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Parton Cascades
Quantum Mechanics strikes back

Rediscovery of the quantum-mechanical nature of gluon radiation played
the major rôle in understanding the internal structure of jets as well.

Why “rediscovery”?
Because, under the spell of the probabilistic parton cascade picture,
theorists managed to make serious mistakes in the late 70’s when they
indiscriminately applied it to parton multiplication in jets.

Subtlety: When gauge fields (conserved currents) are concerned,

born later (time ordering)

does not mean
being born independently

=⇒
Coherence in radiation

of soft gluons (photons) with x � 1
— the ones that determine the bulk

of secondary parton multiplicity!

Recall an amazing historical example: Cosmic ray physics (mid 50’s);

conversion of high energy photons into e+e− pairs in the emulsion
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Why then do we see this ?

e+e− (observed)

Transverse distance between two charges
(size of the e+e− dipole) is

ρ⊥ ' c t · ϑe = λ⊥ · ϑe

ϑ
. Angular Ordering

ϑ < ϑe – independent radiation off e− & e+

ϑ > ϑe – no emission ! (ρ⊥ < λ⊥)

ϑ e

k

p
ϑp+kphoton

The photon is emitted after the time (lifetime of the virtual p + k state)
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Angular Ordering is more restrictive than the fluctuation time ordering:

ϑ ≤ ϑe versus ϑ ≤ ϑe ·
√
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that follows from (DGLAP)
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intRA-jet coherence

Angular Ordering is more restrictive than the fluctuation time ordering:

ϑ ≤ ϑe versus ϑ ≤ ϑe ·
√

p0

k0
.

Significant difference when k0/p0 = x � 1 (soft radiation).

Coherence in large-angle gluon emission not only affected (suppressed) total
parton multiplicity but had dramatic consequences for the structure of the
energy distribution of secondary partons in jets.

It was predicted that, due to coherence, “Feynman plateau” dN/d ln x
must develop a hump at

(ln k)max =

(

1

2
− c ·

√

αs(Q) + . . .

)

· lnQ , kmax ' Q0.35 ,

while the softest particles (that seem to be the easiest to produce)

should not multiply at all !
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First confronted with
theory in e+e− → h+X .

CDF (Tevatron)

pp → 2 jets

Charged hadron yield as
a function of ln(1/x) for
different values of jet
hardness, versus (MLLA)

QCD prediction.

One free parameter –
overall normalization
(the number of final π’s
per extra gluon)
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Yet another calculable –
CIS – quantity.

Mark Universality:
same behaviour seen
in e+e−, DIS (ep),
hadron–hadron coll.
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So, the ratios of particle flows between jets (intERjet radiophysics),
as well as the shape of the inclusive energy spectra of secondary particles
(intRAjet cascades) turn out to be formally calculable (CIS) quantities.
Moreover, these perturbative QCD predictions actually work.
The strange thing is, these phenomena reveal themselves at present-day
experiments via hadrons (pions) with extremely small momenta k⊥, where
we were expecting to hit the non-perturbative domain — large coupling
αs(k⊥) — and potential failure of the quark–gluon language as such.

The fact that the underlying physics of colour is being impressed upon
“junky” pions with 100–300 MeV momenta, could not be a priori expected.
At the same time, it sends us a powerful message: confinement –
transformation of quarks and gluons into hadrons – has a non-violent
nature: there is no visible reshuffling of energy–momentum at the
hadronization stage. Known under the name of the Local Parton-Hadron
Duality hypothesis (LPHD), explaining this phenomenon remains
a challenge for the future quantitative theory of colour confinement.
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Both Inter-Jet and Intra-Jet phenomena fully reveal colour coherence in
QCD parton multiplication. Their solid imprint upon the angular and
energy spectra of relatively soft hadrons are sending us a powerful message

confinement (= metamorphosis) is soft

For the time being, we are exploiting this gift: hadron flow practitioners
developing smart tools for triggering on new physics, colour glass brewers,
small-x BFKL lovers, — no-one would hesitate to put gluons and hadrons
into (more or less) one-to-one correspondence.

There is nothing wrong with this. In so doing we simply follow the
opportunists’ motto “ain’t broken – don’t fix it”.

It becomes mandatory, however, that we start exploring The LPHD Gift
rather than simply exploiting it.

To set up the Quest, we have
to turn now to the problems of
the non-perturbative domain:

☛ what is it,

☛ what do we know about it,

☛ and, more importantly, what we don’t
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Indeed, today one takes a lot of things for granted:

One rarely questions whether the alternative roads to constructing QFT
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approach — really lead to the same quantum theory of interacting fields
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deceiving, technology of translating the dynamics of quantum fields into
that of statistical systems (Euclidean rotation)

One takes the original concept of the “Dirac sea ” — the picture of the
fermionic content of the vacuum — as an anachronistic model
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InfraRed Instability Heritage or Handicap?

An amazing success of the relativistic theory of electron and photon fields
— quantum electrodynamics (QED) — has produced a long-lasting
negative impact: it taught the generations of physicists that came into the
business in/after the 70’s to “not to worry”.
Indeed, today one takes a lot of things for granted:

One rarely questions whether the alternative roads to constructing QFT
— secondary quantization, functional integral and the Feynman diagram
approach — really lead to the same quantum theory of interacting fields

One feels ashamed to doubt an elegant powerful, but potentially
deceiving, technology of translating the dynamics of quantum fields into
that of statistical systems (Euclidean rotation)

One takes the original concept of the “Dirac sea ” — the picture of the
fermionic content of the vacuum — as an anachronistic model

One was taught to look upon the problems that arise with field-theoretical
description of point-like objects and their interactions at very small
distances (ultraviolet divergences) as purely technical: renormalize it and
forget it.
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G (x− y) = −
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D[A⊥] · ∇ ∇2 1
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averageover transverse vacuum fields A⊥
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InfraRed Instability Gribov Copies

Covariant derivative

D [A⊥] . = ∇ .+ igs [A⊥ .]
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The Coulomb field “propagator”

G (x− y) = −
〈

1

D[A⊥] · ∇ ∇2 1

D[A⊥] · ∇

〉

Estimate of non-linearity :

gsA⊥/∇ ∼ gs · |A⊥| L ∼ 1

Appearance of Zero Modes of the operator D[A⊥] · ∇ signals

a failure of extracting physical d.o.f. (gauge fixing);

Gribov horizon C0 (gauge fixing condition has multiple solutions);

Fundamental Domain in the functional integral over gluon fields
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InfraRed Instability

THE Confinement
Gribov Confinement: setting up the Problem

The question of interest is
The confinement in the real world (with 2 very light u and d quarks),
rather than a confinement.

No mechanism for binding massless bosons (gluons) seems to exist in
Quantum Field Theory (QFT), while the Pauli exclusion principle may
provide means for binding together massless fermions (light quarks).

The problem of ultraviolet regularization may be more than a technical
trick in a QFT with apparently infrared-unstable dynamics: the
ultraviolet and infrared regimes of the theory may be closely linked.

The Feynman diagram technique has to be reconsidered in QCD if one
goes beyond trivial perturbative correction effects.
Feynman’s famous iε prescription was designed for (and applies only to)
the theories with stable perturbative vacua.
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Gribov Confinement: setting up the Problem

The question of interest is
The confinement in the real world (with 2 very light u and d quarks),
rather than a confinement.

No mechanism for binding massless bosons (gluons) seems to exist in
Quantum Field Theory (QFT), while the Pauli exclusion principle may
provide means for binding together massless fermions (light quarks).

The problem of ultraviolet regularization may be more than a technical
trick in a QFT with apparently infrared-unstable dynamics: the
ultraviolet and infrared regimes of the theory may be closely linked.

The Feynman diagram technique has to be reconsidered in QCD if one
goes beyond trivial perturbative correction effects.
Feynman’s famous iε prescription was designed for (and applies only to)
the theories with stable perturbative vacua.

To understand and describe a physical process in a confining theory, it is
necessary to take into consideration the response of the vacuum, which
leads to essential modifications of the quark and gluon Green functions.
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InfraRed Instability

THE Confinement
Vacuum instability and supercritical binding

QED: physical objets — electrons and photons — are in one-to-one
correspondence with the fundamental fields that one puts into the local
Lagrangian of the theory.

QCD: the Vacuum changes the bare fields beyond recognition.

A known QFT example of such a violent response of the vacuum —
screening of super-charged ions with Z > 137.
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InfraRed Instability

THE Confinement
Supercritical binding by over-charged nuclei

The expression for Dirac energy levels of an electron in an external static
field created by the point-like electric charge Z contains
ε ∝

√

1 − (αe.m.Z )2.
For Z > 137 the energy becomes complex. This means instability.

Classically, the electron “falls onto the centre”.

Quantum-mechanically, it also “falls”, but into the Dirac sea.

In QFT the instability develops when the energy ε of an empty atomic
electron level drops, with increase of Z , below −mec

2.

An e+e− pair pops up from the vacuum, with the vacuum electron
occupying the level: the super-critically charged ion decays into an
“atom” (the ion with the smaller positive charge, Z − 1) and a real
positron:
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Supercritical binding by over-charged nuclei

The expression for Dirac energy levels of an electron in an external static
field created by the point-like electric charge Z contains
ε ∝

√

1 − (αe.m.Z )2.
For Z > 137 the energy becomes complex. This means instability.

Classically, the electron “falls onto the centre”.

Quantum-mechanically, it also “falls”, but into the Dirac sea.

In QFT the instability develops when the energy ε of an empty atomic
electron level drops, with increase of Z , below −mec

2.

An e+e− pair pops up from the vacuum, with the vacuum electron
occupying the level: the super-critically charged ion decays into an
“atom” (the ion with the smaller positive charge, Z − 1) and a real
positron:

AZ =⇒ AZ−1 + e+ , for Z > Zcrit.

Thus, the ion becomes unstable and gets rid of an excessive electric charge
by emitting a positron (Pomeranchuk & Smorodinsky 1945)
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THE Confinement
Binding “massless” fermions

In the QCD context, the increase of the running quark-gluon coupling at
large distances replaces the large Z of the QED problem.
Gribov generalised the problem of supercritical binding in the field of an
infinitely heavy source to the case of two massless fermions interacting via
Coulomb-like exchange. He found that in this case the supercritical
phenomenon develops much earlier.

Namely, a pair of light fermions develops
supercritical behaviour if the coupling hits
a definite critical value

α

π
>
αcrit

π
= 1 −

√

2

3
.

With account of the QCD colour Casimir operator, the value of the
coupling above which restructuring of the perturbative vacuum leads to
chiral symmetry breaking and, likely, to confinement, translates into

αcrit

π
= C−1

F

[

1 −
√

2

3

]

' 0.137
(

CF = N2
c−1
2Nc

)

= 4
3
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Open Problems
Gluon sector

In the analysis of the quark Green function, behaviour of αs was implied.

An open problem:

To construct and to analyse an equation for the gluon
similar to that for the quark Green function. From this
analysis a consistent picture of the coupling g(q) rising
above gcrit in the IR momentum region should emerge.

Difficulty:
To learn to separate the running coupling effects from an
unphysical gauge dependent phase that are both present
in the gluon Green function.
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An open problem:

To construct and to analyse an equation for the gluon
similar to that for the quark Green function. From this
analysis a consistent picture of the coupling g(q) rising
above gcrit in the IR momentum region should emerge.

Difficulty:
To learn to separate the running coupling effects from an
unphysical gauge dependent phase that are both present
in the gluon Green function.

Phasis Publishing House, Moscow (2002)

www.prospero.hu/gribov.html
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InfraRed Instability

Open Problems
Rèsumè

pQCD, talking quarks and gluons, did the job it has been asked to
perform

☛ to measure quark and gluon spins,
☛ to establish SUc(3) as the true QCD gauge group (colour charges),
☛ to verify Asymptotic Freedom.

Moreover, comparing theoretical predictions concerning multiplication of
partons, with production of hadrons in jets,

☛ inclusive energy spectra of (relatively soft) hadrons INSIDE Jets,
☛ soft hadron multiplicity flows IN-BETWEEN Jets

First semi-quantitative understanding of the geniune Non-Perturbative
physics of the Hard–Soft Interface has been gained.

Confinement of Colour remains a challenge for the QCD as a
non-Abelian Quantum Field Theory

the existence of light u and d quarks is likely to play a crucial rôle.



Lecture II (17/43)

InfraRed Instability

Open Problems
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QCD speaks incoherently: it mutters and stutters.
Those exploring Confinement hide behind bars (e.g. 48 × (24)3)
(Asymptotic) Freedom lovers wander around, wondering . . .
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Nuclear modification factor (Nuclear modification factor ( ππ00) ) 

                  

Discovery of
high pT suppression

(one of most significant 
results @ RHIC so far)

PHENIX Collab.
PRL 91, 072303  (2003) 
nucl-ex/0304022

Ncollision scaling 

Npart scaling

4-5 suppression

small distances are mysteriously
emerging in multiple scattering
environment:

Landau-Pomeranchuk-Midgal
medium-induced radiation

CGC Q2 ∝ A1/3

Large PT pion yield gets strongly
suppressed in central collisions,



Lecture II (18/43)

InfraRed Instability

Open Problems
Heavy Ions, Small distances and Jets

QCD speaks incoherently: it mutters and stutters.
Those exploring Confinement hide behind bars (e.g. 48 × (24)3)
(Asymptotic) Freedom lovers wander around, wondering . . .
A new hope: experimental theoretical

  DNP/APS Meetg. (Tucson, AZ), Oct 29, 2003                                                                                     David d'Enterria (Columbia Univ.)

High pHigh p
TT
 azimuthal correlations: Jet signals in Au+Au vs p+ p azimuthal correlations: Jet signals in Au+Au vs p+ p

  dNpair/d∆φ for “trigger” (pT > 4GeV/c) & associated (pT = 2- 4 GeV/c) charg. hadrons:

 Near-side peak: Au+Au = p+p. 

  Trigger hadrons (pT > 4GeV/c) 
  come from jets.

 Away-side peak: Au+Au << p+p. 

   Back-to-back jets suppressed 
   in central Au+Au !

Periph.:

Central:

   Red histogram: p+p (+flow)
   Black points: Au+Au
   Blue curve: flow contribution  
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emerging in multiple scattering
environment:

Landau-Pomeranchuk-Midgal
medium-induced radiation

CGC Q2 ∝ A1/3

Large PT pion yield gets strongly
suppressed in central collisions,

Back flowing – recoiling – jets are
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High pHigh p TT in d+Au (“control” experiment)  in d+Au (“control” experiment) 

     hot & dense medium         cold medium
  (initial+final-state effects) (initial- state effects only) 

 A+Au collision   p,d+Au collision

BUT :

in d + A scattering

NOT ANYMORE

Large PT pion yield gets strongly
suppressed in central collisions,

Back flowing – recoiling – jets are
washed away . . .
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QCD in the Medium

search for Clarity out of Mess
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Why Nuclei?

Breathing hadrons
Field Theory and Inelastic Diffraction

Hadron as a FT object is a coherent sum of various configurations.
At high energies they scatter independently (Feinberg & Pomeranchuk)

h → h∗ as means of probing internal structure of the hadron
projectile
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Breathing hadrons
Fluctuations in scattering cross section

Define Ph(σ) (Good & Walker 1960)

— the probability for a hadron h to interact with a given cross section:

σh
tot = 〈σ〉h ≡

∫

dσ σ · Ph(σ).

⇒ Ph(σ) satisfies a number of constraints, based on information about
soft diffraction off proton and nuclei.
For example, (Pumplin & Miettinen 1978)

σ(hA → h∗A)

σ(hA → hA)

∣

∣

∣

∣

t=0

=

〈

σ2
〉

h

〈σ〉h 2
− 1.

⇒ The pQCD regime for small σ’s: (Baym et al. 1993)

Ph(σ) ∝ σnq−2.
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Why Nuclei?

Breathing hadrons
Very broad distributions!

Collapsed hadrons = penetrators Swollen hadrons = perpetrators

Presence of weakly interacting configurations in hadrons (penetrators)
=⇒

Configurations with interaction strength larger than average
(perpetrators)
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Why Nuclei?

Breathing hadrons
Jets from Diffractive Dissociation of π

π+N(A) → 2 high–k⊥ jets + N(A)

Mechanism:

π hits the target in a frozen small size qq̄
configuration

and scatters quasi-elastically via G 2
target(x ,Q

2).

the first analysis for πp scattering (80): Randa

A effects (81): Bertsch,Brodsky,Goldhaber,Gunion

pQCD (93): Frankfurt, Miller, Strikman

A-dependence of the diffractive jet production cross section σ(A)

An early expectation (81): A1/3

QCD prediction (93): A1.54

Experiment (98-00): E-791 (Eπ = 500 GeV) A1.61±0.08
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Why Nuclei?

Breathing hadrons
Direct observation of colour transparency

♥ The z-distribution of jet momenta is consistent with the asymptotic
pion wave function: φπ(z) ∝ z(1 − z) (Brodsky & Lepage 1980)

Solid lines – fit:

σ(z) ∝ φ2
π(z)

♥♥ The k−n
⊥

dependence (for k⊥ ≥ 1.7GeV/c )

dσ

dk2
⊥

∝ k−7.5
⊥

is close to the predicted n ' 8.0 (for E-791 kinematics)

Next step: p + A → 3 jets + A (RHIC) & p + p̄ → 3 jets + p̄ (Tevatron)
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LPM effect LPM effect

is about radiation induced by multiple scattering of a projectile in a
medium. In 1953 Landau and Pomeranchuk noticed that the energy
spectrum of photons caused by multiple scattering of a relativistic charge
in a medium is essentially different from the Bethe-Heitler pattern.
Symbolically, the photon radiation intensity per unit length reads

ω
dI

dω dz
∝ α

λ
·
√

ω

E 2
ELPM ;

ω

E
<

E

ELPM

. (1)

Here E is the energy of the projectile, and ELPM is the energy parameter
of the problem, built up of the quantities characterising the medium.
These are: the mean free path of the electron, λ, and a typical momentum
transfer in a single scattering, µ (of the order of the inverse radius of the
scattering potential):

ELPM = λµ2 . (2)

In QED the parameter ELPM is in a ball-park of 104 GeV. Such an
enormously large value explains why it took four decades to experimentally
verify the LPM phenomenon (SLAC 1995).
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LPM effect LPM spectrum

The LPM spectrum should be compared with the Bethe-Heitler formula

ω
dI

dω dz
∝ α

λ
, (3)

— independent photon emission at each successive scattering act.

Contrary to (3), the LPM spectrum (1) is free from an “infrared
catastrophe”: small photon frequencies are relatively suppressed, so that
the energy distribution is proportional to dω/

√
ω. Integrating (1) over

photon energy (ω < E in the E → ∞ limit), one deduces the radiative
energy loss per unit length to be proportional to

√
E ,

− dE

dz
∝ α

λ

√

E ELPM . (4)
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LPM effect QCD LPM on the back of envelope

”Brownian kicks” of the to-be-radiated gluon:

k2
⊥ ' µ2 · Ncoh = µ2 · t

λ
;

Gluon formation time:
t =

ω

k2
⊥

.

Equating the two expressions for t,

k2
⊥ '

√

ω µ2

λ
; t =

λ k2
⊥

µ2
; Ncoh =

ω

λµ2
.

Thus,
ω dI

dω dz
∝ αs

λ
· 1

Ncoh

=
αs

λ

√

ELPM

ω

Finite Medium

c t < L =⇒ ω < ωmax =
µ2

λ
L2
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The only (non-perturbative) parameter of the problem, characterising the
medium — transport coefficient

q̂ =
µ2

λ

Hence, for L large enough stays under perturbative control !

To extract from experiment a large q̂ — to observe a new ”hot” state of
quark–gluon matter as compared to a ”cold” nucleus.

Handle on q̂ in cold nuclei — for example, medium effects in Drell-Yan
pair production, DIS on nuclei [François Arleo]

Expectation:
q̂HOT ∼ 10 —30 q̂COLD
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Colour and Hadrons Colour and Nuclei

Colour dynamics in pp, pA, AB

So, collisions or paricipants ?

Hard interactions are commonly expected to scale as nc , soft — as np.

The QCD LPM effect gives a striking example to the contrary ...
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Colour and Hadrons colour in Quark scattering

Quark inelastic scattering scenario : one gluon exchange

l   e g  u 

g  u  l   e 
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d g  u l   e 
π +
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Feynman plateau
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Colour and Hadrons colour in Quark scattering

Meson inelastic scattering scenario: gluon exchange

g  u l   e 

= two “quark chains”
known as the Pomeron
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Colour and Hadrons Painting the proton

Single scattering scenario

d 
u 
s 

P Λ u 
d 

u 

Coherent "diquark"

Coherence of the diquark ain’t broken:

=⇒ a Leading Baryon: B(1) → B(2/3) + M(1/3) + . . .
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Colour and Hadrons Re painting the Proton

Kick it twice to break the coherence of the valence quarks

ρ   K    π 
+       +         −

+ ... P −> 

d 

u P
u 

u

d 

s 

u 

d 

u 

Proton is “fragile”
Expect the baryon quantum number to sink into the sea :

B(1) → M(1/3) + M(1/3) + M(1/3) + . . .+B(0)
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Baryons disappear from the fragmentation region
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ν — number of collisions

Known as Proton Stopping. Better be called Proton Decay
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One gluon exchange: accompanying radiation
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Accompanying gluon radiation spectrum :

✓ dω/ω =⇒ rapidity plateau ;

✓ k⊥ < q⊥ =⇒ finite transverse momenta.
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=⇒ scattering cross section of the projectile
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]

Particle density is universal — it does not depend on the projectile :
(ifabc)

2 → Nc → one Pomeron. Conservation of Colour at work

Multiple scattering of a quark (meson) =⇒ N Participant scaling
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Colour and Hadrons colour capacity

g  u l   e 

+10+27

=1+8+8+10

8*8= 1+8+8+10

3*3*3

Consider double scattering (two gluon exchange)
The (3-quark) proton is more capacious, but still . . .

Calculate the average colour charge of the two-gluon system:

1

64
· 0 +

8 + 8

64
· 3 +

10 + 10

64
· 6 +

27

64
· 8 = 6 = 2 ·Nc =⇒

Double density
of hadrons
=2 Pomerons

Cannot be realized on a valence-built proton :
1

27
· 0 +

8 + 8

27
· 3 +

10

27
· 6 = 4 ??

Nowhere near
2 Pomerons
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Colour and Hadrons colour incapacity

Successive collisions of a projectile with a limited colour capacity do not
produce much of additional hadron yield ....

Where are then multiple Pomerons ??

Look at the by-product of the Landau–Pomeranchuk–Migdal physics ...



Lecture II (39/43)

LPM and Pomerons LPM effect in hA scattering

Inclusive spectrum of medium-induced gluon radiation:

ω dn

dω
' αs

π
·
[

L

λ

]

·
√

µ2λ

ω
, µ2λ < ω < µ2λ

[

L

λ

]2



Lecture II (39/43)

LPM and Pomerons LPM effect in hA scattering

Inclusive spectrum of medium-induced gluon radiation:

ω dn

dω
' αs

π
·
[

L

λ

]

·
√

µ2λ

ω
, µ2λ < ω < µ2λ

[

L

λ

]2

Bethe-Heitler spectrum (independent radiation off each scattering centre)



Lecture II (39/43)

LPM and Pomerons LPM effect in hA scattering

Inclusive spectrum of medium-induced gluon radiation:

ω dn

dω
' αs

π
·
[

L

λ

]

·
√

µ2λ

ω
, µ2λ < ω < µ2λ

[

L

λ

]2

The number of collisions of the projectile, nc = L/λ



Lecture II (39/43)

LPM and Pomerons LPM effect in hA scattering

Inclusive spectrum of medium-induced gluon radiation:

ω dn

dω
' αs

π
·
[

L

λ

]

·
√

µ2λ

ω
, µ2λ < ω < µ2λ

[

L

λ

]2

The coherent suppression factor



Lecture II (39/43)

LPM and Pomerons LPM effect in hA scattering

Inclusive spectrum of medium-induced gluon radiation:

ω dn

dω
' αs

π
·
[

L

λ

]

·
√

µ2λ

ω
, µ2λ < ω < µ2λ

[

L

λ

]2

Ncoh. > 1 scattering centres that fall inside the formation length of the
gluon act as a single scatterer.

Ncoh. '
`coh.

λ
' 1

λ
· ω
k2
⊥

.



Lecture II (39/43)

LPM and Pomerons LPM effect in hA scattering

Inclusive spectrum of medium-induced gluon radiation:

ω dn

dω
' αs

π
·
[

L

λ

]

·
√

µ2λ

ω
, µ2λ < ω < µ2λ

[

L

λ

]2

Ncoh. > 1 scattering centres that fall inside the formation length of the
gluon act as a single scatterer. At the same time, the gluon is subject to
Brownian motion in the transverse momentum plane:

k2
⊥ ' Ncoh. · µ2 , Ncoh. '

`coh.

λ
' 1

λ
· ω
k2
⊥

.



Lecture II (39/43)

LPM and Pomerons LPM effect in hA scattering

Inclusive spectrum of medium-induced gluon radiation:

ω dn

dω
' αs

π
·
[

L

λ

]

·
√

µ2λ

ω
, µ2λ < ω < µ2λ

[

L

λ

]2

Ncoh. > 1 scattering centres that fall inside the formation length of the
gluon act as a single scatterer. At the same time, the gluon is subject to
Brownian motion in the transverse momentum plane:

k2
⊥ ' Ncoh. · µ2 , Ncoh. '

`coh.

λ
' 1

λ
· ω
k2
⊥

.

Combining the two estimates results in

Ncoh. '
√

ω

µ2λ
and k2

⊥ '
√

µ2

λ
· ω .



Lecture II (39/43)

LPM and Pomerons LPM effect in hA scattering

Inclusive spectrum of medium-induced gluon radiation:

ω dn

dω
' αs

π
·
[

L

λ

]

·
√

µ2λ

ω
, µ2λ < ω < µ2λ

[

L

λ

]2

Ncoh. > 1 scattering centres that fall inside the formation length of the
gluon act as a single scatterer. At the same time, the gluon is subject to
Brownian motion in the transverse momentum plane:

k2
⊥ ' Ncoh. · µ2 , Ncoh. '

`coh.

λ
' 1

λ
· ω
k2
⊥

.

Combining the two estimates results in
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It is the factor N−1
coh. that describes the coherent LPM suppression.
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Many successive collisions ... but only one Pomeron. The destructive LPM
coherence invalidates the multi-Pomeron exchange picture?! Does it indeed?
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Recall the good old Amati–Fubini–Stanghellini puzzle.

Successive scatterings of a parton DO NOT
produce branch points in the complex J
plane (Reggeon loops).

The Mandelstam construction generates
“Reggeon cuts”, with Pomerons attached to
separate — coexisting — partons.

=0

.

To have nc Pomerons attached, one must compare nc with the number of
independent (incoherent, resolved) partons inside the projectile :

C (xh,Qres) =

∫ 1

xh

dx

x

[

xGproj (x ,Q
2
res)

]

, xproj = 1 .

Parton capacity of the projectile depends on the energy (xh) and on the
resolution — k⊥h of the observed final state hadron h.
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LPM and Pomerons Confinement in Multiple Collisions

In the framework of the standard hadron (multi-Pomeron) picture
(e.g., the successful Dual Parton Model of Capella & Kaidalov et al.)
one includes final state interactions to explain spectacular heavy ion
phenomena like J/ψ suppression, enhancement of strangeness, etc.

“Final state interaction” is a synonym to “non-independent fragmentation”
— cross-talking Pomerons, overlapping strings, “string ropes”, . . .

From the point of view of the colour dynamics, in pA and AA
environments we face an intrinsically new, unexplored question:

After the pancakes separate, at each impact parameter we have a dense
colour field whose strength corresponds to np/fm

2 ∝ A1/3 “strings”.

How does the vacuum break up in stronger than usual colour fields?

LEP left the question unanswered.
Surprises to be expected. Mind your head.
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