ATLAS measurements of event-byevent flow in Pb+Pb collisions and collective flow(?) in p+Pb collisions

Brian. A Cole June 16, 2013

Higher Flow Harmonics

Major paradigm shift in the field in last 3 years

 Higher flow harmonics arising from initial-state fluctuations in transverse positions of participants

$$rac{dN}{d\phi dp_T d\eta} = rac{dN}{2\pi dp_T d\eta} \left(1 + \sum_{m{n}} 2 m{v_n} \cos\left[n(\phi - m{\psi_n})
ight]
ight)$$

Frequently measured using pairs of particles

Fluctuations, Fourier amplitudes

Increasing momenta

Event-by-event vn

Experimental breakthrough by ATLAS
 ⇒event-by-event vn measurement

Event-by-event flow measurement

Measured distribution of event-byevent v₂ flow vector and v₂ dist.

Unfolding of the measured event-byevent v₃ dist.

Event-by-event flow: results

p_T > 0.5 GeV, 0.5 < pT < 1 GeV, p_T > 1 GeV

3 p_T ranges rescale by mean

Event-by-event: moments

Event-by-event: model comparisons

 For more central collisions (5-10%), data better described by MC-KLN (need better)
 – in more peripheral collisions, data better described by Glauber.

Event-by-event: hydro comparisons

MUSIC: Gale et al, arXiv: 1210.5144

Saturated initial conditions + viscous hydrodynamics lattice + hadron gas equation of state

(Implausibly?) good agreement with data
 ⇒Event-by-event v_n probing both initial state and hydrodynamic evolution (here η/s = 0.2 ≈ 2.5/4π)

ATLAS p+Pb collisions

Characterize "multiplicity" or event activity using forward calorimeter on Pb-going side

ATLAS p+Pb collisions

charged particles, |η| < 2.5 0.5 < pT < 4 GeV

ATLAS p+Pb collisions

charged particles, |η| < 2.5 0.5 < pT < 4 GeV

dijets, momentum conservation

Jets/resonances

ATLAS 2-particle correlations (3)

- Per trigger yields Y(Δφ) integrated over η
 peripheral and central
 - ⇒"Ridge" clearly present in central
 - ⇒Similar increase in the away side yield between peripheral, and central collisions

ATLAS 2-particle correlations (5)

- Study variation of integrated pertrigger yields with trigger p_T
 - For associated
 0.5 < p_T < 4 GeV
- Evaluate difference between peripheral and central
 - difference ≈ same on near and away sides, and similar p⊤ dependence

Beware different vertical scales on top panels

ATLAS 2-particle correlations (6)

- Motivated by above observations subtract peripheral $Y(\Delta \phi)$ from central $Y(\Delta \phi)$
 - -With associated 0.5 < p_T < 4 GeV</p>
 - In different trigger p_T bins
 - ⇒Observe an approximately symmetric modulation in all bins

ATLAS 2-particle correlations (7)

 Central correlation function before and after subtraction of peripheral per-trigger yields, and converting back to C(Δφ,Δη)
 ⇒Long-range modulation

Fourier decomposition

 Extract Fourier coefficients for the pair distributions (c₂, c₃)

analog of 2-particle v_{2,2}, v_{3,3}

•Assume factorization $c_2(p_T^a, p_T^b) = s_2(p_T^a) s_2(p_T^b)$

– checked

 \Rightarrow To obtain s₂, s₃ \rightarrow if flow, v₂, v₃

p+Pb 4-particle cumulants

- pilot run 4-particle cumulant analysis
 - -Negative c₂{4} indicates "global" correlation

⇒flow

- Similar v₂ values for 4particle cumulants, 2particle correlations

4-particle v₂, comparison to Pb+Pb

 v₂ varies only slowly with p+Pb multiplicity/event activity/centrality

⇒ridges are larger in central p+Pb due to the larger multiplicity of the events

 p_T dependence of v₂ similar to that observed in Pb+Pb collisions

Hydrodynamics (unrealistic?) can reproduce data
 But understanding the initial state is crucial

ATLAS: Charged particle v₂(p_T)

Evolution from flow at low p_T to differential jet quenching at higher p_T
 WHDG energy loss describes v₂(p_T) for p_T > 10

– Flow/other dominates for pT <~ 8 GeV?</p>

Differential jet suppression

Measure jet yields in 8 bins of Δφ with respect to the elliptic event plane
 – Here for R = 0.2 jets, 60 < p_T < 80 GeV
 ⇒UE subtraction corrected for elliptic flow modulation in calorimeter

Differential jet suppression

Observe non-zero jet v₂ for (R = 0.2) p_T values > 100 GeV

⇒jet quenching clearly sensitive to initial geometry out to very high p_T

Differential jet suppression

• Evaluate ratio of jet yields in different $\Delta \phi$ bins to the yield in $0 < \Delta \phi < \pi/8$.

 $-R_{AA}(\Delta \phi)/R_{AA}(0-\pi/8)$

⇒ ~15% change in single jet suppression between in-plane, out-of-plane @ high pT

Putting it all together

- In Pb+Pb collisions, initial state fluctuations survive and are imprinted on particle dN/dφ
 - Sensitive to physics of initial particle production, thermalization(?), hydrodynamic expansion.
- In p+Pb collisions, data suggest behavior consistent with that observed in Pb+Pb
 - -final-state collectivity
 - \Rightarrow as preposterous as that seems
 - Any collectivity in p+Pb highly sensitive to initial particle production, thermalization,
- In Pb+Pb collisions, we can probe gross features of initial geometry with jets
 - -what is the impact of initial state energy density fluctuations on jet quenching in Pb+Pb (p+Pb?)

Why ET not Nch for "centrality"?

 There is an auto-correlation between N_{ch} and the number of particles & pairs
 ⇒Distorts the per-trigger yields from the "recoil" contribution at low N_{ch}
 ⇒Why the different behavior of away-near difference at large N_{ch} / ΣE_T?

ATLAS 2-particle correlations (2)

"peripheral"

"central"

To better see Δη dependence, project ZYAM-subtracted correlation function.
 – For near (Δφ<π/3) and away (Δφ>2π/3) sides.
 ⇒In central collisions see ridge and broadening of away-side component relative to peripheral collisions.

Test factorization

If factorization holds, should obtain same s2 values for different associated p_T ⇒true for p_T < 1 GeV ⇒start to see deviations at higher p_T

ATLAS 2-particle correlations (7)

 Subtracted correlation functions for 2 other centrality bins.

