

RHIC: From colliding ions to physics results

Thomas Ullrich QCD School, Les Houches Mar 25 - Apr 4, 2008

Part II: The Experiments

Kinematics 101 (a)

Transverse Momentum (Lorentz invariant)

$$p_T = \sqrt{p_x^2 + p_y^2}$$

Rapidity (not Lorentz invariant)

$$y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z} = \tanh^{-1} \frac{p_z}{E}$$

Boost in z:

$$y \to y - \tanh^{-1} \beta$$

Pseudorapidity:

$$\eta = -\ln \tan \frac{\theta}{2}$$
$$y \approx \eta \text{ for } p \gg m$$

Kinematics 101 (b)

Lorentz invariant cross-section:

 $E \frac{d^3 \sigma}{dn^3}$ always written but practically unusable

$$E\frac{d^3\sigma}{dp^3} = \frac{1}{2\pi}\frac{d^2\sigma}{p_Tdp_Tdy} \quad \text{in terms of variables we know and love}$$

Physics Goals

Medium properties	Physical phenomenon	Experimental probes
Energy/Gluon density	Parton E _{loss} in the medium	High p_T particles, $\Delta \phi$ and $\Delta \eta$ correlations, jets, heavy flavor (D, B)
Velocity of sound	Mach cones, collective phenomena	3-particle correlations, elliptic & radial flow
Temperature	Radiation	thermal γ , Intermediate mass dileptons
Partonic interactions, Mechanism of E _{loss}	Non-Abelian features of QCD - Color factor, path length effects of E _{loss} , Jet-medium coupling	High p_T particle production $\Delta \phi$ and $\Delta \eta$ correlations, correlations with respect to reaction plane, jets, heavy flavor
Collectivity and Thermalization	Partonic collectivity, viscosity and interactions	Azimuthal correlations and fluctuations, thermal γ, thermal dileptons
Medium effect on particle production	Parton recombination, modified fragmentation, strangeness enhancement, yields	Identified particles – especially strangeness and heavy flavor
Initial state and hadronization effects	Fluctuations and correlations	Changes as a function of centrality or \sqrt{s}
Deconfinement	Color screening	Quarkonium production
Chiral Symmetry Restoration	Mass shift	low-p⊤ ρ→ee
Color Glass Condensate	Gluon saturation	low-x, forward physics, jets 5

The probes we want to measure ...

- Baseline (majority of produced particles)
 K[±], π[±], π⁰, p, p
- Strangeness
 - K^{0} s, K^{*} , ϕ , Λ , Ξ , Σ , Ω
- Real and Virtual Photons

- Heavy Flavor
 - D⁰, D*, D[±], B
 - /_c
- Quarkonia
 - J/ψ , ψ' , χ_c , Υ , Υ' , Υ''
- Jets \Rightarrow high-p_T hadrons in cone
- Decay channels matters too: $\rho \rightarrow e^+e^-$ versus $\rho \rightarrow \pi^+\pi^-$

The probes we want to measure ...

- Baseline (majority of produced particles)
 K[±], π[±], π⁰, p, p
- Strangeness
 - K^{0} s, K^{*} , ϕ , Λ , Ξ , Σ , Ω
- Real and Virtual Photons
 - γ - $\gamma^* \rightarrow \mu^+ \mu^-, \gamma^* \rightarrow e^+ e^-$
- Heavy Flavor
 - D⁰, D*, D[±], B
 - /_c
- Quarkonia
 - J/ψ , ψ' , χ_c , Υ , Υ' , Υ''
- Jets \Rightarrow high-p_T hadrons in cone
- Decay channels matters too: $\rho \rightarrow e^+e^-$ versus $\rho \rightarrow \pi^+\pi^-$

- And all that over all p_T ?
- Acceptance (ideal 4π) ?
- All centralities, multiplicities ?
- Recording every collision ?

The Perfect Detector ?

- Momentum **p**
 - magnetic field × length: B×dl
 - high-pt \Rightarrow large B×dI \Rightarrow small p_T tracks curl up
 - low-pt \Rightarrow small B×dI \Rightarrow high p_T tracks care straight (p_T res. lost)
- Particle ID
 - γ , e \Rightarrow hadron blind, little material
 - hadrons \Rightarrow PID through interaction with material
- Acceptance
 - large acceptance \Rightarrow lots of data \Rightarrow slow
 - small acceptance \Rightarrow few data \Rightarrow fast
- Energy
 - γ , e \Rightarrow E.M. Calorimeter
 - hadrons \Rightarrow Hadronic Calorimeter
- Heavy flavor ID
 - secondary vertices ⇒ high precision Si detectors = material
 - semileptonic decays (c, b \rightarrow e + X, B \rightarrow J/ ψ (\rightarrow e e) + X) \Rightarrow hadron blind, little material

Mission Impossible

Question: How to proceed with experimental design when

 \sum (Theoretical Opinion) ≈ 0 ?

Design Guidelines for QGP Detection

- Big Plan:
 - Consistent framework for describing most of the observed phenomena
 - Avoid single-signal detectors
 - "Specialized" detectors but keep considerable overlap for comparison and cross-checks
 - Expect the unexpected
 - Preserve high-rate and triggering capabilities
 - Maintain flexibility as long as \$'s allow
- Design Questions (years of sweat, discussion, and simulations)
 - What measuring techniques do you want to use?
 - What technologies (detectors) fit your goals, constraints?
 - Figure out how to combine them

Particle identification – long lifetime (>5 ns) Examples: π , K, γ , p, n, ... Charge (if any!) and 4-momentum needed for PID 4-momentum from at least two of these quantities: velocity 3-momentum energy tracking time-of-flight + pathlength calorimetry or Cherenkov-effect Fully stop the particle Follow path of charged Convert its energy to particles in magnetic Time of flight S - light, charge... field – get momentum Collect and read out from curvature $v = s/(t_1 - t_0)$ Electromagnetic showers $p_T = (q/c) \times B \times R$ $N(t) = e^{4a}$ $t_{res} = ln(E_1/E_2)/ln2 (E_1 let the critical e$ Cherenkov \mathbf{R}_1 n \mathbf{R}_{2} $\cos(\alpha) = 1/\beta n$ Aoliere radius p_≪A/Z 95% of the phower is within 2a

Particle identification – long lifetime (> 5 ns)

Why do I emphasize long lifetime? Because the detectors are fairly large, and the particle produced at the vertex has to survive until it reaches the detector!

Example: hadron identification with momentum and time-of-flight measurement

y axis: inverse of the momentum x axis: time-of-flight

PHENIX EMC TOF

There are many more methods to identify long-lived particles

Particle identification – short lifetime (< 5 ns)

Examples: π^0 , ϕ , Λ , ...

Have to be reconstructed from their more stable decay products

Assume you want to measure the ϕ meson via its $\phi \rightarrow KK$ decay by measuring both kaons and reconstructing its invariant mass

But what if there are more than 2 kaons in the event? Or you take a pion for a kaon? Which two go together?

S = Total - Background Background could be like-sign pairs or pairs from different events

Particle identification – short lifetime (< 5 ns)

Examples: π^0 , ϕ , Λ , ...

Have to be reconstructed from their more stable decay products

Entries/2MeV

Assume you want to measure the ϕ meson via its $\phi \rightarrow KK$ decay by measuring both kaons and reconstructing its invariant mass

But what if there are more than 2 kaons in the event? Or you take a pion for a kaon? Which two go together?

S = Total - Background Background could be like-sign pairs or pairs from different events

Particle identification – short lifetime (< 5 ns)

Note weak decaying particle (like Λ , Ω , K^0_s) decay cm away from the interaction vertex - cm are easy to deal with

Works as well but usually more background

Particle identification – very short lifetime in <1 mm

Here $D^0 \rightarrow K \pi$ (c τ = 123 μ m)

- Brute force method
 - select K and π tracks
 - combine all pairs from same events ⇒ signal+background
 - combine all pairs from different events ⇒ background
 - subtract background from signal+background ⇒ signal

Particle identification – very short lifetime in <1 mm

Here $D^0 \rightarrow K \pi$ (c τ = 123 μ m)

- Brute force method
 - select K and π tracks
 - combine all pairs from same events ⇒ signal+background
 - combine all pairs from different events ⇒ background
 - subtract background from signal+background \Rightarrow signal

Particle identification – very short lifetime in <1 mm

This background problem can only be overcome by cutting on a keyfeature: Secondary decay vertex

- Reconstruction requires high resolution ($\delta x \sim c\tau/10$) Silicon detectors detectors
- None of RHIC experiments has one but soon will have

Hermeticity

- A key factor in collider detectors
 - Goal of essentially complete event reconstruction
 - Discovery potential of missing momentum/energy now well established
 - Of course this due to manifestation of new physics via electroweak decays
- In heavy ion physics
 - $dN_{ch}/dy \sim 1000$
 - exclusive event reconstruction "unfeasible"
 - But
 - Seeking to characterize a state of <u>matter</u>

Magnetic Fields at RHIC

One way is:
$$\frac{dp^{\mu}}{d\tau} = \frac{e}{c} u_{\nu} F^{\mu\nu} \rightarrow \frac{d\vec{p}}{dt} = \frac{e}{c} \vec{v} \times \vec{B} \rightarrow \frac{d}{ds} \left(\frac{d\vec{r}}{ds}\right) = \frac{e}{c} \frac{d\vec{r}}{ds} \times \frac{\vec{B}}{|\vec{p}|}$$

More useful: $p_T = 0.3 \cdot B \cdot R \frac{GeV/c}{T \cdot m}$

➡ 1 meter of 1 Tesla field deflects 1 GeV/c by ~17°

17

RHIC experiments in a nutshell

small experiment - 2 spectrometer arms tiny acceptance $\Delta \phi$, $\Delta \eta$, measures p_T, has PID movable arms \Rightarrow large $\Delta\eta$ coverage

small experiment - "tabletop" (i) huge acceptance $\Delta \phi$, $\Delta \eta$, no p_T info, no PID (ii) small acceptance \Rightarrow very low - low p_T, moderate PID

large experiment - 2 central arms + 2 muon arms **PH*ENIX** moderate acceptance central arms: $\Delta \phi = \pi$, $\Delta \eta = \pm 0.35$ leptons (muons in forward arms), photons, hadrons

large experiment large acceptance (barrel): $\Delta \phi = 2\pi$, $\Delta \eta = \pm 1 + \text{forward}$ hadrons, jets, leptons, photons

RHIC experiments in a nutshell

small experiment - 2 spectrometer arms tiny acceptance $\Delta \phi$, $\Delta \eta$, measures p_T, has PID movable arms \Rightarrow large $\Delta\eta$ coverage

small experiment - "tabletop" (i) huge acceptance $\Delta \phi$, $\Delta \eta$, no p_T info, no PID (ii) small acceptance \Rightarrow very low - low p_T, moderate PID

large experiment - 2 central arms + 2 muon arms **PH*ENIX** moderate acceptance central arms: $\Delta \phi = \pi$, $\Delta \eta = \pm 0.35$ leptons (muons in forward arms), photons, hadrons

large experiment large acceptance (barrel): $\Delta \phi = 2\pi$, $\Delta \eta = \pm 1 + \text{forward}$ hadrons, jets, leptons, photons

RHIC experiments in a nutshell

small experiment - 2 spectrometer arms tiny acceptance $\Delta \phi$, $\Delta \eta$, measures p_T, has PID movable arms \Rightarrow large $\Delta\eta$ coverage

small experiment - "tabletop" (i) huge acceptance $\Delta \phi$, $\Delta \eta$, no p_T info, no PID (ii) small acceptance \Rightarrow very low - low p_T, moderate PID

large experiment - 2 central arms + 2 muon arms **PH*ENIX** moderate acceptance central arms: $\Delta \phi = \pi$, $\Delta \eta = \pm 0.35$ leptons (muons in forward arms), photons, hadrons

large experiment large acceptance (barrel): $\Delta \phi = 2\pi$, $\Delta \eta = \pm 1 + \text{forward}$ hadrons, jets, leptons, photons

The Two "Small" Experiments at RHIC

BRAHMS

2 "Conventional" Spectrometers Magnets, Tracking Chambers, TOF, RICH, ~40 Participants

<u>PHOBOS</u> "Table-top" 2 Arm Spectrometer Magnet, Si μ-Strips, Si Multiplicity Rings, TOF, ~80 Participants

Inclusive Particle Production Over Large Rapidity Range

- Charged Hadrons in Select Solid Angle
- Multiplicity in 4π
- Particle Correlations

The Two "Large" Detectors at RHIC

PHENIX

Axial Field High Resolution & Rates 2 Central Arms, 2 Forward Arms TEC, RICH, EM Cal, Si, TOF, μ-ID ~450 Participants

- Measurements of Hadronic Observables
 using a Large Acceptance
- Event-by-Event Analyses of Hadrons and Jets, Forward physics, Leptons, Photons

- Leptons, Photons, and Hadrons in Selected Solid Angles
- Simultaneous Detection of Various Phase Transition Phenomena

PHOBOS

An experiment with a philosophy:

- Global phenomena
 large spatial sizes
- small momenta
 Minimize the number of
- technologies:
 - Si-strip for tracking
 - Si-pad for multiplicity
- Unbiased global look at very large number of collisions (~10⁹)

Silicon detectors in a nutshell

Basic motivation: charged particle position measurement

Use ionization signal left behind by charged particle passage

- Ionization produces electron-ion pairs, use an electric field to drift the electrons and ions to the oppositely charged electrodes.
- Si need 3.6 eV to produce one e-h pair. In pure Si, e-h pairs quickly recombine \Rightarrow n-doped (e carriers/donors) and p-doped (holes are carriers) silicon \Rightarrow p/n junction creates potential that prevents migration of charge carriers

Types of silicon detectors

- Strip devices
 - High precision (< 5µm) 1D coordinate measurement
 - Large active area (up to 10cm x 10cm from 6" wafers)
 - Single-sided devices
 - 2nd coordinate possible (double-sided devices)
 - Most widely used silicon detector in HEP
- Pixel devices
 - True 2D measurement (20-400µm pixel size)
 - Small areas but best for high track density environment
- Pad devices ("big pixels or wide strips")
 - Pre-shower and calorimeters
 - Multiplicity detectors
- Drift devices

PHOBOS Spectrometer Arm

- Si Strip detectors
- Acceptance near <y> ~ 0.5
- low very low-p⊤ spectra

PHOBOS: Multiplicity in (almost) 4 π

BRAHMS

An experiment with an emphasis:

- Quality PID spectra over a broad range of rapidity and P_T
- Special emphasis:
 - Where do the baryons go?
 - How is directed energy transferred to the reaction products?
 - Low-x, R_{AA} at large η
- Two magnetic dipole spectrometers in "classic" fixed-target configuration

BRAHMS Acceptance Moves Around

BRAHMS Features

- Combination of
 - Tracking
 - Time-of-Flight
 - Cerenkov
- provides
 - broad PID in y-pT
- Small dipole apertures

- narrow in φ

Recall the PHOBOS plot ? BRAHMS did the same using many different spectrometer settings while PHOBOS did it in "one" go. Result is the (almost) same.

BRAHMS Strength: forward rapidities

The Color Glass Condensate Plot

PHENIX

- An experiment with something for everybody
 - Muons
 - Electrons
 - Photons
 - Hadrons
- Features
 - High resolution
 - High granularity
 - High data taking rate
 - Moderate acceptance

PHENIX (1999)

PHENIX Components

Charged Particle Tracking:

Drift Chamber Pad Chamber Time Expansion Chamber/TRD Cathode Strip Chambers(Mu Tracking) Forward Muon Trigger Detector Si Vertex Tracking Detector- Barrel Si Vertex Endcap (mini-strips)

Particle ID:

Time of Flight Ring Imaging Cerenkov Counter TEC/TRD Muon ID (PDT's) Aerogel Cerenkov Counter Multi-Gap Resistive Plate Chamber ToF Hadron Blind Detector

Calorimetry:

Pb Scintillator Pb Glass Nose Cone Calorimeter Muon Piston Calorimeter <u>Event Characterization:</u> Beam-Beam Counter Zero Degree Calorimeter/Shower Max Detector Forward Calorimeter Reaction Plane Detector

Why emphasis on electrons?

- Open heavy flavor production, flow, suppression
 - $D^0 \rightarrow e$ + anything (BR=6.7%)
 - $D^{\pm} \rightarrow e + anything (BR=17.2\%)$
 - $B^{\pm} \rightarrow e + anything (BR=10.9\%)$
 - $B^0 \rightarrow e$ + anything (BR=10.4%)
- Quarkonia suppression – $J/\psi, \psi', \chi_c, \Upsilon, \Upsilon', \Upsilon'' \rightarrow e^+e^-$

- $\rho \rightarrow e^+e^-$

Chiral symmetry restoration

Electron Identification

Cherenkov (Čerenkov) detectors

Cherenkov radiation is emitted when a charged particle passes through a dielectric medium with velocity

 $\beta \ge \beta_{thr} = 1/n$ n: refractive index may emit light along a conical wave front.

$$\cos\theta_C = \frac{1}{n\beta}$$

Energy loss by Cherenkov radiation small compared to ionization ($\approx 0.1\%$). Cherenkov effect is a very weak light source, \rightarrow need highly sensitive photodetectors.

Number of detected photo electrons: $N_{pe} = N_0 L \sin^2\theta$ N₀: number of merit for a Cherenkov detector

medium	n	$\theta_{max} \; (deg.)$	$N_{ph} (eV^{-1} cm^{-1})$
air*	1.000283	1.36	0.208
isobutane*	1.00127	2.89	0.941
water	1.33	41.2	160.8
quartz	1.46	46.7	196.4

PHENIX PID via Cherenkov

- Key Features:
 - Ring imaging Cherenkov with gaseous radiator
 - Radiator gas:
 - ▶ ethane (n = 1.00082)
 - or methane (n = 1.00044)
 - Electron identification efficiency: Close to 100% for a single electron with momentum less than ~ 4 GeV/c
 - Pion rejection factor:
 > 10³ for a single charged pion with momentum < 4 GeV/c
 - Limit: 5 GeV/c \Rightarrow R_e \cong R_{π}
 - Two ring separation:
 - ~ few degrees in both $\theta~$ and ϕ

Calorimeter in a nutshell

Calorimetry= Energy measurement by total absorption, usually combined with spatial reconstruction.

Tracking in B field: $\delta p/p \propto p_T/L^2$ \Rightarrow resolution degrades with increasing energy (unless L $\propto \sqrt{E}$) also: works only for charged particles

Calorimetry: $\delta E/E \propto 1/\sqrt{E}$

⇒ for high energy detectors calorimeters are essential components

RHIC: only EMcals

Calorimeters in a nutshell

EM Shower

- above 10 MeV (γ, e)
- pair production: $\gamma \rightarrow e^+e^-$
- bremsstrahlung: $e \rightarrow e \gamma$
- characterized by radiation length X₀
- longitudinal:
 - $dE/dt \sim t^{\alpha} e^{-t}$ where $t = x/X_0$
 - shower maximum
- transverse:
 - 95% of shower in cylinder with 2 R_M (Moliere radius)
 - $R_M \sim X_0$ typical $R_M = 1-2$ cm
- Resolution

 $\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} \oplus b \oplus \frac{c}{E}$ stochastic constant noise term term term

Two PHENIX Calorimeters

PbSc Calorimeter

Lead-scintillator sandwich (sampling) Wavelength-shifting fiber light transport Photomultiplier readout

PbSc: $\sigma(E)/E \approx 8\%/\sqrt{E}$ PbGI: $\sigma(E)/E \approx 6\%/\sqrt{E}$

PbGI Calorimeter

Lead-glas scintillator array re-used WA80/WA98 calorimeter Photomultiplier readout

PHENIX calorimeter highlights: π^0

- Measured via $\pi^0 \rightarrow \gamma \gamma$ decay (invariant mass)
- Unfortunately, nature doesn't use *subscripts* on photons
- With n photons in an event, ~n²/2 combinations, most fake ⇒ "combinatorial background"
- "event mixing" to get rid of it

 π^0 mass spectra for $p_T > 2$ GeV/c

40

STAR

- An experiment with something for everybody
 - Hadrons
 - Jets
 - Electrons
 - Photons
- Features
 - Typical HEP Design
 - Large acceptance
 - Solenoidal field
 - Main detector: TPC
 - E.M. Calorimetry (central + forward)
 - Huge data volume/event
 - Moderate data taking rate

STAR (2001)

STAR Components

Peripheral Event

Mid-Central Event

Central Event

Drift chamber in a nutshell

- Address of fired wire(s) give one dimensional information $\Rightarrow \sigma_x \approx d/\sqrt{12}$
- Improve using drift length time information: typical ~200 μ m
- Resolution limits: drift and diffusion effects driven by $\textbf{E} \times \textbf{B}$ effects

Time Projection Chamber (TPC)

Error of momentum measurement:

- \Rightarrow L has to be large \Rightarrow detector has to be wide (small R_{in}, large R_{out})
- Want large η coverage \Rightarrow z dimension has to be large \Rightarrow detector has to be long

Cannot achieve this with drift chambers:

- thousands of wires
- long wires
- complex construction (dead zones)

Solution: let the electrons drift over long distances \Rightarrow TPC: essentially a huge gas filled box Think of a TPC as a 3D CCD camera

TPC Details

Pads = cathode (-): 1 pad samples 512 time bins

STAR TPC

- 140,000 electronics channels (pads)
- 512 time bins
- 140,000 x 512 = 72 million pixel
- With new electronics can run at 1000 Hz

Gating Grid:

 Designed to reduce charge injection into amplifiers

Slow ions left in volume:

- accumulate, create space charge
- space charge creates distortions

TPC Details

Pads = cathode (-): 1 pad samples 512 time bins

STAR TPC

- 140,000 electronics channels (pads)
- 512 time bins
- 140,000 x 512 = 72 million pixel
- With new electronics can run at 1000 Hz

Gating Grid:

 Designed to reduce charge injection into amplifiers

Slow ions left in volume:

- accumulate, create space charge
- space charge creates distortions

The STAR TPC

Simulation and animation by Gene Van Buren, movie by Jeff Mitchell.

The STAR TPC

Simulation and animation by Gene Van Buren, movie by Jeff Mitchell.

STAR TPC: from West to East Coast

Particle Identification by dE/dx in STAR's TPC

- Elementary calculation of energy loss:
 - Charged particles traversing material give impulse to atomic electrons: $p_y^e = e \int E_y(t)dt = e \int E_y(t)\frac{dx}{\beta} = \frac{2Ze^2}{\beta b}$ E(t)

Stopping power [MeV cm^{2/g]}

0.001

0.1

0.01

1

[MeV/c]

0.1

10

1

100

10

1

100

10

[GeV/c]

βγ

Muon momentum

 10^{5}

 10^{6}

 $-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$

 10^{4}

1000

100

Particle Identification by dE/dx in STAR's TPC

 $p = mv = m_0 \beta \gamma c$ $\frac{dE}{dx} \propto \frac{1}{\beta^2} ln(\beta^2 \gamma^2)$

Simultaneous measurement of **p** and **dE/dx** defines mass $m_0 \Rightarrow$ particle ID

Real detector (limited granularity) can not measure <dE/dx> ! It measures the energy ΔE deposited in a layer of finite thickness δx . For thin layers or low density materials: \rightarrow Few collisions, some with high energy transfer. Energy loss distributions show large fluctuations towards high losses:

"Landau tails"

Electrons via dE/dx

- Select tracks
 - pre-select electron candidates with EMC (p/E ~ 1)
- Plot electron candidates in p_T slices
- Fit dE/dx(p_T) for K,π,e
- integral of electron fit \Rightarrow yield
- correct yield for efficiency + acceptance
- \Rightarrow dN/dp_T

In real world: more statistics, finer slices. Still at $p_T > 10$ GeV/c dE/dx method fails

PID at High-p_⊤ is essential !

• Example: the hunt for the Casimir factor

Mechanism of energy loss : Medium induced gluon radiation

 $\langle \Delta E \rangle \propto \alpha_s C \langle \hat{q} \rangle L^2$ The Color Factor Effect $\frac{\Delta E_g}{\Delta E_a} = 9/4$ Baryon & meson NMF Anti-particle/particle 2 STAR Prelimary 0-12% Au+Au STAR Prelimary 1.8 p+p $\pi^++\pi^-$ 1.6 1.2 ○ d+Au D+D 1.4 0-12% AuAu 1.2 <u>م</u>0.8 <mark>ک</mark> 0.6 m 0.8 0.6 0.4 0.4 0.2 Au+Au with energy loss 0.2 Au+Au without energy loss 0 10 12 12 O 2 10 8 p₋ (GeV/c) p₋ (GeV/c)

Trigger

- Every experiment has 1-N triggers can't do without
- Hierachy:
 - Level-0, Level-1, Level-2, ...
 - L0, L1: fast and simple using fast detectors
 - PHENIX & STAR use (L0):
 - ZDC (Zero Degree Calorimeter)
 - BBC (Beam-Beam Counter)
 - L2 and higher: online processor farms
- What does a L0 trigger do at RHIC:
 - tell that there was an interaction (not trivial)
 - select interaction according to centrality
 - select a range of allowed event vertices
 - select rare processes (jets, high-pt particles)
- What do higher level trigger do:
 - the rest ...
 - examples: trigger on quarkonia, complicated event topology, correlations

What all RHIC experiments have: ZDC, BBC

Summary

- Four RHIC experiments
 - large: PHENIX, STAR (upgrade in progress)
 - small: BRAHMS, PHOBOS (now decomissioned)
- STAR and PHENIX have considerable overlap
 - cross-checks
- No such thing as a perfect detector
 - STAR and PHENIX had to make compromises but still capture the majority of probes and signatures
 - hardly any detector concept that is not used at RHIC
 - TPC, TRD, ToF, RICH, EM-Calorimeters, Driftchambers, muon chambers, Si-Pad/Strip/Drift, scintillator counters
 - Both experiments are being continuously improved
- A simple fact of operating RHIC: 1 event ~ \$1