NLO photons and soft physics

Aleksi Kurkela Jacopo Ghiglieri, Juhee Hong, Egang Lu, Guy Moore, Derek Teaney, 1302.5970

- Soft gT physics
- Sensitivity to soft physics in γ -production
- Light-cone condensates
- Structure on the NLO rate

How to deal with soft physics:

• Scales of hot QCD: $D_{\mu} \sim p_{\mu} + g\langle A \rangle \sim p_{\mu} + gT$

- "Hard scale": $P \sim T,$ narrow quasi-particles, kinetic theory
 - Pert. expansion in $\frac{g^2}{(4\pi)^2}$
- "Soft scale": $P \sim gT,$ Interaction with medium non-perturbative
 - $\bullet\,$ Can be resummed, exp. in g
- "Ultrasoft scale": $P \sim g^2 T,$ interaction among ultrasoft modes non-perturbative
 - No diagrammatic expansion

• Observables become sensitive to soft physics at some order in g

$$P(T) \sim \int d^3 p E(p) n_B(p) \stackrel{\text{for } p \sim gT}{\sim} \int_{gT} dp p^3 \frac{T}{p} \sim g^3 T^4$$

How does one deal with the soft contributions?

How to deal with soft physics: The static case

- A familiar story Braaten & Nieto 80's
 - Separate the hard and soft contributions: $P(T) = P_{hard} + P_{soft}$
 - P_{hard} computable in PT
 - P_{soft} depends only on integrals of equal time correlators \equiv condensates. E.g. $\langle F_{ij}^2 \rangle$, $\langle \text{Tr} A_0^2 \rangle$
 - Soft condensates computable in 3D effective field theory, EQCD
 - Pert. theory in eff. theory: expansion in $(g_3^2)/m_E \sim g$
 - Simulate eff. theory on lattice
 - $\bullet~$ Lat. theory super-renormalizable \rightarrow simple continuum limit
 - EQCD result of dimensional reduction of imaginary time in Euclidean formalism.

What to do when interested in dynamical quantities $\Delta t \neq 0, \, \omega \neq 0$?

How to deal with soft physics: The dynamical case Braaten,

Pisarski; Frenkel, Taylor; Blaizot-Iancu

- $\bullet~gT$ -scale can be dealt with perturbatively within HTL eff. field theory.
- Interaction generates a $\mathcal{O}(gT)$ correction dispersion
- \bullet Dominated by scattering with "Hard" particles at the scale T

• Correction not small for "soft" $\mathcal{O}(gT)$ modes: need to resum \Rightarrow HTL resummed perturbation theory

In-medium dispersion relations

For momenta $\sim gT$, qualitatively different disp. rel.:

- Transverse and Longitudinal polarizations: ω_T , ω_L
- Minimum frequency: Plasma frequency: $\omega_{\rm pl}$
- Asymptotic mass: $m_{\infty,g}$
- Non-zero spectral weight in spacelike region: Landau cut

• Similarly for quarks:

- Thermal asymptotic masses (m_{∞}) , plasma frequencies and Landau cut
- Positive and negative helicity/chirality modes: Plasminos

How to deal with soft physics: The dynamical case

But what about non-pert.? Lattice? g^2T ?

No general answer here, but we learned something from computing the NLO thermal photon rate.

Why did we look at NLO photons?

Phenomenologically interesting:

- Photons created in HIC:
 - in the collision: primary photons
 - in the QGP: Thermal and Jet-termal photons
 - in hadroninc interactions: Hardon gas and decay photons
- Photons created in the QGP escape plasma without rescattering
 - May provide direct info about the QGP

LO result used in hyrdo: improve, or at least provide with error bars

Why did we look at NLO photons?

• Theoretically clean:

• To first order in $\alpha_{EM} \ll 1$ (no rescat.)

$$\frac{d\Gamma_{\gamma}}{d^{3}k} = \frac{e^{2}}{(2\pi)^{3}2k^{0}} \int d^{4}Y e^{-iK\cdot Y} \langle J^{\mu}(Y)J_{\mu}(0)\rangle$$
$$J^{\mu} = \sum_{q=uds} e_{q}\bar{q}\gamma^{\mu}q : \checkmark$$

- Perturbation theory maybe not that bad:
 - additional hard scale $K \gg T$
- The second dynamical NLO transport coefficient computed
 - Heavy quark diffusion Caron-Huot, Moore

- $\bullet~{\rm Soft}~gT$ physics
- Sensitivity to soft physics in $\gamma\text{-production}$
- Light-cone condensates
- Structure on the NLO rate

Where does sensitivity to soft physics show up for Γ_{γ} ? Consider Compton scattering in kinetic theory:

- Total cross section of a transfer of massless particle IR divergent
- $q_{\perp} \rightarrow 0$ corresponds to a *conversion* process
- Equally large contribution from all logarithmic momentum scales, including gT, where kinetic theory fails
 - LO sensitivity to conversion rate from soft collisions
 - Similarity from pair annihilation

Where does sensitivity to soft physics arise for Γ_{γ} ? Also:

• On-shell quark cannot emit a photon, but a near on-shell one can

• Even a soft scattering can bring enough off-shell: Brem/Pair annihl.

• LO sensitivity to a rate of acquiring virtuality from soft collisions

Where does sensitivity to soft physics come up for Γ_{γ} ?

Also:

- For a soft (space-like) momentum transfer, virtuality of the hard intermediate quark is $P^2 \sim g^2 T^2$
 - Long lifetime $t_{\rm emit} \sim 1/(g^2 T),$ the quark has a long time to "feel" the medium
 - Modification to dispersion relation $m_{\infty} \sim gT$
 - and damping rate $\Gamma \sim g^2 T$
- LO sensitivity also from lines with small virtuality

- Soft gT physics
- Sensitivity to soft physics in $\gamma\text{-}\mathrm{production}$
- Light-cone condensates
- Structure on the NLO rate

- For photons, soft sector enters though modifying propagation of a hard nearly on-shell quark
 - Soft conversion rate
 - Soft rate to acquire virtuality
 - Soft modifications to dispersion
- Sensitive only to near- light-cone correlation functions!

Consider a quark with $Q = (q_+, q_-, q_\perp)$, with $q^+ \gg (q_-, q_\perp)$

 $q_{+} = \frac{1}{2}(q_{0} + q_{z}), q_{-} = (q_{0} - q_{z})$

• Correlation function in coordinate space:

• q_+ large, x_- large: Phase oscillates rapidly

 \Rightarrow Expect soft physics to appear only through correlators near light-cone $\equiv light-cone \ condensates, \ e.g., \ \int dx^+ \langle B(0)U(0, x_+)B(x_+)\rangle, \ \int dx^+ \langle \bar{\psi}U(0, x_+)\psi(x_+)\rangle \rangle$

Consider a quark with $Q = (q_+, q_-, q_\perp)$, with $q^+ \gg (q_-, q_\perp)$

 $q_{+} = \frac{1}{2}(q_{0} + q_{z}), q_{-} = (q_{0} - q_{z})$

• Correlation function in coordinate space:

- Consider only soft contributions: large X
- q_+ large, x_- large: Phase oscillates rapidly

 \Rightarrow Expect soft physics to appear only through correlators near light-cone $\equiv light-cone \ condensates, \ e.g., \ \int dx^+ \langle B(0)U(0, x_+)B(x_+)\rangle, \ \int dx^+ \langle \bar{\psi}U(0, x_+)\psi(x_+)\rangle$

• Magic: These can be evaluated in EQCD! (Guy's talk) Caron-Huot 2009

The NLO photon production is sensitive to soft physics only though:

• Condensates related to the asymptotic mass $m_{\infty}^2 = g^2(Z_g + Z_f)$

$$Z_g \propto \int_0^\infty dx^+ x^+ \langle v_k \,_{\mu} F_a^{\mu\nu}(x^+) U_A^{ab}(x^+, 0) v_k \,_{\rho} F_b^{\rho}{}_{\nu}(0) \rangle,$$

$$Z_f \propto \int_0^\infty dx^+ \langle \overline{\psi}(x^+) \, \psi_k \, U_R(x^+, 0) \psi(0) \rangle$$

- Condensates related to momentum broadening
 - A generalized momentum diffusion coefficient \hat{q}

$$\hat{q}(\delta E) = \int_{-\infty}^{\infty} dx^+ e^{ix^+ \delta E} \langle v_k^{\mu} F_{\mu}{}^{\nu}(x^+) U_A(x^+, 0) v_k^{\rho} F_{\rho\nu}(0) \rangle,$$

• and time-like Wilson loop with transverse size x_{\perp}

$$C(q_{\perp}) = \lim_{x^+ \to \infty} -(x^+)^{-1} \log(W(x^+, x_{\perp}))$$
$$W(x^+, x_{\perp}) \equiv \operatorname{Tr} \left\langle U_R(0, 0, x_{\perp}; x^+, 0, x_{\perp}) U_R(0, 0, 0; 0, 0, x_{\perp}) \right.$$
$$U_R(x^+, 0, 0; 0, 0, 0) U_R(x^+, 0, x_{\perp}; x^+, 0, 0) \right\rangle$$

- \bullet Soft gT physics
- Sensitivity to soft physics in $\gamma\text{-}\mathrm{production}$
- Light-cone condensates
- Structure on the NLO rate

Organizing the calculation

$$\langle J_{\mu}J^{\mu}\rangle = \int d^4P \underbrace{P}_{P} \underbrace{K+P}_{P} \underbrace{K}_{P}$$

LO and NLO given by a single quark-loop with gluon lines
Line with K + P can be arranged to be cut giving δ[(K + P)²]

- Yellow: LO
- Red: NLO
- Blue: LO-subraction

Hard sector

Hard sector: Kapusta, Lichard, Seibert 1991

• Leading order diagrams:

• Cuts correspond to kinetic theory: Compton and Pair-annih.

- Regulate at IR: $\int d^4 P \delta[(K+P)^2] \rightarrow \int_{\mu_\perp^{LO}}^{\infty} d^2 p_\perp \int_{\mu_+^{LO}}^{\infty} dp_+$, with $gT \ll \mu \ll T$
- Hard contribution: $\Gamma|_{\text{hard}} \propto \alpha_s \alpha_{EM} \left[\log(\frac{T}{\mu_{\perp}^{\text{LO}}}) + C_{\text{hard}}(k/T) \right]$
 - μ_{\perp}^{LO} dependence due to logarithmic singularity at small p_{\perp}
- All lines hard and far off shell, no soft sensitivity, no NLO corrections

Soft

Soft sector

- LO:
 - In leading order diagrams:

- Cuts correspond to conversion processes
- Can be calculated using novel fermionic sum rules (previously brute force numerics)
- Soft contribution: $\Gamma_{\text{soft}} \propto \alpha_{EM} \alpha_s \int^{\mu_{\perp}^{LO}} d^2 p_{\perp} \frac{m_{\infty}^2}{p_{\perp}^2 + m_{\infty}^2}$ Independ. by Bödeker & Besak

• μ_{\perp}^{LO} dependence cancels against the hard sector

• The m_{∞}^2 is related to two light-cone condensates: $m_{\infty}^2 = g^2(Z_g + Z_f)$

$$\begin{split} &Z_g \quad \propto \quad \int_0^\infty dx^+ \, x^+ \langle v_{k\,\mu} F_a^{\mu\nu}(x^+) U_A^{ab}(x^+,0) v_{k\,\rho} F_{b\,\nu}^{\rho}(0) \rangle, \\ &Z_f \quad \propto \quad \int_0^\infty dx^+ \langle \overline{\psi}(x^+) \, \psi_k \, U_R(x^+,0) \psi(0) \rangle \end{split}$$

Soft sector:

In NLO:

• Soft expansion parameter g:

- Single lines HTL props., blobs HTL vertices.
- But, magic happens! Using sum rules:

$$\Gamma_{\rm soft}^{\rm NLO} \propto \delta m_{\infty}^2 \int d^2 p_{\perp} \frac{p_{\perp}^2}{(p_{\perp}^2 + m_{\infty}^2)^2} \propto \log(\mu_{\perp}^{\rm NLO}/T)$$

with $m^2_{\infty,{\rm NLO}}=m^2_\infty+\delta m^2_\infty$

Soft sector:

In NLO:

• Soft expansion parameter g:

- Single lines HTL props., blobs HTL vertices.
- But, magic happens! Using sum rules:

$$\Gamma_{\rm soft}^{\rm NLO} \propto \delta m_{\infty}^2 \int d^2 p_{\perp} \frac{p_{\perp}^2}{(p_{\perp}^2 + m_{\infty}^2)^2} \propto \log(\mu_{\perp}^{\rm NLO}/T)$$

with $m_{\infty,\text{NLO}}^2 = m_{\infty}^2 + \delta m_{\infty}^2$... and actually

$$\Gamma_{\rm soft}^{\rm LO} + \Gamma_{\rm soft}^{\rm NLO} = \int d^2 p_\perp \frac{m_{\infty,\rm NLO}^2}{p_\perp^2 + m_{\infty,\rm NLO}^2}$$

Depends only on two NLO light-cone condensates, Z_g, Z_f

• Both Z_g and Z_f get their leading order from hard sector, NLO from soft.

Semi-Collinear

Semi-collinear

Same diagrams as hard, different kinematics. Cuts corresponds to:

• Space-like Q^2 : Bremsstrahlung of photon with an angle $\mathcal{O}(\sqrt{g})$ WRT quark

• Time-like Q^2 : Compton/pair-annih. with in/outgoing gluon at plasmon pole $E(q) \sim \sqrt{q^2 + m_{\infty}^2}$. Correction important only in NLO

- We actually already included this in the LO computation of hard+soft sector
- ... But we did it wrong by an extra $g \Rightarrow$ for NLO remove wrong and replace with correct

Semi-collinear

• Can be computed using same methods as the soft part:

$$\Gamma_{\text{semi-coll.}} \propto \int dp^+ \left[\frac{(p^+)^2 + (p^+ + k)^2}{(p^+)^2 (p^+ + k)^2} \right] \frac{n_f (k + p^+) [1 - n_f (p^+)]}{n_f (k)} \\ \int \frac{d^2 p_\perp}{(2\pi)^2} \frac{4(p^+)^2 (p^+ + k)^2}{k^2 p_\perp^4} \hat{q}(\delta E) \,.$$

with $\delta E = \frac{p_{\perp}^2 + m_{\infty}^2}{2p^+}$ and $\hat{q}(\delta E) = \int_{-\infty}^{\infty} dx^+ e^{ix^+ \delta E} \langle v_k^{\mu} F_{\mu}{}^{\nu}(x^+) U_A(x^+) v_k^{\rho} F_{\rho\nu}(0) \rangle,$

Again, all information about soft sector in a new light-cone condensate.

- Contributes to LO, originally spotted by Aurenche Gelis Kobes Petitgirard Zaraket 1998-2000
- Cuts Correspond to collinear Brem./Pair. annihilation with angle g.

• The long formation time of emitting the photon leads to need to resum ladder diagrams (effect: $\mathcal{O}(1)$ suppression of the coll. rate).

- $\bullet\,$ AMY formalism for resumming diagrams by solving a diff. equation at LO.Arnold, Moore, Yaffe 2001
 - Requires information about collision kernel $C(q_{\perp})$ and m_{∞} , both related to light-cone condensates

$$C(q_{\perp}) = \lim_{x^+ \to \infty} -(x^+)^{-1} \log(W(x^+, x_{\perp}))$$
$$W(x^+, x_{\perp}) \equiv \operatorname{Tr} \left\langle U_R(0, 0, x_{\perp}; x^+, 0, x_{\perp}) U_R(0, 0, 0; 0, 0, x_{\perp}) \right.$$
$$U_R(x^+, 0, 0; 0, 0, 0) U_R(x^+, 0, x_{\perp}; x^+, 0, 0) \right\rangle.$$

- Works equally well at NLO: Replace
 C_{LO}(q_⊥) → C_{NLO}(q_⊥) = C_{LO}(q_⊥) + δC(q_⊥), and m²_{∞,LO} → m²_{∞,LO} + δm²_∞
 • C_{NLO}(q_⊥) computed by Caron-Huot using EQCD
- In leading order calculation extended integration outside region

$$\int_0^\infty dp_+ \int_0^\infty d^2 p_\perp \frac{d\Gamma_{\rm brem}}{d^3 p}$$

• Both $p_z \sim gT$ (soft) and $p_{\perp}^2 \sim gT^2$ contribution to integral $\mathcal{O}(g)$. Need to be removed in NLO calculation.

(Partial) conclusions

- We did an NLO calculation using HTL and found out that:
- To NLO, all the information of soft physics found to be contained in light-cone condensates {Z_g, Z_f, C(q_⊥), ĝ(δE)}.
- Soft contributions (and only soft) can be computed using EQCD.
- \bullet We needed and computed a new $\mathit{light-cone}\ \mathit{condensates}$

$$\hat{q}(\delta E) = \int_{-\infty}^{\infty} dx^+ e^{ix^+\delta E} \langle v_k^{\mu} F_{\mu}{}^{\nu}(x^+) U_A(x^+) v_k^{\rho} F_{\rho\nu}(0) \rangle,$$

- Related to collision kernel $\lim_{x_{\perp} \to 0} \partial_{x_{\perp}} C(x_{\perp}) \sim \lim_{\delta E \to 0} \hat{q}(\delta E)$
- Not just a momentum diffusion coefficient: Includes contributions from the pole and cut
 - \Rightarrow Includes splitting
- Not a general solution to problem of soft sector:
 - At higher order (and different observables), new condensates.
 - Sensitivity to time-like soft correlators would prevent evaluation of the condensates non-perturbatively.