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Summary

• Deconfinement Transition
• Polyakov Loops
• Effective models for the Polyakov Loops

• Langevin Evolution
• Results for pure gauge
• Perspectives

• Order parameter obtained from the eigenvalues of the P.L.

• Expectation value of the trace of the Polyakov Loop



Deconfinement transition
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Because of flavor independence pure gauge results provide important
results for QCD.

F. Karsch (QM 2001)



The Polyakov loop is an order parameter in systems with Z(N) symmetry,
indicating when the symmetry is broken:

Usually it is associated to the free energy
of a probe quark through the relation:

On the lattice:

Covariant derivative:
where

the link:

the path:

Paths parallel to the
temporal axis:

Continuum

To make it gauge invariant:

The Polyakov loop



Z(N) symmetry in the deconfinement
transition

 QCD Lagrangean:

Gluons are periodic on imaginary time τ and quarks must be
antiperiodic:

Considering transformations periodic under the center of the
group, the fields transform like:

Quarks break the Z(N) symmetry!

     Adjoint
representation

Fundamental
representation



Effective models for the Polyakov loop

Model 1: Order parameter obtained from the eigenvalues
of the Polyakov loop [ P. Meisinger, T. Miller, M. Ogilvie (2002) ]

Diagonalizing the Polyakov loop, the eigenvalues can be seen as
degrees of freedom:

Once:

When P=0, the free energy is finite , indicating confinement.

Any perturbative calculation yields to:

The leading order behaviour is independent of g(T) and gives the
blackbody behaviour expected in high temperatures.



Performing the perturbative calculation one reaches:

Where:

Inserting a mass scale:

• Purely perturbative result predicts a gas of confined gluons for any temperature, and 

there is no indication that high order corrections modify this result.

• It is necessary to insert a scale in a way that the high T behaviour is preserved.

     High
temperature

Quartic
term
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Parametrizing the diagonal matrix on the following way

We find the minima in:

To evidence the Z(2) symmetry we define a new variable
and the free energy becomes:

In the SU(2) case we have two minima and the free energy is given
by:



The constant M can be determined through the value of the critical
temperature Td

Following a similar way for the case of SU(3) we get for the free
energy:

Again it is possible change variables to make the symmetry more
evident:

with



Free energy for SU(2) and SU(3)

SU(2) free energy: as the
temperature increases two
degenerate minima appear.

SU(3) free energy: immediately
above the critical temperature
there is a barrier that quickly
disappear.



Model 2: expectation value of the Polyakov loop as the
order parameter [ R. D. Pisarski (2001) ]

The Polyakov loop under a transformation of the Z(N) group behaves as:

Considering the mass terms in an effective Lagrangean:

The simplest possibility is:

with the superior orders loops mass always positive



these coefficients can be obtained from lattice data:

with:

From the global symmetry Z(N), to have a gauge invariant potential:
[B. Svetitsky and L. Yaffe (1982)]



SU(3) potential obtained from the second model:

Section of the potential on the real axis. On the complex
plane at any temperature above Td the vacuum is N-
degenerated. Above the critical temperature there is the
barrier, in accordance with the previous model, that
disappears when the temperature increases.



Langevin evolution

Langevin
equation

Random force and
dissipation

A Langevin equation can be derived in classical mechanics,
quantum mechanics or field theory.

Langevin equation derived for the λφ4 model using real time
treatment, finite temperature and calculating up to 2-loops.

• Dominant contribution in the
noise is multiplicative

• Colored noise

• Dissipation term proportional
to the field squared.



Out of equilibrium field theory

Let us consider a λφ4 theory with Lagrangean:

The functional generator is:

Considering the contributions up to 2-loops and order λ2,
diagramatically, we have:

where Γ[φ] is the effective action and S [φ] is the classical action.

[M. Gleiser e R. O Ramos (1994) ]



Minimizing the action with respect to the field:

and considering the dressed propagators we reach:

If we take into account interactions with other fields the solution would be
more general:

• Real time formalism

• A change of variables

• One associates imaginary terms (rapid oscilation) to gaussian
fluctuation fields



Lattice counterterms

For a λφ4 theory the ultraviolet divergences can be eliminated adding
mass counterterms in the action:

Σtad and Σsun are proportional to the diagrams  a) tadpole and b) sunset:

K. Farakos et al  (1994}

L. M. A. Bettencourt (2001}

These diagrams are calculated in the lattice and one obtains:



Pure gauge results

Considering a system characterized by the following free energy:

The Langevin equation will be:

The factor B plays a role of superficial tension and comes from the
perturbative calculation. [T. Bhattacharya, A. Gocksch, C. P. Korthals-Altes, R. D.

Pisarski  (1992)]

Γ is obtained through Monte Carlo simulation (relation between Monte
Carlo time and real time obtained comparing with experimental data)



We get the appropriated counterterms comparing our potential with
the potential λφ4 and identifying m and λ:

In each step we have done an average of the value of the loop in
each site:

Lattice → 643 sites with periodic boundary conditions.

We took the average over many realizations with different initial
configurations around ψ ~ 0, also taking different noise
configurations .

Temporal discretization

Spatial discretization

Semi-implicit method/ leap-frog

Finite differences – Fast Fourier transform/
Fourier collocation



Model 1: SU(2) case

 Strong delay effects in the thermalization caused by the
dissipation and noise.



Model 1: SU(3) case

Effects even stronger than in the case of chiral transition.

The noise also must play an important role. [E. S. Fraga, G. Krein (2005)]



Model 2: SU(3) case

 The noise also must play an important role.

 Dissipation effect in accordance with the obtained using
the other model.



Conclusions

• The dissipation plays an important role and its effects must be taken into
account.

• The effect in the deconfinement transition is even larger than in the chiral
transition.

• The results can be compared to pure gauge results on the lattice.

• A more robust model can provide information possible to compare to
experimental data.

• Perspectives:

• Coupling to chiral fields.

• Memory effects.

• More robust effect models.

• Inclusion of other effects that can change considerably the time scale of
thermalization such as inhomogeneities, plasma expansion, finite size, etc.




