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Deconfinement transition

Ultrarelativistic heavy

ion collisions

l Lorentz
.. contraction
Extreme conditions of
pressure and temperature

|

Deconfined state with
collective effects

Because of flavor independence pure gauge results provide important

results for QCD.
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The Polyakov loop

Covariant derivative:
where
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the link: UH(T) = T A (D)

On the lattice: Y

the path: wicr = 1] U@

x = z+ [ Z,p e C
Paths parallel to the N Continuum 3 )
temporal axis: L@) = [ [(Uini0)] e | L () = Peap Z./O dt 7 A°(Z, t)]
n=1

To make it gauge invariant:  |{(Z) = tr L(X)

The Polyakov loop is an order parameter in systems with Z(N) symmetry,

indicating when the symmetry is broken: 10 —0. T<T .o l() >0 T> T(.

Usually it is associated to the free energy
of a probe quark through the relation: <L> — EXP (—R&este / T)




Z(N) symmetry in the deconfinement

QCD Lagrangean:

transition

1 _
L= EG?M/ +aqvuD g

Gluons are periodic on imaginary time t and quarks must be

antiperiodic:

A, (%, B) = +A,(7,0), q(Z,B)=—q(Z,0)

Considering transformations periodic under the center of the

group, the fields transform like:

Adjoint
representation

Fundamental
representation

>

AQ(f7 B) = QZAM(f7 P82 = _'_Aﬂ(fv 0),

Quarks break the Z(N) symmetry!




Effective models for the Polyakov loop

Model 1: Order parameter obtained from the eigenvalues
Of the POlyakOV lOOp [ P. Meisinger, T. Miller, M. Ogilvie (2002) ]

Diagonalizing the Polyakov loop, the eigenvalues can be seen as

degrees of freedom: Pji, = exp(ib;);x

Once: | F/T — (Tr;P(Z))

When P=0, the free energy is finite , indicating confinement.

Any perturbative calculation yields to: fpert = T°F (p,9(T))

The leading order behaviour is independent of g(T) and gives the
blackbody behaviour expected in high temperatures.



Performing the perturbative calculation one reaches:
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Where: | W = Va

 Purely perturbative result predicts a gas of confined gluons for any temperature, and
there is no indication that high order corrections modify this result.

e [t is necessary to insert a scale in a way that the high T behaviour is preserved.

Inserting a mass scale: |w; = \/ k2 + M2

2 2
foert(0) = —T* x f1 + T°M* % f2
High Quartic
temperature ) tgrrn ) Min. in Afjr =0
dominates

Low ) Quadratic term ) Max.in  Af,; =0

temperature dominates



Parametrizing the diagonal matrix on the following way

diaglexp(idn )z, i1, —iG—1, -

) _ZQS—N/Q)]

We find the minima in: 0,

2719
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In the SU(2) case we have two minima and the free energy 1s given

by:
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To evidence the Z(2) symmetry we define a new variable |¢ =7/2 — ¢

and the free energy becomes:
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The constant M can be determined through the value of the critical

temperature T, M = 7(2/3)/°T,; ~ 2.5651T}

Following a similar way for the case of SU(3) we get for the free
energy:

2 T4
T 4 866 —m) + (0 — 20 +

272 M*? N T2 M?
3 272

f =

2¢0(¢ — ) + ¢(¢ — 2m)].

Again 1t 1s possible change variables to make the symmetry more
evident:

Y =2r/3—¢
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Free energy for SU(2) and SU(3)
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SU(2) free energy: as the SU3) free energy: immediately
temperature Increases two above the critical temperature
degenerate minima appear. there is a barrier that quickly

disappear.



Model 2: expectation value of the Polyakov loop as the
order parameter [ R. D. Pisarski (2001) ]

The Polyakov loop under a transformation of the Z(N) group behaves as:

L, — e™?l,

Considering the mass terms in an effective Lagrangean:

,Ceff — m?|l1]2 -+ m§|l2\2 n ioTT

The simplest possibility 1s:

mi<0, T>T.,, m*>0, T<T,

with the superior orders loops mass always positive

m3 >0 , m3>0..




From the global symmetry Z(N), to have a gauge invariant potential:
[B. Svetitsky and L. Yaffe (1982)]

V= (<P = 20+ ]+ (P b

these coefficients can be obtained from lattice data:

bo(T) = (1 —1.11/2)(1 4 0.265/2)*(1 + 0.300/z)° — 0.487

by — 2 by ~ 0.6061 with: %= 7




SU(3) potential obtained from the second model:
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Section of the potential on the real axis. On the complex
plane at any temperature above Td the vacuum is N-
degenerated. Above the critical temperature there is the
barrier, in accordance with the previous model, that
disappears when the temperature increases.



Langevin evolution

Langevin Random force and

equation m— dissipation

A Langevin equation can be derived in classical mechanics,
quantum mechanics or field theory.

Langevin equation derived for the A@* model using real time
treatment, finite temperature and calculating up to 2-loops.

* Dominant contribution in the
noise 1s multiplicative

* Colored noise

* Dissipation term proportional
to the field squared.



Out of equilibrium field theory

Let us consider a Ap* theory with Lagrangean:

1 o M, A
Llo] = i(auéb) e T
The functional generator is: ZJ] = / Doexp{iS|o, J|}
C

Considering the contributions up to 2-loops and order 22,

dlagramatlcau}’a we have: [M. Gleiser ¢ R. O Ramos (1994) ]

18 =511 0+ O YO0+ O +oW)

where ['[@] 1s the effective action and S [] is the classical action.




e Real time formalism

e A change of variables

* One associates imaginary terms (rapid oscilation) to gaussian
fluctuation fields

Minimizing the action with respect to the field:

and considering the dressed propagators we reach:

5Seff[S0A7 Pe; 517 52]

(5g0A

eA=0
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[O+4 m7] e.(T,t) + 3P (@) + Mmes (T, 1)pe (T, 1) = @ (T, )& (2, ).

If we take into account interactions with other fields the solution would be

more general:

O¢ + [y + Iy ¢°]
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Lattice counterterms K. Farakos et al (1994}

L. M. A. Bettencourt (2001}

For a A¢* theory the ultraviolet divergences can be eliminated adding
mass counterterms in the action:

1 N
05 = — / d3x<5m2¢T¢ T 55772%148148) 077'2'2 — flztad + fQZsun

2.4 and 2 are proportional to the diagrams a) tadpole and b) sunset:

b)

— N

These diagrams are calculated in the lattice and one obtains:
0.252731) 12277 ( 6 )

672 log— + 0.09

a a3

om? = 6T (




Pure gauge results

Considering a system characterized by the following free energy:

F.T) = [ & G007 + Viys0.T)

The Langevin equation will be:

0? 0
B (—w — V2¢> + F—w e/ffW) = ¢

ot? ot

The factor B plays a role of superficial tension and comes from the
perturbatlve calculation. [T. Bhattacharya, A. Gocksch, C. P. Korthals-Altes, R. D.

Pisarski (1992)]

I is obtained through Monte Carlo simulation (relation between Monte
Carlo time and real time obtained comparing with experimental data)



We get the appropriated counterterms comparing our potential with
the potential A@*and identifying m and A:

AT 6X2T7 6
om? = —0.75— + log (———-%—(lOQ)

a 1672 am

Lattice — 647 sites with periodic boundary conditions.

In each step we have done an average of the value of the loop in

each site: ) — % S wisnlt)

ijk

We took the average over many realizations with different initial
configurations around y ~ 0, also taking different noise
configurations .

Temporal discretization — yupp Semi-implicit method/ leap-frog

Finite differences — Fast Fourier transform/
>

Spatial discretization : -
p scretizatio Fourier collocation



Model 1: SU(2) case
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= Strong delay effects in the thermalization caused by the
dissipation and noise.



Model 1: SU(3) case
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»Effects even stronger than in the case of chiral transition.

' : E. S. Fraga, G. Krein (2005
*The noise also must play an important role. [E. 5. Fraga, G. Krein (2005)]



Model 2: SU(3) case
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* The noise also must play an important role.

= Dissipation effect in accordance with the obtained using
the other model.



Conclusions

» The dissipation plays an important role and its effects must be taken into
account.

» The effect in the deconfinement transition is even larger than in the chiral
transition.

 The results can be compared to pure gauge results on the lattice.

* A more robust model can provide information possible to compare to
experimental data.

* Perspectives:
® Coupling to chiral fields.
* Memory effects.
* More robust effect models.

* Inclusion of other effects that can change considerably the time scale of

thermalization such as inhomogeneities, plasma expansion, finite size, etc.






