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outline
Interacting Fermion Field Theories in curved space

heat-kernel & zeta-regularization techniques

2 examples

flat space with non-trivial boundary conditions

black holes



interacting fermions
examples

(Polyakov-)Nambu-Jona Lasinio model
Gross-Neveu model
Quark-Meson model

central in different contexts
particle/nuclear physics
condensed matter

share global symmetry of QCD
display the phenomena of chiral symmetry breaking
[in curved space]
Large-N allow (to some extent) analytic treatment



flat space
chiral symmetry is dynamically broken below Tc 
dynamical mass generation [appearance of a condensate]

low density: spatially constant condensate
higher density: spatial variations

geography & morphology of the phase diagram
chiral density wave approach
Ginzburg-Landau
2D-GN

[Fukushima and Sasaki (2013)]



Curved space

homogeneous shift of the [flat space] condensate

manifolds:

maximally symmetric

boundary-less
constant curvature
weakly curved

hand, in 1þ 1-dimensions, the model (1) augmented by a
pseudoscalar term is referred to as the NJL2-model, invari-
ant under a continuous chiral symmetry]. Extending the
Gross-Neveu model to higher dimensions is not straight-
forward due to the fact that such a dimensional lift-up is
accompanied by a loss of renormalizability. If, at the level
of specific applications, this is not a problem per se, and it
can be overcome by a procedure of phenomenological
matching (i.e., fixing the cutoff scale by tuning the model
to some experimentally measured quantity), the lack of a
natural cutoff scale is often considered as a limitation of
fundamental nature. Two of the other commonly discussed
limitations of the Gross-Neveu model in 1þ 1-dimensions
are related to its exact integrability, property related to the
complete elasticity of the S matrix [11,12], and to the
impossibility of having spontaneous symmetry breaking
in 1þ 1 dimensions, as stated by the Coleman-Mermin-
Wagner theorem [13,14]. Working at lowest order in the
approximation of large-N may circumvent the restrictions
posed by the Coleman-Mermin-Wagner theorem, while
dimensional lift-up to 2þ 1-dimensions allows one also
to maintain renormalizability (see Ref. [15] for a thorough
review).

In this paper, we will be concerned with interacting
fermion field theories of the form (1) inDþ 1 dimensions,
and the aspect we aim to analyze is the inclusion of
boundaries and finite size effects. Aside from being a
natural situation to consider in many concrete realistic or
semirealistic applications, it provides a natural possibility
to equip these models with a physical cutoff scale.

The simplest example where finite size and boundary
effects can be introduced is the n sphere. Strictly speak-
ing, this is not a confining cavity, since, in this case,
fermions propagate over the surface of the sphere and
the effect of boundaries is introduced simply via period-
icity conditions on the fields. Similar sorts of examples
can be easily arranged by considering toroidal geome-
tries. A number of papers have discussed, in specific
contexts, the inclusion of finite size effects in the Gross-
Neveu and Nambu-Jona Lasinio models on topologically
nontrivial geometries and with the fields forced to
obey periodic or antiperiodic boundary conditions
(see Refs. [16–19]). More precisely, Ref. [16] considered
the case of the Nambu-Jona Lasinio model at nonzero
chemical potential ! and zero temperature on S1 " S1 "
S1 and R2 " S1 and discussed how finite size effects
modify the formation of fermion and difermion conden-
sates and the generation of a superconducting phase. In
Ref. [17], the phenomenon of pion condensation was
investigated within the Nambu-Jona Lasinio model at
finite density in R1 " S1. Reference [18] considered
the Gross-Neveu model in three dimensions, on
S2 " S1 and H2 " S1, where S2 is a 2-sphere and H2 is
a 2-dimensional hyperbolic space. Reference [19] ex-
tended the study of finite size effects within similar class

of models to geometries with toroidal and compactified
directions. See Ref. [20] for earlier results.
Examples of a different sort can be designed by taking a

confining enclosure, in which case boundaries are effec-
tively present, and here we will be concerned with the
simplest realization of such possibility, namely that of
two parallel layers. This example, in comparison with
those discussed in Refs. [16–19], presents several compli-
cations, as it will become clear following the computations
reported in the subsequent pages. In fact, while the case of
geometries with topologically nontrivially circular direc-
tions is amenable of a direct analogy with finite tempera-
ture quantum field theory [21,22], for the case of parallel
layers the same analogy is much less transparent, due to the
nontrivial mixing of thermodynamical and geometrical
effects.
Our goal here is to discuss a general method that allows

one to include boundary and finite size effects in the
computation of the thermodynamic potential for a system
of interacting fermions. The formalism we will present
applies to any nonsingular geometry, as long as the bound-
ary is smooth, not necessarily connected, and the problem
separable. A general introduction to the method and a
discussion of the assumptions will be presented in
Sec. IIA. In Sec. II B we will explicitly perform the com-
putation of the thermodynamic potential for the case of two
parallel layers with the fermion fields obeying bag bound-
ary conditions at the confining surfaces. Formulas will be
given for any dimensionality, at nonzero temperature and
density, and an explicit expression for the expansion of the
thermodynamic potential, i.e., the Ginzburg-Landau expan-
sion, for small condensates will be presented up to fourth
order. The cases of exactly vanishing or large condensates
can be treated separately without additional effort. We will
work in the approximation of mean-field and at leading
order in the large-N limit. Regularization will be performed
using a zeta-function regularization scheme. Several re-
marks will be made in Sec. III and various limiting cases
will be considered as check on the general results. Details of
the numerical implementation and explicit results will be
presented in Sec. IV for the case of two parallel layers in 3
dimensions. We close the paper with our remarks and a
brief discussion of a concrete physical system where the
present analysis may be of some relevance, namely that of
the fermionic Casimir effect.
Results are expressed, as one may expect from the

generic form of the effective action, in terms of some series
of integrals over elliptic functions convoluted with rational
functions. Relevant representations and necessary techni-
cal results are collected in Appendices A and B. In
Appendix C we will briefly discuss how different enclo-
sures can be considered within essentially the same formal
scheme in a straightforward, although computationally
nontrivial, way and we will discuss in some details the
high temperature and large condensate cases.
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N = Nf x Nc - large
λ is the coupling constant
gμ𝜈 is the metric tensor
𝜓    is a D x N component Dirac Spinor
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E↵ective Action

[AF & Tanaka - JHEP 2011; AF - JHEP 2012; AF - arXiv:1304.6880]

D = d + 1 dimensional, ultra-static spacetime

ds2 = dt2 � gijdx
idx j

gij is the metric on the spatial section
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Interacting Fermions

S =

Z

dDx
p
g

⇢

 ̄i�µrµ +
�

2N

�

 ̄ 
�2

+ · · ·
�

 is a (D ⇥ Nf ⇥ Nc)-component quark spinor

Nf flavors and Nc colors (N ⌘ Nf ⇥ Nc)

� is the coupling constant

The dots stand for terms with higher mass dimension

invariant under discrete chiral symmetry

 ! �5 

Broken chiral symmetry: � ⇠ h ̄ i 6= 0
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Effective Action
E↵ective Action

Se↵ = �
Z

dDx
p
g
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�� =
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X

✏

1
X

n=�1
ln DetD(n) (2)
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D(n) ⌘ ��+ !2
n +

1

4
R + �2 + ✏ |@�| , (3)

!n =
2⇡

�

✓

n +
1

2

◆

, � =
1p
g
@i

�p
gg ij@j

�

, ✏ = ±1 (4)
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Zeta RegularizationE↵ective Action

Using zeta function regularization

⇣(s) =
1

�(s)

X

n,✏

Z 1

0
dt ts�1Tr e�tD(n)

�� =
1

2

Z

ddx
p
g
�

⇣(0) ln `2 + ⇣ 0(0)
�

The heat-kernel expansion [Gilkey]

Tr e�tD(n)
=

1

(4⇡t)d/2

1
X

j=0

#j t
j

returns the analog of the GL expansion

SGL =
↵2

2
�2 +

↵4

4

h

�4 + (r�)2
i

+
↵6

6



�6 + 5 (r�)2 �2 +
1

2
(��)2

�

+ · · ·
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Define a generalised ζ-function [Mellin Transform of the heat-Trace]

˘



ResummationE↵ective Action

Using [Jack, Toms, Parker]

Tr e�tD(n)
=

1

(4⇡t)
d
2

e�tQ
X

k

C(k)
✏ tk

with Q = !2
n + R/12 + �2 � µ2 � 2iµ!n + ✏ |@�| allows a partial

resummation of the GL-expansion. In the case of a manifold without
boundary:

C(0)
� = 1 , C(1)

� = 0 ,

C(2)
� = R+

1

6
�
�

�2 + � |@�|� ,

where

R =
1

180
Rµ⌫⇢�R

µ⌫⇢� � 1

180
Rµ⌫R

µ⌫ � 1

120
�R .

Resummation of derivative terms can be performed using [Barvinsky &
Vilkovisky] Covariant Pertubation Theory
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Zeta function

zeta function assumes a factorized form

E↵ective Action

Putting things together

⇣(s) =
1

�(s)

X

k,✏

Z 1

0
dt

ts�1+k

(4⇡t)
d
2

C(k)
✏ e�tX✏F�,µ(t)

where

F�,µ(t) =
1
X

n=�1
e�t(!2

n�2iµ!n�µ2)

X✏ =
�

R/12 + �2 + ✏ |@�|�

d/2� k � 2 > s 2 C and analytically continue to s = 0

well defined and convergent for µ = 0

Arbitrary chemical potentials can be also included
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geometry
thermodynamics



E↵ective Action

⇣(0) =
�

(4⇡)D/2

X
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[D/2]
X

k=0

�k(D)C(k)
✏ XD/2�k

✏

⇣ 0(0) =
�

(4⇡)D/2

X
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1
X

k=0

⇣

ak(D)C(k)
✏ XD/2�k

✏ + �k(D)C(k)
✏ XD/2�k

✏ lnX✏

+ 2D/2+1�kC(k)
✏ (X✏)

D/4�k/2
1
X

n=1

(�1)n
cosh(�µn)

(n�)D/2�k
Kk�D/2

⇣

n�
p

X✏

⌘

!

The coe�cients �k(D) and ak(D) are given by

�k(D) = lim
s!0

�(s + k � D/2)

�(s)
,

ak(D) = lim
s!0

�(s + k � D/2)

�(s)

⇣

 (0) (s + k � D/2)�  (0) (s)
⌘

.
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• phase dependent boundary conditions

• geometries with singularities

• different forms of resummation (CPTh) 

• flat space with boundaries

• black holes

other cases



boundaries



• free fermions [Dirac equation]

• impose boundary conditions at 

Free Fermion Casimir E↵ect

The free fermion dynamics is described by the Dirac equation with the
fields forced to obey some boundary conditions at the plates (z = 0, a)

(1 + ı�z) 
�

�

�

z=0,a
= 0

gives a quantization relation for the momenta along z

�(kz) := m sin(kza) + kz cos(kza) = 0

The regularized Casimir energy can be expressed as

E = � lim
s!0

`�2s

2⇡

�(s � 3/2)

�(s � 1/2)

X

kz2{�(kz )=0}

�

k2z +m2
�3/2�s

s is a regulator and ` a renormalization scale
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boundaries
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vacuum energy



m=0

Free Fermion Casimir E↵ect

In the massless case, m = 0,

E = �7⇡2a�3/2880

For m 6= 0, the Casimir energy can be recast as

E = � 1

a3⇡2

Z 1

0
duu1/2(u + ⇠)(u + 2⇠)1/2 ⇥

⇥ ln

✓

1 +
u

u + 2⇠
e�2(u+⇠)

◆

+ · · · ,

For ⇠ = ma � 1 the force is exponentially suppressed.

mass plays the role of a modulating parameter for the Casimir force
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is a “modulating” parameter for the vacuum energy

for free fields no modulations can occur

chiral symmetry breaking [interactions] can trigger modulations

boundary effects “collaborate” with thermodynamical ones



Effective Potential
E↵ective Potential (T -dependence, fixed a)
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E↵ective Potential (T -dependence, fixed a)

⌦
�
⌦
0

�
0 1 2 3 4

!1.5

!1.0

!0.5

0.0

0.5

1.0

1.5

No boundaries
II Order Phase
Transition

⌦
�
⌦
0

�
0.0 0.5 1.0 1.5 2.0 2.5 3.0

!0.4

!0.2

0.0

0.2

0.4

0.6

0.8

Boundaries
I Order Phase Transition

Antonino Flachi Interacting Fermions in Curved Space June 21, 2013 22 / 45

no boundaries
II order phase transition

boundaries
I order phase transition



Orders
[Ginzburg-Landau]

Orders

Ginzburg-Landau expansion for the thermodynamic potential

⌦� ⌦0 = c0(a,T )�2 + c1(a,T )�3 + c2(a,T )�4 + · · · ,

ci (a,T ): depend on T and a, geometry/topology and on the BCs

No boundaries, � $ �� prohibits the appearance of odd powers and
leads to a II order phase transition.

In the present case, a�1�3 do not vanish. BCs break chiral symmetry
and cause the transition to change to I order.

Deeper connection can be drawn using the Schwinger-De Witt
expansion: ci (a,T ) related to the heat-kernel coe�cients ✓i/2 ! odd
powers of the condensate in the Ginzburg-Landau expansion
accompanied by boundary heat-kernel coe�cients
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in general depend on the geometry/topology 
and on the boundary conditions

• no boundaries, σ⟷-­‐σ prohibits the appearance of odd 
powers of the condensate

• boundaries introduce another length scale and allow for odd 
powers 

• [Schwinger-De Witt]
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~



a-T
Moving on the (a-T )-plane
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Some plots for Bylayer Graphene

(from Hosseini and Zareyan, Phys. Rev. Lett. 108 147001 (2012))
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Figure : from Hosseini and Zareyan, Phys. Rev. Lett. 108 147001 (2012)
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[Hosseini et al., Phys Rev. Lett. 2012]
graphene by-layer with non-zero hopping



black holes



Evaporation

Black Hole Evaporation

TBH ⌧ me , only photons, neutrinos and gravitons are emitted

TBH ⇠ me , electrons are emitted

TBH ⇠ ⇤QCD , muons, pions then hadrons are emitted (heavy;
expected to create a situation of approximate thermal equilibrium)

TBH ⇠ 1

m
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- Cosmology [π-bhs]
- Extra dimensions [𝝻-bhs]
- AdS/CFT [+branes]
- [hot] QCD

[heavier and expected to create a situation 
of approximate thermal equilibrium]

Black Hole Evaporation

TBH ⌧ me , only photons, neutrinos and gravitons are emitted

TBH ⇠ me , electrons are emitted

TBH ⇠ ⇤QCD , muons, pions then hadrons are emitted (heavy;
expected to create a situation of approximate thermal equilibrium)
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photons, neutrinos, gravitons

electrons

muons, pions, heavier hadrons



Hawking-Moss

• electroweak symmetry breaking

• As evaporation proceeds and T rises eventually a bubble of 
restored symmetry phase forms around the horizon

• In the Higgs model, the high temperature phase would be 
too localized implying [effectively] no symmetry restoration

• effect of trapped particles may change the above 
conclusion and a localized region of restored symmetry 
may in fact form



Chiral Symmetry & BHs
Schwarzschild bh of mass m surrounded by strongly interacting fermions

• Asymptotic temperature

• Local Temperature

Intuitive Description

Consider a Schwarzschild black hole of mass m surrounded by strongly
interacting fermions in thermal equilibrium

The asymptotic temperature given by TBH = (8⇡m)�1

The local (Tolman) temperature is Tloc = TBH/
p
f f = 1� 2m/r

Asymptotically, chiral symmetry is restored when TBH > Tc and
broken for TBH < Tc

When TBH < Tc , Tloc crosses the critical temperature at a certain radius.
Within this radius, the symmetry will be restored. This indicates the
possibility that a domain wall structure of the condensate surrounding the
black hole will arise.
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chiral symmetry is restored

chiral symmetry is broken

crosses the critical temperature at some radius
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a bubble of chirally restored symmetry phase should form



A quantitative analysis

S =

Z

d4x
p
g

⇢

 ̄i�µrµ +
�

2N

�

 ̄ 
�2
�

ds2 = fdt2 + f �1dr2 + r2(d✓2 + sin2 ✓d'2)

� = �
Z

d4x
p
g

✓

�2

2�

◆

+ Tr ln (i�µrµ � �)

�2✏ := �2 + ✏f 1/2�0

Conformal rescaling of the metric dŝ2 = f �1ds2

Evaluate the e↵ective action in the conformally related spacetime, �̂

Transform back (add the cocycle function), ��
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Chiral Symmetry & BHs

• conformal transformation

• evaluation in the conformally transformed spacetime

• transform back



Chiral Symmetry & BHs
A quantitative analysis
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Cocycle
Co-cycle function [Dowker]

A quantitative analysis

The cocycle function can be expressed (Dowker)
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n!4
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where the dots represent terms that do not depend on V or disappear
upon integration by parts. In the present case
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n [ĝ ]� C

(2)
n [g ]

⌘

/(n � 4) .

O = ⇤+ V , the part of the heat-kernel coe�cient is

C
(2)
n [g ] =

1

(4⇡)
n
2

1

2

Z

dnx
p
g

✓

V 2 � 1

3
RV + · · ·

◆

where the dots represent terms that do not depend on V or disappear
upon integration by parts. In the present case

�� =
�

2(4⇡)2

X

✏=±

Z

d3x
p
g



�4
✏

2
ln f � 2�2

✏

f
lim
n!4

d⇤n

dn

�

where limn!4 d⇤n/dn = (f
02 � 2↵ 00 + 4↵ 0/r)/24.

Antonino Flachi Interacting Fermions in Curved Space June 21, 2013 38 / 45



Bubbles
E↵ective Equation for the Condensate

Find extrema of the e↵ective action � with respect to the condensate
Ignore fourth order derivatives
Higher order corrections can be included systematically
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Figure : from AF and T. Tanaka, Phys. Rev. 2011
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r/rs

• kink structure • higher order corrections

Solution

The solution has a kink structure: bubbles that separate a region of
restored symmetry near the black hole from a region of broken
symmetry surrounding it.

The size of the bubble is estimated by equating the local temperature
to the critical temperature as rbubble ⇠ rs/

�

1� T 2
BH/T

2
c

�

Higher order corrections can be included systematically (computation
done up to 4th order).

Higher order terms become less and less relevant as the black hole
temperature gets closer to the critical one, due to the fact that the
kink becomes increasingly thicker
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Bubbles

• Chromosphere formation

• Hadronization and Hawking radiation [jets?]

• Black holes localized on branes



outlook

• External fields

• Back-Reaction

• Gluons

• Ginzburg - Landau ~ Schwinger - De Witt

• Lattice



curved space offers an interesting set-up to study 
the physics of strongly interacting systems

thanks for the attention!


