relax

Parton Energy Loss in QCD Medium

Yuri L. Dokshitzer
LPTHE, University Paris VI \& VII PNPI, St. Petersburg CERN TH
Les Houches
March 25 - April 5, 2008

Brownian kicks" of the to-be-radiated gluon:

$$
k_{\perp}^{2} \simeq \mu^{2} \cdot N_{c o h}=\mu^{2} \cdot \frac{t}{\lambda}
$$

Gluon formation time:
"Brownian kicks" of the to-be-radiated gluon:

$$
k_{\perp}^{2} \simeq \mu^{2} \cdot N_{c o h}=\mu^{2} \cdot \frac{t}{\lambda}
$$

Gluon formation time:

Equating the two expressions for t,
"Brownian kicks" of the to-be-radiated gluon:

$$
k_{\perp}^{2} \simeq \mu^{2} \cdot N_{c o h}=\mu^{2} \cdot \frac{t}{\lambda}
$$

Gluon formation time:

$$
t=\frac{\omega}{k_{\perp}^{2}} .
$$

Equating the two expressions for t,

"Brownian kicks" of the to-be-radiated gluon:

$$
k_{\perp}^{2} \simeq \mu^{2} \cdot N_{c o h}=\mu^{2} \cdot \frac{t}{\lambda}
$$

Gluon formation time:

$$
t=\frac{\omega}{k_{\perp}^{2}} .
$$

Equating the two expressions for t,

$$
k_{\perp}^{2} \simeq \sqrt{\frac{\omega \mu^{2}}{\lambda}} ; \quad t=\frac{\lambda k_{\perp}^{2}}{\mu^{2}} ; \quad N_{c o h}=\frac{\omega}{\lambda \mu^{2}} .
$$

"Brownian kicks" of the to-be-radiated gluon:

$$
k_{\perp}^{2} \simeq \mu^{2} \cdot N_{c o h}=\mu^{2} \cdot \frac{t}{\lambda}
$$

Gluon formation time:

$$
t=\frac{\omega}{k_{\perp}^{2}} .
$$

Equating the two expressions for t,

$$
k_{\perp}^{2} \simeq \sqrt{\frac{\omega \mu^{2}}{\lambda}} ; \quad t=\frac{\lambda k_{\perp}^{2}}{\mu^{2}} ; \quad N_{c o h}=\frac{\omega}{\lambda \mu^{2}}
$$

Thus,

$$
\frac{\omega d l}{d \omega d z} \propto \frac{\alpha_{s}}{\lambda} \cdot \frac{1}{N_{c o h}}=\frac{\alpha_{s}}{\lambda} \sqrt{\frac{E_{L P M}}{\omega}}
$$

"Brownian kicks" of the to-be-radiated gluon:

$$
k_{\perp}^{2} \simeq \mu^{2} \cdot N_{c o h}=\mu^{2} \cdot \frac{t}{\lambda}
$$

Gluon formation time:

$$
t=\frac{\omega}{k_{\perp}^{2}} .
$$

Equating the two expressions for t,

$$
k_{\perp}^{2} \simeq \sqrt{\frac{\omega \mu^{2}}{\lambda}} ; \quad t=\frac{\lambda k_{\perp}^{2}}{\mu^{2}} ; \quad N_{c o h}=\frac{\omega}{\lambda \mu^{2}} .
$$

Thus,

$$
\frac{\omega d l}{d \omega d z} \propto \frac{\alpha_{s}}{\lambda} \cdot \frac{1}{N_{c o h}}=\frac{\alpha_{s}}{\lambda} \sqrt{\frac{E_{L P M}}{\omega}}
$$

Finite Medium

$$
c t<L \quad \Longrightarrow \quad \omega<\omega_{\max }=\frac{\mu^{2}}{\lambda} L^{2}
$$

The only (non-perturbative) parameter of the problem, characterising the medium - transport coefficient

$$
\hat{q}=\frac{\mu^{2}}{\lambda}
$$

The only (non-perturbative) parameter of the problem, characterising the medium - transport coefficient

$$
\hat{q}=\frac{\mu^{2}}{\lambda}=\rho \int \quad d Q^{2} Q^{2} \frac{d \sigma}{d Q^{2}}
$$

The only (non-perturbative) parameter of the problem, characterising the medium - transport coefficient

$$
\hat{q}=\frac{\mu^{2}}{\lambda}=\rho \int^{\left[B^{-2}\right]} d Q^{2} Q^{2} \frac{d \sigma}{d Q^{2}}, \quad \mu^{2} \ll Q^{2} \ll B^{-2}=\mu^{2} \frac{L}{\lambda}
$$

Hence, for L large enough stays under perturbative control !

The only (non-perturbative) parameter of the problem, characterising the medium - transport coefficient

$$
\hat{q}=\frac{\mu^{2}}{\lambda}=\rho \int^{\left[B^{-2}\right]} d Q^{2} Q^{2} \frac{d \sigma}{d Q^{2}}, \quad \mu^{2} \ll Q^{2} \ll B^{-2}=\mu^{2} \frac{L}{\lambda}
$$

Hence, for L large enough stays under perturbative control !
To extract from experiment a large \hat{q} - to observe a new "hot" state of quark-gluon matter as compared to a "cold" nucleus.

The only (non-perturbative) parameter of the problem, characterising the medium - transport coefficient

$$
\hat{q}=\frac{\mu^{2}}{\lambda}=\rho \int^{\left[B^{-2}\right]} d Q^{2} Q^{2} \frac{d \sigma}{d Q^{2}}, \quad \mu^{2} \ll Q^{2} \ll B^{-2}=\mu^{2} \frac{L}{\lambda}
$$

Hence, for L large enough stays under perturbative control !
To extract from experiment a large \hat{q} - to observe a new "hot" state of quark-gluon matter as compared to a "cold" nucleus.
Handle on \hat{q} in cold nuclei - for example, medium effects in Drell-Yan pair production, DIS on nuclei
$\hat{q}_{\text {HOT }} \sim 10-30 \hat{q}_{\text {COLD }}$

The only (non-perturbative) parameter of the problem, characterising the medium - transport coefficient

$$
\hat{q}=\frac{\mu^{2}}{\lambda}=\rho \int^{\left[B^{-2}\right]} d Q^{2} Q^{2} \frac{d \sigma}{d Q^{2}}, \quad \mu^{2} \ll Q^{2} \ll B^{-2}=\mu^{2} \frac{L}{\lambda}
$$

Hence, for L large enough stays under perturbative control !
To extract from experiment a large \hat{q} - to observe a new "hot" state of quark-gluon matter as compared to a "cold" nucleus.
Handle on \hat{q} in cold nuclei - for example, medium effects in Drell-Yan pair production, DIS on nuclei
[François Arleo]
Expectation:

The only (non-perturbative) parameter of the problem, characterising the medium - transport coefficient

$$
\hat{q}=\frac{\mu^{2}}{\lambda}=\rho \int^{\left[B^{-2}\right]} d Q^{2} Q^{2} \frac{d \sigma}{d Q^{2}}, \quad \mu^{2} \ll Q^{2} \ll B^{-2}=\mu^{2} \frac{L}{\lambda}
$$

Hence, for L large enough stays under perturbative control !
To extract from experiment a large \hat{q} - to observe a new "hot" state of quark-gluon matter as compared to a "cold" nucleus.
Handle on \hat{q} in cold nuclei - for example, medium effects in Drell-Yan pair production, DIS on nuclei
[François Arleo]
Expectation:

$$
\hat{q}_{\mathrm{HOT}} \sim 10-30 \hat{q}_{\mathrm{COLD}}
$$

Imagine a target hit by a relativistic projectile.

Imagine a target hit by a relativistic projectile.

A fast nucleon

Imagine a target hit by a relativistic projectile.

A fast nucleon \Longrightarrow

Imagine a target hit by a relativistic projectile.

A fast nucleon \Longrightarrow
or a he-e-e-eavy ion

Imagine a target hit by a relativistic projectile.

A fast nucleon \qquad
or a he-e-e-eavy ion :

Imagine a target hit by a relativistic projectile.
A difficult question is that of scaling.

facing music of the spheres

Imagine a target hit by a relativistic projectile.

A difficult question is that of scaling.
To be able to state that "new" physics manifests itself we better understand what would have to be expected if the physics were "old "?

facing music of the spheres

Imagine a target hit by a relativistic projectile.

A difficult question is that of scaling.
To be able to state that "new" physics manifests itself we better understand what would have to be expected if the physics were "old "?

How to compare a quantity one measures in $A A$ (or $p A$) collisions, with the one simply rescaled from an elementary $p p$ interaction?

facing music of the spheres

Imagine a target hit by a relativistic projectile.

A difficult question is that of scaling.
To be able to state that "new" physics manifests itself we better understand what would have to be expected if the physics were "old "?

How to compare a quantity one measures in $A A$ (or $p A$) collisions, with the one simply rescaled from an elementary $p p$ interaction?
It is in this harmlessly looking "simply rescaled" where the devil resides.

Imagine a target hit by a relativistic projectile.

A difficult question is that of scaling.
To be able to state that "new" physics manifests itself we better understand what would have to be expected if the physics were "old "?

How to compare a quantity one measures in $A A$ (or $p A$) collisions, with the one simply rescaled from an elementary $p p$ interaction? It is in this harmlessly looking "simply rescaled" where the devil resides.

Should a given observable in $A A$ interactions scale with the number of participating nucleons (which may be as large as $n_{p}=2 A$) or instead as the number of elementary nucleon-nucleon collisions, $n_{c} \propto A^{4 / 3}$?

Imagine a target hit by a relativistic projectile.

A difficult question is that of scaling.
To be able to state that "new" physics manifests itself we better understand what would have to be expected if the physics were "old"?

How to compare a quantity one measures in $A A$ (or $p A$) collisions, with the one simply rescaled from an elementary $p p$ interaction?
It is in this harmlessly looking "simply rescaled" where the devil resides.
Should a given observable in $A A$ interactions scale with the number of participating nucleons (which may be as large as $n_{p}=2 A$) or instead as the number of elementary nucleon-nucleon collisions, $n_{c} \propto A^{4 / 3}$?

Imagine a target hit by a relativistic projectile.

A difficult question is that of scaling.
To be able to state that "new" physics manifests itself we better understand what would have to be expected if the physics were "old"?

How to compare a quantity one measures in $A A$ (or $p A$) collisions, with the one simply rescaled from an elementary $p p$ interaction? It is in this harmlessly looking "simply rescaled" where the devil resides.

Should a given observable in $A A$ interactions scale with the number of participating nucleons (which may be as large as $n_{p}=2 A$) or instead as the number of elementary nucleon-nucleon collisions, $n_{c} \propto A^{4 / 3}$?

Colour dynamics in $p p, p A, A B$

Colour dynamics in $p p, p A, A B$

So, collisions or paricipants?

Colour dynamics in $p p, p A, A B$

So, collisions or paricipants?
Hard interactions are commonly expected to scale as n_{c}, soft — as n_{p}.

Colour and Nuclei

Colour dynamics in $p p, p A, A B$

So, collisions or paricipants ?
Hard interactions are commonly expected to scale as n_{c}, soft - as n_{p}.
The QCD LPM effect gives a striking example to the contrary ...

Quark inelastic scattering scenario

Quark inelastic scattering scenario : one gluon exchange

Quark inelastic scattering scenario : one gluon exchange

Quark inelastic scattering scenario : one gluon exchange

Meson inelastic scattering scenario: gluon exchange

= two "quark chains"

Meson inelastic scattering scenario: gluon exchange

= two "quark chains" known as the Pomeron

Single scattering scenario

Single scattering scenario

Single scattering scenario

Coherence of the diquark ain't broken:

Single scattering scenario

Coherence of the diquark ain't broken:

Kick it twice to break the coherence of the valence quarks

Kick it twice to break the coherence of the valence quarks

Kick it twice to break the coherence of the valence quarks

Proton is "fragile"
Expect the baryon quantum number to sink into the sea :

$$
B(1) \rightarrow M(1 / 3)+M(1 / 3)+M(1 / 3)+\ldots+B(0)
$$

Baryons disappear from the fragmentation region

Baryons disappear from the fragmentation region

CERN $\sqrt{s}=17 \mathrm{GeV}$ (NA49)

- in Pb Pb collisions

Baryons disappear from the fragmentation region

CERN $\sqrt{s}=17 \mathrm{GeV}$ (NA49)

- in Pb Pb collisions

Baryons disappear from the fragmentation region

CERN $\sqrt{s}=17 \mathrm{GeV}$ (NA49)

- in Pb Pb collisions
- in p Pb collisions

Baryons disappear from the fragmentation region

CERN $\sqrt{s}=17 \mathrm{GeV}$ (NA49)

- in Pb Pb collisions
- in p Pb collisions
- $\left\langle x_{F}\right\rangle$ of net protons

ν - number of collisions

Baryons disappear from the fragmentation region

CERN $\sqrt{s}=17 \mathrm{GeV}$ (NA49)

- in Pb Pb collisions
- in p Pb collisions
- $\left\langle x_{F}\right\rangle$ of net protons

ν — number of collisions

Known as Proton Stopping.

Baryons disappear from the fragmentation region

CERN $\sqrt{s}=17 \mathrm{GeV}$ (NA49)

- in Pb Pb collisions
- in p Pb collisions
- $\left\langle x_{F}\right\rangle$ of net protons

ν - number of collisions
Known as Proton Stopping. Better be called Proton Decay

One gluon exchange: accompanying radiation

One gluon exchange: accompanying radiation

$$
-\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}}
$$

$$
+\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}}
$$

$$
+\frac{\mathbf{q}_{\perp}-\mathbf{k}_{\perp}}{\left(\mathbf{q}_{\perp}-\mathbf{k}_{\perp}\right)^{2}}
$$

One gluon exchange: accompanying radiation

$$
-\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}} \mathbf{T}^{\mathrm{b}} \mathbf{T}^{\mathrm{a}}+\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}} \mathbf{T}^{\mathrm{a}} \mathbf{T}^{\mathrm{b}}+\frac{\mathbf{q}_{\perp}-\mathbf{k}_{\perp}}{\left(\mathbf{q}_{\perp}-\mathbf{k}_{\perp}\right)^{2}} i f_{a b c} \mathbf{T}^{\mathrm{c}}
$$

One gluon exchange: accompanying radiation

$$
-\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}} \mathbf{T}^{\mathrm{b}} \mathbf{T}^{\mathrm{a}}+\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}} \boldsymbol{T}^{\mathrm{a}} \mathbf{T}^{\mathrm{b}}+\frac{\mathbf{q}_{\perp}-\mathbf{k}_{\perp}}{\left(\mathbf{q}_{\perp}-\mathbf{k}_{\perp}\right)^{2}} i f_{a b c} \mathbf{T}^{\mathrm{c}}=i f_{a b c} \mathbf{T}^{\mathrm{c}} \cdot\left[\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}}+\frac{\mathbf{q}_{\perp}-\mathbf{k}_{\perp}}{\left(\mathbf{q}_{\perp}-\mathbf{k}_{\perp}\right)^{2}}\right]
$$

One gluon exchange: accompanying radiation

$$
-\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}} \mathbf{T}^{\mathbf{b}} \mathbf{T}^{\mathbf{a}}+\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}} \mathbf{T}^{\mathrm{a}} \mathbf{T}^{\mathbf{b}}+\frac{\mathbf{q}_{\perp}-\mathbf{k}_{\perp}}{\left(\mathbf{q}_{\perp}-\mathbf{k}_{\perp}\right)^{2}} i f_{a b c} \mathbf{T}^{\mathbf{c}}=i f_{a b c} \mathbf{T}^{\mathbf{c}} \cdot\left[\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}}+\frac{\mathbf{q}_{\perp}-\mathbf{k}_{\perp}}{\left(\mathbf{q}_{\perp}-\mathbf{k}_{\perp}\right)^{2}}\right]
$$

- Accompanying gluon radiation spectrum :

$$
\begin{aligned}
& d \omega / \omega \Longrightarrow \text { rapidity plateau; } \\
& k_{\perp}<q_{\perp} \Longrightarrow \text { finite transverse momenta. }
\end{aligned}
$$

One gluon exchange: accompanying radiation

$-\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}} \mathbf{T}^{\mathbf{b}} \mathbf{T}^{\mathbf{a}}+\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}} \mathbf{T}^{\mathbf{a}} \mathbf{T}^{\mathbf{b}}+\frac{\mathbf{q}_{\perp}-\mathbf{k}_{\perp}}{\left(\mathbf{q}_{\perp}-\mathbf{k}_{\perp}\right)^{2}} i f_{a b c} \mathbf{T}^{\mathbf{c}}=i f_{a b c} \mathbf{T}^{\mathrm{c}} \cdot\left[\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}}+\frac{\mathbf{q}_{\perp}-\mathbf{k}_{\perp}}{\left(\mathbf{q}_{\perp}-\mathbf{k}_{\perp}\right)^{2}}\right]$
$\Longrightarrow \quad$ scattering cross section of the projectile

multiple collisions and Hadron Multiplicity

One gluon exchange: accompanying radiation

- Particle density is universal - it does not depend on the projectile : $\left(i f_{a b c}\right)^{2} \rightarrow N_{c} \rightarrow$ one Pomeron.

Conservation of Colour at work

multiple collisions and Hadron Multiplicity

One gluon exchange: accompanying radiation

$$
-\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}} \mathbf{T}^{\mathbf{b}} \mathbf{T}^{\mathbf{a}}+\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}} \mathbf{T}^{\mathbf{a}} \mathbf{T}^{\mathbf{b}}+\frac{\mathbf{q}_{\perp}-\mathbf{k}_{\perp}}{\left(\mathbf{q}_{\perp}-\mathbf{k}_{\perp}\right)^{2}} i f_{a b c} \mathbf{T}^{\mathbf{c}}=i f_{a b c} \mathbf{T}^{\mathbf{c}} \cdot\left[\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}}+\frac{\mathbf{q}_{\perp}-\mathbf{k}_{\perp}}{\left(\mathbf{q}_{\perp}-\mathbf{k}_{\perp}\right)^{2}}\right]
$$

- Particle density is universal - it does not depend on the projectile : $\left(i f_{a b c}\right)^{2} \rightarrow N_{c} \rightarrow$ one Pomeron.

Conservation of Colour at work

- Multiple scattering of a quark (meson)

Multiple collisions of a (2-quark) pion

Consider double scattering (two gluon exchange)
In meson scattering only two colour representations can be realized

Consider double scattering (two gluon exchange)
The (3-quark) proton is more capacious, but still ...

Consider double scattering (two gluon exchange)
The (3-quark) proton is more capacious, but still ...
Calculate the average colour charge of the two-gluon system:

$$
\frac{1}{64} \cdot 0+\frac{8+8}{64} \cdot 3+\frac{10+\overline{10}}{64} \cdot 6+\frac{27}{64} \cdot 8=6=2 \cdot N_{c} \Longrightarrow \begin{aligned}
& \text { Double density } \\
& \text { of hadrons } \\
& =2 \text { Pomerons }
\end{aligned}
$$

Consider double scattering (two gluon exchange)
The (3-quark) proton is more capacious, but still ...
Calculate the average colour charge of the two-gluon system:

$$
\frac{1}{64} \cdot 0+\frac{8+8}{64} \cdot 3+\frac{10+\overline{10}}{64} \cdot 6+\frac{27}{64} \cdot 8=6=2 \cdot N_{c} \Longrightarrow \begin{aligned}
& \text { Double density } \\
& \text { of hadrons } \\
& =2 \text { Pomerons }
\end{aligned}
$$

Cannot be realized on a valence-built proton :

$$
\frac{1}{27} \cdot 0+\frac{8+8}{27} \cdot 3+\frac{10}{27} \cdot 6=4
$$

Consider double scattering (two gluon exchange)
The (3-quark) proton is more capacious, but still ...
Calculate the average colour charge of the two-gluon system:

$$
\frac{1}{64} \cdot 0+\frac{8+8}{64} \cdot 3+\frac{10+\overline{10}}{64} \cdot 6+\frac{27}{64} \cdot 8=6=2 \cdot N_{c} \Longrightarrow \begin{aligned}
& \text { Double density } \\
& \text { of hadrons } \\
& =2 \text { Pomerons }
\end{aligned}
$$

Cannot be realized on a valence-built proton :

$$
\frac{1}{27} \cdot 0+\frac{8+8}{27} \cdot 3+\frac{10}{27} \cdot 6=4
$$

Nowhere near
2 Pomerons

Successive collisions of a projectile with a limited colour capacity do not produce much of additional hadron yield

Successive collisions of a projectile with a limited colour capacity do not produce much of additional hadron yield

Successive collisions of a projectile with a limited colour capacity do not produce much of additional hadron yield

Where are then multiple Pomerons ??

Look at the by-product of the Landau-Pomeranchuk-Migdal physics ...

LPM effect in $h A$ scattering

Inclusive spectrum of medium-induced gluon radiation:

$$
\frac{\omega d n}{d \omega} \simeq \frac{\alpha_{s}}{\pi} \cdot\left[\frac{L}{\lambda}\right] \cdot \sqrt{\frac{\mu^{2} \lambda}{\omega}}, \quad \mu^{2} \lambda<\omega<\mu^{2} \lambda\left[\frac{L}{\lambda}\right]^{2}
$$

Inclusive spectrum of medium-induced gluon radiation:

$$
\frac{\omega d n}{d \omega} \simeq \frac{\alpha_{s}}{\pi} \cdot\left[\frac{L}{\lambda}\right] \cdot \sqrt{\frac{\mu^{2} \lambda}{\omega}}, \quad \mu^{2} \lambda<\omega<\mu^{2} \lambda\left[\frac{L}{\lambda}\right]^{2}
$$

Bethe-Heitler spectrum (independent radiation off each scattering centre)

Inclusive spectrum of medium-induced gluon radiation:

$$
\frac{\omega d n}{d \omega} \simeq \frac{\alpha_{s}}{\pi} \cdot\left[\frac{L}{\lambda}\right] \cdot \sqrt{\frac{\mu^{2} \lambda}{\omega}}, \quad \mu^{2} \lambda<\omega<\mu^{2} \lambda\left[\frac{L}{\lambda}\right]^{2}
$$

The number of collisions of the projectile, $n_{c}=L / \lambda$

Inclusive spectrum of medium-induced gluon radiation:

$$
\frac{\omega d n}{d \omega} \simeq \frac{\alpha_{s}}{\pi} \cdot\left[\frac{L}{\lambda}\right] \cdot \sqrt{\frac{\mu^{2} \lambda}{\omega}}, \quad \mu^{2} \lambda<\omega<\mu^{2} \lambda\left[\frac{L}{\lambda}\right]^{2}
$$

The coherent suppression factor

Inclusive spectrum of medium-induced gluon radiation:

$$
\frac{\omega d n}{d \omega} \simeq \frac{\alpha_{s}}{\pi} \cdot\left[\frac{L}{\lambda}\right] \cdot \sqrt{\frac{\mu^{2} \lambda}{\omega}}, \quad \mu^{2} \lambda<\omega<\mu^{2} \lambda\left[\frac{L}{\lambda}\right]^{2}
$$

$N_{\text {coh. }}>1$ scattering centres that fall inside the formation length of the gluon act as a single scatterer.

$$
N_{\text {coh. }} \simeq \frac{\ell_{\text {coh. }}}{\lambda} \simeq \frac{1}{\lambda} \cdot \frac{\omega}{k_{\perp}^{2}} .
$$

Inclusive spectrum of medium-induced gluon radiation:

$$
\frac{\omega d n}{d \omega} \simeq \frac{\alpha_{s}}{\pi} \cdot\left[\frac{L}{\lambda}\right] \cdot \sqrt{\frac{\mu^{2} \lambda}{\omega}}, \quad \mu^{2} \lambda<\omega<\mu^{2} \lambda\left[\frac{L}{\lambda}\right]^{2}
$$

$N_{\text {coh. }}>1$ scattering centres that fall inside the formation length of the gluon act as a single scatterer. At the same time, the gluon is subject to Brownian motion in the transverse momentum plane:

$$
k_{\perp}^{2} \simeq N_{\text {coh. }} \cdot \mu^{2}, \quad N_{\text {coh. }} \simeq \frac{\ell_{\text {coh. }}}{\lambda} \simeq \frac{1}{\lambda} \cdot \frac{\omega}{k_{\perp}^{2}} .
$$

Inclusive spectrum of medium-induced gluon radiation:

$$
\frac{\omega d n}{d \omega} \simeq \frac{\alpha_{s}}{\pi} \cdot\left[\frac{L}{\lambda}\right] \cdot \sqrt{\frac{\mu^{2} \lambda}{\omega}}, \quad \mu^{2} \lambda<\omega<\mu^{2} \lambda\left[\frac{L}{\lambda}\right]^{2}
$$

$N_{\text {coh. }}>1$ scattering centres that fall inside the formation length of the gluon act as a single scatterer. At the same time, the gluon is subject to Brownian motion in the transverse momentum plane:

$$
k_{\perp}^{2} \simeq N_{\text {coh. }} \cdot \mu^{2}, \quad N_{\text {coh. }} \simeq \frac{\ell_{\text {coh. }}}{\lambda} \simeq \frac{1}{\lambda} \cdot \frac{\omega}{k_{\perp}^{2}} .
$$

Combining the two estimates results in

$$
N_{\text {coh. }} \simeq \sqrt{\frac{\omega}{\mu^{2} \lambda}} \quad \text { and } \quad k_{\perp}^{2} \simeq \sqrt{\frac{\mu^{2}}{\lambda} \cdot \omega}
$$

Inclusive spectrum of medium-induced gluon radiation:

$$
\frac{\omega d n}{d \omega} \simeq \frac{\alpha_{s}}{\pi} \cdot\left[\frac{L}{\lambda}\right] \cdot \sqrt{\frac{\mu^{2} \lambda}{\omega}}, \quad \mu^{2} \lambda<\omega<\mu^{2} \lambda\left[\frac{L}{\lambda}\right]^{2}
$$

$N_{\text {coh. }}>1$ scattering centres that fall inside the formation length of the gluon act as a single scatterer. At the same time, the gluon is subject to Brownian motion in the transyerse momentum plane:

$$
k_{\perp}^{2} \simeq N_{\text {corl }} \cdot \mu^{2}, \quad N_{\text {coh. }} \simeq \frac{\ell_{\text {coh. }}}{\lambda} \simeq \frac{1}{\lambda} \cdot \frac{\omega}{k_{\perp}^{2}} .
$$

Combining the two estimates results in

$$
N_{\text {coh. }} \simeq \sqrt{\frac{\omega}{\mu^{2} \lambda}} \quad \text { and } \quad k_{\perp}^{2} \simeq \sqrt{\frac{\mu^{2}}{\lambda} \cdot \omega}
$$

It is the factor $N_{\text {coh. }}^{-1}$ that describes the coherent LPM suppression.

$\underline{\text { Rapidity distribution of LPM gluons } n_{c}}$

$$
k_{\perp}^{2} \simeq \sqrt{\frac{\mu^{2}}{\lambda} \cdot \omega}
$$

Here comes confusing part ...

The more energetic gluons have typically larger transverse momenta.

Rapidity distribution of LPM gluons n_{c}

$$
k_{\perp}^{2} \simeq \sqrt{\frac{\mu^{2}}{\lambda} \cdot \omega}
$$

Here comes confusing part ...
The more energetic gluons have typically larger transverse momenta. This means that the radiation corresponding to larger hardness scales follows the participant scaling

Rapidity distribution of LPM gluons n_{c}

$$
k_{\perp}^{2} \simeq \sqrt{\frac{\mu^{2}}{\lambda} \cdot \omega}
$$

Here comes confusing part ...

The more energetic gluons have typically larger transverse momenta. This means that the radiation corresponding to larger hardness scales follows the participant scaling while the less hard radiation (smaller k_{\perp} and energies) obeys the collisional scaling pattern, in a striking contradiction with the standard expectation!
$\underline{\text { Rapidity distribution of LPM gluons }}{ }^{n_{c}}$

$$
k_{\perp}^{2} \simeq \sqrt{\frac{\mu^{2}}{\lambda} \cdot \omega}
$$

Here comes confusing part ...

The more energetic gluons have typically larger transverse momenta. This means that the radiation corresponding to larger hardness scales follows the participant scaling while the less hard radiation (smaller k_{\perp} and energies) obeys the collisional/scaling pattern, in a striking contradiction with the standard expectation!

Coherent radiation $=$ "participant" scaling in the projectile region
$\underline{\text { Rapidity distribution of LPM gluons }}{ }^{n_{c}}$

$$
k_{\perp}^{2} \simeq \sqrt{\frac{\mu^{2}}{\lambda} \cdot \omega}
$$

Here comes confusing part ...

The more energetic gluons have typically larger transverse momenta. This means that the radiation corresponding to larger hardness scales follows the participant scaling while the less hard radiation (smaller k_{\perp} and energies) obeys the collisional/scaling pattern, in a striking contradiction with the standard expectation!

Coherent radiation $=$ "participant" scaling in the projectile region
Transition region, down to "collision" scaling; occupies a finite rapidity range (fragmentation of the target nucleus)
$\underline{\text { Rapidity distribution of LPM gluons }}{ }^{n_{c}}$

$$
k_{\perp}^{2} \simeq \sqrt{\frac{\mu^{2}}{\lambda} \cdot \omega}
$$

Here comes confusing part ...

The more energetic gluons have typically larger transverse momenta. This means that the radiation corresponding to larger hardness scales follows the participant scaling while the less hard radiation (smaller k_{\perp} and energies) obeys the collisional/scaling pattern, in a striking contradiction with the standard expectation!

Coherent radiation $=$ "participant" scaling in the projectile region
Transition region, down to "collision" scaling; occupies a finite rapidity range (fragmentation of the target nucleus)

Many successive collisions ... but only one Pomeron.

Many successive collisions ... but only one Pomeron. The destructive LPM coherence invalidates the multi-Pomeron exchange picture?!

Many successive collisions ... but only one Pomeron. The destructive LPM coherence invalidates the multi-Pomeron exchange picture?! Does it indeed?

Recall the good old Amati-Fubini-Stanghellini puzzle.

Recall the good old Amati-Fubini-Stanghellini puzzle.
Successive scatterings of a parton DO NOT produce branch points in the complex J plane (Reggeon loops).

Colour coherence and breathing projectiles

Recall the good old Amati-Fubini-Stanghellini puzzle.
Successive scatterings of a parton DO NOT produce branch points in the complex J plane (Reggeon loops).

The Mandelstam construction generates
"Reggeon cuts", with Pomerons attached to
 separate - coexisting - partons.

Colour coherence and breathing projectiles

Recall the good old Amati-Fubini-Stanghellini puzzle.
Successive scatterings of a parton DO NOT produce branch points in the complex J plane (Reggeon loops).

The Mandelstam construction generates "Reggeon cuts", with Pomerons attached to separate - coexisting - partons.

Colour coherence and breathing projectiles

Recall the good old Amati-Fubini-Stanghellini puzzle.
Successive scatterings of a parton DO NOT produce branch points in the complex J plane (Reggeon loops).

The Mandelstam construction generates "Reggeon cuts", with Pomerons attached to
 separate - coexisting - partons.

To have n_{c} Pomerons attached, one must compare n_{c} with the number of independent (incoherent, resolved) partons inside the projectile :

$$
C\left(x_{h}, Q_{r e s}\right)=\int_{x_{h}}^{1} \frac{d x}{x}\left[x G_{p r o j}\left(x, Q_{r e s}^{2}\right)\right], \quad x_{p r o j}=1
$$

Colour coherence and breathing projectiles

Recall the good old Amati-Fubini-Stanghellini puzzle.
Successive scatterings of a parton DO NOT produce branch points in the complex J plane (Reggeon loops).

The Mandelstam construction generates "Reggeon cuts", with Pomerons attached to
 separate - coexisting - partons.

To have n_{c} Pomerons attached, one must compare n_{c} with the number of independent (incoherent, resolved) partons inside the projectile :

$$
C\left(x_{h}, Q_{r e s}\right)=\int_{x_{h}}^{1} \frac{d x}{x}\left[x G_{p r o j}\left(x, Q_{r e s}^{2}\right)\right], \quad x_{p r o j}=1 .
$$

Parton capacity of the projectile depends on the energy $\left(x_{h}\right)$ and on the resolution - $k_{\perp h}$ of the observed final state hadron h.

Confinement in Multiple Collisions

In the framework of the standard hadron (multi-Pomeron) picture (e.g., the successful Dual Parton Model of Capella \& Kaidalov et al.) one includes final state interactions to explain spectacular heavy ion phenomena like J / ψ suppression, enhancement of strangeness, etc.

Confinement in Multiple Collisions

In the framework of the standard hadron (multi-Pomeron) picture (e.g., the successful Dual Parton Model of Capella \& Kaidalov et al.) one includes final state interactions to explain spectacular heavy ion phenomena like J / ψ suppression, enhancement of strangeness, etc.
"Final state interaction" is a synonym to "non-independent fragmentation" — cross-talking Pomerons, overlapping strings, "string ropes", ...

Confinement in Multiple Collisions

In the framework of the standard hadron (multi-Pomeron) picture (e.g., the successful Dual Parton Model of Capella \& Kaidalov et al.) one includes final state interactions to explain spectacular heavy ion phenomena like J / ψ suppression, enhancement of strangeness, etc.
"Final state interaction" is a synonym to "non-independent fragmentation" — cross-talking Pomerons, overlapping strings, "string ropes", ...

From the point of view of the colour dynamics, in $p A$ and $A A$ environments we face an intrinsically new, unexplored question:

Confinement in Multiple Collisions

In the framework of the standard hadron (multi-Pomeron) picture (e.g., the successful Dual Parton Model of Capella \& Kaidalov et al.) one includes final state interactions to explain spectacular heavy ion phenomena like J / ψ suppression, enhancement of strangeness, etc.
"Final state interaction" is a synonym to "non-independent fragmentation" — cross-talking Pomerons, overlapping strings, "string ropes", ...

From the point of view of the colour dynamics, in $p A$ and $A A$ environments we face an intrinsically new, unexplored question:

After the pancakes separate, at each impact parameter we have a dense colour field whose strength corresponds to $n_{p} / \mathrm{fm}^{2} \propto A^{1 / 3}$ "strings".

How does the vacuum break up in stronger than usual colour fields?

Confinement in Multiple Collisions

In the framework of the standard hadron (multi-Pomeron) picture (e.g., the successful Dual Parton Model of Capella \& Kaidalov et al.) one includes final state interactions to explain spectacular heavy ion phenomena like J / ψ suppression, enhancement of strangeness, etc.
"Final state interaction" is a synonym to "non-independent fragmentation" — cross-talking Pomerons, overlapping strings, "string ropes", ...

From the point of view of the colour dynamics, in $p A$ and $A A$ environments we face an intrinsically new, unexplored question:

After the pancakes separate, at each impact parameter we have a dense colour field whose strength corresponds to $n_{p} / \mathrm{fm}^{2} \propto A^{1 / 3}$ "strings".

How does the vacuum break up in stronger than usual colour fields?
LEP left the question unanswered.

Confinement in Multiple Collisions

In the framework of the standard hadron (multi-Pomeron) picture (e.g., the successful Dual Parton Model of Capella \& Kaidalov et al.) one includes final state interactions to explain spectacular heavy ion phenomena like J / ψ suppression, enhancement of strangeness, etc.
"Final state interaction" is a synonym to "non-independent fragmentation" — cross-talking Pomerons, overlapping strings, "string ropes", ...

From the point of view of the colour dynamics, in $p A$ and $A A$ environments we face an intrinsically new, unexplored question:

After the pancakes separate, at each impact parameter we have a dense colour field whose strength corresponds to $n_{p} / \mathrm{fm}^{2} \propto A^{1 / 3}$ "strings".

How does the vacuum break up in stronger than usual colour fields?
LEP left the question unanswered.
Surprises to be expected. Mind your head.

Medium induced radiation should lead to

Medium induced radiation should lead to

- softening of particle spectra in a jet muddling thru medium,

Medium induced radiation should lead to

- softening of particle spectra in a jet muddling thru medium,
- increase of (soft) particle multiplicity

Medium induced radiation should lead to

- softening of particle spectra in a jet muddling thru medium,
- increase of (soft) particle multiplicity, due to particles with
- specific relation btw energy and emission angle

Medium induced radiation should lead to

- softening of particle spectra in a jet muddling thru medium,
- increase of (soft) particle multiplicity, due to particles with
- specific relation btw energy and emission angle

Medium induced radiation should lead to

- softening of particle spectra in a jet muddling thru medium,
- increase of (soft) particle multiplicity, due to particles with
- specific relation btw energy and emission angle

\Longrightarrow
 Jet Quenching

exhaustively covered by Urs in his last lecture

Isn't QCD actually
 simpler than it looks?

Isn't QCD actually
 simpler than it looks?

A couple of hints

2- and 3-prong colour antennae are sort of "trivial" coherence being taken care of, the answers turned out to be essentially additive. The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters)

2- and 3-prong colour antennae are sort of "trivial": coherence being taken care of, the answers turned out to be essentially additive.

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon-gluon scattering.

2- and 3-prong colour antennae are sort of "trivial": coherence being taken care of, the answers turned out to be essentially additive.

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters) especially so for gluon-gluon scattering.

2- and 3-prong colour antennae are sort of "trivial": coherence being taken care of, the answers turned out to be essentially additive.

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon-gluon scattering.

2- and 3-prong colour antennae are sort of "trivial": coherence being taken care of, the answers turned out to be essentially additive.

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon-gluon scattering.

The difficult quest of sorting out large angle gluon radiation in all orders in $\left(\alpha_{s} \log Q\right)^{n}$ was set up and solved by George Sterman and collaborators.

2- and 3-prong colour antennae are sort of "trivial": coherence being taken care of, the answers turned out to be essentially additive.

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon-gluon scattering.

The difficult quest of sorting out large angle gluon radiation in all orders in $\left(\alpha_{s} \log Q\right)^{n}$ was set up and solved by George Sterman and collaborators. Here one encounters 6 (5 for $S U(3)$) colour channels that mix with each other under soft gluon radiation

2- and 3-prong colour antennae are sort of "trivial": coherence being taken care of, the answers turned out to be essentially additive.

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon-gluon scattering.

The difficult quest of sorting out large angle gluon radiation in all orders in $\left(\alpha_{s} \log Q\right)^{n}$ was set up and solved by George Sterman and collaborators. Here one encounters 6 (5 for $S U(3)$) colour channels that mix with each other under soft gluon radiation, and the classical picture of gluon (or dipole) multiplication is likely to fail.

A recent
addition to the problem
made one think of a hidden simplicity

2- and 3-prong colour antennae are sort of "trivial": coherence being taken care of, the answers turned out to be essentially additive.

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon-gluon scattering.

The difficult quest of sorting out large angle gluon radiation in all orders in $\left(\alpha_{s} \log Q\right)^{n}$ was set up and solved by George Sterman and collaborators. Here one encounters 6 (5 for $S U(3)$) colour channels that mix with each other under soft gluon radiation, and the classical picture of gluon (or dipole) multiplication is likely to fail.

A recent (2005) addition to the problem made one think of a hidden simplicity ...

Soft anomalous dimension ,

$$
\frac{\partial}{\partial \ln Q} M \propto\left\{-N_{c} \ln \left(\frac{t u}{s^{2}}\right) \cdot \hat{\Gamma}\right\} \cdot M, \quad \hat{\Gamma} V_{i}=E_{i} V_{i}
$$

$6=3+3$. Three eigenvalues are "simple"

Puzzle of large angle Soft Gluon radiation

Soft anomalous dimension ,

$$
\frac{\partial}{\partial \ln Q} M \propto\left\{-N_{c} \ln \left(\frac{t u}{s^{2}}\right) \cdot \hat{\Gamma}\right\} \cdot M, \quad \hat{\Gamma} V_{i}=E_{i} V_{i}
$$

$6=3+3$. Three eigenvalues are "simple".

Puzzle of large angle Soft Gluon radiation

Soft anomalous dimension ,

$$
\frac{\partial}{\partial \ln Q} M \propto\left\{-N_{c} \ln \left(\frac{t u}{s^{2}}\right) \cdot \hat{\Gamma}\right\} \cdot M, \quad \hat{\Gamma} V_{i}=E_{i} V_{i} .
$$

$6=3+3$. Three eigenvalues are "simple".
Three "ain't-so-simple" ones were found to satisfy the cubic equation:

$$
\left[E_{i}-\frac{4}{3}\right]^{3}-\frac{\left(1+3 b^{2}\right)\left(1+3 x^{2}\right)}{3}\left[E_{i}-\frac{4}{3}\right]-\frac{2\left(1-9 b^{2}\right)\left(1-9 x^{2}\right)}{27}=0
$$

where

$$
x=\frac{1}{N_{c}}, \quad b \equiv \frac{\ln (t / s)-\ln (u / s)}{\ln (t / s)+\ln (u / s)}
$$

Soft anomalous dimension ,

$$
\frac{\partial}{\partial \ln Q} M \propto\left\{-N_{c} \ln \left(\frac{t u}{s^{2}}\right) \cdot \hat{\Gamma}\right\} \cdot M, \quad \hat{\Gamma} V_{i}=E_{i} V_{i}
$$

$6=3+3$. Three eigenvalues are "simple".
Three "ain't-so-simple" ones were found to satisfy the cubic equation:

$$
\left[E_{i}-\frac{4}{3}\right]^{3}-\frac{\left(1+3 b^{2}\right)\left(1+3 x^{2}\right)}{3}\left[E_{i}-\frac{4}{3}\right]-\frac{2\left(1-9 b^{2}\right)\left(1-9 x^{2}\right)}{27}=0
$$

where

$$
x=\frac{1}{N_{c}}, \quad b \equiv \frac{\ln (t / s)-\ln (u / s)}{\ln (t / s)+\ln (u / s)}
$$

Mark the mysterious symmetry w.r.t. to $x \rightarrow b$: interchanging internal (group rank) and external (scattering angle) variables of the problem ...

Some news concerning apparent complexity/hidden simplicity of gluon dynamics

Some news concerning apparent complexity/hidden simplicity of gluon dynamics

Have a look at the simplest element of the parton multiplication Hamiltonian (non-singlet anomalous dimension) in three loops, α_{s}^{3}

$$
P_{\mathrm{ns}}^{(2)+}(x)=16 C_{A} C_{F} n_{f}\left(\frac { 1 } { 6 } p _ { \mathrm { qq } } (x) \left[\frac{10}{3} \zeta_{2}-\frac{209}{36}-9 \zeta_{3}-\frac{167}{18} \mathrm{H}_{0}+2 \mathrm{H}_{0} \zeta_{2}-7 \mathrm{H}_{0}\right.\right.
$$

$$
\left.+3 \mathrm{H}_{1,0,0}-\mathrm{H}_{3}\right]+\frac{1}{3} p_{\mathrm{qq}}(-x)\left[\frac{3}{2} \zeta_{3}-\frac{5}{3} \zeta_{2}-\mathrm{H}_{-2,0}-2 \mathrm{H}_{-1} \zeta_{2}-\frac{10}{3} \mathrm{H}_{-1,0}-\mathrm{H}_{-}\right.
$$

$$
\left.+2 \mathrm{H}_{-1,2}+\frac{1}{2} \mathrm{H}_{0} \zeta_{2}+\frac{5}{3} \mathrm{H}_{0,0}+\mathrm{H}_{0,0,0}-\mathrm{H}_{3}\right]+(1-x)\left[\frac{1}{6} \zeta_{2}-\frac{257}{54}-\frac{43}{18} \mathrm{H}_{0}-\right.
$$

$$
-(1+x)\left[\frac{2}{3} \mathrm{H}_{-1,0}+\frac{1}{2} \mathrm{H}_{2}\right]+\frac{1}{3} \zeta_{2}+\mathrm{H}_{0}+\frac{1}{6} \mathrm{H}_{0,0}+\delta(1-x)\left[\frac{5}{4}-\frac{167}{54} \zeta_{2}+\frac{1}{20} \zeta_{2}\right.
$$

$$
+16 C_{A} C_{F}^{2}\left(p _ { \mathrm { qq } } (x) \left[\frac{5}{6} \zeta_{3}-\frac{69}{20} \zeta_{2}^{2}-\mathrm{H}_{-3,0}-3 \mathrm{H}_{-2} \zeta_{2}-14 \mathrm{H}_{-2,-1,0}+3 \mathrm{H}_{-2,0}\right.\right.
$$

$$
-4 \mathrm{H}_{-2,2}-\frac{151}{48} \mathrm{H}_{0}+\frac{41}{12} \mathrm{H}_{0} \zeta_{2}-\frac{17}{2} \mathrm{H}_{0} \zeta_{3}-\frac{13}{4} \mathrm{H}_{0,0}-4 \mathrm{H}_{0,0} \zeta_{2}-\frac{23}{12} \mathrm{H}_{0,0,0}+5 \mathrm{H}
$$

$$
-24 \mathrm{H}_{1} \zeta_{3}-16 \mathrm{H}_{1,-2,0}+\frac{67}{9} \mathrm{H}_{1,0}-2 \mathrm{H}_{1,0} \zeta_{2}+\frac{31}{3} \mathrm{H}_{1,0,0}+11 \mathrm{H}_{1,0,0,0}+8 \mathrm{H}_{1,1,0,0}
$$

$\left.+\frac{67}{9} \mathrm{H}_{2}-2 \mathrm{H}_{2} \zeta_{2}+\frac{11}{3} \mathrm{H}_{2,0}+5 \mathrm{H}_{2,0,0}+\mathrm{H}_{3,0}\right]+p_{\mathrm{qq}}(-x)\left[\frac{1}{4} \zeta_{2}{ }^{2}-\frac{67}{9} \zeta_{2}+\frac{31}{4} \zeta^{2}\right.$ $-32 \mathrm{H}_{-2} \zeta_{2}-4 \mathrm{H}_{-2,-1,0}-\frac{31}{6} \mathrm{H}_{-2,0}+21 \mathrm{H}_{-2,0,0}+30 \mathrm{H}_{-2,2}-\frac{31}{3} \mathrm{H}_{-1} \zeta_{2}-42 \mathrm{H}$ $-4 \mathrm{H}_{-1,-2,0}+56 \mathrm{H}_{-1,-1} \zeta_{2}-36 \mathrm{H}_{-1,-1,0,0}-56 \mathrm{H}_{-1,-1,2}-\frac{134}{9} \mathrm{H}_{-1,0}-42 \mathrm{H}_{-1}$ $+32 \mathrm{H}_{-1,3}-\frac{31}{6} \mathrm{H}_{-1,0,0}+17 \mathrm{H}_{-1,0,0,0}+\frac{31}{3} \mathrm{H}_{-1,2}+2 \mathrm{H}_{-1,2,0}+\frac{13}{12} \mathrm{H}_{0} \zeta_{2}+\frac{29}{2} \mathrm{H}$ $\left.+13 \mathrm{H}_{0,0} \zeta_{2}+\frac{89}{12} \mathrm{H}_{0,0,0}-5 \mathrm{H}_{0,0,0,0}-7 \mathrm{H}_{2} \zeta_{2}-\frac{31}{6} \mathrm{H}_{3}-10 \mathrm{H}_{4}\right]+(1-x)\left[\frac{133}{36}\right.$ $-\frac{167}{4} \zeta_{3}-2 \mathrm{H}_{0} \zeta_{3}-2 \mathrm{H}_{-3,0}+\mathrm{H}_{-2} \zeta_{2}+2 \mathrm{H}_{-2,-1,0}-3 \mathrm{H}_{-2,0,0}+\frac{77}{4} \mathrm{H}_{0,0,0}-\frac{20}{6}$ $\left.+4 \mathrm{H}_{1,0,0}+\frac{14}{3} \mathrm{H}_{1,0}\right]+(1+x)\left[\frac{43}{2} \zeta_{2}-3 \zeta_{2}^{2}+\frac{25}{2} \mathrm{H}_{-2,0}-31 \mathrm{H}_{-1} \zeta_{2}-14 \mathrm{H}_{-1,-}\right.$ $+24 \mathrm{H}_{-1,2}+23 \mathrm{H}_{-1,0,0}+\frac{55}{2} \mathrm{H}_{0} \zeta_{2}+5 \mathrm{H}_{0,0} \zeta_{2}+\frac{1457}{48} \mathrm{H}_{0}-\frac{1025}{36} \mathrm{H}_{0,0}-\frac{155}{6} \mathrm{H}_{2}$

$$
\left.+2 \mathrm{H}_{2,0,0}-3 \mathrm{H}_{4}\right]-5 \zeta_{2}-\frac{1}{2} \zeta_{2}^{2}+50 \zeta_{3}-2 \mathrm{H}_{-3,0}-7 \mathrm{H}_{-2,0}-\mathrm{H}_{0} \zeta_{3}-\frac{37}{2} \mathrm{H}_{0} \zeta_{2}
$$

$$
-2 \mathrm{H}_{0,0} \zeta_{2}+\frac{185}{6} \mathrm{H}_{0,0}-22 \mathrm{H}_{0,0,0}-4 \mathrm{H}_{0,0,0,0}+\frac{28}{3} \mathrm{H}_{2}+6 \mathrm{H}_{3}+\delta(1-x)\left[\frac{151}{64}+\right.
$$

$$
\left.\left.-\frac{247}{60} \zeta_{2}^{2}+\frac{211}{12} \zeta_{3}+\frac{15}{2} \zeta_{5}\right]\right)+16 C_{A}^{2} C_{F}\left(p _ { \mathrm { qq } } (x) \left[\frac{245}{48}-\frac{67}{18} \zeta_{2}+\frac{12}{5} \zeta_{2}^{2}+\frac{1}{2}\right.\right.
$$

$$
+\mathrm{H}_{-3,0}+4 \mathrm{H}_{-2,-1,0}-\frac{3}{2} \mathrm{H}_{-2,0}-\mathrm{H}_{-2,0,0}+2 \mathrm{H}_{-2,2}-\frac{31}{12} \mathrm{H}_{0} \zeta_{2}+4 \mathrm{H}_{0} \zeta_{3}+\frac{389}{72}
$$

$$
-\mathrm{H}_{0,0,0,0}+9 \mathrm{H}_{1} \zeta_{3}+6 \mathrm{H}_{1,-2,0}-\mathrm{H}_{1,0} \zeta_{2}-\frac{11}{4} \mathrm{H}_{1,0,0}-3 \mathrm{H}_{1,0,0,0}-4 \mathrm{H}_{1,1,0,0}+4 \mathrm{I}
$$

$$
\left.+\frac{11}{12} \mathrm{H}_{3}+\mathrm{H}_{4}\right]+p_{\mathrm{qq}}(-x)\left[\frac{67}{18} \zeta_{2}-\zeta_{2}^{2}-\frac{11}{4} \zeta_{3}-\mathrm{H}_{-3,0}+8 \mathrm{H}_{-2} \zeta_{2}+\frac{11}{6} \mathrm{H}_{-2,0}\right.
$$

$$
-3 \mathrm{H}_{-1,0,0,0}+\frac{11}{3} \mathrm{H}_{-1} \zeta_{2}+12 \mathrm{H}_{-1} \zeta_{3}-16 \mathrm{H}_{-1,-1} \zeta_{2}+8 \mathrm{H}_{-1,-1,0,0}+16 \mathrm{H}_{-1,-1,2}
$$

$$
-8 \mathrm{H}_{-2,2}+11 \mathrm{H}_{-1,0} \zeta_{2}+\frac{11}{6} \mathrm{H}_{-1,0,0}-\frac{11}{3} \mathrm{H}_{-1,2}-8 \mathrm{H}_{-1,3}-\frac{3}{4} \mathrm{H}_{0}-\frac{1}{6} \mathrm{H}_{\underline{\underline{0}}} \zeta_{2}-4
$$

$$
\begin{aligned}
& \left.-3 \mathrm{H}_{0,0} \zeta_{2}-\frac{31}{12} \mathrm{H}_{0,0,0}+\mathrm{H}_{0,0,0,0}+2 \mathrm{H}_{2} \zeta_{2}+\frac{11}{6} \mathrm{H}_{3}+2 \mathrm{H}_{4}\right]+(1-x)\left[\frac{1883}{108}-\frac{1}{2}\right. \\
& -\mathrm{H}_{-2,-1,0}+\frac{1}{2} \mathrm{H}_{-3,0}-\frac{1}{2} \mathrm{H}_{-2} \zeta_{2}+\frac{1}{2} \mathrm{H}_{-2,0,0}+\frac{523}{36} \mathrm{H}_{0}+\mathrm{H}_{0} \zeta_{3}-\frac{13}{3} \mathrm{H}_{0,0}-\frac{5}{2} \mathrm{H} \\
& \left.-2 \mathrm{H}_{1,0,0}\right]+(1+x)\left[8 \mathrm{H}_{-1} \zeta_{2}+4 \mathrm{H}_{-1,-1,0}+\frac{8}{3} \mathrm{H}_{-1,0}-5 \mathrm{H}_{-1,0,0}-6 \mathrm{H}_{-1,2}-\frac{13}{3}\right. \\
& -\frac{43}{4} \zeta_{3}-\frac{5}{2} \mathrm{H}_{-2,0}-\frac{11}{2} \mathrm{H}_{0} \zeta_{2}-\frac{1}{2} \mathrm{H}_{2} \zeta_{2}-\frac{5}{4} \mathrm{H}_{0,0} \zeta_{2}+7 \mathrm{H}_{2}-\frac{1}{4} \mathrm{H}_{2,0,0}+3 \mathrm{H}_{3}+\frac{3}{4}
\end{aligned}
$$

$$
+\frac{1}{4} \zeta_{2}^{2}-\frac{8}{3} \zeta_{2}+\frac{17}{2} \zeta_{3}+\mathrm{H}_{-2,0}-\frac{19}{2} \mathrm{H}_{0}+\frac{5}{2} \mathrm{H}_{0} \zeta_{2}-\mathrm{H}_{0} \zeta_{3}+\frac{13}{3} \mathrm{H}_{0,0}+\frac{5}{2} \mathrm{H}_{0,0,0}
$$

$$
\left.-\delta(1-x)\left[\frac{1657}{576}-\frac{281}{27} \zeta_{2}+\frac{1}{8} \zeta_{2}^{2}+\frac{97}{9} \zeta_{3}-\frac{5}{2} \zeta_{5}\right]\right)+16 C_{F} n_{f}^{2}\left(\frac { 1 } { 1 8 } p _ { \mathrm { qq } } (x) \left[\mathrm{H}_{0,}\right.\right.
$$

$$
\left.+(1-x)\left[\frac{13}{54}+\frac{1}{9} \mathrm{H}_{0}\right]-\delta(1-x)\left[\frac{17}{144}-\frac{5}{27} \zeta_{2}+\frac{1}{9} \zeta_{3}\right]\right)+16 C_{F}^{2} n_{f}\left(\frac{1}{3} p_{\mathrm{qq}}(x)[\right.
$$

$$
\left.-\frac{55}{16}+\frac{5}{8} \mathrm{H}_{0}+\mathrm{H}_{0} \zeta_{2}+\frac{3}{2} \mathrm{H}_{0,0}-\mathrm{H}_{0,0,0}-\frac{10}{3} \mathrm{H}_{1,0}-\frac{10}{3} \mathrm{H}_{2}-2 \mathrm{H}_{2,0}-2 \mathrm{H}_{3}\right]+\frac{2}{3}
$$

$$
-\frac{3}{2} \zeta_{3}+\mathrm{H}_{-2,0}+2 \mathrm{H}_{-1} \zeta_{2}+\frac{10}{3} \mathrm{H}_{-1,0}+\mathrm{H}_{-1,0,0}-2 \mathrm{H}_{-1,2}-\frac{1}{2} \mathrm{H}_{0} \zeta_{2}-\frac{5}{3} \mathrm{H}_{0,0}-
$$

$$
-(1-x)\left[\frac{10}{9}+\frac{19}{18} \mathrm{H}_{0,0}-\frac{4}{3} \mathrm{H}_{1}+\frac{2}{3} \mathrm{H}_{1,0}+\frac{4}{3} \mathrm{H}_{2}\right]+(1+x)\left[\frac{4}{3} \mathrm{H}_{-1,0}-\frac{25}{24} \mathrm{H}_{0}+\right.
$$

$$
\left.+\frac{7}{9} \mathrm{H}_{0,0}+\frac{4}{3} \mathrm{H}_{2}-\delta(1-x)\left[\frac{23}{16}-\frac{5}{12} \zeta_{2}-\frac{29}{30} \zeta_{2}^{2}+\frac{17}{6} \zeta_{3}\right]\right)+16 C_{F}^{3}\left(p_{\mathrm{qq}}(x)[.\right.
$$

$$
+6 \mathrm{H}_{-2} \zeta_{2}+12 \mathrm{H}_{-2,-1,0}-6 \mathrm{H}_{-2,0,0}-\frac{3}{16} \mathrm{H}_{0}-\frac{3}{2} \mathrm{H}_{0} \zeta_{2}+\mathrm{H}_{0} \zeta_{3}+\frac{13}{8} \mathrm{H}_{0,0}-2 \mathrm{H}_{0}
$$

$$
+12 \mathrm{H}_{1} \zeta_{3}+8 \mathrm{H}_{1,-2,0}-6 \mathrm{H}_{1,0,0}-4 \mathrm{H}_{1,0,0,0}+4 \overline{\mathrm{H}}_{1,2,0}-3 \mathrm{H}_{2,0}+2 \mathrm{H}_{2,0,0}+4 \mathrm{H}_{2,1}
$$

$$
\left.+4 \mathrm{H}_{3,0}+4 \mathrm{H}_{3,1}+2 \mathrm{H}_{4}\right]+p_{\mathrm{qq}}(-x)\left[\frac{7}{2} \zeta_{2}^{2}-\frac{9}{2} \zeta_{3}-6 \mathrm{H}_{-3,0}+32 \mathrm{H}_{-2} \zeta_{2}+8 \mathrm{H}_{-2}\right.
$$

$$
-26 \mathrm{H}_{-2,0,0}-28 \mathrm{H}_{-2,2}+6 \mathrm{H}_{-1} \zeta_{2}+36 \mathrm{H}_{-1} \zeta_{3}+8 \mathrm{H}_{-1,-2,0}-48 \mathrm{H}_{-1,-1} \zeta_{2}+40
$$

$$
+(1-x)\left[2 \mathrm{H}_{-3,0}-\frac{31}{8}+4 \mathrm{H}_{-2,0,0}+\mathrm{H}_{0,0} \zeta_{2}-3 \mathrm{H}_{0,0,0,0}+35 \mathrm{H}_{1}+6 \mathrm{H}_{1} \zeta_{2}-\mathrm{H}_{1},\right.
$$

$$
+(1+x)\left[\frac{37}{10} \zeta_{2}^{2}-\frac{93}{4} \zeta_{2}-\frac{81}{2} \zeta_{3}-15 \mathrm{H}_{-2,0}+30 \mathrm{H}_{-1} \zeta_{2}+12 \mathrm{H}_{-1,-1,0}-2 \mathrm{H}_{-1,0}\right.
$$

$$
-24 \mathrm{H}_{-1,2}-\frac{539}{16} \mathrm{H}_{0}-28 \mathrm{H}_{0} \zeta_{2}+\frac{191}{8} \mathrm{H}_{0,0}+20 \mathrm{H}_{0,0,0}+\frac{85}{4} \mathrm{H}_{2}-3 \mathrm{H}_{2,0,0}-2 \mathrm{H}_{3}
$$

$$
\left.-\mathrm{H}_{4}\right]+4 \zeta_{2}+33 \zeta_{3}+4 \mathrm{H}_{-3,0}+10 \mathrm{H}_{-2,0}+\frac{67}{2} \mathrm{H}_{0}+6 \mathrm{H}_{0} \zeta_{3}+19 \mathrm{H}_{0} \zeta_{2}-25 \mathrm{H}_{0,0}
$$

$$
\left.-2 \mathrm{H}_{2}-\mathrm{H}_{2,0}-4 \mathrm{H}_{3}+\delta(1-x)\left[\frac{29}{32}-2 \zeta_{2} \zeta_{3}+\frac{9}{8} \zeta_{2}+\frac{18}{5} \zeta_{2}^{2}+\frac{17}{4} \zeta_{3}-15 \zeta_{5}\right]\right)
$$

2×2 anomalous dimension matrix occupies
1 st loop: 1/10 page
2×2 anomalous dimension matrix occupies
1 st loop: 1/10 page
2 nd loop: 1 page
2×2 anomalous dimension matrix occupies
1 st loop: 1/10 page
2 nd loop: 1 page
3 rd loop: 100 pages (200 K asci)
Moch, Vermaseren and Vogt
[waterfall of results launched
March 2004, and counting]
2×2 anomalous dimension matrix occupies
1 st loop: $1 / 10$ page
2 nd loop: 1 page
3 rd loop: 100 pages (200 K asci)
Moch, Vermaseren and Vogt
[waterfall of results launched
March 2004, and counting]
$V \sim\left\{\begin{array}{l}10^{\frac{N(N-1)}{2}-1} \\ 10^{2^{N-1}-2}\end{array}\right.$

facing music of the spheres

2×2 anomalous dimension matrix occupies
1 st loop: $1 / 10$ page
2 nd loop: 1 page
3 rd loop: 100 pages (200 K asci)
Moch, Vermaseren and Vogt
[waterfall of results launched March 2004, and counting]
$V \sim\left\{\begin{array}{l}10^{\frac{N(N-1)}{2}-1} \\ 10^{2^{N-1}-2}\end{array}\right.$ not too encouraging a trend ...

Lecture III (71/83)
-High order QCD Dynamics
-made simple?
Fighting complexity

How to reduce complexity?

How to reduce complexity?

Guidelines

Fighting complexity

How to reduce complexity?

Guidelines

exploit internal properties :

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity

Fighting complexity

How to reduce complexity?

Guidelines

exploit internal properties :

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity

How to reduce complexity?

Guidelines

exploit internal properties :

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity
\checkmark separate classical \& quantum effects in the gluon sector

How to reduce complexity?

Guidelines

\checkmark exploit internal properties:

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity
\checkmark separate classical \& quantum effects in the gluon sector

Extract

Solve

(F.Low)

How to reduce complexity?

Guidelines

\checkmark exploit internal properties:

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity
\checkmark separate classical \& quantum effects in the gluon sector

Extract

Solve

However, it has a good chance to be Exactly Solvable.

How to reduce complexity?

Guidelines

\checkmark exploit internal properties:

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity
\checkmark separate classical \& quantum effects in the gluon sector

An essential part of gluon dynamics is Classical. "Classical" does not mean "Simple". However, it has a good chance to be Exactly Solvable.

How to reduce complexity?

Guidelines

\checkmark exploit internal properties:

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity
\checkmark separate classical \& quantum effects in the gluon sector

An essential part of gluon dynamics is Classical. "Classical" does not mean "Simple". However, it has a good chance to be Exactly Solvable.
\Leftrightarrow A playing ground for theoretical theory: SUSY, AdS/CFT, ...

In the standard approach,

Splitting functions

Evolution Hamiltonian

Anomalous Dimensions

- parton splitting functions are equated with anomalous dimensions;
- they are different for DIS and $e^{+} e^{-}$evolution;
- "clever evolution variables" are different too

In the new approach,

- splitting functions are disconnected from the anomalous dimensions;
- the evolution kernel is identical for space- and time-like cascades (Gribov-Lipatov reciprocity relation true in all orders);
- unique evolution variable - parton fluctuation time

In the new approach,

- splitting functions are disconnected from the anomalous dimensions;
- the evolution kernel is identical for space- and time-like cascades (Gribov-Lipatov reciprocity relation true in all orders);
- unique evolution variable - parton fluctuation time

In the new approach,

- splitting functions are disconnected from the anomalous dimensions;
- the evolution kernel is identical for space- and time-like cascades (Gribov-Lipatov reciprocity relation true in all orders);
- unique evolution variable - parton fluctuation time

The origin of the GL reciprocity violation is essentially kinematical : inherited from previous loops !

Reducing complexity

The origin of the GL reciprocity violation is essentially kinematical : inherited from previous loops !

Hypothesis of the new RR evolution kernel \mathcal{P}
D-r, Marchesini \& Salam (2005)
was verified at 3 loops for the nonsinglet channel, $\left(\gamma^{(T)}-\gamma^{(S)}\right)=$ OK Mitov, Moch \& Vogt (2006)

Reducing complexity

The origin of the GL reciprocity violation is essentially kinematical : inherited from previous loops !

Hypothesis of the new RR evolution kernel \mathcal{P}
D-r, Marchesini \& Salam (2005)
was verified at 3 loops for the nonsinglet channel, $\left(\gamma^{(T)}-\gamma^{(S)}\right)=$ OK Mitov, Moch \& Vogt (2006)
In the moment space, the GL symmetry, $x \rightarrow 1 / x \Leftrightarrow N \rightarrow-(N+1)$, translates into dependence on the conformal Casimir $J^{2}=N(N+1)$.
By means of the large N expansion, $\quad \mathcal{P}=\alpha_{\text {phys }} \cdot \ln J^{2}+\Sigma_{n}\left(J^{2}\right)^{-n}$

Reducing complexity

The origin of the GL reciprocity violation is essentially kinematical :

 inherited from previous loops !Hypothesis of the new RR evolution kernel \mathcal{P}
D-r, Marchesini \& Salam (2005)
was verified at 3 loops for the nonsinglet channel, $\left(\gamma^{(T)}-\gamma^{(S)}\right)=$ OK Mitov, Moch \& Vogt (2006)
In the moment space, the GL symmetry, $x \rightarrow 1 / x \Leftrightarrow N \rightarrow-(N+1)$, translates into dependence on the conformal Casimir $J^{2}=N(N+1)$. By means of the large N expansion, $\quad \mathcal{P}=\alpha_{\text {phys }} \cdot \ln J^{2}+\Sigma_{n}\left(J^{2}\right)^{-n}$ Extra QCD checks: Basso \& Korchemsky, in coll. with S.Moch (2006)

- 3loop singlet unpolarized
- 2loop quark transversity
- 2loop linearly polarized gluon
- 2loop singlet polarized

Reducing complexity

The origin of the GL reciprocity violation is essentially kinematical :

 inherited from previous loops !Hypothesis of the new RR evolution kernel \mathcal{P}
D-r, Marchesini \& Salam (2005)
was verified at 3 loops for the nonsinglet channel, $\left(\gamma^{(T)}-\gamma^{(S)}\right)=$ OK Mitov, Moch \& Vogt (2006)
In the moment space, the GL symmetry, $x \rightarrow 1 / x \Leftrightarrow N \rightarrow-(N+1)$, translates into dependence on the conformal Casimir $J^{2}=N(N+1)$. By means of the large N expansion, $\quad \mathcal{P}=\alpha_{\text {phys }} \cdot \ln J^{2}+\Sigma_{n}\left(J^{2}\right)^{-n}$ Extra QCD checks: Basso \& Korchemsky, in coll. with S.Moch (2006)

- 3loop singlet unpolarized
- 2loop quark transversity
- 2loop linearly polarized gluon
- 2loop singlet polarized
- Also true for SUSYs,
- in 4 loops in $\lambda \phi^{4}$,
- in QCD $\beta_{0} \rightarrow \infty$, all loops,
- AdS/CFT $(\mathcal{N}=4$ SYM $\alpha \gg 1)$

Reducing complexity

The origin of the GL reciprocity violation is essentially kinematical :

 inherited from previous loops !Hypothesis of the new RR evolution kernel \mathcal{P}
D-r, Marchesini \& Salam (2005)
was verified at 3 loops for the nonsinglet channel, $\left(\gamma^{(T)}-\gamma^{(S)}\right)=$ OK Mitov, Moch \& Vogt (2006)
In the moment space, the GL symmetry, $x \rightarrow 1 / x \Leftrightarrow N \rightarrow-(N+1)$, translates into dependence on the conformal Casimir $J^{2}=N(N+1)$. By means of the large N expansion, $\quad \mathcal{P}=\alpha_{\text {phys }} \cdot \ln J^{2}+\Sigma_{n}\left(J^{2}\right)^{-n}$ Extra QCD checks: Basso \& Korchemsky, in coll. with S.Moch (2006)

- 3loop singlet unpolarized
- 2loop quark transversity
- 2loop linearly polarized gluon
- 2loop singlet polarized
- Also true for SUSYs,
- in 4 loops in $\lambda \phi^{4}$,
- in QCD $\beta_{0} \rightarrow \infty$, all loops,
- AdS/CFT $(\mathcal{N}=4 \mathrm{SYM} \alpha \gg 1)$

Maximally super-symmetric $\mathcal{N}=4 \mathrm{YM}$ allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$)

D-r \& Marchesini (2006)

Maximally super-symmetric $\mathcal{N}=4 \mathrm{YM}$ allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$)

D-r \& Marchesini (2006)
Moreover, the most resent result : in $\mathcal{N}=4$
$x \quad$ GLR holds for twist 3 , in $3+4$ loops
Matteo Beccaria et. al (2007)

Maximally super-symmetric $\mathcal{N}=4 \mathrm{YM}$ allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$)

D-r \& Marchesini (2006)
Moreover, the most resent result : in $\mathcal{N}=4$
x GLR holds for twist 3, in 3+4 loops Matteo Beccaria et al. (2007)

What is so special about $\mathcal{N}=4$ SYM ?

Maximally super-symmetric $\mathcal{N}=4 \mathrm{YM}$ allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$)

D-r \& Marchesini (2006)
Moreover, the most resent result : in $\mathcal{N}=4$
X GLR holds for twist 3, in 3+4 loops Matteo Beccaria et al. (2007)

What is so special about $\mathcal{N}=4$ SYM ?

This QFT has a good chance to be solvable - "integrable". Dynamics can be fully integrated if the system possesses a sufficient (infinite!) number of conservation laws, - integrals of motion.

Maximally super-symmetric $\mathcal{N}=4 \mathrm{YM}$ allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$)

D-r \& Marchesini (2006)
Moreover, the most resent result : in $\mathcal{N}=4$
X GLR holds for twist 3, in 3+4 loops Matteo Beccaria et al. (2007)

What is so special about $\mathcal{N}=4$ SYM ?

This QFT has a good chance to be solvable - "integrable". Dynamics can be fully integrated if the system possesses a sufficient (infinite!) number of conservation laws, - integrals of motion.

Recall an old hint from QCD ...

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

Four "parton splitting functions"

$$
\begin{aligned}
& { }_{q}^{q[g]}(z), \\
& { }_{q}^{g[q]}(z), \\
& { }_{g}^{q[\bar{q}]}(z), \\
& { }_{g}^{g[g]}(z)
\end{aligned}
$$

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$

$$
{ }_{q}^{q[g]}(z) \quad{ }_{q}^{g[q]}(z) \quad{ }_{g}^{q[\bar{q}]}(z) \quad{ }_{g}^{g[g]}(z)
$$

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products: $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$

$$
{ }_{q}^{q[g]}(z) \quad{ }_{q}^{g[q]}(z), \quad g_{g}^{q[\bar{q}]}(z) \quad{ }_{g}^{g}[g](z)
$$

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$

Three (QED) "kernels" are inter-related; gluon self-interaction stays put :

$$
{ }_{q}^{q[g]}(z), \quad{ }_{q}^{g[q]}(z), \quad{ }_{g}^{q[\bar{q}]}(z)
$$

```
|g
```


Relating parton splittings

$$
\sim_{1-z}^{z}=C_{F} \cdot \frac{1+z^{2}}{1-z}
$$

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$
- The story continues, however :

All four are related!

Relating parton splittings

$$
\sim_{1-z}^{z}=C_{F} \cdot \frac{1+z^{2}}{1-z}
$$

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$
- The story continues, however :

$$
C_{F}=T_{R}=N_{c}: \text { Super-Symmetry }
$$

All four are related!

$$
w_{q}(z)={\underset{q}{q[g]}(z)+{ }_{q}^{g[q]}(z)={ }_{g}^{q[\bar{q}]}(z)+\underset{\underline{g}}{g[g]}(z)}_{g_{g}}=w_{g}(z)
$$

Relating parton splittings

$$
\begin{aligned}
& =C_{F} \cdot \frac{1+(1-z)^{2}}{z} \\
& =N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
\end{aligned}
$$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

- Exchange the decay products : $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$
- The story continues, however :

$$
C_{F}=T_{R}=N_{c}: \text { Super-Symmetry }
$$

All four are related!
\equiv infinite number of conservation laws!
$w_{q}(z)={\underset{q}{q[g]}(z)+{ }_{q}^{g[q]}(z)={ }_{g}^{q[\bar{q}]}(z)+\underbrace{g[g]}(z)}_{g}^{g}=w_{g}(z)$

The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD :
\checkmark the Regge behaviour (large N_{c})
\checkmark baryon wave function
\checkmark maximal helicity multi-gluon operators

Lipatov
Faddeev \& Korchemsky (1994)
Braun, Derkachov, Korchemsky,
Manashov; Belitsky
Lipatov
Minahan \& Zarembo Beisert \& Staudacher(2003)

The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD :
\checkmark the Regge behaviour (large N_{c})
\checkmark baryon wave function
Lipatov
Faddeev \& Korchemsky (1994)
Braun, Derkachov, Korchemsky,
Manashov; Belitsky
Lipatov
Minahan \& Zarembo
Beisert \& Staudacher
The higher the symmetry, the deeper integrability.

The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD :
\checkmark the Regge behaviour (large N_{c})
\checkmark baryon wave function

Lipatov
Faddeev \& Korchemsky (1994)
\checkmark maximal helicity multi-gluon operators
Minahan \& Zarembo Beisert \& Staudacher
The higher the symmetry, the deeper integrability. $\mathcal{N}=4$ - the extreme:
\boldsymbol{x} Conformal theory $\beta(\alpha) \equiv 0$
x All order expansion for $\alpha_{\text {phys }}$
Beisert, Eden, Staudacher
x Full integrability via AdS/CFT
Maldacena; Witten, Gubser, Klebanov, Polyakov

The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD :
\checkmark the Regge behaviour (large N_{c})
\checkmark baryon wave function

Lipatov
Faddeev \& Korchemsky (1994)
Braun, Derkachov, Korchemsky, Manashov; Belitsky

Lipatov
Minahan \& Zarembo Beisert \& Staudacher

The higher the symmetry, the deeper integrability. $\mathcal{N}=4$ - the extreme:
\boldsymbol{x} Conformal theory $\beta(\alpha) \equiv 0$
x All order expansion for $\alpha_{\text {phys }}$
Beisert, Eden, Staudacher
x Full integrability via AdS/CFT
Maldacena; Witten, Gubser, Klebanov, Polyakov

The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD :
\checkmark the Regge behaviour (large N_{c})
\checkmark baryon wave function

Lipatov
Faddeev \& Korchemsky (1994)
\checkmark maximal helicity multi-gluon operators
Minahan \& Zarembo Beisert \& Staudacher
The higher the symmetry, the deeper integrability. $\mathcal{N}=4$ - the extreme:
\boldsymbol{x} Conformal theory $\beta(\alpha) \equiv 0$
x All order expansion for $\alpha_{\text {phys }}$
Beisert, Eden, Staudacher
x Full integrability via AdS/CFT
Maldacena; Witten, Gubser, Klebanov, Polyakov

And here we arrive at the second - Divide and Conquer - issue

Recall the diagonal first loop anomalous dimensions:

$$
\begin{aligned}
\tilde{\gamma}_{q \rightarrow q(x)+g} & =\frac{C_{F} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot \frac{1}{2}\right] \\
\tilde{\gamma}_{g \rightarrow g(x)+g} & =\frac{C_{A} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot\left(x+x^{-1}\right)\right] .
\end{aligned}
$$

Recall the diagonal first loop anomalous dimensions:

$$
\begin{aligned}
\tilde{\gamma}_{q \rightarrow q(x)+g} & =\frac{C_{F} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot \frac{1}{2}\right] \\
\tilde{\gamma}_{g \rightarrow g(x)+g} & =\frac{C_{A} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot\left(x+x^{-1}\right)\right] .
\end{aligned}
$$

The first component is independent of the nature of the radiating particle - the Low-Burnett-Kroll classical radiation \Longrightarrow "clagons".

Recall the diagonal first loop anomalous dimensions:

$$
\begin{aligned}
\tilde{\gamma}_{q \rightarrow q(x)+g} & =\frac{C_{F} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot \frac{1}{2}\right] \\
\tilde{\gamma}_{g \rightarrow g(x)+g} & =\frac{C_{A} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot\left(x+x^{-1}\right)\right] .
\end{aligned}
$$

The first component is independent of the nature of the radiating particle - the Low-Burnett-Kroll classical radiation \Longrightarrow "clagons". The second - "quagons" - is relatively suppressed as $\mathcal{O}\left((1-x)^{2}\right)$.

Recall the diagonal first loop anomalous dimensions:

$$
\begin{aligned}
\tilde{\gamma}_{q \rightarrow q(x)+g} & =\frac{C_{F} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot \frac{1}{2}\right] \\
\tilde{\gamma}_{g \rightarrow g(x)+g} & =\frac{C_{A} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot\left(x+x^{-1}\right)\right] .
\end{aligned}
$$

The first component is independent of the nature of the radiating particle - the Low-Burnett-Kroll classical radiation \Longrightarrow "clagons". The second - "quagons" - is relatively suppressed as $\mathcal{O}\left((1-x)^{2}\right)$.

Classical and quantum contributions respect the GL relation, individually:

$$
-x f(1 / x)=f(x)
$$

Recall the diagonal first loop anomalous dimensions:

$$
\begin{aligned}
\tilde{\gamma}_{q \rightarrow q(x)+g} & =\frac{C_{F} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot \frac{1}{2}\right] \\
\tilde{\gamma}_{g \rightarrow g(x)+g} & =\frac{C_{A} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot\left(x+x^{-1}\right)\right] .
\end{aligned}
$$

The first component is independent of the nature of the radiating particle - the Low-Burnett-Kroll classical radiation \Longrightarrow "clagons". The second - "quagons" - is relatively suppressed as $\mathcal{O}\left((1-x)^{2}\right)$.

Classical and quantum contributions respect the GL relation, individually:

$$
-x f(1 / x)=f(x)
$$

Let us look at the rôles these animals play on the QCD stage

Gluenatomy

Clagons:

x Classical Field
\checkmark infrared singular, $d \omega / \omega$
\checkmark define the physical coupling
\checkmark responsible for
\Leftrightarrow DL radiative effects,
\Rightarrow reggeization,
\Leftrightarrow QCD/Lund string (gluers)
\checkmark play the major rôle in evolution

Quagons :

x Quantum d.o.f.s (constituents)
\checkmark infrared irrelevant, $d \omega \cdot \omega$
\checkmark make the coupling run
\checkmark responsible for conservation of
$\left.\begin{array}{l}\Leftrightarrow P \text {-parity, } \\ \Leftrightarrow C \text {-parity, }\end{array}\right\}$ in decays, \Leftrightarrow C-parity, $\}$ in production
\Leftrightarrow colour
\checkmark minor rôle

Gluenatomy

Clagons:

x Classical Field
\checkmark infrared singular, $d \omega / \omega$
\checkmark define the physical coupling
\checkmark responsible for
\Leftrightarrow DL radiative effects,
\Rightarrow reggeization,
\Rightarrow QCD/Lund string (gluers)
\checkmark play the major rôle in evolution

Quagons :

x Quantum d.o.f.s (constituents)
\checkmark infrared irrelevant, $d \omega \cdot \omega$
\checkmark make the coupling run
\checkmark responsible for conservation of
$\left.\begin{array}{l}\Leftrightarrow P \text {-parity, } \\ \Leftrightarrow C \text {-parity, }\end{array}\right\}$ in $\begin{aligned} & \text { decays, }\end{aligned}$
\Leftrightarrow colour
\checkmark minor rôle

In addition,
X Tree multi-clagon (Parke-Taylor) amplitudes are known exactly
\boldsymbol{X} It is clagons which dominate in all the integrability cases

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars; everyone in the ajoint representation.

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars; everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars; everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

Now, $\mathcal{N}=4$ SUSY :

$$
\frac{C_{A}^{-1} d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)^{-1}
$$

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars; everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

Now, $\mathcal{N}=4$ SUSY :

$$
\frac{C_{A}^{-1} d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)^{-1}=-\frac{11}{3}+\frac{4}{2} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]+\frac{6}{2!} \cdot \int_{0}^{1} d x 2 x(1-x)
$$

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars;
everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

Now, $\mathcal{N}=4$ SUSY :

$$
\frac{C_{A}^{-1} d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)^{-1}=-\frac{11}{3}+\frac{4}{2} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]+\frac{6}{2!} \cdot \int_{0}^{1} d x 2 x(1-x)
$$

- $\beta(\alpha) \equiv 0$ in all orders !

N=4 SUSY Yang-Mills

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars;
everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

Now, $\mathcal{N}=4$ SUSY :

$$
\frac{C_{A}^{-1} d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)^{-1}=-\frac{11}{3}+\frac{4}{2} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]+\frac{6}{2!} \cdot \int_{0}^{1} d x 2 x(1-x)
$$

- $\beta(\alpha) \equiv 0$ in all orders !
... makes one think of a classical nature (??) of the SYM-4 dynamics

N=4 SUSY Yang-Mills

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars;
everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

Now, $\mathcal{N}=4$ SUSY :

$$
\frac{C_{A}^{-1} d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)^{-1}=-\frac{11}{3}+\frac{4}{2} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]+\frac{6}{2!} \cdot \int_{0}^{1} d x 2 x(1-x)
$$

- $\beta(\alpha) \equiv 0$ in all orders $!\quad \Longrightarrow \quad \gamma \Rightarrow \frac{x}{1-x}+$ no quagons !
... makes one think of a classical nature (!!!) of the SYM-4 dynamics
$\mathcal{N}=4$ SYM has already demonstrated viability of the inheritance idea.
$\mathcal{N}=4$ SYM has already demonstrated viability of the inheritance idea. $\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
$\mathcal{N}=4$ SYM has already demonstrated viability of the inheritance idea.
$\mathcal{N}=4$ SYM dynamics is classical, in uncertain sense
$\mathcal{N}=4$ SYM has already demonstrated viability of the inheritance idea. $\mathcal{N}=4$ SYM dynamics is classical, in a not yet completely certain sense
$\mathcal{N}=4$ SYM has already demonstrated viability of the inheritance idea. $\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
If so, the final goal - to derive γ from $\gamma^{(1)}$, in all orders !
$\mathcal{N}=4$ SYM has already demonstrated viability of the inheritance idea. $\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
If so, the final goal - to derive γ from $\gamma^{(1)}$, in all orders !

Why bother?

$\mathcal{N}=4$ SYM has already demonstrated viability of the inheritance idea. $\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
If so, the final goal - to derive γ from $\gamma^{(1)}$, in all orders !
QCD and SUSY-QCD share the gluon sector.
$\mathcal{N}=4$ SYM has already demonstrated viability of the inheritance idea.
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
If so, the final goal - to derive γ from $\gamma^{(1)}$, in all orders !
QCD and SUSY-QCD share the gluon sector.

Clagon (classical) contributions in higher orders show up as specific "most transcendental" structures (Euler-Zagier harmonic sums $\tau=2 L-1$).
$\mathcal{N}=4$ SYM has already demonstrated viability of the inheritance idea.
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
If so, the final goal - to derive γ from $\gamma^{(1)}$, in all orders!

QCD and SUSY-QCD share the gluon sector.

Clagon (classical) contributions in higher orders show up as specific "most transcendental" structures (Euler-Zagier harmonic sums $\tau=2 L-1$). Importantly, they constitute the bulk of the QCD anomalous dimension!
$\mathcal{N}=4$ SYM has already demonstrated viability of the inheritance idea.
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
If so, the final goal - to derive γ from $\gamma^{(1)}$, in all orders !

QCD and SUSY-QCD share the gluon sector.

$$
\frac{\text { clever 2nd loop }}{\text { clever 1st loop }}<2 \% \quad\binom{\text { Heavy quark fragmentation }}{\text { D-r, Khoze \& Troyan, PRD } 1996}
$$

$\mathcal{N}=4$ SYM has already demonstrated viability of the inheritance idea.
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
If so, the final goal - to derive γ from $\gamma^{(1)}$, in all orders !

QCD and SUSY-QCD share the gluon sector.

Clagon (classical) contributions in higher orders show up as specific "most transcendental" structures (Euler-Zagier harmonic sums $\tau=2 L-1$). Importantly, they constitute the bulk of the QCD anomalous dimension!

Employ $\mathcal{N}=4$ SYM to simplify the major part of the QCD dynamics

- A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects
- Reformulation of parton cascades in terms of Gribov-Lipatov reciprocity respecting evolution equations (RREE)
- reduces complexity by (at leat) an order of magnitude
- improves perturbative series (less singular, better "convergent")
- links interesting phenomena in the DIS and $e^{+} e^{-}$annihilation channels
- A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects
- Reformulation of parton cascades in terms of Gribov-Lipatov reciprocity respecting evolution equations (RREE)
- reduces complexity by (at leat) an order of magnitude
- improves perturbative series (less singular, better "convergent")
- links interesting phenomena in the DIS and $e^{+} e^{-}$annihilation channels
- The Low theorem should be part of theor.phys. curriculum, worldwide
- A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects
- Reformulation of parton cascades in terms of Gribov-Lipatov reciprocity respecting evolution equations (RREE)
- reduces complexity by (at leat) an order of magnitude
- improves perturbative series (less singular, better "convergent")
- links interesting phenomena in the DIS and $e^{+} e^{-}$annihilation channels
- The Low theorem should be part of theor.phys. curriculum, worldwide
- Complete solution of the $\mathcal{N}=4$ SYM QFT should provide us with a one-line-all-orders description of the major part of QCD dynamics
- A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects
- Reformulation of parton cascades in terms of Gribov-Lipatov reciprocity respecting evolution equations (RREE)
- reduces complexity by (at leat) an order of magnitude
- improves perturbative series (less singular, better "convergent")
- links interesting phenomena in the DIS and $e^{+} e^{-}$annihilation channels
- The Low theorem should be part of theor.phys. curriculum, worldwide
- Complete solution of the $\mathcal{N}=4$ SYM QFT should provide us with a one-line-all-orders description of the major part of QCD dynamics

Google:
Phenomenologists tend to oppose the acceptance of unobservable matters and grand systems erected in speculative thinking;
[Center for advanced research in phenomenology]

WIkIpediA:
Phenomenology is a current in philosophy that takes intuitive experience of phenomena (what presents itself to us in conscious experience) as its starting point and tries to extract the essential features of experiences and the essence of what we experience.
[early 20th century philosophers: Husserl,

Google:

Phenomenologists tend to oppose the acceptance of unobservable matters and grand systems erected in speculative thinking;
[Center for advanced research in phenomenology]

WikipediA:

Phenomenology is a current in philosophy that takes intuitive experience of phenomena (what presents itself to us in conscious experience) as its starting point and tries to extract the essential features of experiences and the essence of what we experience.
[early 20th century philosophers: Husserl, Merleau-Ponty, Heidegger]

Google:

Phenomenologists tend to oppose the acceptance of unobservable matters and grand systems erected in speculative thinking;
[Center for advanced research in phenomenology]

WikipediA:

Phenomenology is a current in philosophy that takes intuitive experience of phenomena (what presents itself to us in conscious experience) as its starting point and tries to extract the essential features of experiences and the essence of what we experience.
[early 20th century philosophers: Husserl, Merleau-Ponty, Heidegger]

Google:

Phenomenologists tend to oppose the acceptance of unobservable matters and grand systems erected in speculative thinking;
[Center for advanced research in phenomenology]

WikipediA:
Phenomenology is a current in philosophy that takes intuitive experience of phenomena (what presents itself to us in conscious experience) as its starting point and tries to extract the essential features of experiences and the essence of what we experience.
[early 20th century philosophers: Husserl, Merleau-Ponty, Heidegger]

To understand the essence of what we experience in hadron interactions, we need to study messier phenomena, i.e. those involving scattering off and of nuclei.

Google:

Phenomenologists tend to oppose the acceptance of unobservable matters and grand systems erected in speculative thinking;
[Center for advanced research in phenomenology]

WikipediA:
Phenomenology is a current in philosophy that takes intuitive experience of phenomena (what presents itself to us in conscious experience) as its starting point and tries to extract the essential features of experiences and the essence of what we experience.
[early 20th century philosophers: Husserl, Merleau-Ponty, Heidegger]

To understand the essence of what we experience in hadron interactions, we need to study messier phenomena, i.e. those involving scattering off and of nuclei.

- a probe for internal structure of hadron projectile: diffraction filtering out strongly interacting components (colour transparency)

Google:

Phenomenologists tend to oppose the acceptance of unobservable matters and grand systems erected in speculative thinking;
[Center for advanced research in phenomenology]

WikipediA:
Phenomenology is a current in philosophy that takes intuitive experience of phenomena (what presents itself to us in conscious experience) as its starting point and tries to extract the essential features of experiences and the essence of what we experience.
[early 20th century philosophers: Husserl, Merleau-Ponty, Heidegger]

To understand the essence of what we experience in hadron interactions, we need to study messier phenomena, i.e. those involving scattering off and of nuclei.

- a probe for internal structure of hadron projectile: diffraction filtering out strongly interacting components (colour transparency)
- new phenomena in strong colour fields (stopping, strangeness, ...)

Google:

Phenomenologists tend to oppose the acceptance of unobservable matters and grand systems erected in speculative thinking;
[Center for advanced research in phenomenology]

WikipediA:
Phenomenology is a current in philosophy that takes intuitive experience of phenomena (what presents itself to us in conscious experience) as its starting point and tries to extract the essential features of experiences and the essence of what we experience.
[early 20th century philosophers: Husserl, Merleau-Ponty, Heidegger]

To understand the essence of what we experience in hadron interactions, we need to study messier phenomena, i.e. those involving scattering off and of nuclei.

- a probe for internal structure of hadron projectile: diffraction filtering out strongly interacting components (colour transparency)
- new phenomena in strong colour fields (stopping, strangeness, ...)
- strong colour fields at small coupling! CGC, LPM, ...

A New Interesting Phenomenon in the Medium ...

A New Interesting Phenomenon in the Medium ...

