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LMP effect QCD LPM on the back of envelope
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LMP effect transport coefficient

The only (non-perturbative) parameter of the problem, characterising the
medium — transport coefficient

q̂ =
µ2

λ

Hence, for L large enough stays under perturbative control !

To extract from experiment a large q̂ — to observe a new ”hot” state of
quark–gluon matter as compared to a ”cold” nucleus.

Handle on q̂ in cold nuclei — for example, medium effects in Drell-Yan
pair production, DIS on nuclei [François Arleo]

Expectation:
q̂HOT ∼ 10 —30 q̂COLD
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Colour and Hadrons Colour and Nuclei

Colour dynamics in pp, pA, AB

So, collisions or paricipants ?

Hard interactions are commonly expected to scale as nc , soft — as np.

The QCD LPM effect gives a striking example to the contrary ...
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Colour and Hadrons colour in Quark scattering

Quark inelastic scattering scenario : one gluon exchange
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Feynman plateau
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Colour and Hadrons colour in Quark scattering

Meson inelastic scattering scenario: gluon exchange

g  u l   e 

= two “quark chains”
known as the Pomeron
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Colour and Hadrons Painting the proton

Single scattering scenario

d 
u 
s 

P Λ u 
d 

u 

Coherent "diquark"

Coherence of the diquark ain’t broken:

=⇒ a Leading Baryon: B(1) → B(2/3) + M(1/3) + . . .
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Kick it twice to break the coherence of the valence quarks

ρ   K    π 
+       +         −

+ ... P −> 
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u P
u 

u

d 

s 

u 

d 

u 

Proton is “fragile”
Expect the baryon quantum number to sink into the sea :

B(1) → M(1/3) + M(1/3) + M(1/3) + . . .+B(0)
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Colour and Hadrons multiple Proton collisions

Baryons disappear from the fragmentation region
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Known as Proton Stopping. Better be called Proton Decay
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One gluon exchange: accompanying radiation
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Accompanying gluon radiation spectrum :

✓ dω/ω =⇒ rapidity plateau ;

✓ k⊥ < q⊥ =⇒ finite transverse momenta.
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Particle density is universal — it does not depend on the projectile :
(ifabc)

2 → Nc → one Pomeron. Conservation of Colour at work

Multiple scattering of a quark (meson) =⇒ N Participant scaling
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Colour and Hadrons colour capacity

g  u l   e 

+10+27

=1+8+8+10

8*8= 1+8+8+10

3*3*3

Consider double scattering (two gluon exchange)
The (3-quark) proton is more capacious, but still . . .

Calculate the average colour charge of the two-gluon system:

1

64
· 0 +

8 + 8

64
· 3 +

10 + 10

64
· 6 +

27

64
· 8 = 6 = 2 ·Nc =⇒

Double density
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g  u l   e 

+10+27

=1+8+8+10

8*8= 1+8+8+10

3*3*3

Consider double scattering (two gluon exchange)
The (3-quark) proton is more capacious, but still . . .

Calculate the average colour charge of the two-gluon system:

1

64
· 0 +

8 + 8

64
· 3 +

10 + 10

64
· 6 +

27

64
· 8 = 6 = 2 ·Nc =⇒

Double density
of hadrons
=2 Pomerons

Cannot be realized on a valence-built proton :
1

27
· 0 +

8 + 8

27
· 3 +

10

27
· 6 = 4 ??

Nowhere near
2 Pomerons
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Colour and Hadrons colour incapacity

Successive collisions of a projectile with a limited colour capacity do not
produce much of additional hadron yield ....

Where are then multiple Pomerons ??

Look at the by-product of the Landau–Pomeranchuk–Migdal physics ...
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The number of collisions of the projectile, nc = L/λ
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Combining the two estimates results in
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√

ω
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and k2

⊥ '
√
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λ
· ω .

It is the factor N−1
coh. that describes the coherent LPM suppression.
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Many successive collisions ... but only one Pomeron. The destructive LPM
coherence invalidates the multi-Pomeron exchange picture?! Does it indeed?
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Successive scatterings of a parton DO NOT
produce branch points in the complex J

plane (Reggeon loops).
The Mandelstam construction generates

“Reggeon cuts”, with Pomerons attached to
separate — coexisting — partons.

=0

.

To have nc Pomerons attached, one must compare nc with the number of
independent (incoherent, resolved) partons inside the projectile :

C (xh,Qres) =

∫ 1

xh

dx

x

[

xGproj (x ,Q
2
res)

]

, xproj = 1 .
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Recall the good old Amati–Fubini–Stanghellini puzzle.

Successive scatterings of a parton DO NOT
produce branch points in the complex J

plane (Reggeon loops).
The Mandelstam construction generates

“Reggeon cuts”, with Pomerons attached to
separate — coexisting — partons.

=0

.

To have nc Pomerons attached, one must compare nc with the number of
independent (incoherent, resolved) partons inside the projectile :

C (xh,Qres) =

∫ 1

xh

dx

x

[

xGproj (x ,Q
2
res)

]

, xproj = 1 .

Parton capacity of the projectile depends on the energy (xh) and on the
resolution — k⊥h of the observed final state hadron h.
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LPM and Pomerons Confinement in Multiple Collisions

In the framework of the standard hadron (multi-Pomeron) picture
(e.g., the successful Dual Parton Model of Capella & Kaidalov et al.)
one includes final state interactions to explain spectacular heavy ion
phenomena like J/ψ suppression, enhancement of strangeness, etc.

“Final state interaction” is a synonym to “non-independent fragmentation”
— cross-talking Pomerons, overlapping strings, “string ropes”, . . .

From the point of view of the colour dynamics, in pA and AA

environments we face an intrinsically new, unexplored question:

After the pancakes separate, at each impact parameter we have a dense
colour field whose strength corresponds to np/fm

2 ∝ A1/3 “strings”.

How does the vacuum break up in stronger than usual colour fields?

LEP left the question unanswered.
Surprises to be expected. Mind your head.
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LPM and Pomerons What to expect

Medium induced radiation should lead to

softening of particle spectra in a jet muddling thru medium,

increase of (soft) particle multiplicity, due to particles with

specific relation btw energy and emission angle

=⇒

Jet Quenching

exhaustively covered by Urs in his last lecture
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2- and 3-prong colour antennae are sort of “trivial”: coherence being taken
care of, the answers turned out to be essentially additive.

The case of 2 → 2 hard parton scattering is more involved (4 emitters),
especially so for gluon–gluon scattering.

The difficult quest of sorting out large angle gluon radiation in all orders in
(αs log Q)n was set up and solved by George Sterman and collaborators.

Here one encounters 6 (5 for SU(3)) colour channels that mix with each
other under soft gluon radiation, and the classical picture of gluon (or

dipole) multiplication is likely to fail.

A recent (2005) addition to the problem (G.Marchesini & YLD)

made one think of a hidden simplicity . . .
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Soft anomalous dimension ,

∂

∂ lnQ
M ∝

{

−Nc ln
(t u

s2

)

· Γ̂
}

· M, Γ̂Vi = EiVi .

6=3+3. Three eigenvalues are ”simple”.
Three ”ain’t-so-simple” ones were found to satisfy the cubic equation:

[

Ei −
4

3

]3

− (1 + 3b2)(1 + 3x2)

3

[

Ei −
4

3

]

− 2(1 − 9b2)(1 − 9x2)

27
= 0,

where

x =
1

Nc

, b ≡ ln(t/s) − ln(u/s)

ln(t/s) + ln(u/s)
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Hadron–hadron scattering
Puzzle of large angle Soft Gluon radiation

Soft anomalous dimension ,

∂

∂ lnQ
M ∝

{

−Nc ln
(t u

s2

)

· Γ̂
}

· M, Γ̂Vi = EiVi .

6=3+3. Three eigenvalues are ”simple”.
Three ”ain’t-so-simple” ones were found to satisfy the cubic equation:

[

Ei −
4

3

]3

− (1 + 3b2)(1 + 3x2)

3

[

Ei −
4

3

]

− 2(1 − 9b2)(1 − 9x2)

27
= 0,

where

x =
1

Nc

, b ≡ ln(t/s) − ln(u/s)

ln(t/s) + ln(u/s)

Mark the mysterious symmetry w.r.t. to x → b: interchanging internal
(group rank) and external (scattering angle) variables of the problem . . .
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of gluon dynamics

Have a look at the simplest element of the parton multiplication
Hamiltonian (non-singlet anomalous dimension) in three loops, α3

s
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P (2)+
ns

(x) = 16CACF nf

(

1

6
pqq(x)

[

10

3
ζ2 −

209

36
− 9ζ3 −

167

18
H0 + 2H0ζ2 − 7H0

+3H1,0,0 − H3

]

+
1

3
pqq(−x)

[

3

2
ζ3 −

5

3
ζ2 − H−2,0 − 2H−1ζ2 −

10

3
H−1,0 − H−1

+2H−1,2 +
1

2
H0ζ2 +

5

3
H0,0 + H0,0,0 − H3

]

+ (1 − x)

[

1

6
ζ2 −

257

54
− 43

18
H0 −

1

6

−(1+x)

[

2

3
H−1,0 +

1

2
H2

]

+
1

3
ζ2 + H0 +

1

6
H0,0 + δ(1−x)

[

5

4
− 167

54
ζ2 +

1

20
ζ2

+16CACF
2

(

pqq(x)

[

5

6
ζ3 −

69

20
ζ2

2 − H−3,0 − 3H−2ζ2 − 14H−2,−1,0 + 3H−2,0 +

−4H−2,2 −
151

48
H0 +

41

12
H0ζ2 −

17

2
H0ζ3 −

13

4
H0,0 − 4H0,0ζ2 −

23

12
H0,0,0 + 5H

−24H1ζ3 − 16H1,−2,0 +
67

9
H1,0 − 2H1,0ζ2 +

31

3
H1,0,0 + 11H1,0,0,0 + 8H1,1,0,0
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+
67

9
H2 − 2H2ζ2 +

11

3
H2,0 + 5H2,0,0 + H3,0

]

+ pqq(−x)

[

1

4
ζ2

2 − 67

9
ζ2 +

31

4
ζ3

−32H−2ζ2 − 4H−2,−1,0 −
31

6
H−2,0 + 21H−2,0,0 + 30H−2,2 −

31

3
H−1ζ2 − 42H

−4H−1,−2,0 + 56H−1,−1ζ2 − 36H−1,−1,0,0 − 56H−1,−1,2 −
134

9
H−1,0 − 42H−1

+32H−1,3 −
31

6
H−1,0,0 + 17H−1,0,0,0 +

31

3
H−1,2 + 2H−1,2,0 +

13

12
H0ζ2 +

29

2
H

+13H0,0ζ2 +
89

12
H0,0,0 − 5H0,0,0,0 − 7H2ζ2 −

31

6
H3 − 10H4

]

+ (1−x)

[

133

36
+

−167

4
ζ3 − 2H0ζ3 − 2H−3,0 + H−2ζ2 + 2H−2,−1,0 − 3H−2,0,0 +

77

4
H0,0,0 −

209

6

+4H1,0,0 +
14

3
H1,0

]

+ (1+x)

[

43

2
ζ2 − 3ζ2

2 +
25

2
H−2,0 − 31H−1ζ2 − 14H−1,−

+24H−1,2 + 23H−1,0,0 +
55

2
H0ζ2 + 5H0,0ζ2 +

1457

48
H0 −

1025

36
H0,0 −

155

6
H2 +
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High order QCD Dynamics

3rd loop
3rd loop, and more

+2H2,0,0 − 3H4

]

− 5ζ2 −
1

2
ζ2

2 + 50ζ3 − 2H−3,0 − 7H−2,0 − H0ζ3 −
37

2
H0ζ2 −

−2H0,0ζ2 +
185

6
H0,0 − 22H0,0,0 − 4H0,0,0,0 +

28

3
H2 + 6H3 + δ(1−x)

[

151

64
+ ζ

−247

60
ζ2

2 +
211

12
ζ3 +

15

2
ζ5

])

+ 16CA
2CF

(

pqq(x)

[

245

48
− 67

18
ζ2 +

12

5
ζ2

2 +
1

2
ζ

+H−3,0 + 4H−2,−1,0 −
3

2
H−2,0 − H−2,0,0 + 2H−2,2 −

31

12
H0ζ2 + 4H0ζ3 +

389

72
H

−H0,0,0,0 + 9H1ζ3 + 6H1,−2,0 − H1,0ζ2 −
11

4
H1,0,0 − 3H1,0,0,0 − 4H1,1,0,0 + 4H

+
11

12
H3 + H4

]

+ pqq(−x)

[

67

18
ζ2 − ζ2

2 − 11

4
ζ3 − H−3,0 + 8H−2ζ2 +

11

6
H−2,0 −

−3H−1,0,0,0 +
11

3
H−1ζ2 + 12H−1ζ3 − 16H−1,−1ζ2 + 8H−1,−1,0,0 + 16H−1,−1,2

−8H−2,2 + 11H−1,0ζ2 +
11

6
H−1,0,0 −

11

3
H−1,2 − 8H−1,3 −

3

4
H0 −

1

6
H0ζ2 − 4H
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3rd loop, and again

−3H0,0ζ2 −
31

12
H0,0,0 + H0,0,0,0 + 2H2ζ2 +

11

6
H3 + 2H4

]

+ (1−x)

[

1883

108
− 1

2
H

−H−2,−1,0 +
1

2
H−3,0 −

1

2
H−2ζ2 +

1

2
H−2,0,0 +

523

36
H0 + H0ζ3 −

13

3
H0,0 −

5

2
H

−2H1,0,0

]

+ (1+x)

[

8H−1ζ2 + 4H−1,−1,0 +
8

3
H−1,0 − 5H−1,0,0 − 6H−1,2 −

13

3

−43

4
ζ3 −

5

2
H−2,0 −

11

2
H0ζ2 −

1

2
H2ζ2 −

5

4
H0,0ζ2 + 7H2 −

1

4
H2,0,0 + 3H3 +

3

4
H

+
1

4
ζ2

2 − 8

3
ζ2 +

17

2
ζ3 + H−2,0 −

19

2
H0 +

5

2
H0ζ2 − H0ζ3 +

13

3
H0,0 +

5

2
H0,0,0 +

−δ(1−x)

[

1657

576
− 281

27
ζ2 +

1

8
ζ2

2 +
97

9
ζ3 −

5

2
ζ5

])

+ 16CF n2
f

(

1

18
pqq(x)

[

H0,0

+(1−x)

[

13

54
+

1

9
H0

]

− δ(1−x)

[

17

144
− 5

27
ζ2 +

1

9
ζ3

])

+ 16CF
2nf

(

1

3
pqq(x)

[
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−55

16
+

5

8
H0 + H0ζ2 +

3

2
H0,0 − H0,0,0 −

10

3
H1,0 −

10

3
H2 − 2H2,0 − 2H3

]

+
2

3
p

−3

2
ζ3 + H−2,0 + 2H−1ζ2 +

10

3
H−1,0 + H−1,0,0 − 2H−1,2 −

1

2
H0ζ2 −

5

3
H0,0 − H

−(1−x)

[

10

9
+

19

18
H0,0 −

4

3
H1 +

2

3
H1,0 +

4

3
H2

]

+ (1+x)

[

4

3
H−1,0 −

25

24
H0 +

+
7

9
H0,0 +

4

3
H2 − δ(1−x)

[

23

16
− 5

12
ζ2 −

29

30
ζ2

2 +
17

6
ζ3

])

+ 16CF
3

(

pqq(x)

[

10

+6H−2ζ2 + 12H−2,−1,0 − 6H−2,0,0 −
3

16
H0 −

3

2
H0ζ2 + H0ζ3 +

13

8
H0,0 − 2H0

+12H1ζ3 + 8H1,−2,0 − 6H1,0,0 − 4H1,0,0,0 + 4H1,2,0 − 3H2,0 + 2H2,0,0 + 4H2,1

+4H3,0 + 4H3,1 + 2H4

]

+ pqq(−x)

[

7

2
ζ2

2 − 9

2
ζ3 − 6H−3,0 + 32H−2ζ2 + 8H−2

−26H−2,0,0 − 28H−2,2 + 6H−1ζ2 + 36H−1ζ3 + 8H−1,−2,0 − 48H−1,−1ζ2 + 40H
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3rd loop
3rd loop, and UFF

+48H−1,−1,2 + 40H−1,0ζ2 + 3H−1,0,0 − 22H−1,0,0,0 − 6H−1,2 − 4H−1,2,0 − 32H

−3

2
H0ζ2 − 13H0ζ3 − 14H0,0ζ2 −

9

2
H0,0,0 + 6H0,0,0,0 + 6H2ζ2 + 3H3 + 2H3,0 +

+(1−x)

[

2H−3,0 −
31

8
+ 4H−2,0,0 + H0,0ζ2 − 3H0,0,0,0 + 35H1 + 6H1ζ2 − H1,0

+(1+x)

[

37

10
ζ2

2 − 93

4
ζ2 −

81

2
ζ3 − 15H−2,0 + 30H−1ζ2 + 12H−1,−1,0 − 2H−1,0

−24H−1,2 −
539

16
H0 − 28H0ζ2 +

191

8
H0,0 + 20H0,0,0 +

85

4
H2 − 3H2,0,0 − 2H3

−H4

]

+ 4ζ2 + 33ζ3 + 4H−3,0 + 10H−2,0 +
67

2
H0 + 6H0ζ3 + 19H0ζ2 − 25H0,0

−2H2 − H2,0 − 4H3 + δ(1−x)

[

29

32
− 2ζ2ζ3 +

9

8
ζ2 +

18

5
ζ2

2 +
17

4
ζ3 − 15ζ5

])
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High order QCD Dynamics

3rd loop
facing music of the spheres

2× 2 anomalous dimension matrix occupies

1 st loop: 1/10 page

2 nd loop: 1 page

3 rd loop: 100 pages (200 K asci)

Moch, Vermaseren and Vogt

[ waterfall of results launched

March 2004, and counting ]

V ∼
{

10
N(N−1)

2
−1

102N−1
−2

not too encouraging a trend . . .
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High order QCD Dynamics

made simple?
Fighting complexity

How to reduce complexity ?

Guidelines

✓ exploit internal properties :

Drell–Levy–Yan relation
Gribov–Lipatov reciprocity

✓ separate classical & quantum
effects in the gluon sector

Higher Orders

Innovative Bookkeeping

Inheritance idea

Think

Extract

Solve

An essential part of gluon dynamics is Classical. (F.Low)
“Classical” does not mean “Simple”.
However, it has a good chance to be Exactly Solvable.

➥ A playing ground for theoretical theory: SUSY, AdS/CFT, . . .
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In the new approach,

Anomalous DimensionsEvolution Hamiltonian

ordering

Splitting functions

time

splitting functions are disconnected from the anomalous dimensions;

the evolution kernel is identical for space- and time-like cascades
(Gribov–Lipatov reciprocity relation true in all orders);

unique evolution variable — parton fluctuation time
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The origin of the GL reciprocity violation is essentially kinematical :

inherited from previous loops !

Hypothesis of the new RR evolution kernel P
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was verified at 3 loops for the nonsinglet channel, (γ(T ) − γ(S)) = OK
Mitov, Moch & Vogt (2006)
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Innovative Bookkeeping

Reciprocity Respecting Evolution
checks of new space-time bookkeeping

Maximally super-symmetric N =4 YM allows for a compact analytic
solution of the GLR problem in 3 loops (∀N) D-r & Marchesini (2006)

Moreover, the most resent result : in N =4
✗ GLR holds for twist 3, in 3+4 loops Matteo Beccaria et al. (2007)

What is so special about N =4 SYM ?

This QFT has a good chance to be solvable — “integrable”.
Dynamics can be fully integrated if the system possesses a sufficient
(infinite!) number of conservation laws, — integrals of motion.

Recall an old hint from QCD ...
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z

1−z
= CF · 1 + z2

1 − z

z

= CF · 1 + (1−z)2

z
z

= TR ·
[

z2 + (1−z)2
]

z

= Nc ·
1 + z4 + (1−z)4

z(1 − z)

Four “parton splitting functions”

q[g ]
q (z) ,

g [q]
q (z) ,

q[q̄]
g (z) ,

g [g ]
g (z)
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z(1 − z)

Exchange the decay products : z → 1 − z

Exchange the parent and the offspring : z → 1/z (GLR)

The story continues, however : CF = TR = Nc : Super-Symmetry

All four are related ! ≡ infinite number of conservation laws !

wq(z) =
q[g ]
q (z) +

g [q]
q (z) =

q[q̄]
g (z) +

g [g ]
g (z) = wg (z)
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✓ maximal helicity multi-gluon operators

Lipatov (1997)

Minahan & Zarembo

Beisert & Staudacher (2003)
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Reciprocity Respecting Evolution
from Bookkeeping to Solving

The integrability feature manifests itself already in certain sectors of QCD,
in specific problems where one can identify QCD with SUSY-QCD :

✓ the Regge behaviour (large Nc )
Lipatov

Faddeev & Korchemsky (1994)

✓ baryon wave function
Braun, Derkachov,Korchemsky,

Manashov; Belitsky (1999)

✓ maximal helicity multi-gluon operators

Lipatov (1997)

Minahan & Zarembo

Beisert & Staudacher (2003)

The higher the symmetry, the deeper integrability. N =4 — the extreme:

✗ Conformal theory β(α) ≡ 0

✗ All order expansion for αphys Beisert, Eden, Staudacher (2006)

✗ Full integrability via AdS/CFT
Maldacena; Witten,

Gubser, Klebanov, Polyakov (1998)

And here we arrive at the second — Divide and Conquer — issue
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Recall the diagonal first loop anomalous dimensions:
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π
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γ̃g→g(x)+g =
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+ (1 − x) ·

(

x + x−1
)

]

.
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Recall the diagonal first loop anomalous dimensions:

γ̃q→q(x)+g =
CFαs

π

[

x

1 − x
+ (1 − x) · 1

2

]

,

γ̃g→g(x)+g =
CAαs

π

[

x

1 − x
+ (1 − x) ·

(

x + x−1
)

]

.

The first component is independent of the nature of the radiating particle
— the Low–Burnett–Kroll classical radiation =⇒ “clagons”.
The second — “quagons” — is relatively suppressed as O

(

(1 − x)2
)

.

Classical and quantum contributions respect the GL relation, individually:

−xf (1/x) = f (x)

Let us look at the rôles these animals play on the QCD stage
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Gluenatomy

Clagons :

✗ Classical Field

✓ infrared singular, dω/ω

✓ define the physical coupling

✓ responsible for

➥ DL radiative effects,

➥ reggeization,

➥ QCD/Lund string (gluers)

✓ play the major rôle in evolution

Quagons :

✗ Quantum d.o.f.s (constituents)

✓ infrared irrelevant, dω · ω
✓ make the coupling run

✓ responsible for conservation of
➥ P-parity,

➥ C -parity,

➥ colour

}

in
decays,
production

✓ minor rôle
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}

in
decays,
production

✓ minor rôle

In addition,

✗ Tree multi-clagon (Parke–Taylor) amplitudes are known exactly

✗ It is clagons which dominate in all the integrability cases
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β(α) ≡ 0 in all orders ! =⇒ γ ⇒ x

1 − x
+ no quagons !

. . . makes one think of a classical nature (!!!) of the SYM-4 dynamics
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N =4 SYM has already demonstrated viability of the inheritance idea.

N =4 SYM dynamics is classical, in certain sense.

If so, the final goal — to derive γ from γ(1), in all orders !

QCD and SUSY-QCD share the gluon sector.

clever 2nd loop

clever 1st loop
< 2%

(

Heavy quark fragmentation

D-r, Khoze & Troyan , PRD 1996

)
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N = 4 Super–Yang–Mills

Serving QCD
N=4 SYM serving QCD

N =4 SYM has already demonstrated viability of the inheritance idea.

N =4 SYM dynamics is classical, in certain sense.

If so, the final goal — to derive γ from γ(1), in all orders !

QCD and SUSY-QCD share the gluon sector.

Clagon (classical) contributions in higher orders show up as specific
“most transcendental ” structures (Euler–Zagier harmonic sums τ = 2L−1).
Importantly, they constitute the bulk of the QCD anomalous dimension!

Employ N =4 SYM to simplify the major part of the QCD dynamics !
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A steady progress in high order perturbative QCD calculations is worth
accompanying by reflections upon the origin and the structure of higher
loop correction effects

Reformulation of parton cascades in terms of Gribov–Lipatov reciprocity
respecting evolution equations (RREE)

reduces complexity by (at leat) an order of magnitude
improves perturbative series (less singular, better “convergent”)
links interesting phenomena in the DIS and e+e− annihilation channels

The Low theorem should be part of theor.phys. curriculum, worldwide

Complete solution of the N =4 SYM QFT should provide us with a
one-line-all-orders description of the major part of QCD dynamics
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research in phenomenology]

WikipediA:

Phenomenology is a current in philosophy
that takes intuitive experience of phenom-
ena (what presents itself to us in conscious
experience) as its starting point and tries to
extract the essential features of experiences
and the essence of what we experience.

[early 20th century philosophers: Husserl,

Merleau-Ponty, Heidegger]
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To understand the essence of what we experience in hadron interactions,
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strong colour fields at small coupling ! CGC, LPM, ...
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