

Lesson #1 Fluctuation growth slow near T _c
$egin{array}{rcl} rac{d\Delta\eta}{d au}&=&rac{c_s}{ au}\ &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&$
For c _s =0.2, T _f =4, T _f =8: $\Delta n = 0.14$
∞ Measurements in momentum space ∞ All fluctuations spread out by Δy _{therm} ≈ 0.3-0 ∞ Positive/Negative fluctuations correlated

Lesson #2

.8

Fluctuations are largest in mixed phase region
Unstable mode growth not infinitesimally slow

Searching for Droplets

Multiplicity Fluctuations / Rapidity Correlations
HBT of substructure
pt fluctuations

Lesson #3

Correlations are more differential than "fluctuations"
 Use whenever possible

Best Bet for Fluctuations

Correlations in Δy & Δp_t for Δφ≈90°
Use same-sign heavy particles
Be prepared for ~0.1% level effects
Subtract elliptic flow, jets.....

Beware of theory...

- non-quantitative (especially critical phenomena)
- ø ignores competing effects
- more numerology than physics

Isospin Fluctuations (Disoriented Chiral Condensates)

Scenario (Bjorken-Kowalski-Taylor, Wilczek-Rajagopal) Motivated by "Centauro" cosmic ray events

- Chiral transition supercools (Baked Alaska)
 Field falls into wrong direction (quench)
- Coherent radiation

$$|\eta
angle = \exp\left\{i\int d^4xec{j(x)}\cdotec{\pi}(x)
ight\}|0
angle$$

classical field

Explanation?

Modified initial gluon-dynamics,

quarks produced into non-diffusive medium

To Clarify:

3-d analysis

kaon and proton balance functions

Requires STAR time-of-flight wall

Final Summary

- Enormous power in fluctuations/correlations
 --- but be careful
- Some) physics of early stage survive expansion/ hadronization and can be extracted from soft observables