Strongly Interacting Fermions in Curved Space - a "story" about geometry and chiral symmetry -

Antonino Flachi CENTRA IST - UTL - LISBON

EUROPEAN CENTRE FOR THEORETICAL STUDIES IN NUCLEAR PHYSICS AND RELATED AREAS

outline

Interacting Fermion Field Theories in curved space

heat-kernel & zeta-regularization techniques

2 examples

flat space with non-trivial boundary conditions

black holes

interacting fermions

examples

(Polyakov-)Nambu-Jona Lasinio model Gross-Neveu model Quark-Meson model

central in different contexts particle/nuclear physics condensed matter

> share global symmetry of QCD display the phenomena of chiral symmetry breaking [in curved space] Large-N allow (to some extent) analytic treatment

flat space

chiral symmetry is dynamically broken below T_c dynamical mass generation [appearance of a condensate]

low density: spatially constant condensate higher density: spatial variations

geography & morphology of the phase diagram chiral density wave approach Ginzburg-Landau 2D-GN

[Fukushima and Sasaki (2013)]

Curved space

manifolds:

 $\mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1$ $\mathbb{S}^2 \times \mathbb{S}^1$ $\mathbb{H}^2 \times \mathbb{S}^1$ \mathbb{S}^3

homogeneous shift of the [flat space] condensate

boundary-less constant curvature weakly curved maximally symmetric expanding cavitiesboundary effectsstrong curvaturesingularitiesAdS/CFT

Interacting Fermions

$$S = \int d^{D}x \sqrt{g} \left\{ \bar{\psi} i \gamma^{\mu} \nabla_{\mu} \psi + \frac{\lambda}{2N} \left(\bar{\psi} \psi \right)^{2} + \cdots \right\}$$

- $N = N_f \times N_c$ large
- λ is the coupling constant
- $g_{\mu\nu}$ is the metric tensor
- ψ is a D x N component Dirac Spinor

Geometries

• Ultrastatic geometries

AF & T. Tanaka, JHEP 1102 (2011) 026 AF, arXiv: 1304:6880

- Singular geometries [conifolds]
 AF, JHEP 1201 (2012) 023
- Boundaries

AF, Phys. Rev. D86 (2012) 104047 AF, Phys. Rev. Lett. 110 (2013) 060401

Black Holes

AF & T.Tanaka, Phys. Rev. D84 (2011) 061503 AF, arXiv: 1305:5348

Ultra-static

D-dimensional ultrastatic manifold

$$ds^2 = dt^2 - g_{ij}dx^i dx^j$$

 g_{ij} : metric of the spatial section

Bosonization [Hubbard-Stratonovich] $\sigma \sim \langle \bar{\psi}\psi \rangle$ Large-N

$$S_{eff} = -\int d^D x \sqrt{g} \left(\frac{\sigma^2}{2\lambda}\right) + \ln \operatorname{Det} \left(i\gamma^{\mu} \nabla_{\mu} - \sigma + \mu\gamma^{0}\right)$$

Effective Action

$$S_{eff} = -\int d^D x \sqrt{g} \left(\frac{\sigma^2}{2\lambda}\right) + \delta \Gamma$$

$$\delta\Gamma = \frac{1}{2} \sum_{\epsilon} \sum_{n=-\infty}^{\infty} \ln \operatorname{Det} D^{(n)}$$

$$D^{(n)} \equiv -\Delta + \omega_n^2 + \frac{1}{4}R + \sigma^2 + \epsilon \left|\partial\sigma\right|$$

$$\omega_n = \frac{2\pi}{\beta} \left(n + \frac{1}{2} \right), \ \Delta = \frac{1}{\sqrt{g}} \partial_i \left(\sqrt{g} g^{ij} \partial_j \right), \ \epsilon = \pm 1$$

Zeta Regularization

Define a generalised ζ -function [Mellin Transform of the heat-Trace]

$$\zeta(s) = \frac{1}{\Gamma(s)} \sum_{n,\epsilon} \int_0^\infty dt \, t^{s-1} \operatorname{Tr} e^{-tD^{(n)}}$$

then:

$$\delta\Gamma = \frac{1}{2} \int d^d x \sqrt{g} \left(\zeta(0) \ln \ell^2 + \zeta'(0) \right)$$

Using
$$\operatorname{Tr} e^{-tD^{(n)}} \cong \frac{1}{(4\pi t)^{d/2}} \sum_{j=0}^{\infty} \vartheta_j t^j$$

returns:

$$S_{GL} = \frac{\alpha_2}{2}\sigma^2 + \frac{\alpha_4}{4}\left[\sigma^4 + (\nabla\sigma)^2\right] + \frac{\alpha_6}{6}\left[\sigma^6 + 5(\nabla\sigma)^2\sigma^2 + \frac{1}{2}(\Delta\sigma)^2\right] + \cdots$$

Resummation

partial resummation

$$\operatorname{Tr} e^{-tD^{(n)}} \stackrel{\simeq}{=} \frac{1}{(4\pi t)^{\frac{d}{2}}} e^{-tQ} \sum_{k} \mathcal{C}_{\epsilon}^{(k)} t^{k}$$

$$Q = \omega_n^2 + R/12 + \sigma^2 - \mu^2 - 2i\mu\omega_n + \epsilon \left|\partial\sigma\right|$$

$$\begin{aligned} \mathcal{C}_{\epsilon}^{(0)} &= 1 , \quad \mathcal{C}_{\epsilon}^{(1)} = 0 , \\ \mathcal{C}_{\epsilon}^{(2)} &= \mathcal{R} + \frac{1}{6} \Delta \left(\sigma^2 + \epsilon \left| \partial \sigma \right| \right) \\ \mathcal{R} &= \frac{1}{180} R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} - \frac{1}{180} R_{\mu\nu} R^{\mu\nu} - \frac{1}{120} \Delta R \end{aligned}$$

resummation of powers of the condensate and of the scalar curvature

$$\begin{aligned} Zeta \text{ function} \\ \zeta(s) &= \frac{1}{\Gamma(s)} \sum_{k,\epsilon} \int_0^\infty dt \, \frac{t^{s-1+k}}{(4\pi t)^{\frac{d}{2}}} \underbrace{C_{\epsilon}^{(k)} e^{-t\mathcal{X}_{c}} \mathcal{F}_{\beta,\mu}(t)}_{\text{geometry}} \\ zeta \text{ function assumes a factorized form} \\ \mathcal{X}_{\epsilon} &= (R/12 + \sigma^2 + \epsilon |\partial\sigma|) \\ \mathcal{F}_{\beta,\mu}(t) &= \sum_{n=-\infty}^\infty e^{-t(\omega_n^2 - 2i\mu\omega_n - \mu^2)} \end{aligned}$$

- convergent for $d/2 k 2 > s \in \mathbb{C}$
- analytical continuation to s = 0
- regular for small μ

$\zeta(0)$ and $\zeta'(0)$

$$\begin{split} \zeta(0) &= \frac{\beta}{(4\pi)^{D/2}} \sum_{\epsilon} \sum_{k=0}^{[D/2]} \gamma_k(D) \mathcal{C}_{\epsilon}^{(k)} \mathcal{X}_{\epsilon}^{D/2-k} \\ \zeta'(0) &= \frac{\beta}{(4\pi)^{D/2}} \sum_{\epsilon} \sum_{k=0}^{\infty} \left(a_k(D) \mathcal{C}_{\epsilon}^{(k)} \mathcal{X}_{\epsilon}^{D/2-k} + \gamma_k(D) \mathcal{C}_{\epsilon}^{(k)} \mathcal{X}_{\epsilon}^{D/2-k} \ln \mathcal{X}_{\epsilon} \right) \\ &+ 2^{D/2+1-k} \mathcal{C}_{\epsilon}^{(k)} \left(\mathcal{X}_{\epsilon} \right)^{D/4-k/2} \sum_{n=1}^{\infty} (-1)^n \frac{\cosh(\beta\mu n)}{(n\beta)^{D/2-k}} \mathcal{K}_{k-D/2} \left(n\beta\sqrt{\mathcal{X}_{\epsilon}} \right) \end{split}$$

$$\begin{split} \gamma_k(D) &= \lim_{s \to 0} \frac{\Gamma(s+k-D/2)}{\Gamma(s)} , \\ a_k(D) &= \lim_{s \to 0} \frac{\Gamma(s+k-D/2)}{\Gamma(s)} \left(\psi^{(0)} \left(s+k-D/2\right) - \psi^{(0)} \left(s\right) \right) \end{split}$$

other cases

- phase dependent boundary conditions
- geometries with singularities
- different forms of resummation (CPTh)
- flat space with boundaries
- black holes

boundaries

boundaries

- free fermions [Dirac equation]
- impose boundary conditions at z = 0, a

$$(1+\imath\gamma_z)\psi\Big|_{z=0,a}=0$$

z=0 z=a

quantization

$$\Phi(k_z) := m \sin(k_z a) + k_z \cos(k_z a) = 0$$

vacuum energy

$$\mathcal{E} = -\lim_{s \to 0} \frac{\ell^{-2s}}{2\pi} \frac{\Gamma(s - 3/2)}{\Gamma(s - 1/2)} \sum_{k_z \in \{\Phi(k_z) = 0\}} \left(k_z^2 + m^2\right)^{3/2 - s}$$

boundaries

m=0
$$\mathcal{E} = -7\pi^2 a^{-3}/2880$$

$$\mathcal{E} = -\frac{1}{a^{3}\pi^{2}} \int_{0}^{\infty} du u^{1/2} (u+\xi) (u+2\xi)^{1/2} \times \\ \times \ln\left(1 + \frac{u}{u+2\xi} e^{-2(u+\xi)}\right) + \cdots$$

 $\xi = ma$ is a "modulating" parameter for the vacuum energy

for free fields no modulations can occur

chiral symmetry breaking [interactions] can trigger modulations

boundary effects "collaborate" with thermodynamical ones

no boundaries Il order phase transition

boundaries I order phase transition

Orders

[Ginzburg-Landau]

$$\Omega - \Omega_0 = c_0(a, T)\sigma^2 + c_1(a, T)\sigma^3 + c_2(a, T)\sigma^4 + \cdots$$

 $c_i(a, T) \sim \theta_{i/2}$

in general depend on the geometry/topology and on the boundary conditions

- no boundaries, $\sigma \leftrightarrow \sigma$ prohibits the appearance of odd powers of the condensate
- boundaries introduce another length scale and allow for odd powers
- [Schwinger-De Witt]

a-T

graphene by-layer with non-zero hopping [Hosseini et al., Phys Rev. Lett. 2012]

black holes

Evaporation $T_{BH} \sim \frac{1}{m}$

$T_{BH} \ll m_e$, photons, neutrinos, gravitons

$T_{BH} \sim m_e$, electrons

$T_{BH} \sim \Lambda_{QCD}$, muons, pions, heavier hadrons

[heavier and expected to create a situation of approximate thermal equilibrium]

- Cosmology [π -bhs]
- Extra dimensions [**µ**-bhs]
- AdS/CFT [+branes]
- [hot] QCD

Hawking-Moss

- electroweak symmetry breaking
- As evaporation proceeds and T rises eventually a bubble of restored symmetry phase forms around the horizon
- In the Higgs model, the high temperature phase would be too localized implying [effectively] no symmetry restoration
- effect of trapped particles may change the above conclusion and a localized region of restored symmetry may in fact form

Chiral Symmetry & BHs

Schwarzschild bh of mass m surrounded by strongly interacting fermions

- Asymptotic temperature $T_{BH} = (8\pi m)^{-1}$
- Local Temperature $T_{loc} = T_{BH}/\sqrt{f}$ f = 1 2m/r
 - $T_{BH} > T_c$ chiral symmetry is restored
 - $T_{BH} < T_c$ chiral symmetry is broken

 $T_{BH} < T_c$: T_{loc} crosses the critical temperature at some radius a bubble of chirally restored symmetry phase should form

Chiral Symmetry & BHs

 $S = \int d^4x \sqrt{g} \left\{ \bar{\psi} i \gamma^{\mu} \nabla_{\mu} \psi + \frac{\lambda}{2N} \left(\bar{\psi} \psi \right)^2 \right\}$

 $ds^2 = fdt^2 + f^{-1}dr^2 + r^2(d\theta^2 + \sin^2\theta d\varphi^2)$

- conformal transformation
- evaluation in the conformally transformed spacetime
- transform back

Chiral Symmetry & BHs

$$\begin{split} \Gamma &= -\int d^4 x \sqrt{g} \left(\frac{\sigma^2}{2\lambda} \right) + \hat{\Gamma} + \delta \Gamma \\ \hat{\Gamma} &= \frac{\beta}{2(4\pi)^2} \sum_{\epsilon} \int d^3 x \sqrt{\hat{g}} \left\{ \frac{3\sigma_{\epsilon}^4}{4} - \left(\frac{\sigma_{\epsilon}^4}{2} + a_{\epsilon} \right) \ln \left(\frac{f\sigma_{\epsilon}^2}{\ell^2} \right) \right. \\ &+ \left. 16 \frac{\sigma_{\epsilon}^2}{f\beta^2} \varpi_2(f^{\frac{1}{2}}\sigma_{\epsilon}) + 4a_{\epsilon} \varpi_0(f^{\frac{1}{2}}\sigma_{\epsilon}) \right\} \end{split}$$

$$egin{aligned} arpi_
u(u) &:= & \sum_{n=1}^\infty (-1)^n n^{-
u} \mathcal{K}_
u(neta u) \ , \ & a_\epsilon &:= & rac{1}{180} \left(\hat{R}^2_{\mu
u au
ho} - \hat{R}^2_{\mu
u} - \hat{\Delta}\hat{R}
ight) + rac{1}{6} \hat{\Delta} \left(f \sigma_\epsilon^2
ight) \end{aligned}$$

Cocycle

Co-cycle function [Dowker]

$$\delta \Gamma = \lim_{n \to 4} \left(C_n^{(2)}[\hat{g}] - C_n^{(2)}[g] \right) / (n-4)$$

$$\delta\Gamma = \frac{\beta}{2(4\pi)^2} \sum_{\epsilon=\pm} \int d^3x \sqrt{g} \left[\frac{\sigma_{\epsilon}^4}{2} \ln f - \frac{2\sigma_{\epsilon}^2}{f} \lim_{n \to 4} \frac{d\Lambda_n}{dn} \right]$$

$$\lim_{n \to 4} d\Lambda_n / dn = (f'^2 - 2ff'' + 4ff' / r) / 24$$

Bubbles

kink structure
 higher order corrections

higher order corrections • $r_{bubble} \sim r_s / \left(1 - T_{BH}^2 / T_c^2\right)$

Bubbles

- Chromosphere formation
- Hadronization and Hawking radiation [jets?]
- Black holes localized on branes

outlook

- External fields
- Back-Reaction
- Gluons
- Ginzburg Landau ~ Schwinger De Witt
- Lattice

curved space offers an interesting set-up to study the physics of strongly interacting systems

thanks for the attention!