Latest QCD and small-x physics results in p+p, d+Au and Au+Au collisions from PHENIX

Stefan Bathe Baruch College, CUNY, and RBRC For the PHENIX Collaboration

Latest QCD and small-x physics results in p+p, d+Au and Au+Au collisions from PHENIX

Stefan Bathe Baruch College, CUNY, and RBRC For the PHENIX Collaboration

Cold Nuclear Matter

arXiv:0902.4154 x

- Initial state effects
 - Modification of gluon distribution
 - shadowing
 - anti-shadowing
 - Gluon saturation
 - Energy loss and broadening
- Final state effects
 - Nuclear absorption
 - Coalescence?
- Probes:
 - Photons, hadrons, jets, open and closed heavy flavor
 - Two-particle correlations

h3QCD workshop, ECT*, Trento

PHENIX Acceptance in d+Au

 p_T broadens (multiple scattering) w/ N_{coll}; effect stronger at y=0 **J/ψ**

- Less tightly-bound/larger ψ' more suppressed than J/ ψ in dAu
- not initial state effect (parton level)
- Suggests final-state effect (hadron level)

ψ' time in nucleus

- Time in nucleus is short at $\sqrt{s} = 200 \text{ GeV}$
- Shorter than bound state formation time! Late final state effect?

Open Heavy Flavor

- No issue of final break-up
- But x less constrained
- Harder to measure
 - non-photonic single leptons (from semi-leptonic decays)
 - no mass peak

Figure from Phys.Lett. B608,69

Open heavy flavor

- Clear enhancement in Au-going direction sensitive to high-x in Au (antishadowing)
- Suppression in d-going direction sensitive to low-x (shadowing)
- Enhancement also at mid-rapidity

PID hadrons in dAu

- Large R_{dA} for protons
 - Simple Cronin effect?
 - How does parton know it will produce a proton?
- No species dependence for AuAu/ dAu ratio for same N_{part, coll}
 - Suggests common production mechanism in dAu and AuAu (coalescence?, flow?)
- Ratio < 1 at high pT
 - Energy loss in peripheral AuAu?
- Ratio > 1 at low pT
 - Participant asymmetry → rapidity shift?
- Possible effect from different pdf in dAu vs. AuAu

High $p_{\rm T}\,\pi^0$ and jets

- Enhancement in peripheral, slight suppression in central
- Surprisingly strong centrality dependence
- Competing cold nuclear matter effects?
- Auto-correlations between high p_T processes & centrality measure?
- Cross check with p+Si (light ion): no centrality selection necessary (RHIC Run 2015)

Direct Photons

 No modification of direct photons in initial hard scattering and PDF compared to p+p at mid-rapidity

Two-Particle Correlations

- Sensitive to
 - Flow
 - Initial state correlations

Non-jet correlation in d+Au?

- mid-rapidity
- Per-trigger yield
- Eliminate jet correlations
 - Subtract peripheral from central
 - η gap (Δη>0.48)
- Symmetric, cosinelike correlation remains

Jet-Subtracted Fourier Moments

PHENIX arXiv:1303.1794

 $egin{array}{lll} \Delta Y(\Delta \phi) \ pprox \ a_0 + 2a_2 \cos{(2\Delta \phi)} \ c_n \ \equiv \ a_n / \left(b^c_{
m ZYAM} + a_0
ight) \end{array}$

- Fourier moments, c_n, of jetsubtracted distributions vs. associated p_T
- Significant c₂
- No significant c₃
- c₂ from HIJING small
- c₃ consistent with hydro

 Inferred quadrupolar anisotropy v₂ of h⁺⁻ vs.
 p_T

Fourier Moment v₂

 Inferred quadrupolar anisotropy v₂ of h⁺⁻ vs.
 p_T

Initial State Fluctuations

Energy deposition a) nucleus center, $\varepsilon_2 = 1$ b) overlap region, $\varepsilon_2 = 0$ c) follow shape of overlap, $0 \le \varepsilon_2 \le 1$

Bzdak, Schenke, Tribedy, Venugopalan, 1304.3403

 Inferred quadrupolar anisotropy v₂ of h⁺⁻ vs.
 p_T

Fourier Moment v₂

 Inferred quadrupolar anisotropy v₂ of h⁺⁻ vs. p_T

v₂ consistent with hydro

Extending to higher rapidities

CNT-MPC Au-going $\Delta \eta$ = 3.5 high x in Au

CNT-MPC d-going $\Delta \eta = 3.5$ low x in Au

NEW! First evidence of long range ridge correlations in d+Au collisions at RHIC! d+Au 0-5% d+Au 0-5% (BBC_Au) b) 1.03 a 1.03 $1.0 < p_{T,trig} < 3.0 \text{ GeV/c}$ -1+ Σ 2c_ncos(n $\Delta \phi$) 1.02 $-2c_1 - 2c_3$ 1.02 lη_{triq}l<0.35 ··· 2c₂ -· 2c₄ C(∆ φ) 1.01 1.01 1.00 1.00 0.99 PH^{*}ENIX 0.99 preliminary 0.98 **Asso: Au-going, -3.7 <**η **<-3.1 Asso: d-going, 3.1<** η **<3.9** 0.98 3 4 $\Delta \phi$ $\Delta \phi$ MPC

Correlations from Glasma Graphs

Dusling, Venugopalan, 1211.3701, 1302.7018, private communication

- Significant signal expected at RHIC
- No quantitative comparison at this point since data not corrected for absolute acceptance

Hydro or Glasma Origin?

Glauber MC, Gaussian E distribution, σ = 0.4 fm

Eploit versatility of RHIC!

PHENIX requesting ³He+Au, d+Au, p+Au in 2015 with increased acceptance (VTX+FVTX+MPC-EX)

Upgrades

VTX+FVTX

- Improves mass resolution / suppresses background
- ψ^\prime at forward/backward rapidity

MPC-EX Upgrade

• Direct photons at low and high x in Run 2015

Conclusions and Outlook

- Quarkonia
 - evidence for (expected) shadowing & anti-shadowing
 - p_T dependence challenges models
 - ψ' break-up not simply size effect
 - FVTX upgrade for forward/backward y
- Heavy Flavor
 - parton multiple scattering (Cronin effect)
- PID hadrons
 - Large Cronin effect for protons
 - Species-independence of AA/pA ratio suggests common production mechanism
- π^0 /jet trend with centrality remains mysterious
 - p + light ion in Run 2015
- No strong evidence for direct photon modification at mid-y
 - MPC-EX upgrade in Run 2015
- Two-particle correlations
 - Significant non-jet correlations
 - Correlations persist with very large η gap
 - Consistent with flow (question of applicability)
 - Correlations also expected from glasma graphs

d+Au N_{coll} distribution

d+Au $dN_{ch}/d\eta$

Polarized p+A: A_N^{p+Au}/A_N^{p+p}

Outline

- J/y pT broadening:
 - larger at mid-rapidity
- y' suppression:
 - larger than for J/y
 - time in nucleus short
- open HF RdA
 - Enhanced at mid-rapidity and backward
 - Suppressed at forward rapidity
- PID hadrons
 - Large Cronin for p
 - Species-independent ratio of dAu/AuAu_peri

- P0, jets:
 - enhancement in peri
- Direct g
 - No modifiaction
- 2-p correlations at midrapidity
 - Double ridge
 - Large v2
- 2-p correlations large h gap
 - Double ridge