Thermodynamics and phase transitions in effective models for cold and dense matter

Letícia F. Palhares Eduardo S. Fraga

(IF-UFRJ)

Quark masses bring important modifications to the QCD phase diagram:

- \Rightarrow in the critical region [Stephanov (2006)]
- ⇒ in color superconductivity [Alford et al (2008)]

```
Lattice ⇒ sensible corrections in the chiral condensate
```

[Bernard *et al* – MILC collab. (2003)]

Effective models ⇒ quark mass effects are also relevant for the chiral transition

$$T_{\mathbf{crossover}}(m_q)$$

[Dumitru, Röder & Ruppert (2004)]

What about the μ axis? $\mu_{1^{\mathrm{st}}\mathrm{order}}(m_q)$?

➔ possible important astrophysical implications

[Fraga, Pisarski & Schaffner-Bielich (2001/2002)]

- Perturbative QCD thermodynamics:
 2-loop pressure in QCD at finite mu:
 ⇒ Quark mass and RG corrections up to ~25% [Fraga & Romatschke (2005)]
- Complementary study:

Low energy effective models at finite density

- \Rightarrow perturbative treatment
- ⇒ Thermodynamics + Phase Transition (condensate)
- \Rightarrow mass and scale dependence effects

Outline

Theory without SSB:

Thermodynamics of the **Scalar Yukawa Theory**

Mass and RG running effects

Theory with SSB:

Chiral Phase Transition within the Linear σ Model

- Effects from interaction and fluctuations beyond mean-field
- Logarithmic corrections: renormalization scale dependence

Conclusions and Perspectives

Thermodynamics of the cold and dense Yukawa Theory

$${\cal L}_{
m int} \;\; = \;\; \sum_{lpha=1}^{N_F} g \; \overline{\psi}_lpha \psi_lpha \phi$$

Fermions interacting via scalar bosonic mediators ⇒ simplest renormalizable coupling.

> [Important in both effective and fundamental (Higgs) descriptions]

- We calculate perturbatively the thermodynamic potential including:
 - Interaction up to 2-loop order, without resummation (to this order, results are valid also for self-interacting bosons);
 - Fermions and bosons both massive;
 - Renormalization in the $\overline{\mathrm{MS}}$ scheme;
 - Influence of the complete RG flow (coupling and masses).

General analytical results.

[LFP & Fraga (2008)]

01 / April / 2008

The thermodynamic potential

Free Gas $(\mu \neq 0, T \rightarrow 0)$

$$\begin{array}{l} \oint \\ \bigoplus \\ \end{array} = V \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \left[-\frac{1}{2} \beta \omega - \ln \left(1 - e^{-\beta \omega} \right) \right] & \stackrel{\beta \to \infty}{\underset{\mathbf{no } \text{ ZPT}}{\longrightarrow}} \mathbf{0} \\ \\ \oint \\ \bigoplus \\ \end{array} = -2V \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \left[\beta E_{\mathbf{p}} + \ln \left(1 + e^{-\beta (E_{\mathbf{p}} - \mu)} \right) + \ln \left(1 + e^{-\beta (E_{\mathbf{p}} + \mu)} \right) \right] \\ \\ \underset{\mathbf{no } \text{ ZPT}}{\overset{\beta \to \infty}{\longrightarrow}} -\beta V \frac{1}{24\pi^2} \left[2 \ \mu \ p_f^3 - 3 \ m^2 \ u \right] \quad u \equiv \mu p_f - m^2 \log \left(\frac{\mu + p_f}{m} \right) \end{aligned}$$

Zero Point Terms (ZPT): in this case, they are purely vacuum contributions, which can be absorbed through a redefinition of the zero of Ω_Y .

01 / April / 2008

2-loop order: exchange diagram

Using in-medium Feynman rules: $\frac{1}{2}$

$$\oint_{\psi} = \beta V \ g^2 \not \sum_{P_1, P_2, K} \operatorname{Tr} \left[\frac{(2\pi)^3 \beta \ \delta^{(4)} (K - P_1 + P_2)}{(\not P_1 - m) (m_{\phi}^2 - K^2) (\not P_2 - m)} \right]$$

After solving the 3 Matsubara Sums, in the cold and dense regime:

MEDIUM: UV finite

MEDIUM + VACUUM: UV divergent and medium-dependent ⇒ renormalization

VACUUM: UV divergent ZPT \Rightarrow reabsorption/subtraction

01 / April / 2008

Renormalization:

The divergence present in the medium-dependent term has its origin in a vacuum subdiagram: the fermionic selfenergy.

_ _

$$\mathbf{L}_{f} = -2 \ \beta V \left\{ \oint_{P} (-1) \operatorname{Tr} \left[\frac{1}{\not P - m} \left(i \stackrel{K}{\underset{P_{1}}{\longrightarrow}} \right)_{\text{MATT}}^{VAC} \right] \right\}_{\text{MATT}}$$

<u>Purely medium term \Rightarrow The integral J_1 :</u>

$$J_1 = \int \frac{d^3 \vec{p_1} d^3 \vec{p_2}}{(2\pi)^6} \frac{\theta(\mu - E_1)\theta(\mu - E_2)}{2E_1 E_2} \left\{ \frac{4m^2 - m_{\phi}^2}{(E_1 - E_2)^2 - |\vec{p_1} - \vec{p_2}|^2 - m_{\phi}^2} - 1 \right\}$$

In general, the inclusion of finite masses brings about much complication to the analytical calculation.

However, mass effects are relevant

 \Rightarrow in the QCD phase diagram;

⇒ in the comparison with lattice and experiments, increasingly precise
[Lattice07, Boels et al (2007)];

 \Rightarrow when there are effects that alter the masses (e.g. condensates); ...

Here we calculate analytically the integral J_1 , and the thermodynamic potential, for arbitrary values of m, m_ϕ and μ .

Result for the 2-loop thermodynamic potential

$$\begin{split} \Omega_Y &= -N_F \; \frac{1}{24\pi^2} \left[2 \; \mu p_f^3 - 3m^2 \; u \right] - \frac{1}{2} \; N_F \; g^2 \left[J_1 + \frac{1}{16\pi^4} m^2 u \alpha_1 \right] \\ u &\equiv \mu p_f - m^2 \log \left(\frac{\mu + p_f}{m} \right) \qquad J_1 \; = \; \frac{1}{(2\pi)^4} \left\{ 2m^2 \left(1 - \frac{m_\phi^2}{4m^2} \right) \; \mathcal{I}_I - \frac{1}{2} \; u^2 \right\} \\ \\ \mathcal{I}_I \; = \; \mu^2 \; \frac{m_\phi^2}{2m^2} \; \log \left[\frac{m_\phi^2}{4p_f^2 + m_\phi^2} \right] + \left(1 - \frac{m_\phi^2}{2m^2} \right) \; \frac{u^2 - \mu^2 \; p_f^2}{m^2} + \\ &+ \frac{m_\phi}{m} \sqrt{1 - \frac{m_\phi^2}{4m^2}} \; (\mu \; p_f + u) \; D_{\tan} + p_f^2 - 2m^2 \; \overline{\mathcal{K}}_{log} \left(\frac{p_f}{\mu + m}, \frac{m_\phi^2}{4m^2} \right) \\ \\ \int D_{\tan} \; \equiv \; \tan^{-1} \left(\frac{-p_f m_\phi}{2m(\mu + m)\sqrt{1 - \frac{m_\phi^2}{4m^2}}} \right) + \tan^{-1} \left(\frac{p_f}{m_\phi \sqrt{1 - \frac{m_\phi^2}{4m^2}}} \left[2 - \frac{m_\phi^2}{2m(\mu + m)} \right] \right) \end{split}$$

$$\overline{\mathcal{K}}_{\log}(\bar{x},z) = \sqrt{z} \,\Delta(\bar{x},z) + \frac{1}{2}\sqrt{z(z-1)} \,\mathcal{C}_{\mathrm{Li}}(\bar{x},z) \quad \blacksquare$$

[LFP & Fraga (2008)]

01 / April / 2008

Result for the 2-loop thermodynamic potential (cont.)

$$\overline{\mathcal{K}}_{\log}(\bar{x},z) = \sqrt{z} \Delta(\bar{x},z) + \frac{1}{2}\sqrt{z(z-1)} \mathcal{C}_{\mathrm{Li}}(\bar{x},z)$$

$$\begin{split} \mathcal{C}_{\mathrm{Li}}(\bar{x},z) &= \left[\mathrm{Li}_{2} \left(1 - \left(z - \sqrt{z(z-1)} \right) (1-\bar{x}) \right) - \mathrm{Li}_{2} \left(1 - \left(z + \sqrt{z(z-1)} \right) (1-\bar{x}) \right) \right) + \\ + \mathrm{Li}_{2} \left(\frac{1-\bar{x}}{1+\bar{x}} \left[1 - \left(z + \sqrt{z(z-1)} \right) (1-\bar{x}) \right] \right) \right] + \left[\bar{x} \mapsto -\bar{x} \right] \\ \Delta(\bar{x},z) &= \left\{ \begin{array}{l} \Delta_{<}(\bar{x},z) &, \text{ if } z < 1 \\ \Delta_{>}(\bar{x},z) &, \text{ if } z > 1 \end{array} \right] \\ \left(\Delta_{<}(\bar{x},z) &= \sqrt{1-z} \left\{ \log(1-\bar{x}) \left[\tan^{-1} \left(\frac{\sqrt{1-z}}{\sqrt{z}} \right) - \tan^{-1} \left(\frac{\sqrt{z(1-z)}}{z + \left(\frac{1+\bar{x}^{2}}{2x} - 1 \right)^{-1} \right) \right] + \\ + \log(1+\bar{x}) \left[\tan^{-1} \left(\frac{\sqrt{1-z}}{\sqrt{z}} \right) - \tan^{-1} \left(\frac{\sqrt{z(1-z)}}{z + \left(\frac{1+\bar{x}^{2}}{2x} + 1 \right)^{-1} \right) - \pi \left[1 - \theta \left(mz \frac{(1+\bar{x})^{2}}{1-\bar{x}^{2}} - \frac{2m\bar{x}}{1-\bar{x}^{2}} \right) \right] \right] \right\} \\ \Delta_{>}(\bar{x},z) &= \frac{1}{2} \sqrt{z-1} \left\{ \log \left(\frac{1-\bar{x}^{2}}{(1+\bar{x})^{2}} \right) \log \left(\frac{|\sqrt{z}(1+\bar{x}^{2}) - 2\bar{x}\sqrt{z-1}|}{|\sqrt{z}(1+\bar{x}^{2}) + 2\bar{x}\sqrt{z-1}|} \right) + \pi^{2} \left[-\theta[z(1-\bar{x}^{2}) - 1] - \\ -\theta \left(1 + \frac{\bar{x}}{(1-\bar{x}^{2})\sqrt{z(z-1)}} [2-z(1-\bar{x}^{2})] \right) + \theta \left(1 - \frac{\bar{x}}{(1-\bar{x}^{2})\sqrt{z(z-1)}} [2-z(1-\bar{x}^{2})] \right) + 1 \right] \right\} \end{split}$$

01 / April / 2008

QCD school in Les Houches -- Letícia Palhares

12

Pressure of the cold and dense Yukawa Theory ($m_{\phi}=0$)

For $m_{\phi} = 0$, the pressure $P = -\Omega_Y$ assumes the much simpler form:

$$\Omega_Y = -N_F \frac{1}{24\pi^2} \left[2 \ \mu p_f^3 - 3m^2 \ u \right] - N_F \frac{g^2}{64\pi^4} \left\{ 3 \ u^2 - 4 \ p_f^4 + m^2 \ u \ \left[7 - 3 \log\left(\frac{m^2}{\Lambda^2}\right) \right] \right\}$$

 \Rightarrow For massless fermions, the dependence on the scale Λ arises only at higher orders.

→ Significant mass effects

Possible large mass effects within effective models of cold and dense matter.

01 / April / 2008

Pressure of the cold and dense Yukawa Theory $(m_{\phi} \neq 0)$

Strong quantitative dependence on the renormalization scale Λ .

01 / April / 2008

RG flow in the scalar Yukawa Theory

In the large N_F limit:

- Larger perturbative domain
 - The fermion mass tends to become scale-invariant

Mediator mass RG flow

Competition between masses \Rightarrow 2 regimes of bosonic mass flow

Influence of the RG flow on the Thermodynamics

The Linear σ Model

$$\mathcal{L}_{\mathrm{L}\sigma\mathrm{M}} = \overline{\psi} \left[i\partial \!\!\!/ - m_q \right] \psi + \frac{1}{2} (\partial_\mu \vec{\pi}) \cdot (\partial^\mu \vec{\pi}) + \frac{1}{2} (\partial_\mu \sigma) (\partial^\mu \sigma) - g \overline{\psi} \left[i\gamma^5 \vec{\mathbf{t}} \cdot \vec{\pi} + \sigma \right] \psi - \mathcal{V}(\vec{\pi}, \sigma) ,$$

quark-meson coupling: $\mathcal{V}(\vec{\pi}, \sigma) \equiv \frac{\lambda^2}{4} [(\vec{\pi}^2 + \sigma^2) - v^2]^2 + h\sigma$ Explicit breaking Yukawa-type $\mathcal{V}(\vec{\pi}, \sigma) \equiv \frac{\lambda^2}{4} [(\vec{\pi}^2 + \sigma^2) - v^2]^2 + h\sigma$ $m_{\text{quarks}} \neq 0$

- In QCD: chiral symmetry is approximate spontaneously broken symm.
- Spontaneous Symmetry Breaking: $\sigma \;=\; \langle \sigma
 angle (T,\mu) + \delta \sigma$

Renormalizable:

UV infinities are absorbed systematically, but a new energy scale, Λ , is introduced in the process.

The parameters g, m_q , λ , v, h, Λ are fixed to reproduce (measured or simulated) properties of the QCD vacuum.

Some previous results within the Linear σ Model

Mean-field calculation of the effective potential for finite T and μ (No fluctuations nor logarithmic ZPT corrections)

[Scavenius *et al* (2001)]

Beyond mean-field for T > 0 (With resummation)

- ZPT + 2 loops + MSC Resummation [Caldas, Mota & Nemes (2001)]
- CJT + Hartree Approx. [Röder, Ruppert & Rischke (2003)]
- ZPT+ Averaged Sigma fluctuations [Mócsy, Mishustin & Ellis (2004)]
- • •

01 / April / 2008

Beyond mean-field approximation at finite density

Cold and dense case

Study the σ direction (without pions) Other condensates do not seem to affect much $\langle \sigma \rangle$ [Röder, Ruppert & Rischke (2003)]

Including:

- Bosonic and fermionic fluctuations up to order of 1 and 2 loops, without resummation;
- Zero PoinT logarithmic corrections renormalized in the MS scheme
 - \Rightarrow analysis of renormalization scale dependence
- Investigate the consequences over the chiral transition in QCD at finite density

[LFP & Fraga, in prep.]

The effective potential for the $L\sigma M$ without pions

$$V_{eff}(\langle \sigma \rangle) = \mathcal{V} + \left[\Omega_{\delta\sigma}\right]^{\mathrm{ren}}$$

In this case, the **effective theory for the fluctuations** is given by:

- $N_f N_c$ species of massive constituent quarks ; $m=m_q+g\langle\sigma
 angle$
- Massive self-interacting scalar fluctuations ; $m_{\sigma}^2 = \lambda^2 (3\langle\sigma
 angle^2 v^2)$
- Yukawa-type interaction

i.e., exactly the Yukawa theory with massive fermions and bosons whose thermodynamics we solved up to 2-loop order.

<u>**However:**</u> $m \mapsto m(\langle \sigma \rangle(\mu))$; $m_{\phi} \mapsto m_{\sigma}(\langle \sigma \rangle(\mu))$

- purely vacuum terms are now medium dependent implicitly through the variation of the masses.
- ⇒ ZPT contributions previously subtracted need to be calculated here:

01 / April / 2008

Two loops:

1-loop results ⇒ **ZPT effects**

■ Up to 1-loop order, the logarithmic corrections modify considerably the central region of the vacuum effective potential ⇒ possibly relevant for the dynamics of phase conversion.

QCD school in Les Houches -- Letícia Palhares

1-loop results ⇒ **Chiral Transition**

- The transition is qualitatively the same: 1st order.
- The critical chemical potential is slightly reduced (~2%) ⇒ Indication of weak dependence of the critical region on the renormalization scale

Conclusions

- We solved completely, obtaining general analytical results, the thermodynamics of a scalar Yukawa Theory with:
 - fermions and bosons both massive;
 - Interaction up to 2-loop order;
 - Complete RG flow.
 - Significant mass effects
 - **Chiral transition at finite density** within the Linear σ Model, incorporating **zero-point logarithmic corrections**:
 - → Results on the criticality were not significantly altered ⇒ indication of a weak dependence of the critical region on the renormalization scale.
 - → The central region of the effective potential suffered modifications ~ 8% ⇒ possible consequences for the phase conversion dynamics.

Perspectives

Work in progress:

■ **2-loop effective potential for the L** σ **M**:

Fully calculated, including ZPT;

Still lacking parameter fixing to reproduce QCD vacuum

- RG flux implementation
- Obtain $\mu_c(m_q)$
- Comparison with lattice simulations of effective models [Taurines, priv. comm.]
- ZPT effects on the dynamics of phase conversion.

[Mizher, LFP & Fraga]