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the νMSM
There are 36 quark states: left fermionic doublets:

(u , d)L, (c , s)L, (t , b)L and uR , dR, cR , sR, tR , bR

(u , d)L, (c , s)L, (t , b)L and uR , dR, cR , sR, tR , bR

(u , d)L, (c , s)L, (t , b)L and uR , dR, cR , sR, tR , bR,

9 + 3 leptonic states

(νe, e)L, (νµ, µ)L, (ντ , τ )L and ND, eR, NC , µR, NB, τR

12 SU(3) × SU(2) × U(1) gauge bosons (8+3+1)

and one Higgs doublet,

in total (3 × 2 + 3 × 2 + 2 + 1 + 0) × 3 × 2 = 90 fermionic and

(8 + 3 + 1) × 2 + 4 = 28 bosonic degrees of freedom
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Why the νMSM?

Because it is a minimal model which allows to address all

experimentally confirmed signals in favour of physics beyond the SM:

Consistent description of neutrino masses and oscillations

Can explain dark matter in the Universe

Can explain baryon asymmetry of the Universe

Can provide inflation (as well as the Standard Model)
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Neutrino masses

Neutrinos have mass. Possible origin of this mass - existence of

right-handed neutrinos (singlet fermions, sterile neutrinos...) with mass

MN and Yukawa couplings to the SM leptons and the Higgs boson.

See-saw formula:

mν = −MD

1

MN

[MD]T , MD = Fv, v = 174 GeV

tells nothing about scale of MN !
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Popular choice: GUT see-saw

Assume that Yukawa couplings of N to the Higgs and left-handed

lepton doublets is similar to those in quark or charged lepton sector

(say, F ∼ 1, as for the top quark) and find MN from requirement that

one gets correct active neutrino masses:

MN ≃ F 2v2

matm

≃ 6 × 1014 GeV

matm ≃ 0.05 eV is the atmospheric neutrino mass difference.
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GUT see-saw: problems

Hierarchy problem: MN is much larger than EW scale: one has

to understand not only why MW ≪ MP l, but also why

MW ≪ MN and why MN ≪ MP l. Three fine tunings instead

of one.

Stabilization of hierarchy - SUSY. SUGRA - gravitino production

problem. Reheating temperature must be smaller than

Treh
<∼ 1010 GeV. Problem with leptogenesis. Extra scale - extra

(4th) hierarchy problem! Why MN ≪ MGUT ?

Unfortunately, no direct experimental verification is foreseen
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Alternative: EW see-saw

Assume that the Majorana masses of N are smaller or of the same

order as the mass of the Higgs boson and find Yukawa couplings from

requirement that one gets correct active neutrino masses:

F ∼
√

matmMN

v
∼ (10−6 − 10−13),

Advantages:

No new energy scale - no new hierarchy or fine tuning problem in

comparison with the Standard Model.

Different approach to hierarchy problem
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Dark matter

Dodelson, Widrow; Shi, Fuller; Dolgov, Hansen;
Abazajian, Fuller, Patel; Asaka, Laine, M.S.

Yukawa couplings are small →
sterile N can be very stable.

N

ν
ν

ν
Z

Main decay mode: N → 3ν.

Subdominant radiative decay

channel: N → νγ.

For one flavour:

τN1
= 1014 years

(

10 keV

MN

)5
(

10−8

θ2
1

)

θ1 =
mD

MN
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Constraints on DM sterile neutrino

Production. N1 are created in the early Universe in reactions

ll̄ → νN1, qq̄ → νN1 etc. We should get correct DM

abundance.

X-rays. N1 decays radiatively, N1 → γν, producing a narrow line

which can be detected. This line has not been seen (yet).

Structure formation. If N1 is too light it may have considerable

free streaming length and erase fluctuations on small scales. This

can be checked by the study of Lyman-α forest spectra of distant

quasars.
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DM: production + X-ray constraints + Lyman-α bounds
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DM: production + X-ray constraints + Lyman- α bounds
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Baryon asymmetry

Leptogenesis via sterile neutrino oscillations

(Asaka, M.S; Akhmedov, Rubakov, Smirnov)

Lepton number violation: N2,3 ↔ ν

Baryon number violation: electroweak anomaly, sphalerons

CP - violation: Dirac and Majorana phases in N2,3 − ν

interactions

Arrow of time: N2,3 are out of thermal equilibrium for small

Yukawa couplings
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Value of baryon asymmetry

nB

s
≃ 1.7 · 10−10 δCP

(

10−5

∆M2
32

/M2
3

)
2

3(

M3

10GeV

)
5

3

.

δCP = 4sR23cR23

[

sL12sL13cL13

(

(c4

L23
+ s4

L23
)c2

L13
− s2

L13

)

· sin(δL + α2)

+ cL12c3

L13
sL23cL23 (c2

L23
− s2

L23
) · sin α2

]

.

δCP ∼ 1 may be consistent with observed ν oscillations.

Nontrivial requirement: |M2 − M3| ≪ M2,3, i.e. heavier neutrinos

must be degenerate in mass.

Works best if

M2

2
− M2

3
∼ T 3

W /M0 ≃ 4 (keV)2, |M2

2
− M2

3
| ∼ M2

1
???
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Constraints on BAU sterile neutrinos

BAU generation requires out of equilibrium: mixing angle of N2,3

to active neutrinos cannot be too large

Neutrino masses. Mixing angle of N2,3 to active neutrinos cannot

be too small

Dark matter and BAU. Concentration of DM sterile neutrinos must

be much larger than concentration of baryons

BBN. Decays of N2,3 must not spoil Big Bang Nucleosynthesis

Experiment. N2,3 have not been seen (yet).
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N2,3: BAU+ DM + BBN + Experiment
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Summary of predictions from cosmology

Robust:

Absolute values of the active neutrino masses (Asaka, Blanchet,

M.S.; Smit):Nor hierarchy: m1 ≤ O(10−5) eV

Normal hierarchy: m2 ≃
√

∆m2

solar ≃ 9 · 10−3 eV ,

Normal hierarchy : m3 ≃
√

∆m2
atm ≃ 5 · 10−2 eV ,

Inverted hierarchy: m2,3 ≃
√

∆m2
atm ≃ 5 · 10−2 eV .

Effective Majorana mass for neutrinoless double beta decay

(Bezrukov)

Normal hierarchy: 1.3 meV < mββ < 3.4 meV

Inverted hierarchy: 13 meV < mββ < 50 meV

M1 > 0.3 keV, 140 MeV < M2,3 <∼ MW ,

δM < 800matm

(

M

GeV

)2
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Summary of predictions from cosmology

Depend on initial condition for Big Bang (no sterile neutrinos at the

beginning)

Dark matter sterile neutrino mass: 4 keV < M1 < 50 keV

Dark matter sterile neutrino mixing angle:

2 × 10−15 < θ2

1
< 2 × 10−10

M2 ∼ 2 GeV, ∆M <∼ 10−4matm, θ2

2
≃ 10−11

CP asymmetry in N2,3 decays is on the level of 1%
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Higgs-inflation

Idea:

non-minimal coupling of scalar to gravity

∆S =

∫

d4x
√

−g

{

− ξh2

2
R

}

Feynman, Brans, Dicke,...

If ξ ∼ 103 − 104 - Higgs field of the SM inflates the universe and

produces the required spectrum of primordial fluctuations:
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CMB parameters—spectrum and tensor
modes
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Cosmological constraint on the Higgs mass

2 loop computation

mmin = [126.1 +
mt − 171.2

2.1
× 4.1 − αs − 0.1176

0.002
× 0.6] GeV ,

mmax = [193.9 +
mt − 171.2

2.1
× 0.6 − αs − 0.1176

0.002
× 0.1] GeV .

Also: A. De Simone, M. Hertzberg and F. Wilczek
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Conclusions

New physics, responsible for neutrino
masses and mixings, for dark matter,
and for baryon asymmetry of the
universe may hide itself below the EW
scale
New dedicated experiments in particle
physics and cosmology are needed to
uncover this physics
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What new particles of theνMSM cannot explain

origin of high energy cosmic rays

existence of 0.511 MeV annihilation line in the direction of the Galaxy center

pulsar-kick velocities

discrepancy between experiment and the theory prediction of anomalous magnetic
moment of muon

LSND anomaly

MiniBooNE anomaly

Heidelberg neutrinoless double β decays

DAMA annual modulations

Egret gamma-ray excess

Pamela positron excess
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