relax
Parton Energy Loss in QCD Medium

Yuri L. Dokshitzer

LPTHE, University Paris VI & VII
PNPI, St. Petersburg
CERN TH

Les Houches
March 25 – April 5, 2008
"Brownian kicks" of the to-be-radiated gluon:

\[k_\perp^2 \sim \mu^2 \cdot N_{\text{coh}} = \mu^2 \cdot \frac{t}{\lambda}; \]

Gluon formation time:

\[t = \frac{\omega}{k_\perp^2}. \]

Equating the two expressions for \(t \),

\[k_\perp^2 \sim \sqrt{\frac{\omega \mu^2}{\lambda}}; \quad t = \frac{\lambda k_\perp^2}{\mu^2}; \quad N_{\text{coh}} = \frac{\omega}{\lambda \mu^2}. \]

Thus,

\[\frac{\omega \, dl}{d\omega \, dz} \propto \frac{\alpha_s}{\lambda} \cdot \frac{1}{N_{\text{coh}}} = \frac{\alpha_s}{\lambda} \sqrt{\frac{E_{\text{LPM}}}{\omega}}. \]

Finite Medium

\[c \, t < L \quad \Rightarrow \quad \omega < \omega_{\text{max}} = \frac{\mu^2}{\lambda} \frac{L^2}{\lambda}. \]
"Brownian kicks" of the to-be-radiated gluon:

\[k_{\perp}^2 \approx \mu^2 \cdot N_{coh} = \mu^2 \cdot \frac{t}{\lambda}; \]

Gluon formation time:

\[t = \frac{\omega}{k_{\perp}^2}. \]

Equating the two expressions for \(t \),

\[k_{\perp}^2 \approx \sqrt{\frac{\omega \mu^2}{\lambda}}; \quad t = \frac{\lambda k_{\perp}^2}{\mu^2}; \quad N_{coh} = \frac{\omega}{\lambda \mu^2}. \]

Thus,

\[\frac{\omega \, dl}{d\omega \, dz} \propto \frac{\alpha_s}{\lambda} \cdot \frac{1}{N_{coh}} = \frac{\alpha_s}{\lambda} \sqrt{\frac{E_{LPM}}{\omega}}. \]

Finite Medium

\[c \, t < L \implies \omega < \omega_{\text{max}} = \frac{\mu^2}{\lambda} \cdot L^2. \]
”Brownian kicks” of the to-be-radiated gluon:

\[k_{\perp}^2 \sim \mu^2 \cdot N_{\text{coh}} = \mu^2 \cdot \frac{t}{\lambda}; \]

Gluon formation time:

\[t = \frac{\omega}{k_{\perp}^2}. \]

Equating the two expressions for \(t \),

\[k_{\perp}^2 \sim \sqrt{\frac{\omega \mu^2}{\lambda}}; \quad t = \frac{\lambda k_{\perp}^2}{\mu^2}; \quad N_{\text{coh}} = \frac{\omega}{\lambda \mu^2}. \]

Thus,

\[\frac{\omega \, dl}{d\omega \, dz} \propto \frac{\alpha_s}{\lambda} \cdot \frac{1}{N_{\text{coh}}} = \frac{\alpha_s}{\lambda} \sqrt{\frac{E_{\text{LPM}}}{\omega}}. \]

Finite Medium

\[c t < L \quad \implies \quad \omega < \omega_{\text{max}} = \frac{\mu^2}{\lambda} L^2 \]
"Brownian kicks" of the to-be-radiated gluon:

\[k^2_\perp \simeq \mu^2 \cdot N_{coh} = \mu^2 \cdot \frac{t}{\lambda}; \]

Gluon formation time:

\[t = \frac{\omega}{k^2_\perp}. \]

Equating the two expressions for \(t \),

\[k^2_\perp \simeq \sqrt{\frac{\omega \mu^2}{\lambda}}; \quad t = \frac{\lambda k^2_\perp}{\mu^2}; \quad N_{coh} = \frac{\omega}{\lambda \mu^2}. \]

Thus,

\[\frac{\omega \, dl}{d\omega \, dz} \propto \frac{\alpha_s}{\lambda} \cdot \frac{1}{N_{coh}} = \frac{\alpha_s}{\lambda} \sqrt{\frac{E_{LPM}}{\omega}}. \]

Finite Medium

\[c \, t < L \quad \implies \quad \omega < \omega_{max} = \frac{\mu^2}{\lambda} L^2 \]
"Brownian kicks" of the to-be-radiated gluon:

\[k_\perp^2 \approx \mu^2 \cdot N_{coh} = \mu^2 \cdot \frac{t}{\lambda}; \]

Gluon formation time:

\[t = \frac{\omega}{k_\perp^2}. \]

Equating the two expressions for \(t \),

\[k_\perp^2 \approx \sqrt{\frac{\omega \mu^2}{\lambda}}; \quad t = \frac{\lambda k_\perp^2}{\mu^2}; \quad N_{coh} = \frac{\omega}{\lambda \mu^2}. \]

Thus,

\[\frac{\omega \, dl}{d\omega \, dz} \propto \frac{\alpha_s}{\lambda} \cdot \frac{1}{N_{coh}} = \frac{\alpha_s}{\lambda} \sqrt{\frac{E_{LPM}}{\omega}}. \]

Finite Medium

\[c \, t < L \quad \Longrightarrow \quad \omega < \omega_{\text{max}} = \frac{\mu^2}{\lambda} L^2 \]
"Brownian kicks" of the to-be-radiated gluon:

\[k_\perp^2 \simeq \mu^2 \cdot N_{coh} = \mu^2 \cdot \frac{t}{\lambda}; \]

Gluon formation time:

\[t = \frac{\omega}{k_\perp^2}. \]

Equating the two expressions for \(t \),

\[k_\perp^2 \simeq \sqrt{\frac{\omega \mu^2}{\lambda}}; \quad t = \frac{\lambda k_\perp^2}{\mu^2}; \quad N_{coh} = \frac{\omega}{\lambda \mu^2}. \]

Thus,

\[\frac{\omega \, dl}{d\omega \, dz} \propto \frac{\alpha_s}{\lambda} \cdot \frac{1}{N_{coh}} = \frac{\alpha_s}{\lambda} \sqrt{\frac{E_{LPM}}{\omega}} \]

Finite Medium

\[c t < L \quad \Rightarrow \quad \omega < \omega_{\text{max}} = \frac{\mu^2}{\lambda} L^2 \]
The only (non-perturbative) parameter of the problem, characterising the medium — transport coefficient

\[\hat{q} = \frac{\mu^2}{\lambda} \]

Hence, for \(L \) large enough stays under perturbative control!

To extract from experiment a large \(\hat{q} \) — to observe a new "hot" state of quark–gluon matter as compared to a "cold" nucleus.

Handle on \(\hat{q} \) in cold nuclei — for example, medium effects in Drell-Yan pair production, DIS on nuclei

[François Arleo]

Expectation:

\[\hat{q}_{\text{HOT}} \sim 10 - 30 \hat{q}_{\text{COLD}} \]
The only (non-perturbative) parameter of the problem, characterising the medium — transport coefficient

\[\hat{q} = \frac{\mu^2}{\lambda} = \rho \int dQ^2 Q^2 \frac{d\sigma}{dQ^2} \]

Hence, for \(L \) large enough stays under perturbative control!

To extract from experiment a \textit{large} \(\hat{q} \) — to observe a new "hot" state of quark–gluon matter as compared to a "cold" nucleus.

Handle on \(\hat{q} \) in cold nuclei — for example, medium effects in Drell-Yan pair production, DIS on nuclei

[François Arleo]

Expectation:

\[\hat{q}_{\text{HOT}} \sim 10 - 30 \hat{q}_{\text{COLD}} \]
The only (non-perturbative) parameter of the problem, characterising the medium — transport coefficient

\[\hat{q} = \frac{\mu^2}{\lambda} = \rho \int [B^{-2}] dQ^2 Q^2 \frac{d\sigma}{dQ^2}, \quad \mu^2 \ll Q^2 \ll B^{-2} = \mu^2 \frac{L}{\lambda} \]

Hence, for \(L \) large enough stays under perturbative control!

To extract from experiment a large \(\hat{q} \) — to observe a new "hot" state of quark–gluon matter as compared to a "cold" nucleus.

Handle on \(\hat{q} \) in cold nuclei — for example, medium effects in Drell-Yan pair production, DIS on nuclei [François Arleo]

Expectation:

\[\hat{q}_{\text{HOT}} \sim 10 \rightarrow 30 \hat{q}_{\text{COLD}} \]
The only (non-perturbative) parameter of the problem, characterising the medium — transport coefficient

\[\hat{q} = \frac{\mu^2}{\lambda} = \rho \int [B^{-2}] dQ^2 Q^2 \frac{d\sigma}{dQ^2}, \quad \mu^2 \ll Q^2 \ll B^{-2} = \mu^2 \frac{L}{\lambda} \]

Hence, for \(L \) large enough stays under perturbative control!

To extract from experiment a \textit{large} \(\hat{q} \) — to observe a new ”hot” state of quark–gluon matter as compared to a ”cold” nucleus.

Handle on \(\hat{q} \) in cold nuclei — for example, medium effects in Drell-Yan pair production, DIS on nuclei

[François Arleo]

Expectation:

\[\hat{q}_{\text{HOT}} \sim 10 – 30 \hat{q}_{\text{COLD}} \]
The only (non-perturbative) parameter of the problem, characterising the medium — transport coefficient

\[\hat{q} = \frac{\mu^2}{\lambda} = \rho \int [B^{-2}] \frac{dQ^2}{dQ^2} Q^2 \frac{d\sigma}{dQ^2}, \quad \mu^2 \ll Q^2 \ll B^{-2} = \mu^2 \frac{L}{\lambda} \]

Hence, for \(L \) large enough stays under perturbative control!

To extract from experiment a large \(\hat{q} \) — to observe a new ”hot” state of quark–gluon matter as compared to a ”cold” nucleus.

Handle on \(\hat{q} \) in cold nuclei — for example, medium effects in Drell-Yan pair production, DIS on nuclei

Expectation:

\[\hat{q}_{\text{HOT}} \sim 10{-}30 \hat{q}_{\text{COLD}} \]
The only (non-perturbative) parameter of the problem, characterising the medium — transport coefficient

\[\hat{q} = \frac{\mu^2}{\lambda} = \rho \int [B^{-2}] dQ^2 Q^2 \frac{d\sigma}{dQ^2}, \quad \mu^2 \ll Q^2 \ll B^{-2} = \frac{\mu^2 L}{\lambda} \]

Hence, for \(L \) large enough stays under perturbative control!

To extract from experiment a large \(\hat{q} \) — to observe a new ”hot” state of quark–gluon matter as compared to a ”cold” nucleus.

Handle on \(\hat{q} \) in cold nuclei — for example, medium effects in Drell-Yan pair production, DIS on nuclei

[François Arleo]

Expectation:

\[\hat{q}_{\text{HOT}} \sim 10-30 \hat{q}_{\text{COLD}} \]
The only (non-perturbative) parameter of the problem, characterising the medium — transport coefficient

\[\hat{q} = \frac{\mu^2}{\lambda} = \rho \int [B^{-2}] dQ^2 Q^2 \frac{d\sigma}{dQ^2}, \quad \mu^2 \ll Q^2 \ll B^{-2} = \mu^2 \frac{L}{\lambda} \]

Hence, for \(L \) large enough stays under perturbative control!

To extract from experiment a *large* \(\hat{q} \) — to observe a new ”hot” state of quark–gluon matter as compared to a ”cold” nucleus.

Handle on \(\hat{q} \) in cold nuclei — for example, medium effects in Drell-Yan pair production, DIS on nuclei

[François Arleo]

Expectation:

\[\hat{q}_{\text{HOT}} \sim 10-30 \hat{q}_{\text{COLD}} \]
Imagine a target hit by a relativistic projectile.
Imagine a target hit by a relativistic projectile.

A fast nucleon
Imagine a target hit by a relativistic projectile.

A fast nucleon
Imagine a target hit by a relativistic projectile.

A fast nucleon ➞

or a he-e-e-eavy ion
Imagine a target hit by a relativistic projectile.

A fast nucleon

or a he-e-e-eavy ion:
Imagine a target hit by a relativistic projectile.

A difficult question is that of *scaling*.
Imagine a target hit by a relativistic projectile.

A difficult question is that of *scaling*.

To be able to state that “*new*” physics manifests itself we better understand what would have to be expected if the physics were “*old*”?
Imagine a target hit by a relativistic projectile.

A difficult question is that of scaling.

To be able to state that “new” physics manifests itself we better understand what would have to be expected if the physics were “old”?

How to compare a quantity one measures in AA (or pA) collisions, with the one *simply rescaled* from an elementary pp interaction?
Imagine a target hit by a relativistic projectile.

A difficult question is that of scaling.

To be able to state that “new” physics manifests itself we better understand what would have to be expected if the physics were “old”?

How to compare a quantity one measures in AA (or pA) collisions, with the one simply rescaled from an elementary pp interaction?

It is in this harmlessly looking “simply rescaled” where the devil resides.
Imagine a target hit by a relativistic projectile.

A difficult question is that of \textit{scaling}.

To be able to state that “new” physics manifests itself we better understand what would have to be expected if the physics were “old”? How to compare a quantity one measures in \textit{AA} (or \textit{pA}) collisions, with the one \textit{simply rescaled} from an elementary \textit{pp} interaction?

It is in this harmlessly looking “\textit{simply rescaled}” where the devil resides.

Should a given observable in \textit{AA} interactions scale with the number of \textit{participating nucleons} (which may be as large as \(n_p = 2A\)) or instead as the number of \textit{elementary nucleon–nucleon collisions}, \(n_c \propto A^{4/3}\)?
Imagine a target hit by a relativistic projectile.

A difficult question is that of scaling.

To be able to state that “new” physics manifests itself we better understand what would have to be expected if the physics were “old”? How to compare a quantity one measures in AA (or pA) collisions, with the one simply rescaled from an elementary pp interaction?

It is in this harmlessly looking “simply rescaled” where the devil resides.

Should a given observable in AA interactions scale with the number of participating nucleons (which may be as large as $n_p = 2A$) or instead as the number of elementary nucleon–nucleon collisions, $n_c \propto A^{4/3}$?
Imagine a target hit by a relativistic projectile.

A difficult question is that of scaling.

To be able to state that “new” physics manifests itself we better understand what would have to be expected if the physics were “old”?

How to compare a quantity one measures in AA (or pA) collisions, with the one simply rescaled from an elementary pp interaction?

It is in this harmlessly looking “simply rescaled” where the devil resides.

Should a given observable in AA interactions scale with the number of participating nucleons (which may be as large as $n_p = 2A$) or instead as the number of elementary nucleon–nucleon collisions, $n_c \propto A^{4/3}$?
Colour dynamics in \(pp, pA, AB\)
Colour dynamics in pp, pA, AB

So, *collisions* or *participants*?
Colour dynamics in pp, pA, AB

So, collisions or participants?

Hard interactions are commonly expected to scale as n_c, *soft* — as n_p.
Colour dynamics in pp, pA, AB

So, *collisions* or *participants*?

Hard interactions are commonly expected to scale as n_c, *soft* — as n_p.

The QCD LPM effect gives a striking example to the contrary ...
Quark inelastic scattering scenario
Quark inelastic scattering scenario: one gluon exchange

\(\pi^+ \)
Quark inelastic scattering scenario: one gluon exchange
Quark inelastic scattering scenario: one gluon exchange

Feynman plateau
Meson inelastic scattering scenario: gluon exchange

= two “quark chains”
Meson inelastic scattering scenario: gluon exchange

= two “quark chains” known as the Pomeron
Painting the proton

Single scattering scenario
Painting the proton

Single scattering scenario

Coherent "diquark"
Painting the proton

Single scattering scenario

Coherence of the \textit{diquark} ain’t broken:
Single scattering scenario

Coherence of the diquark ain’t broken:

\rightarrow a Leading Baryon: $B(1) \rightarrow B(2/3) + M(1/3) + \ldots$
Kick it *twice* to break the coherence of the valence quarks
Kick it *twice* to break the *coherence* of the *valence quarks*

\[P \rightarrow \rho^+ K^+ \pi^- + \ldots \]
Kick it *twice* to break the coherence of the valence quarks

Proton is "fragile"

Expect the baryon quantum number *to sink* into the sea:

\[B(1) \rightarrow M(1/3) + M(1/3) + M(1/3) + \ldots + B(0) \]
multiple Proton collisions
Baryons disappear from the fragmentation region
Baryons disappear from the fragmentation region

CERN $\sqrt{s} = 17$ GeV (NA49)

- in Pb Pb collisions
Baryons disappear from the fragmentation region

CERN $\sqrt{s} = 17$ GeV (NA49) in Pb Pb collisions
Baryons disappear from the fragmentation region

\[\mathrm{CERN} \; \sqrt{s} = 17 \; \text{GeV} \; (\text{NA49}) \]
- in Pb Pb collisions
- in p Pb collisions
Baryons disappear from the fragmentation region

CERN $\sqrt{s} = 17$ GeV (NA49)

- in Pb Pb collisions
- in p Pb collisions
- $\langle x_F \rangle$ of net protons

ν — number of collisions
Baryons disappear from the fragmentation region

\[\text{CERN } \sqrt{s} = 17 \text{ GeV (NA49)} \]

- in Pb Pb collisions
- in p Pb collisions
- \(\langle x_F \rangle \) of net protons

Known as Proton Stopping.
Baryons disappear from the fragmentation region

CERN $\sqrt{s} = 17$ GeV (NA49)

- in Pb Pb collisions
- in p Pb collisions
- $<x_F>$ of net protons

Known as Proton Stopping. Better be called Proton Decay
multiple collisions and Hadron Multiplicity
One gluon exchange: \(a \) \(k \) \(b \)

accompanying radiation
One gluon exchange: accompanying radiation

\[\frac{k_\perp}{k^2_a} + \frac{k_\perp}{k^2_b} + \frac{q_\perp - k_\perp}{(q_\perp - k_\perp)^2} \]
One gluon exchange: accompanying radiation

\[k^a \rightarrow b^a T^a \rightarrow T^b \rightarrow \]
\[q^a \rightarrow b^a T^a \rightarrow T^b \rightarrow \]
\[k^a \rightarrow b^a T^a \rightarrow T^b \rightarrow \]
\[q^a \rightarrow b^a T^a \rightarrow T^b \rightarrow \]

\[\frac{k_{\perp}}{k_{\perp}^2} T^b T^a + \frac{k_{\perp}}{k_{\perp}^2} T^a T^b + \frac{q_{\perp} - k_{\perp}}{(q_{\perp} - k_{\perp})^2} i f_{abc} T^c \]
One gluon exchange: accompanying radiation

\[
\frac{\mathbf{k}_\perp}{\mathbf{k}_\perp^2} T^a T^b + \frac{\mathbf{k}_\perp}{\mathbf{k}_\perp^2} T^a T^b + \frac{\mathbf{q}_\perp - \mathbf{k}_\perp}{(\mathbf{q}_\perp - \mathbf{k}_\perp)^2} \text{if}_{abc} T^c = \text{if}_{abc} T^c \cdot \left[\frac{\mathbf{k}_\perp}{\mathbf{k}_\perp^2} + \frac{\mathbf{q}_\perp - \mathbf{k}_\perp}{(\mathbf{q}_\perp - \mathbf{k}_\perp)^2} \right]
\]
multiple collisions and Hadron Multiplicity

One gluon exchange: accompanying radiation

\[a \quad \xrightarrow{k} \quad b \]
\[T^a \quad \xrightarrow{T^b} \quad T^b \quad \xrightarrow{q} \quad T^a \quad \xrightarrow{T_c} \quad \text{if}_{abc} \]

\[\frac{-k^2}{k^2} T^b T^a + \frac{k^2}{k^2} T^a T^b + \frac{q - k}{(q - k)^2} \text{if}_{abc} T_c = \text{if}_{abc} T_c \cdot \left[\frac{k^2}{k^2} + \frac{q - k}{(q - k)^2} \right] \]

Accompanying gluon radiation spectrum:

✓ \[d\omega/\omega \quad \Rightarrow \quad \text{rapidity plateau} \]
✓ \[k^2 < q^2 \quad \Rightarrow \quad \text{finite transverse momenta} \]
One gluon exchange: accompanying radiation

\[T^a \rightarrow k \rightarrow T^b \]

\[q \rightarrow b \]

\[T^b \rightarrow T^a \rightarrow T^c \]

\[if_{abc} \rightarrow a \rightarrow b \]

\[-\frac{k_{\perp}}{k_{\perp}^2} T^b T^a + \frac{k_{\perp}}{k_{\perp}^2} T^a T^b + \frac{q_{\perp} - k_{\perp}}{(q_{\perp} - k_{\perp})^2} \]

\[if_{abc} T^c = if_{abc} T^c \left[\frac{k_{\perp}}{k_{\perp}^2} + \frac{q_{\perp} - k_{\perp}}{(q_{\perp} - k_{\perp})^2} \right] \]

\[\implies \text{scattering cross section of the projectile} \]
multiple collisions and Hadron Multiplicity

One gluon exchange: accompanying radiation

Particle density is universal — it does not depend on the projectile:

\((if_{abc})^2 \rightarrow N_c \rightarrow \text{one Pomeron.}\) Conservation of Colour at work
One gluon exchange: accompanying radiation

\[a \xrightarrow{k} a + b \xrightarrow{\text{radiation}} + c \xrightarrow{\text{radiation}} \]

\[T^a \xrightarrow{k} T^b + T^b \xrightarrow{\text{radiation}} + T^c \xrightarrow{\text{radiation}} a \]

\[-\frac{k_{\perp}}{k_{\perp}^2} T^b T^a + \frac{k_{\perp}}{k_{\perp}^2} T^a T^b + \frac{q_{\perp} - k_{\perp}}{(q_{\perp} - k_{\perp})^2} if_{abc} T^c = if_{abc} T^c \cdot \left[\frac{k_{\perp}}{k_{\perp}^2} + \frac{q_{\perp} - k_{\perp}}{(q_{\perp} - k_{\perp})^2} \right] \]

- Particle density is \textit{universal} — it does not depend on the projectile: \((if_{abc})^2 \rightarrow N_c \rightarrow \text{one Pomeron.}\) Conservation of Colour at work

- Multiple scattering of a quark (meson) \(\implies N \text{ Participant scaling} \)
Multiple collisions of a (2-quark) pion
Consider double scattering (two gluon exchange) in meson scattering only two colour representations can be realized.
Consider double scattering (two gluon exchange)
The (3-quark) proton is more *capacious*, but still . . .
Consider double scattering (two gluon exchange)
The (3-quark) proton is more *capacious*, but still . . .

Calculate the average *colour charge* of the two-gluon system:

\[
\frac{1}{64} \cdot 0 + \frac{8 + 8}{64} \cdot 3 + \frac{10 + 10}{64} \cdot 6 + \frac{27}{64} \cdot 8 = 6 = 2 \cdot N_c \quad \Rightarrow \quad \text{Double density of hadrons} \\
= 2 \text{ Pomerons}
\]
Consider double scattering (two gluon exchange)
The (3-quark) proton is more *capacious*, but still . . .

Calculate the average **colour charge** of the two-gluon system:

\[
\frac{1}{64} \cdot 0 + \frac{8 + 8}{64} \cdot 3 + \frac{10 + 10}{64} \cdot 6 + \frac{27}{64} \cdot 8 = 6 = 2 \cdot N_c \implies \text{Double density of hadrons} \implies 2 \text{ Pomerons}
\]

Cannot be realized on a *valence-built* proton:

\[
\frac{1}{27} \cdot 0 + \frac{8 + 8}{27} \cdot 3 + \frac{10}{27} \cdot 6 = 4
\]
Consider double scattering (two gluon exchange)
The (3-quark) proton is more *capacious*, but still . . .

Calculate the average colour charge of the two-gluon system:

\[
\frac{1}{64} \cdot 0 + \frac{8 + 8}{64} \cdot 3 + \frac{10 + 10}{64} \cdot 6 + \frac{27}{64} \cdot 8 = 6 = 2 \cdot N_c \quad \Rightarrow \\
\text{Double density of hadrons} = 2 \text{ Pomerons}
\]

Cannot be realized on a *valence-built* proton:

\[
\frac{1}{27} \cdot 0 + \frac{8 + 8}{27} \cdot 3 + \frac{10}{27} \cdot 6 = 4 \quad \text{??}
\]

Nowhere near 2 Pomerons
Successive collisions of a projectile with a *limited colour capacity* do not produce much of additional hadron yield
Successive collisions of a projectile with a *limited colour capacity* do not produce much of additional hadron yield

Where are then multiple Pomerons ??
Successive collisions of a projectile with a *limited colour capacity* do not produce much of additional hadron yield

Where are then multiple Pomerons ??

Look at the by-product of the Landau–Pomeranchuk–Migdal physics ...
Inclusive spectrum of medium-induced gluon radiation:

\[
\frac{\omega \, dn}{d\omega} \simeq \frac{\alpha_s}{\pi} \cdot \left[\frac{L}{\lambda} \right] \cdot \sqrt{\frac{\mu^2 \lambda}{\omega}}, \quad \mu^2 \lambda < \omega < \mu^2 \lambda \left[\frac{L}{\lambda} \right]^2
\]
Inclusive spectrum of medium-induced gluon radiation:

\[\frac{\omega \ dn}{d\omega} \approx \frac{\alpha_s}{\pi} \cdot \left[\frac{L}{\lambda} \right] \cdot \sqrt{\frac{\mu^2 \lambda}{\omega}}, \quad \mu^2 \lambda < \omega < \mu^2 \lambda \left[\frac{L}{\lambda} \right]^2 \]

Bethe-Heitler spectrum (independent radiation off each scattering centre)
Inclusive spectrum of medium-induced gluon radiation:

\[\frac{\omega \, dn}{d\omega} \simeq \frac{\alpha_s}{\pi} \cdot \left[\frac{L}{\lambda} \right] \cdot \sqrt{\frac{\mu^2 \lambda}{\omega}}, \quad \mu^2 \lambda < \omega < \mu^2 \lambda \left[\frac{L}{\lambda} \right]^2 \]

The number of collisions of the projectile, \(n_c = L/\lambda \)
Inclusive spectrum of medium-induced gluon radiation:

\[\frac{\omega}{d\omega} \sim \frac{\alpha_s}{\pi} \cdot \left[\frac{L}{\lambda} \right] \cdot \frac{\sqrt{\mu^2 \lambda}}{\omega}, \quad \mu^2 \lambda < \omega < \mu^2 \lambda \left[\frac{L}{\lambda} \right]^2 \]

The coherent suppression factor
Inclusive spectrum of medium-induced gluon radiation:

$$\frac{\omega \, d n}{d \omega} \approx \frac{\alpha_s}{\pi} \cdot \left[\frac{L}{\lambda} \right] \cdot \sqrt{\frac{\mu^2 \lambda}{\omega}}, \quad \mu^2 \lambda < \omega < \mu^2 \lambda \left[\frac{L}{\lambda} \right]^2$$

$N_{coh.} > 1$ scattering centres that fall inside the formation length of the gluon act as a single scatterer.

$$N_{coh.} \approx \frac{\ell_{coh.}}{\lambda} \approx \frac{1}{\lambda} \cdot \frac{\omega}{k_{\perp}^2}.$$
LPM effect in hA scattering

Inclusive spectrum of medium-induced gluon radiation:

$$\frac{\omega d\!\!n}{d\omega} \simeq \frac{\alpha_s}{\pi} \cdot \left[\frac{L}{\lambda} \right] \cdot \sqrt{\frac{\mu^2 \lambda}{\omega}}, \quad \mu^2 \lambda < \omega < \mu^2 \lambda \left[\frac{L}{\lambda} \right]^2$$

$N_{coh.} > 1$ scattering centres that fall *inside the formation length* of the gluon act as a single scatterer. At the same time, the gluon is subject to *Brownian motion* in the transverse momentum plane:

$$k^2_\perp \simeq N_{coh.} \cdot \mu^2, \quad N_{coh.} \simeq \frac{\ell_{coh.}}{\lambda} \simeq \frac{1}{\lambda} \cdot \frac{\omega}{k^2_\perp}.$$
Inclusive spectrum of medium-induced gluon radiation:

\[
\frac{\omega \, dn}{d\omega} \approx \frac{\alpha_s}{\pi} \cdot \left[\frac{L}{\lambda} \right] \cdot \sqrt{\frac{\mu^2 \lambda}{\omega}}, \quad \mu^2 \lambda < \omega < \mu^2 \lambda \left[\frac{L}{\lambda} \right]^2
\]

\(N_{\text{coh.}} > 1 \) scattering centres that fall inside the formation length of the gluon act as a single scatterer. At the same time, the gluon is subject to Brownian motion in the transverse momentum plane:

\[
k^2_\perp \approx N_{\text{coh.}} \cdot \mu^2, \quad N_{\text{coh.}} \approx \frac{\ell_{\text{coh.}}}{\lambda} \approx \frac{1}{\lambda} \cdot \frac{\omega}{k^2_\perp}.
\]

Combining the two estimates results in

\[
N_{\text{coh.}} \approx \sqrt{\frac{\omega}{\mu^2 \lambda}} \quad \text{and} \quad k^2_\perp \approx \sqrt{\frac{\mu^2}{\lambda}} \cdot \omega.
\]
Inclusive spectrum of medium-induced gluon radiation:

\[
\frac{\omega \, dN}{d\omega} \simeq \frac{\alpha_s}{\pi} \cdot \left[\frac{L}{\lambda} \right] \cdot \sqrt{\frac{\mu^2 \lambda}{\omega}}, \quad \mu^2 \lambda < \omega < \mu^2 \lambda \left[\frac{L}{\lambda} \right]^2
\]

\(N_{coh.} > 1\) scattering centres that fall *inside the formation length* of the gluon act as a single scatterer. At the same time, the gluon is subject to *Brownian motion* in the transverse momentum plane:

\[
k^2_\perp \simeq N_{coh.} \cdot \mu^2, \quad N_{coh.} \simeq \frac{\ell_{coh.}}{\lambda} \simeq \frac{1}{\lambda} \cdot \frac{\omega}{k^2_\perp}.
\]

Combining the two estimates results in

\[
N_{coh.} \simeq \sqrt{\frac{\omega}{\mu^2 \lambda}} \quad \text{and} \quad k^2_\perp \simeq \sqrt{\frac{\mu^2}{\lambda} \cdot \omega}.
\]

It is the factor \(N_{coh.}^{-1}\) that describes the coherent LPM suppression.
Rapidity distribution of LPM gluons

\[n_p = 1 \]

\[n_c \]

\[e^{-\eta/2} \]

[Diagram showing the distribution]
Rapidity distribution of LPM gluons

Here comes confusing part ...
Rapidity distribution of LPM gluons

\[k_{\perp}^2 \approx \sqrt{\frac{\mu^2}{\lambda}} \cdot \omega \]

Here comes confusing part ...

The *more energetic* gluons have typically *larger transverse momenta*.
Rapidity distribution of LPM gluons

\[k_\perp \simeq \sqrt{\frac{\mu^2}{\lambda}} \cdot \omega \]

Here comes confusing part ...

The more energetic gluons have typically larger transverse momenta. This means that the radiation corresponding to larger hardness scales follows the participant scaling
Rapidity distribution of LPM gluons

Here comes confusing part ...

The more energetic gluons have typically larger transverse momenta. This means that the radiation corresponding to larger hardness scales follows the participant scaling while the less hard radiation (smaller k_\perp and energies) obeys the collisional scaling pattern, in a striking contradiction with the standard expectation!
Rapidity distribution of LPM gluons

\[k_\perp^2 \simeq \sqrt{\frac{\mu^2}{\lambda}} \cdot \omega \]

Here comes confusing part ...

The more energetic gluons have typically larger transverse momenta. This means that the radiation corresponding to larger hardness scales follows the participant scaling while the less hard radiation (smaller \(k_\perp \) and energies) obeys the collisional scaling pattern, in a striking contradiction with the standard expectation!

Coherent radiation = “participant” scaling in the projectile region
Rapidity distribution of LPM gluons

\[k_{\perp}^2 \simeq \sqrt{\frac{\mu^2}{\lambda} \cdot \omega} \]

Here comes confusing part ...

The more energetic gluons have typically larger transverse momenta. This means that the radiation corresponding to larger hardness scales follows the participant scaling while the less hard radiation (smaller \(k_{\perp} \) and energies) obeys the collisional scaling pattern, in a striking contradiction with the standard expectation!

Coherent radiation = “participant” scaling in the projectile region

Transition region, down to “collision” scaling; occupies a finite rapidity range (fragmentation of the target nucleus)
Rapidity distribution of LPM gluons

\[k_\perp^2 \simeq \sqrt{\frac{\mu^2}{\lambda}} \cdot \omega \]

Here comes confusing part ...

The *more energetic* gluons have typically *larger transverse momenta*. This means that the radiation corresponding to *larger hardness scales* follows the *participant scaling* while the *less hard* radiation (smaller \(k_\perp \) and energies) obeys the *collisional scaling* pattern, in a striking contradiction with the standard expectation!

Coherent radiation = “participant” scaling in the projectile region

Transition region, down to “collision” scaling;

occupies a *finite rapidity range* (fragmentation of the target nucleus)
Many successive collisions ... but only one Pomeron.
Many successive collisions ... but only one Pomeron. The destructive LPM coherence invalidates the multi-Pomeron exchange picture?!
Many successive collisions ... but only one Pomeron. The destructive LPM coherence invalidates the multi-Pomeron exchange picture?! Does it indeed?
Recall the good old Amati–Fubini–Stanghellini puzzle.
Recall the good old Amati–Fubini–Stanghellini puzzle.

Successive scatterings of a parton DO NOT produce *branch points* in the complex J plane (Reggeon loops).
Recall the good old Amati–Fubini–Stanghellini puzzle.

Successive scatterings of a parton DO NOT produce \textit{branch points} in the complex J plane (Reggeon loops).

The \textbf{Mandelstam construction} generates "Reggeon cuts", with Pomerons attached to separate — \textit{coexisting} — partons.
Recall the good old Amati–Fubini–Stanghellini puzzle.

Successive scatterings of a parton DO NOT produce *branch points* in the complex \(J \) plane (Reggeon loops).

The Mandelstam construction generates “Reggeon cuts”, with Pomerons attached to separate — coexisting — partons.
Recall the good old Amati–Fubini–Stanghellini puzzle.

Successive scatterings of a parton DO NOT produce \textit{branch points} in the complex J plane (Reggeon loops).

The \textit{Mandelstam construction} generates “Reggeon cuts”, with Pomerons attached to separate — coexisting — partons.

To have n_c Pomerons attached, one must compare n_c with the number of \textit{independent} (incoherent, resolved) \textit{partons} inside the projectile:

$$C(x_h, Q_{\text{res}}) = \int_{x_h}^{1} \frac{dx}{x} \left[xG_{\text{proj}}(x, Q_{\text{res}}^2) \right], \quad x_{\text{proj}} = 1.$$
Recall the good old Amati–Fubini–Stanghellini puzzle.

Successive scatterings of a parton DO NOT produce *branch points* in the complex J plane (Reggeon loops).

The Mandelstam construction generates “Reggeon cuts”, with Pomerons attached to separate — coexisting — partons.

To have n_c Pomerons attached, one must compare n_c with the number of *independent* (incoherent, resolved) *partons* inside the projectile:

$$C(x_h, Q_{res}) = \int_{x_h}^{1} \frac{dx}{x} \left[xG_{proj}(x, Q_{res}^2) \right], \quad x_{proj} = 1.$$

Parton capacity of the projectile depends on the energy (x_h) and on the resolution — $k_{\perp h}$ of the observed final state hadron h.

In the framework of the standard hadron (multi-Pomeron) picture (e.g., the successful Dual Parton Model of Capella & Kaidalov et al.) one includes final state interactions to explain spectacular heavy ion phenomena like J/ψ suppression, enhancement of strangeness, etc.
In the framework of the standard hadron (multi-Pomeron) picture (e.g., the successful Dual Parton Model of Capella & Kaidalov et al.) one includes final state interactions to explain spectacular heavy ion phenomena like J/ψ suppression, enhancement of strangeness, etc.

“Final state interaction” is a synonym to “non-independent fragmentation” — cross-talking Pomerons, overlapping strings, “string ropes”, ...
In the framework of the standard hadron (multi-Pomeron) picture (e.g., the successful Dual Parton Model of Capella & Kaidalov et al.) one includes final state interactions to explain spectacular heavy ion phenomena like J/ψ suppression, enhancement of strangeness, etc.

“Final state interaction” is a synonym to “non-independent fragmentation” — cross-talking Pomerons, overlapping strings, “string ropes”, . . .

From the point of view of the colour dynamics, in pA and AA environments we face an intrinsically new, unexplored question:
In the framework of the standard hadron (multi-Pomeron) picture (e.g., the successful Dual Parton Model of Capella & Kaidalov et al.) one includes final state interactions to explain spectacular heavy ion phenomena like J/ψ suppression, enhancement of strangeness, etc.

“Final state interaction” is a synonym to “non-independent fragmentation” — cross-talking Pomerons, overlapping strings, “string ropes”, . . .

From the point of view of the colour dynamics, in pA and AA environments we face an intrinsically new, unexplored question:

After the pancakes separate, at each impact parameter we have a dense colour field whose strength corresponds to $n_p/fm^2 \propto A^{1/3}$ “strings”.

How does the vacuum break up in stronger than usual colour fields?
In the framework of the standard hadron (multi-Pomeron) picture (e.g., the successful Dual Parton Model of Capella & Kaidalov et al.) one includes final state interactions to explain spectacular heavy ion phenomena like J/ψ suppression, enhancement of strangeness, etc.

“Final state interaction” is a synonym to “non-independent fragmentation” — cross-talking Pomerons, overlapping strings, “string ropes”, . . .

From the point of view of the colour dynamics, in pA and AA environments we face an intrinsically new, unexplored question:

After the pancakes separate, at each impact parameter we have a dense colour field whose strength corresponds to $n_p/fm^2 \propto A^{1/3}$ “strings”.

How does the vacuum break up in stronger than usual colour fields?

LEP left the question unanswered.
In the framework of the standard hadron (multi-Pomeron) picture (e.g., the successful Dual Parton Model of Capella & Kaidalov et al.) one includes final state interactions to explain spectacular heavy ion phenomena like J/ψ suppression, enhancement of strangeness, etc.

“Final state interaction” is a synonym to “non-independent fragmentation” — cross-talking Pomerons, overlapping strings, “string ropes”, ...

From the point of view of the colour dynamics, in pA and AA environments we face an intrinsically new, unexplored question:

After the pancakes separate, at each impact parameter we have a dense colour field whose strength corresponds to $n_p/fm^2 \propto A^{1/3}$ “strings”.

How does the vacuum break up in stronger than usual colour fields?

LEP left the question unanswered. Surprises to be expected. Mind your head.
Medium induced radiation should lead to
Medium induced radiation should lead to

- **softening** of particle spectra in a jet muddling thru medium,
Medium induced radiation should lead to

- softening of particle spectra in a jet muddling thru medium,
- increase of (soft) particle multiplicity
Medium induced radiation should lead to

- softening of particle spectra in a jet muddling thru medium,
- increase of (soft) particle multiplicity, due to particles with
- specific relation btw energy and emission angle
Medium induced radiation should lead to
• softening of particle spectra in a jet muddling thru medium,
• increase of (soft) particle multiplicity, due to particles with
• specific relation btw energy and emission angle

⇒

Jet Quenching
Medium induced radiation should lead to

- softening of particle spectra in a jet muddling thru medium,
- increase of (soft) particle multiplicity, due to particles with
 specific relation btw energy and emission angle

\implies

Jet Quenching

exhaustively covered by Urs in his last lecture
Isn’t QCD actually *simpler* than it looks?
Isn’t QCD actually \textit{simpler} than it looks?

\begin{center}
A couple of hints
\end{center}
2- and 3-prong colour antennae are sort of “trivial”: coherence being taken care of, the answers turned out to be essentially additive.

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon–gluon scattering.

The difficult quest of sorting out large angle gluon radiation in all orders in $(\alpha_s \log Q)^n$ was set up and solved by George Sterman and collaborators. Here one encounters 6 (5 for $SU(3)$) colour channels that mix with each other under soft gluon radiation, and the classical picture of gluon (or dipole) multiplication is likely to fail.

A recent (2005) addition to the problem (G.Marchesini & YLD) made one think of a hidden simplicity …
2- and 3-prong colour antennae are sort of “trivial”: coherence being taken care of, the answers turned out to be essentially additive.

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon–gluon scattering.

The difficult quest of sorting out large angle gluon radiation in all orders in $(\alpha_s \log Q)^n$ was set up and solved by George Sterman and collaborators. Here one encounters 6 (5 for $SU(3)$) colour channels that mix with each other under soft gluon radiation, and the classical picture of gluon (or dipole) multiplication is likely to fail.

A recent (2005) addition to the problem (G.Marchesini & YLD) made one think of a hidden simplicity …
2- and 3-prong colour antennae are sort of “trivial”: coherence being taken care of, the answers turned out to be essentially additive.

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon–gluon scattering.

The difficult quest of sorting out large angle gluon radiation in all orders in $(\alpha_s \log Q)^n$ was set up and solved by George Sterman and collaborators. Here one encounters 6 (5 for SU(3)) colour channels that mix with each other under soft gluon radiation, and the classical picture of gluon (or dipole) multiplication is likely to fail.

A recent (2005) addition to the problem \cite{Marchesini2005} made one think of a hidden simplicity …
2- and 3-prong colour antennae are sort of “trivial”: coherence being taken care of, the answers turned out to be essentially additive.

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon–gluon scattering.

The difficult quest of sorting out large angle gluon radiation in all orders in $(\alpha_s \log Q)^n$ was set up and solved by George Sterman and collaborators. Here one encounters 6 (5 for $SU(3)$) colour channels that mix with each other under soft gluon radiation, and the classical picture of gluon (or dipole) multiplication is likely to fail.

A recent (2005) addition to the problem (G.Marchesini & YLD) made one think of a hidden simplicity
2- and 3-prong colour antennae are sort of "trivial": coherence being taken care of, the answers turned out to be essentially additive.

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon–gluon scattering.

The difficult quest of sorting out large angle gluon radiation in all orders in $(\alpha_s \log Q)^n$ was set up and solved by George Sterman and collaborators. Here one encounters 6 (5 for $SU(3)$) colour channels that mix with each other under soft gluon radiation, and the classical picture of gluon (or dipole) multiplication is likely to fail.

A recent (2005) addition to the problem (G.Marchesini & YLD) made one think of a hidden simplicity …
2- and 3-prong colour antennae are sort of “trivial”: coherence being taken care of, the answers turned out to be essentially additive.

The case of \(2 \rightarrow 2\) hard parton scattering is more involved (4 emitters), especially so for gluon–gluon scattering.

The difficult quest of sorting out large angle gluon radiation in all orders in \((\alpha_s \log Q)^n\) was set up and solved by George Sterman and collaborators. Here one encounters 6 (5 for \(SU(3)\)) colour channels that mix with each other under soft gluon radiation, and the classical picture of gluon (or dipole) multiplication is likely to fail.

A recent (2005) addition to the problem (G.Marchesini & YLD) made one think of a hidden simplicity …
2- and 3-prong colour antennae are sort of “trivial”: coherence being taken care of, the answers turned out to be essentially additive.

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon–gluon scattering.

The difficult quest of sorting out large angle gluon radiation in all orders in $(\alpha_s \log Q)^n$ was set up and solved by George Sterman and collaborators. Here one encounters 6 (5 for $SU(3)$) colour channels that mix with each other under soft gluon radiation, and the classical picture of gluon (or dipole) multiplication is likely to fail.

A recent (2005) addition to the problem made one think of a hidden simplicity … (G.Marchesini & YLD)
2- and 3-prong colour antennae are sort of “trivial”: coherence being taken care of, the answers turned out to be essentially additive.

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon–gluon scattering.

The difficult quest of sorting out large angle gluon radiation in all orders in $(\alpha_s \log Q)^n$ was set up and solved by George Sterman and collaborators. Here one encounters 6 (5 for $SU(3)$) colour channels that mix with each other under soft gluon radiation, and the classical picture of gluon (or dipole) multiplication is likely to fail.

A recent (2005) addition to the problem made one think of a *hidden simplicity* . . .

(G.Marchesini & YLD)
Puzzle of large angle Soft Gluon radiation

Soft anomalous dimension,

\[\frac{\partial}{\partial \ln Q} M \propto \left\{ -N_c \ln \left(\frac{t}{s^2} \right) \cdot \hat{\Gamma} \right\} \cdot M, \quad \hat{\Gamma} V_i = E_i V_i. \]

6=3+3. Three eigenvalues are ”simple”.
Puzzle of large angle Soft Gluon radiation

Soft anomalous dimension,

\[\frac{\partial}{\partial \ln Q} M \propto \left\{ -N_c \ln \left(\frac{t u}{s^2} \right) \hat{\Gamma} \right\} \cdot M, \quad \hat{\Gamma} V_i = E_i V_i. \]

6=3+3. Three eigenvalues are "simple".
Puzzle of large angle Soft Gluon radiation

Soft anomalous dimension,

$$\frac{\partial}{\partial \ln Q} M \propto \left\{-N_c \ln \left(\frac{t u}{s^2}\right) \cdot \hat{\Gamma} \right\} \cdot M, \quad \hat{\Gamma} V_i = E_i V_i.$$

6=3+3. Three eigenvalues are "simple".
Three "ain't-so-simple" ones were found to satisfy the cubic equation:

$$\left[E_i - \frac{4}{3} \right]^3 - \frac{(1 + 3b^2)(1 + 3x^2)}{3} \left[E_i - \frac{4}{3} \right] - \frac{2(1 - 9b^2)(1 - 9x^2)}{27} = 0,$$

where

$$x = \frac{1}{N_c}, \quad b \equiv \frac{\ln(t/s) - \ln(u/s)}{\ln(t/s) + \ln(u/s)}.$$
Puzzle of large angle Soft Gluon radiation

Soft anomalous dimension,

\[\frac{\partial}{\partial \ln Q} M \propto \left\{ -N_c \ln \left(\frac{tu}{s^2} \right) \cdot \hat{\Gamma} \right\} \cdot M, \quad \hat{\Gamma} V_i = E_i V_i. \]

6=3+3. Three eigenvalues are ”simple”. Three ”ain’t-so-simple” ones were found to satisfy the cubic equation:

\[
\left[E_i - \frac{4}{3} \right]^3 - \frac{(1 + 3b^2)(1 + 3x^2)}{3} \left[E_i - \frac{4}{3} \right] - \frac{2(1 - 9b^2)(1 - 9x^2)}{27} = 0,
\]

where

\[x = \frac{1}{N_c}, \quad b \equiv \frac{\ln(t/s) - \ln(u/s)}{\ln(t/s) + \ln(u/s)} \]

Mark the mysterious symmetry w.r.t. to \(x \to b \): interchanging internal (group rank) and external (scattering angle) variables of the problem . . .
Some news concerning apparent complexity/hidden simplicity of gluon dynamics
Some news concerning apparent complexity/hidden simplicity of gluon dynamics

Have a look at the *simplest* element of the parton multiplication Hamiltonian (non-singlet anomalous dimension) in three loops, α_s^3
\[P_{(2)^+}^{(2)}(x) = 16 C_A C_F n_f \left(\frac{1}{6} p_{qq}(x) \left[\frac{10}{3} \zeta_2 - \frac{209}{36} - 9 \zeta_3 - \frac{167}{18} H_0 + 2 H_0 \zeta_2 - 7 H_0 \right. \right. \]
\[+ 3 H_{1,0,0} - H_3 \left. \right] + \frac{1}{3} p_{qq}(-x) \left[\frac{3}{2} \zeta_3 - \frac{5}{3} \zeta_2 - H_{-2,0} - 2 H_{-1} \zeta_2 - \frac{10}{3} H_{-1,0} - H_{-1,2} \right. \]
\[+ \frac{1}{2} H_0 \zeta_2 + \frac{5}{3} H_{0,0} + H_{0,0,0} - H_3 \left. \right] + (1 - x) \left[\frac{1}{6} \zeta_2 - \frac{257}{54} - \frac{43}{18} H_0 - \frac{2}{3} \right. \]
\[- (1 + x) \left[\frac{2}{3} H_{-1,0} + \frac{1}{2} H_2 \right] + \frac{1}{3} \zeta_2 + H_0 + \frac{1}{6} H_{0,0} + \delta(1 - x) \left[\frac{5}{4} - \frac{167}{54} \zeta_2 + \frac{1}{20} \zeta_2 \right. \]
\[+ 16 C_A C_F^2 \left(p_{qq}(x) \left[\frac{5}{6} \zeta_3 - \frac{69}{20} \zeta_2^2 - H_{-3,0} - 3 H_{-2} \zeta_2 - 14 H_{-2,-1,0} + 3 H_{-2,0} \right. \right. \]
\[- 4 H_{-2,2} - \frac{151}{48} H_0 + \frac{41}{12} H_0 \zeta_2 - \frac{17}{2} H_0 \zeta_3 - \frac{13}{4} H_{0,0} - 4 H_{0,0} \zeta_2 - \frac{23}{12} \right. \]
\[H_{0,0,0} + 5 H_{0,0,0} \left. \right] - 24 H_{1} \zeta_3 - 16 H_{1,-2,0} + \frac{67}{9} H_{1,0} - 2 H_{1,0} \zeta_2 + \frac{31}{3} H_{1,0,0} + 11 H_{1,0,0,0} + 8 H_{1,1,0,0} \]
\[
+ \frac{67}{9} H_2 - 2H_2 \zeta_2 + \frac{11}{3} H_{2,0} + 5H_{2,0,0} + H_{3,0} \Bigg] + p_{qq}(-x) \left[\frac{1}{4} \zeta_2^2 - \frac{67}{9} \zeta_2 + \frac{31}{4} \zeta_3 \right.

- 32H_{-2} \zeta_2 - 4H_{-2,-1,0} - \frac{31}{6} H_{-2,0} + 21H_{-2,0,0} + 30H_{-2,2} - \frac{31}{3} H_{-1} \zeta_2 - 42H_{-1,-1} \zeta_2

- 4H_{-1,-2,0} + 56H_{-1,-1} \zeta_2 - 36H_{-1,-1,0,0} - 56H_{-1,-1,2} - \frac{134}{9} H_{-1,0} - 42H_{-1,1}

+ 32H_{-1,3} - \frac{31}{6} H_{-1,0,0} + 17H_{-1,0,0,0} + \frac{31}{3} H_{-1,2} + 2H_{-2,0,0} + \frac{13}{12} H_0 \zeta_2 + \frac{29}{2} H_0 \zeta_3

+ 13H_{0,0} \zeta_2 + \frac{89}{12} H_{0,0,0} - 5H_{0,0,0,0} - 7H_2 \zeta_2 - \frac{31}{6} H_3 - 10H_4 \Bigg] + (1-x) \left[\frac{133}{36} + \frac{167}{4} \zeta_3 - 2H_0 \zeta_3 - 2H_{-3,0} + H_{-2} \zeta_2 + 2H_{-2,-1,0} - 3H_{-2,0,0} + \frac{77}{4} H_{0,0,0} - \frac{209}{6}

+ 4H_{1,0,0} + \frac{14}{3} H_{1,0} \Bigg] + (1+x) \left[\frac{43}{2} \zeta_2 - 3 \zeta_2^2 + \frac{25}{2} H_{-2,0} - 31H_{-1} \zeta_2 - 14H_{-1,-1}

+ 24H_{-1,2} + 23H_{-1,0,0} + \frac{55}{2} H_0 \zeta_2 + 5H_{0,0} \zeta_2 + \frac{1457}{48} H_0 - \frac{1025}{36} H_{0,0} - \frac{155}{6} H_2 \right]
\]
\[+2H_{2,0,0} - 3H_4 \] - 5\zeta_2 - \frac{1}{2}\zeta_2^2 + 50\zeta_3 - 2H_{-3,0} - 7H_{-2,0} - H_0\zeta_3 - \frac{37}{2}H_0\zeta_2 + \\
-2H_{0,0}\zeta_2 + \frac{185}{6}H_{0,0} - 22H_{0,0,0} - 4H_{0,0,0,0} + \frac{28}{3}H_2 + 6H_3 + \delta(1-x) \left[\frac{151}{64} + \right. \\
-\frac{247}{60}\zeta_2^2 + \frac{211}{12}\zeta_3 + \frac{15}{2}\zeta_5 \right] + 16 C_A^2 C_F \left(p_{qq}(x) \left[\frac{245}{48} - \frac{67}{18}\zeta_2 + \frac{12}{5}\zeta_2^2 + \frac{1}{2}\zeta_3 \right] + H_{-3,0} + 4H_{-2,-1,0} - \frac{3}{2}H_{-2,0} - H_{-2,0,0} + 2H_{-2,2} - \frac{31}{12}H_0\zeta_2 + 4H_0\zeta_3 + \frac{389}{72}H_4 \right) \\
+ H_{0,0,0,0} + 9H_{1}\zeta_3 + 6H_{1,-2,0} - H_{1,0}\zeta_2 - \frac{11}{4}H_{1,0,0} - 3H_{1,0,0,0} - 4H_{1,1,0,0} + 4H_{1,0}\zeta_3 + \\
\frac{11}{12}H_3 + H_4 \right] + p_{qq}(-x) \left[\frac{67}{18}\zeta_2 - \zeta_2^2 - \frac{11}{4}\zeta_3 - H_{-3,0} + 8H_{-2}\zeta_2 + \frac{11}{6}H_{-2,0} \right. \\
- 3H_{-1,0,0,0} + \frac{11}{3}H_{-1}\zeta_2 + 12H_{-1}\zeta_3 - 16H_{-1,-1}\zeta_2 + 8H_{-1,-1,0,0} + 16H_{-1,-1,2} \\
- 8H_{-2,2} + 11H_{-1,0}\zeta_2 + \frac{11}{6}H_{-1,0,0} - \frac{11}{3}H_{-1,2} - 8H_{-1,3} - \frac{3}{4}H_0 - \frac{1}{6}H_0\zeta_2 - \frac{1}{4}H_0\zeta_3 - \frac{37}{2}H_0\zeta_2 \]
−3H_{0,0}\zeta_2 - \frac{31}{12}H_{0,0,0} + H_{0,0,0,0} + 2H_2\zeta_2 + \frac{11}{6}H_3 + 2H_4 \right) + (1-x) \left[\frac{1883}{108} - \frac{1}{2} \right]
\left[-H_{-2,-1,0} + \frac{1}{2}H_{-3,0} - \frac{1}{2}H_{-2}\zeta_2 + \frac{1}{2}H_{-2,0,0} + \frac{523}{36}H_0 + H_0\zeta_3 - \frac{13}{3}H_{0,0} - \frac{5}{2}H_{-2,0,0} - 2H_{1,0,0} \right] + (1+x) \left[8H_{-1}\zeta_2 + 4H_{-1,-1,0} + \frac{8}{3}H_{-1,0} - 5H_{-1,0,0} - 6H_{-1,2} - \frac{13}{3} \right]
\left[-\frac{43}{4}\zeta_3 - \frac{5}{2}H_{-2,0} - \frac{11}{2}H_0\zeta_2 + \frac{1}{2}H_2\zeta_2 - \frac{5}{4}H_{0,0}\zeta_2 + 7H_2 - \frac{1}{4}H_{2,0,0} + 3H_3 + \frac{3}{4} \right]
\left[\frac{1}{4}\zeta_2^2 - \frac{8}{3}\zeta_2 + \frac{17}{2}\zeta_3 + H_{-2,0} - \frac{19}{2}H_0 + \frac{5}{2}H_0\zeta_2 - H_0\zeta_3 + \frac{13}{3}H_{0,0} + \frac{5}{2}H_{0,0,0} \right]
\left[-\delta(1-x) \left[\frac{1657}{576} - \frac{281}{27}\zeta_2 + \frac{18}{2}\zeta_2^2 + \frac{97}{9}\zeta_3 - \frac{5}{2}\zeta_5 \right] \right) + 16C_Fn_f^2 \left(\frac{1}{18}\rho_{qq}(x) \left[H_{0,0} + \right] \right)
\left(\frac{13}{54} + \frac{1}{9}H_0 \right] - \delta(1-x) \left[\frac{17}{144} - \frac{5}{27}\zeta_2 + \frac{1}{9}\zeta_3 \right) \right] + 16C_F^2n_f \left(\frac{1}{3}\rho_{qq}(x) \left[+ \right]
\left(\frac{13}{54} + \frac{1}{9}H_0 \right] - \delta(1-x) \left[\frac{17}{144} - \frac{5}{27}\zeta_2 + \frac{1}{9}\zeta_3 \right) \right] + 16C_F^2n_f \left(\frac{1}{3}\rho_{qq}(x) \left[+ \right]
$$\begin{align*}
&\frac{-55}{16} + \frac{5}{8} H_0 + H_0 \zeta_2 + \frac{3}{2} H_{0,0} - H_{0,0,0} - \frac{10}{3} H_{1,0} - \frac{10}{3} H_2 - 2H_{2,0} - 2H_3 \right) + \frac{2}{3} \\
&\frac{-3}{2} \zeta_3 + H_{-2,0} + 2H_{-1} \zeta_2 + \frac{10}{3} H_{-1,0} + H_{-1,0,0} - 2H_{-1,2} - \frac{1}{2} H_0 \zeta_2 - \frac{5}{3} H_{0,0} - \\
&-(1-x) \left[\frac{10}{9} + \frac{19}{18} H_{0,0} - \frac{4}{3} H_1 + \frac{2}{3} H_{1,0} + \frac{4}{3} H_2 \right] + (1+x) \left[\frac{4}{3} H_{-1,0} - \frac{25}{24} H_0 + \\
&+\frac{7}{9} H_{0,0} + \frac{4}{3} H_2 - \delta(1-x) \left[\frac{23}{16} - \frac{5}{12} \zeta_3 - \frac{29}{30} \zeta_2^2 + \frac{17}{6} \zeta_3 \right] \right) + 16 C_F^3 \left(p_{qq}(x) \left[\\
&+6H_{-2} \zeta_2 + 12H_{-2,-1,0} - 6H_{-2,0,0} - \frac{3}{16} H_0 - \frac{3}{2} H_0 \zeta_2 + H_0 \zeta_3 + \frac{13}{8} H_{0,0} - 2H_0 \\
&+12H_{1} \zeta_3 + 8H_{1,-2,0} - 6H_{1,0,0} - 4H_{1,0,0,0} + 4H_{1,2,0} - 3H_2,0 + 2H_{2,0,0} + 4H_{2,1} \\
&+4H_{3,0} + 4H_{3,1} + 2H_4 \right] + p_{qq}(-x) \left[\frac{7}{2} \zeta_2^2 - \frac{9}{2} \zeta_3 - 6H_{-3,0} + 32H_{-2} \zeta_2 + 8H_{-2} \\
&-26H_{-2,0,0} - 28H_{-2,2} + 6H_{-1} \zeta_2 + 36H_{-1} \zeta_3 + 8H_{-1,-2,0} - 48H_{-1,-1} \zeta_2 + 40 \right] \right] \right).
\end{align*}$$
2 × 2 anomalous dimension matrix occupies

1st loop: 1/10 page
2 × 2 anomalous dimension matrix occupies

1 st loop: 1/10 page

2 nd loop: 1 page
2 × 2 anomalous dimension matrix occupies

1st loop: 1/10 page

2nd loop: 1 page

3rd loop: 100 pages (200 K asci)

Moch, Vermaseren and Vogt

[waterfall of results launched
 March 2004, and counting]
2×2 anomalous dimension matrix occupies

1. 1st loop: 1/10 page
2. 2nd loop: 1 page
3. 3rd loop: 100 pages (200 K asci)

Moch, Vermaseren and Vogt

[waterfall of results launched
March 2004, and counting]

$$V \sim \begin{cases} 10^{\frac{N(N-1)}{2}} - 1 \\ 10^{2^{N-1}} - 2 \end{cases}$$
2 × 2 anomalous dimension matrix occupies
1st loop: 1/10 page
2nd loop: 1 page
3rd loop: 100 pages (200 K asci)

Moch, Vermaseren and Vogt
[waterfall of results launched
March 2004, and counting]

\[V \sim \left\{ \begin{array}{l}
10^{\frac{N(N-1)}{2}-1} \\
10^{2N-1}-2
\end{array} \right. \]

not too encouraging a trend …
How to reduce complexity?
How to reduce complexity?

Guidelines

- Higher Orders
- Innovative Bookkeeping
- Think
- Extract
- Solve
How to reduce complexity?

Guidelines

- ✓ exploit internal properties:
 - Drell–Levy–Yan relation
 - Gribov–Lipatov reciprocity

Higher Orders

- Innovative Bookkeeping

Think

Extract

Solve
High order QCD Dynamics made simple?

Fighting complexity

How to reduce complexity?

Guidelines

✓ exploit internal properties:
 - Drell–Levy–Yan relation
 - Gribov–Lipatov reciprocity

Higher Orders

- Innovative Bookkeeping
- Inheritance idea

Think
Extract
Solve
How to reduce complexity?

Guidelines

✓ exploit internal properties:
 - Drell–Levy–Yan relation
 - Gribov–Lipatov reciprocity

✓ separate classical & quantum effects in the gluon sector
Fighting complexity

How to reduce complexity?

Guidelines

✓ exploit internal properties:
 - Drell–Levy–Yan relation
 - Gribov–Lipatov reciprocity

✓ separate classical & quantum effects in the gluon sector

An essential part of gluon dynamics is Classical.

(F.Low)
Fighting complexity

How to reduce complexity?

Guidelines

✓ exploit internal properties:
 - Drell–Levy–Yan relation
 - Gribov–Lipatov reciprocity
✓ separate classical & quantum effects in the gluon sector

Higher Orders

Innovative Bookkeeping
Inheritance idea

Think
Extract
Solve

An essential part of gluon dynamics is Classical. "Classical" does not mean "Simple". However, it has a good chance to be Exactly Solvable.

(F.Low)
Fighting complexity

How to reduce complexity?

Guidelines
✓ exploit internal properties:
 • Drell–Levy–Yan relation
 • Gribov–Lipatov reciprocity
✓ separate classical & quantum effects in the gluon sector

Higher Orders

Innovative Bookkeeping
Inheritance idea

Think
Extract
Solve

An essential part of gluon dynamics is Classical.
“Classical” does not mean “Simple”.
However, it has a good chance to be Exactly Solvable.

(F.Low)
How to reduce complexity?

Guidelines

✓ exploit internal properties:
 - Drell–Levy–Yan relation
 - Gribov–Lipatov reciprocity

✓ separate classical & quantum effects in the gluon sector

Higher Orders

Innovative Bookkeeping

Think
Extract
Solve

Inheritance idea

An essential part of gluon dynamics is Classical.
“Classical” does not mean “Simple”.
However, it has a good chance to be Exactly Solvable.

→ A playing ground for theoretical theory: SUSY, AdS/CFT, ...
In the standard approach,

- parton splitting functions are equated with anomalous dimensions;
- they are different for DIS and $e^+ e^-$ evolution;
- “clever evolution variables” are different too.
In the new approach,

- Splitting functions are disconnected from the anomalous dimensions;
- The evolution kernel is identical for space- and time-like cascades (Gribov–Lipatov reciprocity relation true in all orders);
- Unique evolution variable — parton fluctuation time.

\textit{time ordering}
In the new approach,

- splitting functions are disconnected from the anomalous dimensions;
- the evolution kernel is identical for space- and time-like cascades (Gribov–Lipatov reciprocity relation true in all orders);
- unique evolution variable — parton fluctuation time.
In the new approach,

- splitting functions are disconnected from the anomalous dimensions;
- the evolution kernel is identical for space- and time-like cascades (Gribov–Lipatov reciprocity relation true in all orders);
- unique evolution variable — *parton fluctuation time*
The origin of the GL reciprocity violation is essentially kinematical: inherited from previous loops!
The origin of the GL reciprocity violation is essentially kinematical: inherited from previous loops!

Hypothesis of the new RR evolution kernel \mathcal{P}

D-r, Marchesini & Salam (2005)

was verified at 3 loops for the nonsinglet channel, $(\gamma^{(T)} - \gamma^{(S)}) = OK$

Mitov, Moch & Vogt (2006)
Reducing complexity

The origin of the GL reciprocity violation is essentially kinematical: inherited from previous loops!

Hypothesis of the new RR evolution kernel \mathcal{P}

D-r, Marchesini & Salam (2005)

was verified at 3 loops for the nonsinglet channel, $(\gamma^T - \gamma^S) = \text{OK}$

Mitov, Moch & Vogt (2006)

In the moment space, the GL symmetry, $x \rightarrow 1/x \Leftrightarrow N \rightarrow -(N + 1)$, translates into dependence on the conformal Casimir $J^2 = N(N + 1)$.

By means of the large N expansion,

$$\mathcal{P} = \alpha_{\text{phys}} \ln J^2 + \sum_n (J^2)^{-n}$$
The origin of the GL reciprocity violation is essentially kinematical: inherited from previous loops!

Hypothesis of the new RR evolution kernel \mathcal{P}

D-r, Marchesini & Salam (2005)
was verified at 3 loops for the nonsinglet channel, $(\gamma^{(T)} - \gamma^{(S)}) = \text{OK}$

Mitov, Moch & Vogt (2006)

In the moment space, the GL symmetry, $x \rightarrow 1/x \Leftrightarrow N \rightarrow -(N + 1)$, translates into dependence on the conformal Casimir $J^2 = N(N + 1)$.

By means of the large N expansion,

$$\mathcal{P} = \alpha_{\text{phys}} \cdot \ln J^2 + \sum_n (J^2)^{-n}$$

- 3loop singlet unpolarized
- 2loop quark transversity
- 2loop linearly polarized gluon
- 2loop singlet polarized
The origin of the GL reciprocity violation is essentially kinematical: inherited from previous loops!

Hypothesis of the new RR evolution kernel \mathcal{P}

was verified at 3 loops for the nonsinglet channel, $(\gamma^{(T)} - \gamma^{(S)}) = \text{OK}$

In the moment space, the GL symmetry, $x \rightarrow 1/x \Leftrightarrow N \rightarrow -(N + 1)$, translates into dependence on the conformal Casimir $J^2 = N(N + 1)$.

By means of the large N expansion, $\mathcal{P} = \alpha_{\text{phys}} \cdot \ln J^2 + \Sigma_n (J^2)^{-n}$

Extra QCD checks:

- 3loop singlet unpolarized
- 2loop quark transversity
- 2loop linearly polarized gluon
- 2loop singlet polarized

Also true for SUSYs,

- in 4 loops in $\lambda \phi^4$,
- in QCD $\beta_0 \rightarrow \infty$, all loops,
- AdS/CFT ($\mathcal{N} = 4$ SYM $\alpha \gg 1$)
The origin of the GL reciprocity violation is essentially kinematical: inherited from previous loops!

Hypothesis of the new RR evolution kernel \mathcal{P}

D-r, Marchesini & Salam (2005) was verified at 3 loops for the nonsinglet channel, $(\gamma(T) - \gamma(S)) = \text{OK}$

Mitov, Moch & Vogt (2006)

In the moment space, the GL symmetry, $x \rightarrow 1/x \Leftrightarrow N \rightarrow -(N + 1)$, translates into dependence on the conformal Casimir $J^2 = N(N + 1)$. By means of the large N expansion,

$$\mathcal{P} = \alpha_{\text{phys}} \cdot \ln J^2 + \sum_n (J^2)^{-n}$$

- 3loop singlet unpolarized
- 2loop quark transversity
- 2loop linearly polarized gluon
- 2loop singlet polarized

Also true for SUSYs,

- in 4 loops in $\lambda \phi^4$,
- in QCD $\beta_0 \rightarrow \infty$, all loops,
- AdS/CFT ($\mathcal{N} = 4$ SYM $\alpha \gg 1$)
Maximally super-symmetric $\mathcal{N}=4$ YM allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$) D-r & Marchesini (2006)
Maximally super-symmetric $\mathcal{N} = 4$ YM allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$) \cite{D-r & Marchesini (2006)}.

Moreover, the most resent result: in $\mathcal{N} = 4$, GLR holds for twist 3, in $3 + 4$ loops \cite{Matteo Beccaria et. al (2007)}.
Maximally super-symmetric $\mathcal{N} = 4$ YM allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$) \cite{D-r & Marchesini (2006)}.

Moreover, the most recent result: in $\mathcal{N} = 4$ \xmark GLR holds for twist 3, in 3+4 loops \cite{Matteo Beccaria et al. (2007)}.

What is so special about $\mathcal{N} = 4$ SYM?
Maximally super-symmetric $\mathcal{N}=4$ YM allows for a compact analytic solution of the GLR problem in 3 loops ($\forall \mathcal{N}$) D-r & Marchesini (2006)

Moreover, the most resent result : in $\mathcal{N}=4$ × GLR holds for twist 3, in $3+4$ loops Matteo Beccaria et al. (2007)

What is so special about $\mathcal{N}=4$ SYM ?

This QFT has a good chance to be solvable — “integrable”. Dynamics can be fully integrated if the system possesses a sufficient (infinite!) number of conservation laws, — integrals of motion.
Maximally super-symmetric $\mathcal{N}=4$ YM allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$)
D-r & Marchesini (2006)

Moreover, the most resent result: in $\mathcal{N}=4$
\times GLR holds for twist 3, in 3+4 loops
Matteo Beccaria et al. (2007)

What is so special about $\mathcal{N}=4$ SYM?

This QFT has a good chance to be solvable — “integrable”. Dynamics can be fully integrated if the system possesses a sufficient (infinite!) number of conservation laws, — integrals of motion.

Recall an old hint from QCD ...
Relating parton splittings

\[z \]

\[1 - z \]

\[= C_F \cdot \frac{1 + z^2}{1 - z} \]

\[z \]

\[= T_R \cdot [z^2 + (1 - z)^2] \]

\[z \]

\[= C_F \cdot \frac{1 + (1 - z)^2}{z} \]

\[z \]

\[= N_c \cdot \frac{1 + z^4 + (1 - z)^4}{z(1 - z)} \]

Four “parton splitting functions”

\[q[g](z), \quad g[q](z), \quad q[\bar{q}](z), \quad g[g](z) \]
Relating parton splittings

\[z(1-z) = C_F \cdot \frac{1 + z^2}{1 - z} \]

\[z = T_R \cdot [z^2 + (1-z)^2] \]

\[z = N_c \cdot \frac{1 + z^4 + (1-z)^4}{z(1-z)} \]

- Exchange the decay products: \(z \rightarrow 1 - z \)
Relating parton splittings

\[
\begin{align*}
\frac{1 - z}{z} &= C_F \cdot \frac{1 + z^2}{1 - z} \\
\frac{z}{1 - z} &= C_F \cdot \frac{1 + (1 - z)^2}{z} \\
\frac{z^2}{1 - z} &= T_R \cdot \left[z^2 + (1 - z)^2 \right] \\
\frac{1 + z^4 + (1 - z)^4}{z(1 - z)} &= N_c \cdot
\end{align*}
\]

- Exchange the decay products: \(z \rightarrow 1 - z \)
- Exchange the parent and the offspring: \(z \rightarrow \frac{1}{z} \) (GLR)
Relating parton splittings

\[\begin{align*}
\frac{1 - z}{z} &= C_F \cdot \frac{1 + z^2}{1 - z} \\
\frac{z}{1 - z} &= C_F \cdot \frac{1 + (1 - z)^2}{z} \\
\frac{1 - z}{1 - z} &= T_R \cdot [z^2 + (1 - z)^2] \\
\frac{z}{1 - z} &= N_c \cdot \frac{1 + z^4 + (1 - z)^4}{z(1 - z)}
\end{align*} \]

- Exchange the decay products: \(z \rightarrow 1 - z \)
- Exchange the parent and the offspring: \(z \rightarrow 1/z \) (GLR)

Three (QED) “kernels” are inter-related; gluon self-interaction stays put:

- \(q[g](Z) \)
- \(g[q](Z) \)
- \(q[\bar{q}](Z) \)
- \(g[g](Z) \)
Relating parton splittings

\[
\begin{align*}
\frac{1}{1-z} &= C_F \cdot \frac{1 + z^2}{1 - z}, \\
\frac{z}{1-z} &= C_F \cdot \frac{1 + (1-z)^2}{z}, \\
\frac{z}{z} &= T_R \cdot \left[z^2 + (1-z)^2 \right], \\
\frac{z}{z} &= N_c \cdot \frac{1 + z^4 + (1-z)^4}{z(1-z)}.
\end{align*}
\]

- Exchange the decay products: \(z \to 1 - z \)
- Exchange the parent and the offspring: \(z \to 1/z \) (GLR)
- The story continues, however:

All four are related!

\[
w_q(z) = \begin{array}{c}
q[g]_q(z) + g[q]_q(z) = q[\bar{q}]_g(z) + g[g]_g(z)
\end{array} = w_g(z)
\]
Relating parton splittings

\[z \rightarrow 1 - z \]
\[z \rightarrow 1/z \] (GLR)

The story continues, however:

\[\text{All four are related!} \]

\[w_q(z) = \begin{array}{c}
q[g]_q(z) + g[q]_q(z) = q[\bar{q}]_g(z) + g[g]_g(z) = w_g(z)
\end{array} \]
Relating parton splittings

\[z \rightarrow 1 - z \]

\[z \rightarrow \frac{1}{z} \quad \text{(GLR)} \]

The story continues, however:

\[C_F = T_R = N_c : \text{Super-Symmetry} \]

All four are related!

\[\equiv \text{infinite number of conservation laws} ! \]

\[w_q(z) = \frac{q[g](z)}{q} + \frac{g[q](z)}{q} = \frac{q[\bar{q}](z)}{g} + \frac{g[g](z)}{g} = w_g(z) \]
The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD:

✓ the Regge behaviour (large N_c)
Lipatov
Faddeev & Korchemsky (1994)

✓ baryon wave function
Braun, Derkachov, Korchemsky, Manashov; Belitsky (1999)

✓ maximal helicity multi-gluon operators
Lipatov (1997)
Minahan & Zarembo
Beisert & Staudacher (2003)
The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD:

✓ the Regge behaviour (large N_c)

Lipatov
Faddeev & Korchemsky (1994)

✓ baryon wave function

Braun, Derkachov, Korchemsky, Manashov; Belitsky (1999)

✓ maximal helicity multi-gluon operators

Lipatov (1997)
Minahan & Zarembo
Beisert & Staudacher (2003)

The higher the symmetry, the deeper integrability.
The integrability feature manifests itself already in *certain sectors* of QCD, in specific problems where one can *identify* QCD with SUSY-QCD:

- ✓ the Regge behaviour (large N_c)
 - Lipatov
 - Faddeev & Korchemsky (1994)

- ✓ baryon wave function
 - Braun, Derkachov, Korchemsky, Manashov; Belitsky (1999)
 - Lipatov (1997)

- ✓ maximal helicity multi-gluon operators
 - Minahan & Zarembo
 - Beisert & Staudacher (2003)

The higher the symmetry, the deeper integrability. $\mathcal{N} = 4$ — the extreme:

- ✗ Conformal theory $\beta(\alpha) \equiv 0$
 - Beisert, Eden, Staudacher (2006)

- ✗ All order expansion for α_{phys}

- ✗ Full integrability via AdS/CFT
 - Maldacena; Witten, Gubser, Klebanov, Polyakov (1998)
The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD:

- ✓ the Regge behaviour (large N_c)
 Lipatov
 Faddeev & Korchemsky (1994)

- ✓ baryon wave function
 Braun, Derkachov, Korchemsky, Manashov; Belitsky (1999)
 Lipatov (1997)

- ✓ maximal helicity multi-gluon operators
 Minahan & Zarembo
 Beisert & Staudacher (2003)

The higher the symmetry, the deeper integrability. $\mathcal{N}=4$ — the extreme:

- ✗ Conformal theory $\beta(\alpha) \equiv 0$
 Beisert, Eden, Staudacher (2006)

- ✗ All order expansion for α_{phys}
 Maldacena; Witten, Gubser, Klebanov, Polyakov (1998)

- ✗ Full integrability via AdS/CFT

WHY and WHAT FOR?
The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD:

- ✓ the Regge behaviour (large N_c)
 Lipatov
 Faddeev & Korchemsky (1994)

- ✓ baryon wave function
 Braun, Derkachov, Korchemsky, Manashov; Belitsky (1999)

- ✓ maximal helicity multi-gluon operators
 Lipatov (1997)
 Minahan & Zarembo
 Beisert & Staudacher (2003)

The higher the symmetry, the deeper integrability. $\mathcal{N} = 4$ — the extreme:

- ✗ Conformal theory $\beta(\alpha) \equiv 0$

- ✗ All order expansion for α_{phys}
 Beisert, Eden, Staudacher (2006)

- ✗ Full integrability via AdS/CFT
 Maldacena; Witten, Gubser, Klebanov, Polyakov (1998)

And here we arrive at the second — Divide and Conquer — issue
Recall the diagonal first loop anomalous dimensions:

\[
\tilde{\gamma}_{q \rightarrow q(x)+g} = \frac{C_F \alpha_s}{\pi} \left[\frac{x}{1-x} + (1-x) \cdot \frac{1}{2} \right],
\]

\[
\tilde{\gamma}_{g \rightarrow g(x)+g} = \frac{C_A \alpha_s}{\pi} \left[\frac{x}{1-x} + (1-x) \cdot (x + x^{-1}) \right].
\]
Recall the diagonal first loop anomalous dimensions:

\[
\tilde{\gamma}_{q \rightarrow q(x)+g} = \frac{C_F \alpha_s}{\pi} \left[\frac{x}{1-x} + (1-x) \cdot \frac{1}{2} \right],
\]

\[
\tilde{\gamma}_{g \rightarrow g(x)+g} = \frac{C_A \alpha_s}{\pi} \left[\frac{x}{1-x} + (1-x) \cdot (x + x^{-1}) \right].
\]

The first component is independent of the nature of the radiating particle — the Low–Burnett–Kroll classical radiation \(\Rightarrow\) "clagons".
Recall the diagonal first loop anomalous dimensions:

\[
\tilde{\gamma}_{q\to q(x)+g} = \frac{C_F \alpha_s}{\pi} \left[\frac{x}{1-x} + (1-x) \cdot \frac{1}{2} \right],
\]

\[
\tilde{\gamma}_{g\to g(x)+g} = \frac{C_A \alpha_s}{\pi} \left[\frac{x}{1-x} + (1-x) \cdot (x + x^{-1}) \right].
\]

The first component is independent of the nature of the radiating particle — the Low–Burnett–Kroll classical radiation \(\Rightarrow \) “clagons”. The second — “quagons” — is relatively suppressed as \(\mathcal{O}((1-x)^2)\).

Recall the diagonal first loop anomalous dimensions:

\[
\tilde{\gamma}_{q\rightarrow q(x)+g} = \frac{C_F \alpha_s}{\pi} \left[\frac{x}{1-x} + \left(1-x\right) \cdot \frac{1}{2} \right],
\]

\[
\tilde{\gamma}_{g\rightarrow g(x)+g} = \frac{C_A \alpha_s}{\pi} \left[\frac{x}{1-x} + \left(1-x\right) \cdot \left(x + x^{-1}\right) \right].
\]

The first component is independent of the nature of the radiating particle — the Low–Burnett–Kroll classical radiation \(\Rightarrow \) “clagons”. The second — “quagons” — is relatively suppressed as \(\mathcal{O} \left(\left(1-x\right)^2 \right) \).

Classical and quantum contributions respect the GL relation, individually:

\[-xf(1/x) = f(x)\]
Recall the diagonal first loop anomalous dimensions:

\[
\tilde{\gamma}_{q \rightarrow q(x) + g} = \frac{C_F \alpha_s}{\pi} \left[\frac{x}{1-x} + (1-x) \cdot \frac{1}{2} \right],
\]

\[
\tilde{\gamma}_{g \rightarrow g(x) + g} = \frac{C_A \alpha_s}{\pi} \left[\frac{x}{1-x} + (1-x) \cdot (x + x^{-1}) \right].
\]

The first component is independent of the nature of the radiating particle — the Low–Burnett–Kroll classical radiation \(\Rightarrow \) “clagons”.

The second — “quagons” — is relatively suppressed as \(\mathcal{O} ((1-x)^2) \).

Classical and quantum contributions respect the GL relation, individually:

\[-xf(1/x) = f(x)\]

Let us look at the rôles these animals play on the QCD stage
Clagons:

- Classical Field
- infrared singular, $d\omega/\omega$
- define the physical coupling
- responsible for
 - DL radiative effects,
 - reggeization,
 - QCD/Lund string (gluens)
- play the major rôle in evolution

Quagons:

- Quantum d.o.f.s (constituents)
- infrared irrelevant, $d\omega \cdot \omega$
- make the coupling run
- responsible for conservation of
 - P-parity,
 - C-parity,
 - colour
- minor rôle
Clagons :

✗ Classical Field
✓ infrared singular, $d\omega/\omega$
✓ define the physical coupling
✓ responsible for
 ➡ DL radiative effects,
 ➡ reggeization,
 ➡ QCD/Lund string (gluers)
✓ play the major rôle in evolution

Quagons :

✗ Quantum d.o.f.s (constituents)
✓ infrared irrelevant, $d\omega \cdot \omega$
✓ make the coupling run
✓ responsible for conservation of
 ➡ P-parity,
 ➡ C-parity,
 ➡ colour
✓ minor rôle

In addition,

✗ Tree multi-clagon (Parke–Taylor) amplitudes are known exactly
✗ It is clagons which dominate in all the integrability cases
Maximally super-symmetric YM field model:
Matter content = 4 Majorana fermions, 6 scalars; everyone in the adjoint representation.
Maximally super-symmetric YM field model:
Matter content = 4 Majorana fermions, 6 scalars;
everyone in the adjoint representation.

\[
\frac{d}{d \ln \mu^2} \left(\frac{\alpha(\mu^2)}{4\pi} \right)^{-1}_{QCD} = -\frac{11}{3} \cdot C_A + n_f \cdot T_R \cdot \int_0^1 dx \ [x^2 + (1 - x)^2]
\]
Maximally super-symmetric YM field model:
Matter content = 4 Majorana fermions, 6 scalars;
everyone in the **adjoint** representation.

\[
\frac{d}{d \ln \mu^2} \left(\frac{\alpha(\mu^2)}{4\pi} \right)^{-1}_{\text{QCD}} = -\frac{11}{3} \cdot C_A + n_f \cdot T_R \cdot \int_0^1 dx \, 2 \left[x^2 + (1-x)^2 \right]
\]

Now, \(\mathcal{N}=4 \) SUSY :

\[
C_A^{-1} \frac{d}{d \ln \mu^2} \left(\frac{\alpha(\mu^2)}{4\pi} \right)^{-1}
\]
Maximally super-symmetric YM field model:
Matter content = 4 Majorana fermions, 6 scalars;
everyone in the adjoint representation.

\[
\frac{d}{d \ln \mu^2} \left(\frac{\alpha(\mu^2)}{4\pi} \right)^{-1}_{QCD} = -\frac{11}{3} \cdot C_A + n_f \cdot T_R \cdot \int_0^1 dx \left[2x^2 + (1-x)^2 \right]
\]

Now, $\mathcal{N}=4$ SUSY:

\[
C_A^{-1} \frac{d}{d \ln \mu^2} \left(\frac{\alpha(\mu^2)}{4\pi} \right)^{-1} = -\frac{11}{3} + \frac{4}{2} \cdot \int_0^1 dx \left[x^2 + (1-x)^2 \right] + \frac{6}{2!} \cdot \int_0^1 dx \left[2x(1-x) \right]
\]
Maximally super-symmetric YM field model:
Matter content = 4 Majorana fermions, 6 scalars;
everyone in the adjoint representation.

\[
\frac{d}{d \ln \mu^2} \left(\frac{\alpha(\mu^2)}{4\pi} \right)^{-1} Q_{CD} = -\frac{11}{3} \cdot C_A + n_f \cdot T_R \cdot \int_0^1 dx \left[x^2 + (1 - x)^2 \right]
\]

Now, \(\mathcal{N} = 4 \) SUSY :

\[
C_A^{-1} \frac{d}{d \ln \mu^2} \left(\frac{\alpha(\mu^2)}{4\pi} \right)^{-1} = -\frac{11}{3} + \frac{4}{2} \cdot \int_0^1 dx \left[x^2 + (1 - x)^2 \right] + \frac{6}{2!} \cdot \int_0^1 dx \: 2x(1-x)
\]

\(\beta(\alpha) \equiv 0 \) in all orders!
Maximally super-symmetric YM field model:
Matter content = 4 Majorana fermions, 6 scalars;
everyone in the adjoint representation.

\[
\frac{d}{d \ln \mu^2} \left(\frac{\alpha(\mu^2)}{4\pi} \right)^{-1} = -\frac{11}{3} \cdot C_A + n_f \cdot T_R \cdot \int_0^1 dx \left[x^2 + (1 - x)^2 \right]
\]

Now, \(\mathcal{N} = 4 \) SUSY :

\[
\frac{C_A^{-1} d}{d \ln \mu^2} \left(\frac{\alpha(\mu^2)}{4\pi} \right)^{-1} = -\frac{11}{3} + \frac{4}{2} \cdot \int_0^1 dx \left[x^2 + (1 - x)^2 \right] + \frac{6}{2!} \cdot \int_0^1 dx \left[2x(1-x) \right]
\]

\(\beta(\alpha) \equiv 0 \) in all orders!

... makes one think of a classical nature (??) of the SYM-4 dynamics
Maximally super-symmetric YM field model:
Matter content = 4 Majorana fermions, 6 scalars;
everyone in the adjoint representation.

\[
\frac{d}{d \ln \mu^2} \left(\frac{\alpha(\mu^2)}{4\pi} \right)^{-1} = -\frac{11}{3} \cdot C_A + n_f \cdot T_R \cdot \int_0^1 dx \ 2 \left[x^2 + (1-x)^2 \right]
\]

Now, \(\mathcal{N}=4 \) SUSY :

\[
\frac{C_A^{-1} d}{d \ln \mu^2} \left(\frac{\alpha(\mu^2)}{4\pi} \right)^{-1} = -\frac{11}{3} + \frac{4}{2} \cdot \int_0^1 dx \ 2\left[x^2 + (1-x)^2 \right] + \frac{6}{2!} \cdot \int_0^1 dx \ 2x(1-x)
\]

\(\beta(\alpha) \equiv 0 \) in all orders ! \(\implies \) \(\gamma \Rightarrow \frac{x}{1-x} \) + no quagons !

\(\ldots \) makes one think of a \textit{classical nature} (!!!) of the SYM-4 dynamics
$\mathcal{N} = 4$ SYM has already demonstrated viability of the *inheritance* idea.
\(\mathcal{N}=4 \) SYM has already demonstrated viability of the *inheritance* idea. \(\mathcal{N}=4 \) SYM dynamics is *classical*, in certain sense.
$\mathcal{N}=4$ SYM has already demonstrated viability of the *inheritance* idea. $\mathcal{N}=4$ SYM dynamics is *classical*, in *uncertain* sense.
$\mathcal{N}=4$ SYM has already demonstrated viability of the *inheritance* idea. $\mathcal{N}=4$ SYM dynamics is *classical*, in a *not yet completely certain* sense.
\(\mathcal{N}=4 \) SYM has already demonstrated viability of the *inheritance* idea.

\(\mathcal{N}=4 \) SYM dynamics is *classical*, in certain sense.

If so, the final goal — to derive \(\gamma \) from \(\gamma^{(1)} \), in all orders!
$\mathcal{N} = 4$ SYM has already demonstrated viability of the \textit{inheritance} idea.

$\mathcal{N} = 4$ SYM dynamics is \textit{classical}, in certain sense.

If so, the final goal — to derive γ from $\gamma^{(1)}$, in all orders!

\textbf{Why bother?}
$\mathcal{N}=4$ SYM has already demonstrated viability of the *inheritance* idea.

$\mathcal{N}=4$ SYM dynamics is *classical*, in certain sense.

If so, the final goal — to derive γ from $\gamma^{(1)}$, in all orders!

QCD and SUSY-QCD *share the gluon sector*.
$\mathcal{N}=4$ SYM has already demonstrated viability of the *inheritance* idea. $\mathcal{N}=4$ SYM dynamics is *classical*, in certain sense. If so, the final goal — to derive γ from $\gamma^{(1)}$, in all orders!

QCD and SUSY-QCD share the gluon sector.

Clagon (classical) contributions in higher orders show up as specific "*most transcendental*" structures (Euler–Zagier harmonic sums $\tau = 2L - 1$).
$\mathcal{N}=4$ SYM has already demonstrated viability of the *inheritance* idea. $\mathcal{N}=4$ SYM dynamics is *classical*, in certain sense.
If so, the final goal — to derive γ from $\gamma^{(1)}$, in all orders!

QCD and SUSY-QCD share the gluon sector.

Clagon (classical) contributions in higher orders show up as specific "*most transcendental*" structures (Euler–Zagier harmonic sums $\tau = 2L - 1$). Importantly, they constitute *the bulk* of the QCD anomalous dimension!
$\mathcal{N}=4$ SYM has already demonstrated viability of the *inheritance* idea.

$\mathcal{N}=4$ SYM dynamics is *classical*, in certain sense.

If so, the final goal — to derive γ from $\gamma^{(1)}$, in all orders!

QCD and SUSY-QCD share the gluon sector.

\[
\text{clever 2nd loop} < 2\% \quad \text{(Heavy quark fragmentation)} \\
\text{clever 1st loop} \quad \text{(D-r, Khoze & Troyan, PRD 1996)}
\]
$\mathcal{N}=4$ SYM has already demonstrated viability of the *inheritance* idea.

$\mathcal{N}=4$ SYM dynamics is *classical*, in certain sense.

If so, the final goal — to derive γ from $\gamma^{(1)}$, in all orders!

QCD and SUSY-QCD share the gluon sector.

Clagon (classical) contributions in higher orders show up as specific **“most transcendental”** structures (Euler–Zagier harmonic sums $\tau = 2L - 1$).

Importantly, they constitute *the bulk* of the QCD anomalous dimension!

Employ $\mathcal{N}=4$ SYM to simplify the major part of the QCD dynamics!
A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects.

Reformulation of parton cascades in terms of Gribov–Lipatov reciprocity respecting evolution equations (RREE)
- reduces complexity by (at least) an order of magnitude
- improves perturbative series (less singular, better “convergent”)
- links interesting phenomena in the DIS and e^+e^- annihilation channels

The Low theorem should be part of theor.phys. curriculum, worldwide

Complete solution of the $\mathcal{N}=4$ SYM QFT should provide us with a one-line-all-orders description of the major part of QCD dynamics.
to conclude

A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects.

Reformulation of parton cascades in terms of Gribov–Lipatov reciprocity respecting evolution equations (RREE)
- reduces complexity by (at least) an order of magnitude
- improves perturbative series (less singular, better “convergent”)
- links interesting phenomena in the DIS and e^+e^- annihilation channels

The Low theorem should be part of theor.phys. curriculum, worldwide.

Complete solution of the $\mathcal{N}=4$ SYM QFT should provide us with a one-line-all-orders description of the major part of QCD dynamics.
A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects.

Reformulation of parton cascades in terms of Gribov–Lipatov reciprocity respecting evolution equations (RREE)
- reduces complexity by (at least) an order of magnitude
- improves perturbative series (less singular, better “convergent”)
- links interesting phenomena in the DIS and e^+e^- annihilation channels

The Low theorem should be part of theor.phys. curriculum, worldwide.

Complete solution of the $\mathcal{N}=4$ SYM QFT should provide us with a one-line-all-orders description of the major part of QCD dynamics.
A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects.

Reformulation of parton cascades in terms of Gribov–Lipatov reciprocity respecting evolution equations (RREE)
- reduces complexity by (at least) an order of magnitude
- improves perturbative series (less singular, better “convergent”)
- links interesting phenomena in the DIS and e^+e^- annihilation channels

The Low theorem should be part of theor.phys. curriculum, worldwide.

Complete solution of the $\mathcal{N}=4$ SYM QFT should provide us with a one-line-all-orders description of the major part of QCD dynamics.
What is phenomenology?

Google:
Phenomenologists tend to oppose the acceptance of unobservable matters and grand systems erected in speculative thinking;

[Center for advanced research in phenomenology]

Wikipedia:
Phenomenology is a current in philosophy that takes intuitive experience of phenomena (what presents itself to us in conscious experience) as its starting point and tries to extract the essential features of experiences and the essence of what we experience.

[early 20th century philosophers: Husserl, Merleau-Ponty, Heidegger]
What is phenomenology?

Google:
Phenomenologists tend to oppose the acceptance of unobservable matters and grand systems erected in speculative thinking;

[Center for advanced research in phenomenology]

Wikipedia:
Phenomenology is a current in philosophy that takes intuitive experience of phenomena (what presents itself to us in conscious experience) as its starting point and tries to extract the essential features of experiences and the essence of what we experience.

[Early 20th century philosophers: Husserl, Merleau-Ponty, Heidegger]
What is phenomenology?

Google:
Phenomenologists tend to oppose the acceptance of unobservable matters and grand systems erected in speculative thinking;

[Center for advanced research in phenomenology]

WIKIPEDIA:
Phenomenology is a current in philosophy that takes intuitive experience of phenomena (what presents itself to us in conscious experience) as its starting point and tries to extract the essential features of experiences and the essence of what we experience.

[early 20th century philosophers: Husserl, Merleau-Ponty, Heidegger]
What is phenomenology?

Google:
Phenomenologists tend to oppose the acceptance of unobservable matters and grand systems erected in speculative thinking;

[Center for advanced research in phenomenology]

WIKIPEDIA:
Phenomenology is a current in philosophy that takes intuitive experience of phenomena (what presents itself to us in conscious experience) as its starting point and tries to extract the essential features of experiences and the essence of what we experience.

[early 20th century philosophers: Husserl, Merleau-Ponty, Heidegger]

To understand the essence of what we experience in hadron interactions, we need to study messier phenomena, i.e. those involving scattering off and of nuclei.
What is phenomenology?

Google:
Phenomenologists tend to oppose the acceptance of unobservable matters and grand systems erected in speculative thinking;

Wikipedia:
Phenomenology is a current in philosophy that takes intuitive experience of phenomena (what presents itself to us in conscious experience) as its starting point and tries to extract the essential features of experiences and the essence of what we experience.

[Center for advanced research in phenomenology]

[early 20th century philosophers: Husserl, Merleau-Ponty, Heidegger]

To understand the essence of what we experience in hadron interactions, we need to study messier phenomena, i.e. those involving scattering off and of nuclei.

- a probe for internal structure of hadron projectile: diffraction
 filtering out strongly interacting components (colour transparency)
What is phenomenology?

Google:
Phenomenologists tend to oppose the acceptance of unobservable matters and grand systems erected in speculative thinking;

[Center for advanced research in phenomenology]

WIKIPEDIA:
Phenomenology is a current in philosophy that takes intuitive experience of phenomena (what presents itself to us in conscious experience) as its starting point and tries to extract the essential features of experiences and the essence of what we experience.

[early 20th century philosophers: Husserl, Merleau-Ponty, Heidegger]

To understand the essence of what we experience in hadron interactions, we need to study messier phenomena, i.e. those involving scattering off and of nuclei.

- a probe for internal structure of hadron projectile: diffraction filtering out strongly interacting components (colour transparency)
- new phenomena in strong colour fields (stopping, strangeness, ...)

To understand the essence of what we experience in hadron interactions, we need to study messier phenomena, i.e. those involving scattering off and of nuclei.
What is phenomenology?

Google:
Phenomenologists tend to oppose the acceptance of unobservable matters and grand systems erected in speculative thinking;

WIKIPEDIA:
Phenomenology is a current in philosophy that takes intuitive experience of phenomena (what presents itself to us in conscious experience) as its starting point and tries to extract the essential features of experiences and the essence of what we experience.

[Center for advanced research in phenomenology]

[early 20th century philosophers: Husserl, Merleau-Ponty, Heidegger]

To understand the essence of what we experience in hadron interactions, we need to study messier phenomena, i.e. those involving scattering off and of nuclei.

- a probe for internal structure of hadron projectile: diffraction filtering out strongly interacting components (colour transparency)
- new phenomena in strong colour fields (stopping, strangeness, ...)
- strong colour fields at small coupling! CGC, LPM, ...
A New Interesting Phenomenon in the Medium ...
A New Interesting Phenomenon in the Medium ...