Jet broadening at NNLL in perturbation theory

Miguel A. Escobedo

Physik-Department T30f. Technische Universität München

Trento, 19th june

Work in preparation. Collaboration with Michael Benzke, Nora Brambilla and Antonio Vairo

Outline

Jet quenching and jet broadening in perturbation theory and the *q̂* parameter

2 EFTs for the computation of jet broadening

3 The computation of q̂ in MQCD

Jet quenching and jet broadening in perturbation theory and the \hat{q} parameter

Jet quenching in heavy-ion collisions

Jet quenching

э

イロト イヨト イヨト イヨト

Processes for jet quenching

- Plain lines are partons with energy of order Q.
- Dashed lines are interaction with the medium with energy of order *T* or lower.
- The interactions with the medium do not make the high energy parton lose energy in a significant amount $Q \gg T$ but they enhanced the probability that the splitting happens.

Processes for jet quenching

If the jet is a light quark

Bremsstrahlung

If the jet is a gluon

- Bremsstrahlung
- Pair production of $q\bar{q}$

Jet broadening

In light-cone coordinates (p^+, p^-, p_\perp) the initial parton has (0, Q, 0), after the interaction with the medium it changes to $(\frac{k_\perp^2}{2Q}, Q, k_\perp)$. This is called jet broadening.

It is different from jet quenching but in order to compute jet quenching one needs information on jet broadening.

What is \hat{q} ?

 $P(k_{\perp})$ is the probability that an initial parton with momentum (0, Q, 0) transforms into a parton with momentum $(\frac{k_{\perp}^2}{2Q}, Q, k_{\perp})$ after going through a distance L in the medium.

$$\hat{q} = rac{1}{L}\int rac{d^2k_{\perp}}{(2\pi)^2}k_{\perp}^2 P(k_{\perp})$$

It is only related with jet broadening but it is needed as an input parameter in jet quenching computations.

$P(x_{\perp})$ from Wilson lines

In covariant gauge. Baier et al. (1997), Zakharov (1996), Casalderrey-Solana and Salgado(2007). In a general gauge. Benzke, Brambilla, M. A. E and Vairo (2012).

\hat{q} in perturbation theory

$$\hat{q} = rac{1}{L}\int rac{d^2k_{\perp}}{(2\pi)^2}k_{\perp}^2 P(k_{\perp})$$

 $P(k_{\perp})$ is related with the Fourier transform of a gluonic operator. The scales that appear are

- k_{\perp} itself.
- The energy scales that characterize the medium.

Energy scales in a thermal bath

In the weak-coupling regime

- We have an almost free gas of quarks and gluons with typical energy πT .
- At long distances (order $\frac{1}{gT}$), non-trivial collective phenomena arise, as for example chromoelectric static fields screening.
- At even longer distances (order $\frac{1}{g^2 T}$), non-perturbative phenomena arise, as for example chromomagnetic static fields screening.

Energy scales in a thermal bath

In the weak-coupling regime

___ ▶

What is know about $P(k_{\perp})$?

$$\hat{q} = \frac{1}{L} \int \frac{d^2 k_{\perp}}{(2\pi)^2} k_{\perp}^2 P(k_{\perp})$$

k_{\perp}	$\alpha_s^2 T^3$	$\alpha_s^2 g_s T^3$	$\alpha_s^3 T^3$
πT	computed	no contribution	not known
gТ	computed	computed	not known, $lpha_s^3 \log(g) T^3$
g²T	no contribution	no contribution	computed

- \hat{q} at LO, Arnold and Xiao (2008).
- NLO, Caron-Huot (2008).
- NNLO contribution from g²T, Benzke, Brambilla, M. A. E and Vairo (2012), Laine (2012).

Why logarithmic enhancement? Answer later.

Summary

- Jet quenching provides information about the medium formed in heavy-ion collisions.
- To predict jet quenching we need and understanding of jet broadening and *q̂*.
- What are the relevant degrees of freedom at a given temperature? To answer this we also need precise perturbative computations.
- We are going to compute P(k_⊥) for k_⊥ ~ gT which is going to give us the NNLL correction to q̂.

EFTs for the computation of jet broadening.

Miguel A. Escobedo (Physik-Department T3(Jet broadening at NNLL in perturbation theor

Jet broadening as a static phenomena

- All the operators are separated by a space-like distance or a light-cone distance.
- Caron-Huot (2008) argued that one can deform infinitesimally the light-cone Wilson lines to make them slightly space-like.
- All the separations are space-like.

Imaginary-time formalism

Observables at finite temperature that do not depend on time. Euclidean field theory.

$$\int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2 + m^2} \to T \sum_{n = -\infty}^{\infty} \int \frac{d^3k}{(2\pi)^3} \frac{1}{4\pi^2 n^2 T^2 + k^2 + m^2}$$

Lorenz boost with $v = 1 + \epsilon$.

$$p_z \rightarrow p_z + 2\pi T n$$

Dimensional reduction

 $P(k_{\perp})$ for $k_{\perp} \sim gT$.

- Only modes with Euclidean virtuality smaller than πT are important.
- The starting point can be an Effective Field Theory where high energy mode has been integrated out.
- n = 0, a zero temperature three dimension EFT with temperature dependent Wilson coefficients.

Electrostatic QCD

Braaten (1995), integrate out scale πT .

$$\mathcal{L}_{EQCD} = rac{1}{4} F^{a}_{ij} F^{a}_{ij} + rac{1}{2} (D_i A^{a}_0) (D_i A^{a}_0) + rac{1}{2} m^2_D A^{a}_0 A^{a}_0$$

- 3D QCD + additional scalar field with mass $m_D \sim gT$.
- Coupling constant $g_E = g\sqrt{T}$.
- Infrared behaviour is dominated by the magnetic part.

Consequences of EQCD for light-cone Wilson lines

$$A_+ = rac{1}{\sqrt{2}}(A_0+A_3) o_{EQCD, \ Infrared} \ rac{A_3}{\sqrt{2}}$$

- Identify A_3 as a temporal component in Euclidean time.
- Infrared behaviour of $P(x_{\perp})$ for $x_{\perp} \sim 1/gT$ is the same as static potential $V(x_{\perp})$ in 3D QCD.
- Naive computation of the static potential in 3D QCD has infrared divergence at three loops. Schroeder (1999).
- This divergence was found to cancel with an ultraviolet divergence coming from the energy scale of the potential (ladder resummation). Pineda and Stahlhofen (2010).

Magnetostatic QCD

Braaten (1995), integrate out also scale gT.

$$\mathcal{L}_{MQCD} = rac{1}{4} F^a_{ij} F^a_{ij}$$

At leading order 3D QCD with $g_E = g\sqrt{T}$

Match operator in EQCD to set of operators in MQCD

Operators in MQCD

$$\Box = Z(x_{\perp})e^{-\frac{V_{s}(x_{\perp},\mu)L}{\sqrt{2}}}$$

At leading order

$$W_{s}(x_{\perp},\mu) = -rac{g^{2}TC_{F}}{2\pi}\left(rac{1}{2}-\gamma-\log(2\pi)-\log(m_{D}x_{\perp})-k_{0}(m_{D}x_{\perp})
ight)$$

- In the limit $m_D x_\perp \to \infty$ coincides with static potential.
- $gT \gg \mu \gg g^2 T$. Factorization scale.
- V_s itself is a new energy scale that appears in the problem.

b 4 = b

Operators in MQCD

$$= -\frac{\delta h_{s}(x_{\perp},\mu)L}{\sqrt{2}}Z(x_{\perp})e^{-\frac{V_{s}(x_{\perp},\mu)L}{\sqrt{2}}}$$

$$\delta h_{s}(x_{\perp},\mu) = \frac{g_{E}^{2}T_{F}}{C_{A}}x_{\perp}^{i}x_{\perp}^{j}\int_{0}^{\infty} d\tau e^{-(V_{o}(x_{\perp},\mu)-V_{s}(x_{\perp},\mu))\tau} \langle F_{\perp}^{3i,a}(\tau,0)\phi_{adj}^{ab}(\tau)F_{\perp}^{3j,b}(0,0)\rangle$$

Same operator as in pNRQCD in 3D. Pineda and Stahlhofen (2010). But with different values of V_s and V_o .

Summary

- Compute $\frac{\partial \delta h_s}{\partial \mu}$.
- Get NNLL corrections to $P(k_{\perp})$.
- NNLL corrections to \hat{q} .
- Most of the computations already done in the static potential case. Pineda and Stahlhofen (2010).

The computation of \hat{q} in MQCD

3. 3

The renormalization group equation

$$\frac{\partial h_{s}(x_{\perp})}{\partial \mu} = 0 \rightarrow \frac{\partial V_{s}(x_{\perp})}{\partial \mu} = -\frac{\partial \delta h_{s}(x_{\perp})}{\partial \mu}$$

but

$$\delta h_s(x_\perp) = \delta h_s(x_\perp, \Delta V(x_\perp, \mu), g_E(\mu), \mu)$$

In 3D $\frac{\partial g_E}{\partial \mu} = 0$

$$\Delta V(x_{\perp}) = V_o(x_{\perp}) - V_s(x_{\perp}) = \frac{g^2 T C_A}{4\pi} \left(\frac{1}{D-4} - \frac{\gamma}{2} - \frac{1}{2} \log \pi - \log(x_{\perp}\mu) - k_0(m_D x_{\perp}) \right)$$

< 67 ▶

Result for $V_s(x_{\perp}, \mu)$

$$\mu \frac{\partial V_s}{\partial \mu} = \frac{C_F}{2} x_\perp^2 \alpha T (\Delta V_{MS})^2 + C_F C_A \alpha^2 T^2 x_\perp^2 \Delta V_{MS} + \frac{x_\perp^2 \alpha^3 T^3 C_F (13\pi^2 - 2208) C_A^2}{384}$$

$$\begin{split} \delta V_s^{NNLL}(x_{\perp}) &= C_F C_A^2 \alpha^3 T^3 x_{\perp}^2 \left[\frac{1}{6} (\log(x_{\perp}\mu))^3 \right. \\ &+ \frac{1}{2} \left(\frac{\gamma}{2} + \frac{1}{2} \log \pi + k_0 (m_D x_{\perp}) - 1 \right) \left(\log(x_{\perp}\mu) \right)^2 \\ &+ \left(\frac{\gamma^2}{8} + \frac{\gamma}{4} \log \pi + \frac{\gamma}{2} k_0 (m_D x_{\perp}) + \frac{1}{8} (\log \pi)^2 + \frac{1}{2} \log \pi k_0 (m_D x_{\perp}) \right. \\ &+ \left. \left(k_0 (m_D x_{\perp}) \right)^2 - \frac{\gamma}{2} - \frac{1}{2} \log \pi - k_0 (m_D x_{\perp}) \right. \\ &+ \left. \left(\frac{13\pi^2 - 2208}{384} \right) \log(x_{\perp}\mu) \right] + \mathcal{O}(\alpha^3 T^3 x_{\perp}^2) \end{split}$$

Miguel A. Escobedo (Physik-Department T3CJet broadening at NNLL in perturbation theor

3

28 / 43

<ロ> (日) (日) (日) (日) (日)

Improving the perturbative expansion

$$h_s(x_{\perp}) = V_s(x_{\perp}, \log(x_{\perp}\mu)) + \delta h_s(x_{\perp}, \Delta V(\mu), \log\left(\frac{\Delta V_{MS}}{\mu}\right))$$

All the logs are included in $V_s(x_{\perp})$ if we choose $\mu = \Delta V_{MS}(x_{\perp}, \mu)$.

$$\mu = \alpha T C_{\mathcal{A}} W \left(\frac{1}{\alpha C_{\mathcal{A}} e^{\frac{\gamma}{2} + k_0 (m_D x_\perp)} \sqrt{\pi} x_\perp T} \right)$$

W is the Lambert function. W(x) is logarithmically big for $x \to 0$.

Improving the perturbative expansion

$$V_{s}^{NNLL}(x_{\perp}) = -C_{F}C_{A}^{2}\alpha^{3}T^{3}x_{\perp}^{2}\left[\frac{1}{6}W^{3}\left(\frac{1}{\alpha C_{A}e^{\frac{\gamma}{2}+k_{0}(m_{D}x_{\perp})}\sqrt{\pi}x_{\perp}T}\right)\right.$$
$$\left.+\frac{1}{2}W^{2}\left(\frac{1}{\alpha C_{A}e^{\frac{\gamma}{2}+k_{0}(m_{D}x_{\perp})}\sqrt{\pi}x_{\perp}T}\right)\right.$$
$$\left.+\frac{13\pi^{2}-2208}{384}W\left(\frac{1}{\alpha C_{A}e^{\frac{\gamma}{2}+k_{0}(m_{D}x_{\perp})}\sqrt{\pi}x_{\perp}T}\right)\right]$$

< 67 ▶

30 / 43

Properties of the Lambert function

Properties of the Lambert function

 $m_D x_\perp \gg 1$ implies $t \sim 1$. No logarithmic enhancement. $m_D x_\perp \sim 1$ implies $t \ll 1$.

$$W(1/t) \sim -\log t - \log(-\log t) + ...$$

 $m_D x_\perp \ll 1$ implies

$$t = \frac{\alpha T C_A 2 \sqrt{\pi}}{m_D e^{\gamma/2}}$$

Properties of V_s^{NNLL}

Define
$$u = m_D x_{\perp}$$
, $\lambda = \frac{\alpha C_A T}{m_D}$ and $F[u] = \frac{V_s^{NNLL}(u)}{C_F \alpha T}$
For $\lambda = 0.5$

.....

3

Properties of V_s^{NNLL}

Define
$$u = m_D x_{\perp}$$
, $\lambda = \frac{\alpha C_A T}{m_D}$ and $F[u] = \frac{V_s^{NNLL}(u)}{C_F \alpha T}$
For $\lambda = 0.01$

.....

э

Properties of $P(x_{\perp})$

$$P(x_{\perp}) = e^{-h_{s}(x_{\perp})L}$$

- It happens that $Z(x_{\perp}) = 1$ at our order of accuracy.
- To be able to compute \hat{q} analytically one assumes $h_s(x_{\perp})L \ll 1$.
- Starting from here we use this approximation, however what we learn until now about $h_s(x_{\perp})$ is still valid if this does not happen.

Computation of $\hat{q}^{\textit{NNLL}}$

$$\hat{q}^{NNLL} = -\int_{k_2}^{k_1} rac{d^2 k_\perp}{(2\pi)^2} k_\perp^2 \int d^2 x_\perp \mathrm{e}^{-i\mathbf{x}_\perp\mathbf{k}_\perp} V_s^{NNLL}(x_\perp)$$

•
$$\pi T \gg k_1 \gg m_D$$

• $m_D \gg k_2 \gg \alpha T$

イロト イポト イヨト イヨト

э

Computation of $\hat{q}^{\textit{NNLL}}$

$$\begin{split} \hat{q}^{NNLL} &= \hat{q}^{NNLL,r} + \hat{q}^{NNLL,UV} + \hat{q}^{NNLL,IR} \\ \hat{q}^{NNLL,r} &= -\int \frac{d^2 k_{\perp}}{(2\pi)^2} k_{\perp}^2 \int d^2 x_{\perp} e^{-i\mathbf{x}_{\perp}\mathbf{k}_{\perp}} V_s^{NNLL}(x_{\perp}) \\ \hat{q}^{NNLL,UV} &= \int_{k_1}^{\infty} \frac{d^2 k_{\perp}}{(2\pi)^2} k_{\perp}^2 \int d^2 x_{\perp} e^{-i\mathbf{x}_{\perp}\mathbf{k}_{\perp}} V_s^{NNLL}(x_{\perp}) \\ \hat{q}^{NNLL,IR} &= \int_0^{k_2} \frac{d^2 k_{\perp}}{(2\pi)^2} k_{\perp}^2 \int d^2 x_{\perp} e^{-i\mathbf{x}_{\perp}\mathbf{k}_{\perp}} V_s^{NNLL}(x_{\perp}) \end{split}$$

Miguel A. Escobedo (Physik-Department T3CJet broadening at NNLL in perturbation theor

3

イロト イポト イヨト イヨト

Computation of $\hat{q}^{NNLL,r}$

$$\hat{q}^{NNLL,r} = \nabla_{\perp}^{2} V_{s}^{NNLL}(x_{\perp})|_{x_{\perp}=0}$$
$$\hat{q}^{NNLL,r} = -4C_{F} C_{A}^{2} \alpha^{3} T^{3} \left[\frac{1}{6} W^{3} \left(\frac{m_{D} e^{\frac{\gamma}{2}}}{\alpha T C_{A} 2 \sqrt{\pi}} \right) + \frac{1}{2} W^{2} \left(\frac{m_{D} e^{\frac{\gamma}{2}}}{\alpha T C_{A} 2 \sqrt{\pi}} \right) + \frac{13\pi^{2} - 2208}{384} W \left(\frac{m_{D} e^{\frac{\gamma}{2}}}{\alpha T C_{A} 2 \sqrt{\pi}} \right) \right]$$

Miguel A. Escobedo (Physik-Department T3Qet broadening at NNLL in perturbation theor Trento, 19tl

Computation of $\hat{q}^{NNLL,UV}$

For $m_D x_\perp \ll 1$

$$V_s^{NNLL}(x_{\perp}) = A x_{\perp}^2 + \dots$$

which implies

$$\hat{q}^{NNLL,UV} = A \int_{k_1}^\infty rac{d^2 k_\perp}{(2\pi)^2} \delta^2(k_\perp) = 0$$

In fact it is a contribution to N^3LL and not to NNLL.

39 / 43

Computation of $\hat{q}^{NNLL,IR}$

For $m_D x_{\perp} \gg 1$ the Lambert function is not big. No logarithmic enhancement. It is a *NNLO* contribution and not a *NNLL* one.

Final result

$$\hat{q} = \hat{q}^{LO} + \hat{q}^{NLO} + \hat{q}^{NNLL} + \dots$$
$$\hat{q}^{LO}(\Lambda) = \frac{2g^4 T^3}{3\pi} \left[\frac{3}{2}\log\left(\frac{T}{m_D}\right) + \frac{7\zeta(3)}{4\zeta(2)}\log\left(\frac{\Lambda}{T}\right) - 0.105283\right]$$

Arnold and Xiao (2008)

$$\hat{q}^{NLO} = rac{g^4 \, T^2 m_D}{8 \pi^2} (3 \pi^2 + 10 - 4 \log(2))$$

Caron-Huot (2008)

$$\hat{q}^{NNLL} = -48\alpha^3 T^3 \left[\frac{1}{6} W^3 \left(\frac{m_D e^{\frac{\gamma}{2}}}{6\sqrt{\pi}\alpha T} \right) + \frac{1}{2} W^2 \left(\frac{m_D e^{\frac{\gamma}{2}}}{6\sqrt{\pi}\alpha T} \right) \right. \\ \left. + \frac{13\pi^2 - 2208}{384} W \left(\frac{m_D e^{\frac{\gamma}{2}}}{6\sqrt{\pi}\alpha T} \right) \right]$$

3 x 3

< 🗇 🕨 🔸

Conclusions

э

イロト イヨト イヨト イヨト

Conclusions

- The understanding of jet broadening is important for the interpretation of jet observables in heavy-ion collisions.
- It is important to improve perturbative computations.
- We obtained NNLL contributions to $P(k_{\perp})$ and \hat{q} .
- In order to get the correct result one needs to consider the ladder resummation. This is easily done using EFTs.