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Introduction

Gluon saturation towards higher orders

Gluon saturation/CGC in dense-dilute collisions

DIS observables and forward particle production in pp/pA:

theoretically best understood observables sensitive to gluon
saturation at high energy

abundant available or incoming data from HERA, LHC, RHIC

successful phenomenology within the Color Glass Condensate

However: saturation effects difficult to see clearly from the most
inclusive observables.
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Introduction

Gluon saturation towards higher orders

Gluon saturation/CGC in dense-dilute collisions

DIS observables and forward particle production in pp/pA:

theoretically best understood observables sensitive to gluon
saturation at high energy

abundant available or incoming data from HERA, LHC, RHIC

successful phenomenology within the Color Glass Condensate

However: saturation effects difficult to see clearly from the most
inclusive observables.

→ 2 directions for improvement:

1 Study to less inclusive observables, like multi-particle
correlations
cf. most talks on monday

2 Go to higher orders or other refinements for more precision
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Introduction

Gluon saturation towards higher orders

Gluon saturation/CGC at higher orders

Going to higher orders is necessary for precision studies.

For the simpler, inclusive observables, the calculation of higher
order corrections has started:

NLL corrections to the BK equation
Balitsky, Chirilli (2008)

NLO corrections to DIS structure functions
Balitsky, Chirilli (2011)

G.B. (2012)

NLO corrections to forward single inclusive particle production
in pA or pp
Chirilli, Xiao, Yuan (2012)
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Introduction

Collinear resummations for BFKL

Need for further resummations

However, besides running coupling effects, pathologically large
corrections of two types plague higher order results and have to be
resummed to obtain reliable results from BK at NLL.

Kinematical corrections: due to a too naive treatment of the
high-energy limit.
→ Main topic of the rest of this talk.

Dynamical corrections: induced from DGLAP evolutions of
the projectile and of the target, due to the duality between
low xBj and high Q2 evolutions.
→ Left for further studies.

The same problems appear in the linear regime for the BFKL
equation, and the corresponding resummations have been fully
performed.
Ciafaloni, Colferai, Salam, Staśto (1998-2007)

Altarelli, Ball, Forte (1999-2008)
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Introduction

Collinear resummations for BFKL

Kinematical issues for BFKL in momentum space

Conventional derivations of the BFKL evolution require kinematical
approximations for the t-channel gluons propagators, or for the
energy denominators in the dipole model derivation.

Usual justification for those approximations: multi-Regge
kinematics

Strong ordering in rapidity y (or in k+, or in k−) of the
emitted gluons

and all k⊥’s of the same order

Sufficient but not necessary condition for the kinematical
approximations to be valid.
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Introduction

Collinear resummations for BFKL

Kinematical issues for BFKL in momentum space

Conventional derivations of the BFKL evolution require kinematical
approximations for the t-channel gluons propagators, or for the
energy denominators in the dipole model derivation.

Usual justification for those approximations: multi-Regge
kinematics

Strong ordering in rapidity y (or in k+, or in k−) of the
emitted gluons

and all k⊥’s of the same order

Sufficient but not necessary condition for the kinematical
approximations to be valid.

Problem: unrestricted integral over k⊥ in the BFKL equation
⇒ A posteriori not consistent to assume all k⊥’s of the same order!
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Introduction

Collinear resummations for BFKL

Kinematical issues for BFKL in momentum space

Necessary and sufficient condition for the required kinematical
approximations:

Strong ordering of the emitted gluons both in k+ and in k−

simultaneously

Strong ordering is guarantied only for the evolution variable chosen
for the BFKL equation: y , k+ or k−, depending on the
factorization scheme.

⇒ Need to impose by hand the missing k− and/or k+ ordering in
the equation via a kinematical constraint in the BFKL equation, by
consistency.
In momentum space:
Ciafaloni (1988)
Kwieciński, Martin, Sutton (1996)

Andersson, Gustafson, Kharraziha, Samuelsson (1996)
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DIS at NLO and subtraction of LL’s

Strict NLO

DIS at high energy at NLO

⊗ ⊗

x0, k
+
0

x2, k
+
2

x1, k
+
1

Q2, q+

σγ
T ,L(Q

2, xBj) = 2 2Nc αem

(2π)2
∑

f e
2
f

∫

d
2
x0

∫

d
2
x1

∫ 1

0
dz1

×

{

ILO
T ,L(x01, z1,Q

2)
[

1+O(ᾱ)
] [

1− 〈S01〉0

]

+ᾱ

∫

d
2
x2

2π

∫ 1−z1

k+min/q
+

dz2

z2
INLO
T ,L (x0, x1, x2, z1, z2,Q

2) 〈S01 − S02 S21〉0

}

with zn = k+n /q+

G.B. (2012); see also Balitsky, Chirilli (2011).
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+
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DIS at NLO and subtraction of LL’s

Strict NLO

DIS impact factors

ILO
L

(x01,z1) = 4Q2
K

2
0(QX2) z

2
1 (1−z1)

2

ILO
T

(x01,z1) = Q2K2
1(QX2)

[

z21+(1−z1)2
]

z1(1−z1)

INLO
L

(x0,x1,x2,z1,z2) = 4Q2
K

2
0(QX3)

{

(z1+z2)
2(1−z1−z2)

2
P( z2

z1+z2
)

x2
21

+z21 (1−z1)
2

P

(

z2
1−z1

)

x2
20

−2z1(1−z1)(z1+z2)(1−z1−z2)
[

1−
z2

2(1−z1)
−

z2
2(z1+z2)

]

(

x20·x21
x2
20

x2
21

)

}

In the Bessel K0,1 functions prefactors:

X 2
2 = z1 (1−z1) x210

X 2
3 = z1 (1−z1−z2) x210+z2 (1−z1−z2) x220+z2 z1 x

2
21

DGLAP quark to gluon splitting function:

P(z)= z
2 CF

Pgq(z)=
1
2 [1+(1−z)2]
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DIS at NLO and subtraction of LL’s

Strict NLO

DIS impact factors

I
NLO
T

(x0,x1,x2,z0,z1,z2)=
Q2

K
2
1(QX3)
X2
3

{

z21 (1−z1)
2
[

z21+(1−z1)
2
]
(

x10−
z2

1−z1
x20

)2 P

(

z2
1−z1

)

x2
20

+z20 (1−z0)
2
[

z20+(1−z0)
2
]
(

x01−
z2

1−z0
x21

)2 P

(

z2
1−z0

)

x2
21

+2z1(1−z1)z0(1−z0)

[

z1(1−z0)+z0(1−z1)

]
(

x10−
z2

1−z1
x20

)

·

(

x01−
z2

1−z0
x21

)

×

[

1−
z2

2(1−z1)
−

z2
2(1−z0)

]

(

x20·x21
x2
20

x2
21

)

+
z0 z1 z22 (z0−z1)

2

(1−z1)(1−z0)

(

x20∧x21

)2

x2
20

x2
21

+z0 z21 z2

[

z0 z1
(1−z1)

+
(1−z1)

2

(1−z0)

]

(

x10−
z2

1−z1
x20

)

·

(

x20
x2
20

)

+z20 z1 z2

[

z0 z1
(1−z0)

+
(1−z0)

2

(1−z1)

]

(

x01−
z2

1−z0
x21

)

·

(

x21
x2
21

)

+
z20 z21 z22

2

[

1
(1−z1)

2 + 1
(1−z0)

2

]

}
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DIS at NLO and subtraction of LL’s

Strict NLO

Formation time interpretation of the prefactors

The DIS impact factors contain a prefactor dependent on the
variables

X 2
2 = z1 z0 x

2
10 (with z0 + z1 = 1)

X 2
3 = z1 z0 x

2
10 + z2 z0 x

2
20 + z2 z1 x

2
21 (with z0 + z1 + z2 = 1) .

2q+X 2
2 and 2q+X 2

3 are the formation time of the qq̄ and qq̄g

Fock states in the photon wave-function.

K
2
0,1(QXn) prefactors ⇒ exponential suppression of the Fock states

with formation time larger than the virtual photon lifetime
2q+/Q2.

G.B. (2012)
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DIS at NLO and subtraction of LL’s

High energy factorization and Leading Logs

High-energy factorization

Soft divergence of the k+2 integration: regulated by the physical
k+min scale set by the target.

→ but the integration still gives a large factor ∼ log(q+/k+min).

Such LL term should be absorbed into 〈S01〉 to stabilize
perturbation theory.

Convenient (but not unique) choice of factorization scheme:

only gluons with k+ < k+f are included into the shockwave
field A of the target

other gluons appear in the NnLO corrections to the considered
observable

see e.g. Balitsky, Chirilli (2007)
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DIS at NLO and subtraction of LL’s

High energy factorization and Leading Logs

LL BK evolution for 〈S01〉

In the LO contribution to σγ
T ,L:

→ replace the classical 〈S01〉0 by the evolved one 〈S01〉Y+
f
,

thanks to the integrated version

1−〈S01〉0 = 1−〈S01〉Y+
f
− ᾱ

∫ Y+
f

0
dY+

2

∫

d
2
x2

2π

x201
x202 x

2
21

〈S01−S02S21〉Y+
2

of the LL BK equation

∂Y+ 〈S01〉Y+ = ᾱ
∫

d
2
x2

2π
x201

x202 x
2
21

〈S02S21−S01〉Y+
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DIS at NLO and subtraction of LL’s

High energy factorization and Leading Logs

Low-xBj DIS at NLO and LL accuracy

σγ
T ,L = 2 2Nc αem

(2π)2

∑

f e
2
f

∫

d
2
x0

∫

d
2
x1

∫ 1

0
dz1

{

ILO
T ,L(x01, z1)

×

[

1−〈S01〉Y+
f
− ᾱ

∫ k+
f
/q+

k+
min

/q+

dz2

z2

∫

d
2
x2

2π
x201

x202 x
2
21

〈S01−S02S21〉log(z2 q+/k+min
)

]

+ᾱ

∫ 1−z1

k+
min

/q+

dz2

z2

∫

d
2
x2

2π
INLO
T ,L (x0, x1, x2, z1, z2) 〈S01−S02 S21〉0

}

The LL contributions (ᾱY+
f )n essentially cancel between the last

two terms, and remain only in 〈S01〉Y+
f
, because

INLO
T ,L (x0, x1, x2, z1, z2 = 0) =

x201
x202 x

2
21

ILO
T ,L(x01, z1)
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DIS at NLO and subtraction of LL’s

High energy factorization and Leading Logs

Available range for the evolution of the target

The presence of the target sets a physical lower bound k+min on the
k+ of the relevant gluons and on the factorization scale k+f :

k+f ≥ k+min =
Q2

0

2x0P−
=

xBj Q
2
0

x0 Q2
q+
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DIS at NLO and subtraction of LL’s

High energy factorization and Leading Logs

Available range for the evolution of the target

The presence of the target sets a physical lower bound k+min on the
k+ of the relevant gluons and on the factorization scale k+f :

k+f ≥ k+min =
Q2

0

2x0P−
=

xBj Q
2
0

x0 Q2
q+

⇒ Range for LL evolution from the target to the factorization
scale in DIS:

Y+
f = log

(

k+f
k+min

)

= log

(

x0Q
2 k+f

xBj Q
2
0 q

+

)

→ Not a rapidity range, and not log(x0/xBj ) either, beyond LL
accuracy.
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DIS at NLO and subtraction of LL’s

High energy factorization and Leading Logs

Available range for the evolution of the target

The presence of the target sets a physical lower bound k+min on the
k+ of the relevant gluons and on the factorization scale k+f :

k+f ≥ k+min =
Q2

0

2x0P−
=

xBj Q
2
0

x0 Q2
q+

⇒ Range for LL evolution from the target to the factorization
scale in DIS:

Y+
f = log

(

k+f
k+min

)

= log

(

x0Q
2 k+f

xBj Q
2
0 q

+

)

→ Not a rapidity range, and not log(x0/xBj ) either, beyond LL
accuracy.
Reasonable choice factorization scale choice for DIS:
k+f = z1 (1−z1) q

+.
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DIS at NLO and subtraction of LL’s

Issues with the standard subtraction of LL’s

Incorrect subtraction of Leading Logs

Low z2 contribution to σγ
L at NLO (for z2 ≪ z1, 1−z1):

∝ ᾱ
dz2

z2

∫

d
2
x2

2π

x201
x202 x

2
21

K
2
0(QX3) 〈S01 − S02 S21〉···

Low z2 term used to subtract the LL’s from σγ
L at NLO:

∝ ᾱ
dz2

z2
K

2
0(QX2)

∫

d
2
x2

2π

x201
x202 x

2
21

〈S01 − S02 S21〉···

At low z2: X3 ≃ X2 in most of the x2 plane.

But mismatch in the regime z1(1−z1)x
2
01 < z2x

2
02 ≃ z2x

2
12 where

X 2
3 ≃ z2x

2
02 ≃ z2x

2
12 > X 2

2 = z1(1−z1)x
2
01:

→ gluon emitted at very large transverse distance from the qq̄

dipole.
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DIS at NLO and subtraction of LL’s

Issues with the standard subtraction of LL’s

Incorrect subtraction of Leading Logs

In the regime z2 ≪ z1, 1−z1 and z1(1−z1)x
2
01 ≪ z2x

2
02 ≃ z2x

2
12:

K0(QX3) is exponentially smaller than K0(QX2)

No contribution to LL’s is present in σγ
L at NLO!

⇒ More LL’s subtracted with the BK equation than present in σγ
L

(and σγ
T ).

Incorrect treatment in a kinematical regime parametrically narrow,
but quantitatively important:

LL subtraction with the standard BK equation spoils the
suppression of Fock states with too large formation time

subtraction term not only larger than the bare NLO terms but
also than the LO term in the collinear regime

spoils the DGLAP DLL collinear limit.



Improved treatment of kinematics for gluon saturation in QCD at high energy

Kinematical constraint for the BK equation

Corrected real gluon emission kernel

Real emission contribution to the usual LL:

ᾱ
dz2

z2

d
2
x2

2π

x201
x202x

2
21

〈

S02 S21−
1

N2
c

S01

〉

Y+
2

Ordering in k+ = z q+ guarantied by the choice of factorization
scheme/evolution in k+.
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Kinematical constraint for the BK equation

Corrected real gluon emission kernel

Real emission contribution to the usual LL:

ᾱ
dz2

z2

d
2
x2

2π

x201
x202x

2
21

〈

S02 S21−
1

N2
c

S01

〉

Y+
2

Ordering in k+ = z q+ guarantied by the choice of factorization
scheme/evolution in k+.

Modification: forbid gluon emission in the regime
z1(1−z1)x

2
01 ≪ z2x

2
02 ≃ z2 x

2
12

→ Mixed-space analog of the k− ordering (kinematical constraint).
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Kinematical constraint for the BK equation

Corrected real gluon emission kernel

Real emission contribution to the usual LL:

ᾱ
dz2

z2

d
2
x2

2π

x201
x202x

2
21

〈

S02 S21−
1

N2
c

S01

〉

Y+
2

Ordering in k+ = z q+ guarantied by the choice of factorization
scheme/evolution in k+.

Modification: forbid gluon emission in the regime
z1(1−z1)x

2
01 ≪ z2x

2
02 ≃ z2 x

2
12

→ Mixed-space analog of the k− ordering (kinematical constraint).

⇒ Multiply the real contribution by θ
(

zf x
2
01−z2 min(x202, x

2
21)

)
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Kinematical constraint for the BK equation

Corrected real gluon emission kernel

Real emission contribution to the usual LL:

ᾱ
dz2

z2

d
2
x2

2π

x201
x202x

2
21

〈

S02 S21−
1

N2
c

S01

〉

Y+
2

Ordering in k+ = z q+ guarantied by the choice of factorization
scheme/evolution in k+.

Modification: forbid gluon emission in the regime
z1(1−z1)x

2
01 ≪ z2x

2
02 ≃ z2 x

2
12

→ Mixed-space analog of the k− ordering (kinematical constraint).

⇒ Multiply the real contribution by θ
(

zf x
2
01−z2 min(x202, x

2
21)

)

Same general idea as in the previous study in mixed space:
Motyka, Staśto (2009)

However: inappropriate treatment of virtual corrections there.
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Kinematical constraint for the BK equation

Calculating virtual corrections from unitarity

Assume the kinematical constraint to preserve the probabilistic
interpretation of the parton cascade.
Evolution of 〈S01〉 over a finite range Y+

f = log(k+f /k+min):

〈S01〉Y+
f

= 〈S01〉0 D01(Y
+
f ) + ᾱ

∫ Y+
f

0
dY+

2 D01(Y
+
f −Y+

2 )

×

∫

d
2
x2

2π

x201
x202x

2
21

θ

(

Y+
f −Y+

2 −log

(

min(x202, x
2
21)

x201

))

×

〈

S02 S21−
1

N2
c

S01

〉

Y+
2

with the probability D01(Y
+) of no splitting for the dipole 01 in

the range Y+.
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Kinematical constraint for the BK equation

Calculating virtual corrections from unitarity

In the vacuum (absence of target), S01 = S02 = S21 = 1.
→ equation determining D01(Y

+).
Solution:

D01(Y
+) = exp

[

−ᾱ
2CF

Nc

∫

d
2
x2

2π

x201
x202x

2
21

(

Y+−∆012

)

θ
(

Y+−∆012

)

]

with the notation

∆012 = max

{

0, log

(

min(x202, x
2
21)

x201

)}

Typical behavior:

∆012 = 0 for x202 ≪ x201 or x221 ≪ x201

∆012 ∼ log

(

x202
x201

)

∼ log

(

x221
x201

)

for x201 ≪ x202 ∼ x221
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Kinematical constraint for the BK equation

Kinematically constrained BK equation (kcBK)

Rewriting the new evolution equation as a differential equation and
discarding irrelevant terms explicitly of order NLL:

∂Y+ 〈S01〉Y+ = ᾱ

∫

d
2
x2

2π

x201
x202 x

2
21

θ(Y+−∆012)

×

{

〈

S02S21−
1

N2
c

S01

〉

Y+−∆012

−

(

1−
1

N2
c

)

〈S01〉Y+

}

G.B., to appear
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Kinematical constraint for the BK equation

Kinematically constrained BK equation (kcBK)

Rewriting the new evolution equation as a differential equation and
discarding irrelevant terms explicitly of order NLL:

∂Y+ 〈S01〉Y+ = ᾱ

∫

d
2
x2

2π

x201
x202 x

2
21

θ(Y+−∆012)

×

{

〈

S02S21−
1

N2
c

S01

〉

Y+−∆012

−

(

1−
1

N2
c

)

〈S01〉Y+

}

G.B., to appear

Each of the two modifications should slow down BK evolution:

Restriction of phase space by the theta function

Shift of the Y+ argument of the dipole amplitude in the real
term but not in the virtual term.

Large effect especially at small Y+.
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Kinematical constraint for the BK equation

Kinematically constrained BK equation (kcBK)

∂Y+ 〈S01〉Y+ = ᾱ
∫

d
2
x2

2π
x201

x202 x
2
21
θ(Y+−∆012)

×

{

〈

S02S21−
1

N2
c

S01

〉

Y+−∆012

−

(

1−
1

N2
c

)

〈S01〉Y+

}

That modification of the LL BK equation resums precisely the
largest and most pathological corrections appearing in the known
NLL BK equation.
⇒ Necessary step towards a stable and reliable version of the NLL
BK equation.

When regularizing the NLO DIS impact factors and removing the
LL contribution using that kcBK equation:
fully correct subtraction the LL contributions, with no mismatch in
the collinear regime, by contrast to the standard LL BK case.
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Conclusions

Conclusions

Kinematical constraint in BK/BFKL/... :

Prevent the appearance of large kinematical corrections at
higher orders in the evolution kernel and in the
process-dependent impact factors in any collinear limit.

Restore the intuitive ordering in formation time
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Conclusions

Conclusions

Kinematical constraint in BK/BFKL/... :

Prevent the appearance of large kinematical corrections at
higher orders in the evolution kernel and in the
process-dependent impact factors in any collinear limit.

Restore the intuitive ordering in formation time

⇒ New standard for CGC phenomenology: BK with running
coupling and kinematical constraint.
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Conclusions

Conclusions

Kinematical constraint in BK/BFKL/... :

Prevent the appearance of large kinematical corrections at
higher orders in the evolution kernel and in the
process-dependent impact factors in any collinear limit.

Restore the intuitive ordering in formation time

⇒ New standard for CGC phenomenology: BK with running
coupling and kinematical constraint.

Future developments:

Kinematical constraint for JIMWLK?

Resummation of large dynamical higher order corrections for
BK, to get a full collinear-resummed BK ?
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