Classical YM Dynamics and Turbulence Diffusion

Alexa, Alexa

Kenji Fukushima

Department of Physics, Keio University

Transverse Pattern Formation E. ARTAR AND AND ARTAR ART **Central Results**

 $g^{20}g^{2}\mu t = 40$

50

60

-20

-25

-30

-35

30

20

10

10

-20

-25

-30

-35

60

 $g^{20} g^2 \mu t = 30^{50}$

30

20

10

10

Schematic View of Four Regimes

Soft and coherent gluons **Color Glass Condensate (CGC)** Initial (quantum) fluctuations

allow allow allow allow allow allow

Instabilities \rightarrow (toward) Isotropization **Glass + Plasma = Glasma** Quantum fluctuations Particle (entropy) production \rightarrow Thermalization

Hydrodynamic evolution + cascade **Relativistic Hydrodynamics**

Hadronization → Observation **Particle yields, distributions**

June 18, 2013 @ ECT*

 $\tau < Q_s$ ~ 0.1 fm/c

0.1 fm/c ~1 fm/c

1 fm/c ~10 fm/c

Missing Link

ಜಿಕೆಎಫ್ ಬಿಕೆಎಫ್ ಜಿಕೆಎ ಜಿಕೆಎಫ್ ಜಿಕೆಎಫ್

Soft and coherent gluons **Color Glass Condensate (CGC)** Initial (quantum) fluctuations

If starting with the CGC what the "theory" predicts?

Instabilities \rightarrow Isotropization **Glass + Plasma = Glasma** Quantum fluctuations Particle (entropy) production \rightarrow Thermalization

0.1 fm/c ~1 fm/c

 $\tau < Q_s$

 $\sim 0.1 \, \mathrm{fm/c}$

Initial Condition

ALIAN ALIAN

Fields made by colliding two sources

Initial condition is known on the light-cone

$$\mathcal{A}_{i} = \alpha_{i}^{(1)} + \alpha_{i}^{(2)}$$
$$\mathcal{A}_{\eta} = 0$$
$$\mathcal{E}^{i} = 0$$
$$\mathcal{E}^{\eta} = ig[\alpha_{i}^{(1)}, \alpha_{i}^{(2)}]$$

Kovner-McLerran-Weigert (1995)

Intuitive Picture of "Glasma"

Alexan Alex

McLerran-Lappi (2006)

Formulation

Time Evolution

$$E^{i} = \tau \partial_{\tau} A_{i}, \qquad E^{\eta} = \tau^{-1} \partial_{\tau} A_{\eta}$$
$$\partial_{\tau} E^{i} = \tau^{-1} D_{\eta} F_{\eta i} + \tau D_{j} F_{j i}$$
$$\partial_{\tau} E^{\eta} = \tau^{-1} D_{j} F_{j \eta}$$

Classical Equations of Motion in the Expanding System

Ensemble Average

 $\langle \langle \mathcal{O}[A] \rangle \rangle_{\rho_t,\rho_p} \sim \int D \rho_t D \rho_p W_x[\rho_t] W_{x'}[\rho_p] \mathcal{O}[\mathcal{A}[\rho_t,\rho_p]]$

Quantum fluctuations partially included in the initial state

Initial Configurations

ten aller and aller a aller aller a all

Solve the Poisson Eq

Gauge Configuration $\partial^2_{\perp} \Lambda^{(m)}(\boldsymbol{x}_{\perp}) = -\rho^{(m)}(\boldsymbol{x}_{\perp}) \qquad e^{-ig\Lambda(\boldsymbol{x}_{\perp})} e^{ig\Lambda(\boldsymbol{x}_{\perp}+\hat{i})} = \exp[-ig\alpha_i(\boldsymbol{x}_{\perp})]$

No structure because of the Gaussian wave-function

Chromo-Electric and Magnetic Fields Longitudinal and Transverse Fields

Negative Longitudinal Pressure

ALAR, ALAR

Flux tubes have a positive energy

Missing Dynamics

all var all v

String breaking \rightarrow Particle production (Schwinger mechanism)

Expectation

Allen Schlein Sterne Allen Schlein Sterne Allen Sterne Allen Schlein Sterne Allen Schlein Sterne Allen Schlein

$$P_{T} = \frac{1}{2} \left\langle T^{xx} + T^{yy} \right\rangle = \left\langle \operatorname{tr} \left[E_{L}^{2} + B_{L}^{2} \right] \right\rangle,$$
$$P_{L} = \left\langle \tau^{2} T^{\eta \eta} \right\rangle = \left\langle \operatorname{tr} \left[E_{T}^{2} + B_{T}^{2} - E_{L}^{2} - B_{L}^{2} \right] \right\rangle$$

Classical Statistical Simulation

Instabilities in the Classical YM

HERAR, HER

Romatschke-Venugopalan (2005)

Berges-Boguslavski-Schlichting (2012)

Weibel instability Nielsen-Olesen instability Parametric resonance

Talk by Schlichting

Minimal Perturbation

 $\delta E^{ia} = \overline{E}^{ia} \cos(2\pi \eta / L_{\eta})$ $\delta E^{\eta a}$ from the Gauss law

Initial spectrum:: Dusling-Gelis-Venugopalan (2011), Dusling-Epelbaum-Gelis-Venugopalan

Turn expansion off

AND ALL AND ALL AND ALL AND ALL AND AND AND ALL AND ALL

- Although the expanding system is more realistic, numerical simulations in a fixed-volume box would be useful to make underlying physics clear.
- If we cannot account for isotropization in a fixedvolume box, we have no chance to realize it in an expanding case.
- Because there is no coordinate singularity, we can take as large initial fluctuations as we like.
 (In the expanding system the transverse energy becomes singular if not renormalized properly.)

Formulation

Equations of Motion

$$D_{\mu}F^{\mu\nu}=j^{\nu}=0$$

in the Cartesian coordinates

"Glasma" Initial Conditions

Background Fields

$$\mathcal{A}_{i} = \alpha_{i}^{(1)} + \alpha_{i}^{(2)}$$
$$\mathcal{A}_{z} = 0$$
$$\mathcal{E}^{i} = 0$$
$$\mathcal{E}^{z} = ig[\alpha_{i}^{(1)}, \alpha_{i}^{(2)}]$$

Fluctuation Fields

$$\delta E^{i}(x, y, z) \quad \delta E^{z}(x, y, z)$$

$$\delta A^{i}(x, y, z) \quad \delta A^{z}(x, y, z)$$

Results without Fluctuations Vanishing longitudinal pressure P_z not because of the expansion but because of the invariance.

Results with Fluctuations

aland aland aland aland aland alan aland aland aland aland aland aland aland aland alan

Isotropization is certainly reached if we wait for a sufficiently long time (but too long yet...)

Coulomb Gauge Fixing

2000 steps using the overrelaxation method

June 18, 2013 @ ECT*

Transverse Pattern Formation Central Results at maximum k_z

Similarity to Magnetization

Spontaneous pattern formation from "**uniform**" to "**non-uniform**" distribution in the Glasma

Movie of pattern formation in the Glasma

Spontaneous pattern formation from "**disordered**" to "**ordered**" state in spin systems

Movie of spin pattern formation (Kudo et al.)

Time Evolution of Transverse Spectrum Hint to the BEC? See: Blaizot-Gelis-Liao-McLerran-Venugopalan (2011)

Conceivable Scenario

- Spontaneous pattern formation: cores of more complex structures (probably related to the vortex dynamics; see talk by Dumitru)
- After development of cores, they spread in the transverse plane looks like turbulence diffusion! (See talk by Schlichting)

Reynolds' famous pipe experiment: Analogous to the Glasma situation!? Small viscosity → Turbulence

Rapid turbulence diffusion could lead to a BEC formation in the transverse distribution June 18, 2013 @ ECT*

Works to be done

Does it survive the expansion?

Systematic study of the system size dependence

Correct spectrum of quantum fluctuation

Where is the shear as a source of turbulence?

More idealized simulation with a single shear source

Summary

r állagi állagi állagi állagi álla állagi állagi állagi állagi i

Early-time evolution of the relativistic heavy-ion collision was investigated in the classical statistical simulation of the non-expanding Glasma.

Isotropization was achieved.

Spontaneous pattern formation in the transverse plane was observed in an analogous way to the magnetization formation.

BEC-like distribution was found after the diffusion of cores of formed pattern.