}^{1} \frac{d z}{z} \int_{0}^{\infty} \frac{d l^{2}}{l^{2}}\left[\frac{l^{2} \Phi\left(x / z l^{2}\right)-k^{2} \Phi\left(x / z, k^{2}\right)}{\left|k^{2}-l^{2}\right|}+\frac{k^{2} \Phi\left(x / z, k^{2}\right)}{\sqrt{\left(4 l^{4}+k^{4}\right)}}\right]-\frac{\bar{\alpha}_{s}}{\pi R^{2} \int_{x / x_{0}}^{1}} \frac{d z}{z} \Phi^{2}\left(x / z_{9} k^{2}\right) \\
\text { let } \quad \pi R^{2}=1 \quad \mathcal{F}\left(x, k^{2}\right)=\frac{N_{c}}{4 \alpha_{s} \pi^{2}} k^{2} \nabla_{k}^{2} \Phi\left(x, k^{2}\right)
\end{gathered}
$$

Resummed form of the BK

$$
\begin{aligned}
& \Phi\left(x, k^{2}\right)=\Phi^{0}\left(x, k^{2}\right) \\
&+\bar{\alpha}_{s} \int_{x}^{1} \frac{d z}{z} \int \frac{d^{2} \mathbf{q}}{\pi q^{2}}\left[\Phi\left(x / z,|\mathbf{k}+\mathbf{q}|^{2}\right)-\theta\left(k^{2}-q^{2}\right) \Phi(x / z, k)\right] \\
&-\bar{\alpha}_{s} \int_{x}^{1} \frac{d z}{z} \Phi^{2}(x / z, k) \\
& \Phi\left(x, k^{2}\right)=\Phi^{0}\left(x, k^{2}\right) \text { Write in exclusive } \\
&+\bar{\alpha}_{s} \int_{x}^{1} \frac{d z}{z} \int \frac{d^{2} \mathbf{q}}{\pi q^{2}} \Phi\left(x / z,|\mathbf{k}+\mathbf{q}|^{2}\right) \theta\left(q^{2}-\mu^{2}\right) \\
&+\bar{\alpha}_{s} \int_{x}^{1} \frac{d z}{z} \int \frac{d^{2} \mathbf{q}}{\pi q^{2}}\left[\Phi\left(x / z,|\mathbf{k}+\mathbf{q}|^{2}\right) \theta\left(\mu^{2}-q^{2}\right)-\theta\left(k^{2}-q^{2}\right) \Phi(x / z, k)\right] \\
&-\bar{\alpha}_{s} \int_{x}^{1} \frac{d z}{z} \Phi^{2}(x / z, k) . \text { Integration over e, Skryypek '11 }
\end{aligned}
$$

Perform Mellin transform w.r.t x to get rid of

$$
\bar{\Phi}\left(\omega, k^{2}\right)=\int_{0}^{1} d x x^{\omega-1} \Phi\left(x, k^{2}\right)
$$ "z" integral

Towards exclusive and resummed form of BK

Using in unresolved real part

$$
|\mathbf{k}+\mathbf{q}|^{2} \approx \mathbf{k}^{2} \quad \longleftarrow \quad q^{2}<\mu^{2}
$$

$$
\begin{align*}
\bar{\Phi}\left(\omega, k^{2}\right)= & \bar{\Phi}^{0}\left(\omega, k^{2}\right) \tag{8}\\
& +\frac{\bar{\alpha}_{s}}{\omega} \int \frac{d^{2} \mathbf{q}}{q^{2}}\left[\bar{\Phi}\left(\omega,|\mathbf{k}+\mathbf{q}|^{2}\right) \theta\left(q^{2}-\mu^{2}\right)\right]+\frac{\bar{\alpha}_{s}}{\omega} \int \frac{d^{2} \mathbf{q}}{q^{2}} \bar{\Phi}\left(\omega, k^{2}\right)\left[\theta\left(\mu^{2}-q^{2}\right)-\theta\left(k^{2}-q^{2}\right)\right] \\
& -\frac{\bar{\alpha}_{s}}{\omega} \int_{0}^{1} d y y^{\omega-1} \Phi^{2}\left(y, k^{2}\right) \\
\bar{\Phi}\left(\omega, k^{2}\right) & =\bar{\Phi}^{0}\left(\omega, k^{2}\right) \\
& +\frac{\bar{\alpha}_{s}}{\omega} \int \frac{d^{2} \mathbf{q}}{\pi q^{2}} \bar{\Phi}\left(\omega,|\mathbf{k}+\mathbf{q}|^{2}\right) \theta\left(q^{2}-\mu^{2}\right)-\frac{\bar{\alpha}_{s}}{\omega} \bar{\Phi}\left(\omega, k^{2}\right) \ln \frac{k^{2}}{\mu^{2}} \\
& -\frac{\bar{\alpha}_{s}}{\omega} \int_{0}^{1} d y y^{\omega-1} \Phi^{2}\left(y, k^{2}\right) . \\
\bar{\Phi}\left(\omega, k^{2}\right) & =\hat{\Phi}^{0}\left(\omega, k^{2}\right) \\
& \left.+\frac{\bar{\alpha}_{s}}{\bar{\omega}+\omega} \int \frac{d^{2} \mathbf{q}}{\pi q^{2}} \bar{\Phi}\left(\omega,|\mathbf{k}+\mathbf{q}|^{2}\right)\right] \theta\left(q^{2}-\mu^{2}\right)-\frac{\bar{\alpha}_{s}}{\omega+\bar{\omega}} \int_{0}^{1} d y y^{\omega^{-1}} \Phi^{2}\left(y, k^{2}\right)
\end{align*}
$$

Inverting the transform we obtain:

BK equation in the resummed exclusive form

$$
\begin{array}{r}
\Phi\left(x, k^{2}\right)=\tilde{\Phi}^{0}\left(x, k^{2}\right) \\
+\bar{\alpha}_{s} \int_{x}^{1} d z \int \frac{d^{2} \mathbf{q}}{\pi q^{2}} \theta\left(q^{2}-\mu^{2}\right) \frac{\Delta_{R}(z, k, \mu)}{z}\left[\Phi\left(\frac{x}{z},|\mathbf{k}+\mathbf{q}|^{2}\right)-q^{2} \delta\left(q^{2}-k^{2}\right) \Phi^{2}\left(\frac{x}{z}, q^{2}\right)\right] \\
\Delta_{R}(z, k, \mu) \equiv \exp \left(-\bar{\alpha}_{s} \ln \frac{1}{z} \ln \frac{k^{2}}{\mu^{2}}\right)
\end{array}
$$

-The same resumed piece for linear and nonlinear
-Initial distribution also gets multiplied by the Regge form factor
-New scale introduced to equation. One has to check dependence of the solution on it
-Suggestive form to promote the CCFM equation to nonlinear equation which is more suitable for description of final states

Extension of CCFM to non linear equation for gluon number density

The same procedure of resummation can be applied to the high energy factorizable gluon density. The stucture of nonlinearity does not introduce complications:
K.K. '12

$$
\begin{gathered}
\mathcal{F}\left(x, k^{2}\right)=\tilde{\mathcal{F}}_{0}\left(x, k^{2}\right)+\bar{\alpha}_{s} \int_{x / x_{0}}^{1} \frac{d z}{z} \Delta_{R}(z, k, \mu)\left\{\int \frac{d^{2} \mathbf{q}}{\pi q^{2}} \theta\left(q^{2}-\mu^{2}\right) \mathcal{F}\left(\frac{x}{z},|\mathbf{k}+\mathbf{q}|^{2}\right)\right. \\
\left.-\frac{\pi \alpha_{s}^{2}}{4 N_{c} R^{2}} k^{2} \nabla_{k}^{2}\left[\int_{k^{2}}^{\infty} \frac{d l^{2}}{l^{2}} \ln \frac{l^{2}}{k^{2}} \mathcal{F}\left(x, l^{2}\right)\right]^{2}\right\}
\end{gathered}
$$

High Energy Factorization towards parton shower Monte Carlo

General purpose Monte Carlos
-Collinear factorization PYTHIA, HERWIG, SHERPA

- High energy factorization CASCADE (CCFM based), HEJ (BFKL + DGLAP base), ARIADNE (dipole picture based but no saturation), DIPSY(dipole picture based with saturation)

The goal is to develop forward MC based on Markov chain approach.
-No need to pretabulate gluon density. Probablilistic inerpretation.
-Well developed algorithms for linear equations.
-Easy to generalize to higher dimensions
-First step towards this goal is to solve BK using Markov chain approach

Equivalent linear system for the BK equation

$$
\begin{array}{cr}
\Phi(y, \kappa)=\Phi^{0}(y, \kappa)+\int_{0}^{y} d t \int_{0}^{\infty} d \lambda K(y, t, \kappa, \lambda, \Phi(t, \lambda)) & y=-\ln x \\
K(y, t, \kappa, \lambda, \Phi(t, \lambda))=\bar{\alpha}_{s}\left[\frac{e^{\lambda} \Phi(t, \lambda)-e^{\kappa} \Phi(t, \kappa)}{\left|e^{\kappa}-e^{\lambda}\right|}+\frac{e^{\kappa} \Phi(t, \kappa)}{\left.\sqrt{4 e^{2 \lambda}+e^{2 \kappa}}\right]-\bar{\alpha}_{s} \delta(\lambda-\kappa) \Phi^{2}(t, \lambda)}\right. & \lambda=\ln \left(k^{2} / \mu^{2}\right) \\
K(y, t, \kappa, \lambda, \Phi(t, \lambda))=K(y, t, \kappa, \lambda, \bar{\Phi}(t, \lambda))+K_{\Phi}^{\prime}(y, t, \kappa, \lambda, \bar{\Phi}(t, \lambda))[\Phi(t, \lambda)-\bar{\Phi}(t, \lambda)] \mathcal{O}\left([\Phi(t, \lambda)-\bar{\Phi}(t, \lambda)]^{2}\right) \\
\Psi(t, \lambda)=\Phi(t, \lambda)-\bar{\Phi}(t, \lambda) & \text { Newton-Kán } \\
K_{\Phi}^{\prime}(y, t, \kappa, \lambda, \bar{\Phi}(t, \lambda))=\bar{\alpha}_{s}\left[\frac{e^{\lambda} \delta(\lambda-\kappa)-e^{\kappa}}{\left|e^{\kappa}-e^{\lambda}\right|}+\frac{e^{\kappa}}{\sqrt{4 e^{2 \lambda}+e^{2 \kappa}}}\right]-2 \bar{\alpha}_{s} \delta(\lambda-\kappa) \bar{\Phi}(t, \lambda) & \text { algorit } \\
\Phi(y, \kappa)=\bar{\Phi}(y, \kappa)+\Psi(y, \kappa) & \text { linear } \\
\Psi(y, \kappa)=\Lambda(y, \kappa)+\int_{y_{0}}^{y} d t \int_{0}^{+\infty} d \lambda K_{\Phi}^{\prime}(y, t, \kappa, \lambda, \bar{\Phi}(t, \lambda)) \Psi(t, \lambda) & \text { solution } \\
\Lambda(y, \kappa)=\Phi^{0}(y, \kappa)+\int_{y_{0}}^{y} d t \int_{0}^{+\infty} d \lambda K(y, t, \kappa, \lambda, \bar{\Phi}(t, \lambda))-\bar{\Phi}(y, \kappa) & \\
\Psi_{n-1}(y, \kappa)=\Lambda_{n-1}(y, \kappa) & \\
+\sum_{m=1}^{\infty} \prod_{i=1}^{m}\left[\int_{y_{0}}^{y} d t_{i} \int_{0}^{+\infty} d \lambda_{i} \theta\left(t_{i-1}-t_{i}\right) K_{\Phi}^{\prime}\left(t_{i-1}, t_{i}, \lambda_{i-1}, \lambda_{i}, \Phi_{n-1}\left(t_{i}, \lambda_{i}\right)\right)\right] \Psi_{n-1}\left(t_{m}, \lambda_{m}\right)
\end{array}
$$

Markov chain algorithm

Start a random walk (Markov chain) from the point $\left(t_{0}, \lambda_{0}\right)=(y, \kappa) \quad \begin{aligned} & \text { K.Bozek, W. Placz } \\ & \text { arxiv:1305.4154 }\end{aligned}$
Being at the point $\left(t_{i}, \lambda_{i}\right)$:
(i) generate a random step in the t-direction $\tau_{i+1}=t_{i+1}-t_{i}<0$ according to some probability density function (pdf) $\rho(\tau)$, with the normalisation contidion

$$
\int_{-\infty}^{0} d \tau \rho(\tau)=1
$$

(ii) for a given value τ_{i+1}, generate a random step in the λ direction: $\xi_{i+1}=\lambda_{i+1}-\lambda_{i}$ according to some pdf $\eta_{\tau_{i+1}}(\xi)$, with the normalisation condition

$$
\int_{0}^{+\infty} d \xi \eta_{\tau_{i+1}}(\xi)=1
$$

Stop the random walk when some t_{m+1} jumps beyond the lower t-integral limit, i.e. $t_{m+1} \leq y_{0}$ following the sequence $t_{0}>t_{1}>t_{2}>\ldots>t_{m}>y_{0}$.

To each trajectory
$\gamma_{m}=\left\{\left(t_{0}, \lambda_{0}\right),\left(t_{1}, \lambda_{1}\right), \ldots,\left(t_{m}, \lambda_{m}\right): y=t_{0}>t_{1}>t_{2}>\ldots>t_{m}>y_{0} \geq t_{m+1}\right\}$

$$
w(y, \kappa)=\frac{v\left(\gamma_{n}\right) \Lambda_{n-1}\left(t_{m}, \lambda_{m}\right)}{R\left(t_{m}\right)}
$$

Repeat the above steps N times and compute the MCMC estimate of $\left.\Psi_{n-1}(y, \kappa)\right)=\frac{1}{N} \sum_{k=1}^{N} w_{k}(y, \kappa)$

Monte Carlo vs. BK-Solver

- Grid 100 (y) X 128 (k)
-1000 trajectories for linear equation
-15 iterations of the set
-20 minutes CPU 2.2 GHz Pentium Dual Core -Agreement within 1 per mil

$$
\Phi^{0}(y, \kappa)=\exp \left(-\frac{\mu^{2} e^{\kappa}}{\mathrm{GeV}^{2}}\right)
$$

$$
\rho\left(\tau_{i}\right)=e^{\tau_{i}} \cdot \quad \eta_{\lambda_{i-1}}\left(\xi_{i}\right) \pm e^{-\lambda_{i}}
$$

$$
\tau_{i}=\ln U_{i}, \quad \lambda_{i}=-\ln V_{i}
$$

Conclusions and outlook

-Efficient framework for evaluation of Matrix Elements with high energy projectors
-The new representation of the BK equation has been found
-Well motivated anzatz for the equations which incorporate both saturation effects and coherence.
-Prospects for Monte Carlo simulation of exclusive processes in physics of saturation

