Parton Energy Loss in QCD Medium

Yuri L. Dokshitzer
LPTHE, University Paris VI \& VII PNPI, St. Petersburg
CERN TH
Les Houches
March 25 - April 5, 2008

The wall of our ignorance is still stone solid.

The wall of our ignorance is still stone solid.

Piercing the Wall

The wall of our ignorance is still stone solid.

Piercing the Wall

The wall of our ignorance is still stone solid.

The Hope :

Clarity out of
 Mess

Piercing the Wall

The wall of our ignorance is still stone solid.

The Hope :

Clarity out of
 Mess

again ...

Asymptotic Freedom and

QCD Partons

Running coupling

The strong coupling, α_{s}, runs:

$$
\begin{aligned}
& Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=\beta\left(\alpha_{\mathrm{s}}\right), \quad \beta\left(\alpha_{\mathrm{s}}\right)=-\alpha_{\mathrm{s}}^{2}\left(b_{0}+b_{1} \alpha_{\mathrm{s}}+b_{2} \alpha_{\mathrm{s}}^{2}+\ldots\right), \\
& b_{0}=\frac{11 N_{c}-2 n_{f}}{12 \pi}, \quad b_{1}=\frac{17 N_{c}^{2}-5 N_{c} n_{f}-3 C_{F} n_{f}}{24 \pi^{2}} ; \quad\left(C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}}\right)
\end{aligned}
$$

Running coupling

The strong coupling, α_{s}, runs:

$$
\begin{aligned}
& Q^{2} \frac{\partial \alpha_{\mathrm{s}}}{\partial Q^{2}}=\beta\left(\alpha_{\mathrm{s}}\right), \quad \beta\left(\alpha_{\mathrm{s}}\right)=-\alpha_{\mathrm{s}}^{2}\left(b_{0}+b_{1} \alpha_{\mathrm{s}}+b_{2} \alpha_{\mathrm{s}}^{2}+\ldots\right), \\
& b_{0}=\frac{11 N_{c}-2 n_{f}}{12 \pi}, \quad b_{1}=\frac{17 N_{c}^{2}-5 N_{c} n_{f}-3 C_{F} n_{f}}{24 \pi^{2}} ; \quad\left(C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}}\right)
\end{aligned}
$$

Note sign: Asymptotic Freedom, due to gluon to self-interaction

- At high scales Q, coupling is weak

Running coupling

The strong coupling, α_{s}, runs:

$$
\begin{aligned}
& Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=\beta\left(\alpha_{\mathrm{s}}\right), \quad \beta\left(\alpha_{\mathrm{s}}\right)=-\alpha_{\mathrm{s}}^{2}\left(b_{0}+b_{1} \alpha_{\mathrm{s}}+b_{2} \alpha_{\mathrm{s}}^{2}+\ldots\right), \\
& b_{0}=\frac{11 N_{c}-2 n_{f}}{12 \pi}, \quad b_{1}=\frac{17 N_{c}^{2}-5 N_{c} n_{f}-3 C_{F} n_{f}}{24 \pi^{2}} ; \quad\left(C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}}\right)
\end{aligned}
$$

Note sign: Asymptotic Freedom, due to gluon to self-interaction

- At high scales Q, coupling is weak
\Leftrightarrow quarks and gluons are almost free, their interactions stay under the perturbation theory control
- At low scales, coupling becomes (catastrophically) large

Running coupling

The strong coupling, α_{s}, runs:

$$
\begin{aligned}
& Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=\beta\left(\alpha_{\mathrm{s}}\right), \quad \beta\left(\alpha_{\mathrm{s}}\right)=-\alpha_{\mathrm{s}}^{2}\left(b_{0}+b_{1} \alpha_{\mathrm{s}}+b_{2} \alpha_{\mathrm{s}}^{2}+\ldots\right), \\
& b_{0}=\frac{11 N_{c}-2 n_{f}}{12 \pi}, \quad b_{1}=\frac{17 N_{c}^{2}-5 N_{c} n_{f}-3 C_{F} n_{f}}{24 \pi^{2}} ; \quad\left(C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}}\right)
\end{aligned}
$$

Note sign: Asymptotic Freedom, due to gluon to self-interaction

- At high scales Q, coupling is weak
\Leftrightarrow quarks and gluons are almost free, their interactions stay under the perturbation theory control
- At low scales, coupling becomes (catastrophically) large \Rightarrow quarks and gluons interact strongly - they are confined into hadrons. Perturbation theory should fail.
- It seems natural to expect the effective interaction strength to decrease at large distances.
- Moreover, it was long thought to be inevitable as corresponding to the physics of 'screening'
- It seems natural to expect the effective interaction strength to decrease at large distances.
- Moreover, it was long thought to be inevitable as corresponding to the physics of 'screening'.
- The fact that the vacuum fluctuations have to screen the external charge, in QFT follows from the first principles: unitarity and crossing symmetry (= Lorentz invariance + causality)
- It seems natural to expect the effective interaction strength to decrease at large distances.
- Moreover, it was long thought to be inevitable as corresponding to the physics of 'screening'.
- The fact that the vacuum fluctuations have to screen the external charge, in QFT follows from the first principles: unitarity and crossing symmetry (= Lorentz invariance + causality)

Asymptotic Freedom : WHY?

- It seems natural to expect the effective interaction strength to decrease at large distances.
- Moreover, it was long thought to be inevitable as corresponding to the physics of 'screening'.
- The fact that the vacuum fluctuations have to screen the external charge, in QFT follows from the first principles: unitarity and crossing symmetry (= Lorentz invariance + causality) as was understood by Landau and Pomeranchuk in mid 50's, after Landau \& Co have made a sign mistake in calculating the running electromagnetic coupling (and thus, for a couple of weeks, were happy about having discovered 'asymptotic freedom' in QED)...

Asymptotic Freedom: WHY?

- It seems natural to expect the effective interaction strength to decrease at large distances.
- Moreover, it was long thought to be inevitable as corresponding to the physics of 'screening'.
- The fact that the vacuum fluctuations have to screen the external charge, in QFT follows from the first principles: unitarity and crossing symmetry (= Lorentz invariance + causality) as was understood by Landau and Pomeranchuk in mid 50's, after Landau \& Co have made a sign mistake in calculating the running electromagnetic coupling (and thus, for a couple of weeks, were happy about having discovered 'asymptotic freedom' in QED)...

So, why does this most general argument fail in non-Abelian QFT ?

To address questions starting from what or why we better talk physical degrees of freedom; use the Hamiltonian language. Then, we have gluons of two sorts: 'physical' transverse gluons and the Coulomb gluon field mediator of the instantaneous interaction between colour charges.

To address questions starting from what or why we better talk physical degrees of freedom; use the Hamiltonian language. Then, we have gluons of two sorts: 'physical' transverse gluons and the Coulomb gluon field mediator of the instantaneous interaction between colour charges.

Consider Coulomb interaction between two (colour) charges :

Consider Coulomb interaction between two (colour) charges :

Instantaneous Coulomb interaction

$$
=-\mathbf{N}_{\mathrm{c}} * \frac{1}{3}-\mathrm{n}_{\mathrm{f}} * \frac{2}{3}
$$

Transverse gluons (and quarks)

Δ
 I
 screening

Consider Coulomb interaction between two (colour) charges :
ANTI screening

$$
\begin{gathered}
1 \\
1 \\
\sqrt{7}
\end{gathered}
$$

Instantaneous Coulomb interaction

Autopsy of Asymptotic Freedom

Consider Coulomb interaction between two (colour) charges :

Combine into the QCD β-function:

$$
\beta\left(\alpha_{s}\right)=\frac{\mathrm{d}}{\mathrm{~d} \ln Q^{2}} 4 \pi \alpha_{s}^{-1}\left(Q^{2}\right)
$$

$=\left[4-\frac{1}{3}\right] * N_{c}-\frac{2}{3} * n_{f}$

Vacuum fluctuations of transverse fields

Autopsy of Asymptotic Freedom

Consider Coulomb interaction between two (colour) charges :

Transverse gluons (and quarks)

Instantaneous Coulomb interaction

$$
=+N_{c} * 4
$$

Combine into the QCD β-function:
$\beta\left(\alpha_{s}\right)=\frac{\mathrm{d}}{\mathrm{d} \ln Q^{2}} 4 \pi \alpha_{s}^{-1}\left(Q^{2}\right)$
$=\left[4-\frac{1}{3}\right] * N_{c}-\frac{2}{3} * n_{f}$
The origin of antiscreening deepening of the ground state under the 2nd order perturbation in NQM:

$$
\Delta E_{0}=\sum_{n} \frac{|\langle 0| \delta V| n\rangle\left.\right|^{2}}{E_{0}-E_{n}}<0
$$

Vacuum fluctuations of transverse fields

Solve $Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=-b_{0} \alpha_{s}^{2}$

$$
\text { Solve } Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=-b_{0} \alpha_{\mathrm{s}}^{2} \Rightarrow \alpha_{\mathrm{s}}\left(Q^{2}\right)=\frac{\alpha_{\mathrm{s}}\left(Q_{0}^{2}\right)}{1+b_{0} \alpha_{\mathrm{s}}\left(Q_{0}^{2}\right) \ln \frac{Q^{2}}{Q_{0}^{2}}}=\frac{1}{b_{0} \ln \frac{Q^{2}}{\Lambda^{2}}}
$$

the fundamental QCD scale,
at which coupling blows up.

Solve $Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=-b_{0} \alpha_{\mathrm{s}}^{2} \Rightarrow \alpha_{\mathrm{s}}\left(Q^{2}\right)=\frac{\alpha_{\mathrm{s}}\left(Q_{0}^{2}\right)}{1+b_{0} \alpha_{\mathrm{s}}\left(Q_{0}^{2}\right) \ln \frac{Q^{2}}{Q_{0}^{2}}}=\frac{1}{b_{0} \ln \frac{Q^{2}}{\Lambda^{2}}}$

- $\wedge\left(\right.$ aka $\left.\Lambda_{Q C D}\right)-$ the fundamental QCD scale, at which coupling blows up.

Solve $Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=-b_{0} \alpha_{\mathrm{s}}^{2} \Rightarrow \alpha_{\mathrm{s}}\left(Q^{2}\right)=\frac{\alpha_{\mathrm{s}}\left(Q_{0}^{2}\right)}{1+b_{0} \alpha_{\mathrm{s}}\left(Q_{0}^{2}\right) \ln \frac{Q^{2}}{Q_{0}^{2}}}=\frac{1}{b_{0} \ln \frac{Q^{2}}{\Lambda^{2}}}$

- $\wedge\left(\right.$ aka $\left.\Lambda_{Q C D}\right)-$ the fundamental QCD scale, at which coupling blows up.
- Perturbative calculations valid for large scales $Q \gg \Lambda$.
- Not an obvious statement: we deal with hadrons in nature, while applying QCD to quarks and gluons

Running coupling (cont.)

Solve $Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=-b_{0} \alpha_{\mathrm{s}}^{2} \Rightarrow \alpha_{\mathrm{s}}\left(Q^{2}\right)=\frac{\alpha_{\mathrm{s}}\left(Q_{0}^{2}\right)}{1+b_{0} \alpha_{\mathrm{s}}\left(Q_{0}^{2}\right) \ln \frac{Q^{2}}{Q_{0}^{2}}}=\frac{1}{b_{0} \ln \frac{Q^{2}}{\Lambda^{2}}}$

- $\wedge\left(\right.$ aka $\left.\Lambda_{Q C D}\right)-$ the fundamental QCD scale, at which coupling blows up.
- Perturbative calculations valid for large scales $Q \gg \Lambda$.
- Not an obvious statement: we deal with hadrons in nature, while applying QCD to quarks and gluons...

Running coupling (cont.)

Solve $Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=-b_{0} \alpha_{\mathrm{s}}^{2} \Rightarrow \alpha_{\mathrm{s}}\left(Q^{2}\right)=\frac{\alpha_{\mathrm{s}}\left(Q_{0}^{2}\right)}{1+b_{0} \alpha_{\mathrm{s}}\left(Q_{0}^{2}\right) \ln \frac{Q^{2}}{Q_{0}^{2}}}=\frac{1}{b_{0} \ln \frac{Q^{2}}{\Lambda^{2}}}$

- $\wedge\left(\right.$ aka $\left.\wedge_{\mathrm{QCD}}\right)$ the fundamental QCD scale, at which coupling blows up.
- Perturbative calculations valid for large scales $Q \gg \Lambda$.
- Not an obvious statement: we deal with hadrons in nature, while applying QCD to quarks and gluons...
- "Animalistic" Ideology : some observables are more equal than the other

Running coupling (cont.)

Solve $Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=-b_{0} \alpha_{\mathrm{s}}^{2} \Rightarrow \alpha_{\mathrm{s}}\left(Q^{2}\right)=\frac{\alpha_{\mathrm{s}}\left(Q_{0}^{2}\right)}{1+b_{0} \alpha_{\mathrm{s}}\left(Q_{0}^{2}\right) \ln \frac{Q^{2}}{Q_{0}^{2}}}=\frac{1}{b_{0} \ln \frac{Q^{2}}{\Lambda^{2}}}$

- $\Lambda\left(\right.$ aka $\left.\Lambda_{Q C D}\right)-$ the fundamental QCD scale, at which coupling blows up.
- Perturbative calculations valid for large scales $Q \gg \Lambda$.
- Not an obvious statement: we deal with hadrons in nature, while applying QCD to quarks and gluons...
- "Animalistic" Ideology : some observables are more equal than the other

Hit hard to see what is it there inside (a childish but productive idea)

Hit hard to see what is it there inside

Heat the Vacuum

- $e^{+} e^{-}$annihilation into hadrons : $e^{+} e^{-} \rightarrow q \bar{q} \rightarrow$ hadrons.

Hit hard to see what is it there inside

Hit the proton (with an electromagnetic/electroweak probe)

- $e^{+} e^{-}$annihilation into hadrons : $e^{+} e^{-} \rightarrow q \bar{q} \rightarrow$ hadrons.
- Deep Inelastic lepton-hadron Scattering (DIS) : $e^{-} p \rightarrow e^{-}+X$.

Hit hard to see what is it there inside

Make two hadrons hit each other hard

- $e^{+} e^{-}$annihilation into hadrons : $e^{+} e^{-} \rightarrow q \bar{q} \rightarrow$ hadrons.
- Deep Inelastic lepton-hadron Scattering (DIS) : $e^{-} p \rightarrow e^{-}+X$.
- Hadron-hadron collisions

Hit hard to see what is it there inside

Make two hadrons hit each other hard

- $e^{+} e^{-}$annihilation into hadrons : $e^{+} e^{-} \rightarrow q \bar{q} \rightarrow$ hadrons.
- Deep Inelastic lepton-hadron Scattering (DIS) : $e^{-} p \rightarrow e^{-}+X$.
- Hadron-hadron collisions : production of
- massive "sterile" objects :
\Rightarrow lepton pairs ($\mu^{+} \mu^{-}$, the Drell-Yan process),
\Rightarrow electroweak vector bosons $\left(Z^{0}, W^{ \pm}\right)$,
\Rightarrow Higgs boson(s)
- hadrons/photons with large transverse momenta wrt to the collision axis.

Hit hard to see what is it there inside

Make two hadrons hit each other hard

- $e^{+} e^{-}$annihilation into hadrons : $e^{+} e^{-} \rightarrow q \bar{q} \rightarrow$ hadrons.
- Deep Inelastic lepton-hadron Scattering (DIS) : $e^{-} p \rightarrow e^{-}+X$.
- Hadron-hadron collisions : production of
- massive "sterile" objects :
\Rightarrow lepton pairs ($\mu^{+} \mu^{-}$, the Drell-Yan process),
\Rightarrow electroweak vector bosons $\left(Z^{0}, W^{ \pm}\right)$,
\Rightarrow Higgs boson(s)
- hadrons/photons with large transverse momenta wrt to the collision axis.

Momentum transfer $=$ measure of "hardness"

Lecture I (9/40)
 - Hard Processes LDIS
 Deep Inelastic lepton-proton Scattering

Bit of kinematics: invariant mass of final hadrons
$W^{2}-M_{P}^{2}=(P+q)^{2}-M_{P}^{2}$
$=2(P q)\left(1-\frac{-q^{2}}{2(P q)}\right) \equiv 2(P q) \cdot(1-x)$

Bit of kinematics: invariant mass of final hadrons

$$
\begin{aligned}
W^{2}-M_{P}^{2} & =(P+q)^{2}-M_{P}^{2} \\
& =2(P q)\left(1-\frac{-q^{2}}{2(P q)}\right) \equiv 2(P q) \cdot(1-x)
\end{aligned}
$$

Bit of kinematics: invariant mass of final hadrons

$$
\begin{aligned}
W^{2}-M_{P}^{2} & =(P+q)^{2}-M_{P}^{2} \\
& =2(P q)\left(1-\frac{-q^{2}}{2(P q)}\right) \equiv 2(P q) \cdot(1-x)
\end{aligned}
$$

Measure of inelasticity - Bjorken variable $x=-\frac{q^{2}}{2(P q)} \quad(0 \leq x \leq 1)$

Bit of kinematics: invariant mass of final hadrons

$$
\begin{aligned}
W^{2}-M_{P}^{2} & =(P+q)^{2}-M_{P}^{2} \\
& =2(P q)\left(1-\frac{-q^{2}}{2(P q)}\right) \equiv 2(P q) \cdot(1-x)
\end{aligned}
$$

Measure of inelasticity - Bjorken variable $x=-\frac{q^{2}}{2(P q)}(0 \leq x \leq 1)$

$$
\frac{d \sigma_{\text {elastic }}}{d q^{2}}=\left(\frac{d \sigma}{d q^{2}}\right)_{\text {point }} \cdot F_{\text {elastic }}^{2}\left(q^{2}\right)
$$

Bit of kinematics: invariant mass of final hadrons

$$
\begin{aligned}
W^{2}-M_{P}^{2} & =(P+q)^{2}-M_{P}^{2}=0 \\
& =2(P q)\left(1-\frac{-q^{2}}{2(P q)}\right) \equiv 2(P q) \cdot(1-x)
\end{aligned}
$$

Measure of inelasticity - Bjorken variable $x=-\frac{q^{2}}{2(P q)}(0 \leq x \leq 1)$

$$
\frac{d \sigma_{\text {elastic }}}{d q^{2}}=\left(\frac{d \sigma}{d q^{2}}\right)_{\text {point }} \cdot F_{\text {elastic }}^{2}\left(q^{2}\right) \cdot \delta(1-x) d x
$$

Bit of kinematics: invariant mass of final hadrons

$$
\begin{aligned}
W^{2}-M_{P}^{2} & =(P+q)^{2}-M_{P}^{2} \\
& =2(P q)\left(1-\frac{-q^{2}}{2(P q)}\right) \equiv 2(P q) \cdot(1-x)
\end{aligned}
$$

Measure of inelasticity - Bjorken variable $x=-\frac{q^{2}}{2(P q)}(0 \leq x \leq 1)$

$$
\begin{aligned}
\frac{d \sigma_{\text {elastic }}}{d q^{2}} & =\left(\frac{d \sigma}{d q^{2}}\right)_{\text {point }} \cdot F_{\text {elastic }}^{2}\left(q^{2}\right) \cdot \delta(1-x) d x \\
\frac{d \sigma_{\text {inelastic }}}{d q^{2}} & =\left(\frac{d \sigma}{d q^{2}}\right)_{\text {point }} \cdot F_{\text {inelastic }}^{2}\left(q^{2}, x\right) \cdot d x
\end{aligned}
$$

Bit of kinematics: invariant mass of final hadrons

$$
\begin{aligned}
W^{2}-M_{P}^{2} & =(P+q)^{2}-M_{P}^{2} \\
& =2(P q)\left(1-\frac{-q^{2}}{2(P q)}\right) \equiv 2(P q) \cdot(1-x)
\end{aligned}
$$

Measure of inelasticity - Bjorken variable $x=-\frac{q^{2}}{2(P q)}(0 \leq x \leq 1)$

$$
\begin{aligned}
\frac{d \sigma_{\text {elastic }}}{d q^{2}} & =\left(\frac{d \sigma}{d q^{2}}\right)_{\text {point }} \cdot F_{\text {elastic }}^{2}\left(q^{2}\right) \\
\frac{d \sigma_{\text {inelastic }}}{d q^{2}} & =\left(\frac{d \sigma}{d q^{2}}\right)_{\text {point }} \cdot F_{\text {inelastic }}^{2}\left(q^{2}, x\right) \cdot d x
\end{aligned}
$$

What to expect for elastic and inelastic proton Form Factors $F^{2}\left(q^{2}\right)$?

Two plausible and one crazy scenarios for the $\left|q^{2}\right| \rightarrow \infty$ (Bjorken) limit Smooth electric charge distribution:

Two plausible and one crazy scenarios for the $\left|q^{2}\right| \rightarrow \infty$ (Bjorken) limit
1). Smooth electric charge distribution:

$$
F_{\text {elastic }}^{2}\left(q^{2}\right) \sim F_{\text {inelastic }}^{2}\left(q^{2}\right) \ll 1
$$

Two plausible and one crazy scenarios for the $\left|q^{2}\right| \rightarrow \infty$ (Bjorken) limit
1). Smooth electric charge distribution:

$$
F_{\text {elastic }}^{2}\left(q^{2}\right) \sim F_{\text {inelastic }}^{2}\left(q^{2}\right) \ll 1
$$

- external probe penetrates the proton as knife thru butter.

Tightly bound point charges inside the proton:

Two plausible and one crazy scenarios for the $\left|q^{2}\right| \rightarrow \infty$ (Bjorken) limit
1). Smooth electric charge distribution:

$$
F_{\text {elastic }}^{2}\left(q^{2}\right) \sim F_{\text {inelastic }}^{2}\left(q^{2}\right) \ll 1
$$

- external probe penetrates the proton as knife thru butter.
$2)$. Tightly bound point charges inside the proton:

$$
F_{\text {elastic }}^{2}\left(q^{2}\right) \sim 1 ; \quad F_{\text {inelastic }}^{2}\left(q^{2}\right) \ll 1
$$

- excitation of one qua
"springs" that bind qua
3). Now look at this:

Two plausible and one crazy scenarios for the $\left|q^{2}\right| \rightarrow \infty$ (Bjorken) limit
1). Smooth electric charge distribution:

$$
F_{\text {elastic }}^{2}\left(q^{2}\right) \sim F_{\text {inelastic }}^{2}\left(q^{2}\right) \ll 1
$$

- external probe penetrates the proton as knife thru butter.
2). Tightly bound point charges inside the proton:

$$
F_{\text {elastic }}^{2}\left(q^{2}\right) \sim 1 ; \quad F_{\text {inelastic }}^{2}\left(q^{2}\right) \ll 1
$$

- excitation of one quark gets redistributed inside the proton via the confinement "springs" that bind quarks together and don't let them fly away.

Two plausible and one crazy scenarios for the $\left|q^{2}\right| \rightarrow \infty$ (Bjorken) limit
1). Smooth electric charge distribution:

$$
F_{\text {elastic }}^{2}\left(q^{2}\right) \sim F_{\text {inelastic }}^{2}\left(q^{2}\right) \ll 1
$$

- external probe penetrates the proton as knife thru butter.
2). Tightly bound point charges inside the proton:

$$
F_{\text {elastic }}^{2}\left(q^{2}\right) \sim 1 ; \quad F_{\text {inelastic }}^{2}\left(q^{2}\right) \ll 1
$$

- excitation of one quark gets redistributed inside the proton via the confinement "springs" that bind quarks together and don't let them fly away.
3). Now look at this:

$$
F_{\text {elastic }}^{2}\left(q^{2}\right) \ll 1 ; \quad F_{\text {inelastic }}^{2}\left(q^{2}\right) \sim 1
$$

- there are points (quarks) inside proton, but the hit quark behaves as a free
particle that flies away without caring about confinement

Two plausible and one crazy scenarios for the $\left|q^{2}\right| \rightarrow \infty$ (Bjorken) limit
1). Smooth electric charge distribution:

$$
F_{\text {elastic }}^{2}\left(q^{2}\right) \sim F_{\text {inelastic }}^{2}\left(q^{2}\right) \ll 1
$$

- external probe penetrates the proton as knife thru butter.
2). Tightly bound point charges inside the proton:

$$
F_{\text {elastic }}^{2}\left(q^{2}\right) \sim 1 ; \quad F_{\text {inelastic }}^{2}\left(q^{2}\right) \ll 1
$$

- excitation of one quark gets redistributed inside the proton via the confinement "springs" that bind quarks together and don't let them fly away.
3). Now look at this:

$$
F_{\text {elastic }}^{2}\left(q^{2}\right) \ll 1 ; \quad F_{\text {inelastic }}^{2}\left(q^{2}\right) \sim 1
$$

- there are points (quarks) inside proton, but the hit quark behaves as a free particle that flies away without caring about confinement.

Conclusion: Proton is a loosely bound system (of 3 quarks + glue $+\cdots$)

Bjorken scaling: Partons

Conclusion: Proton is a loosely bound system

Equate

Inelastic electron-proton scattering
elastic electron-quark scattering

Conclusion: Proton is a loosely bound system

Equate

Inelastic electron-proton scattering
elastic electron-quark scattering

Conclusion: Proton is a loosely bound system

Let the parton carry a finite fraction of the proton momentum $k \simeq z \cdot P \quad\left(k^{2} \simeq 0\right)$

$$
\begin{aligned}
\left(k^{\prime}\right)^{2} & =(z P+q)^{2} \\
& \simeq 2(P q) \cdot(z-x) \simeq 0
\end{aligned}
$$

Conclusion: Proton is a loosely bound system

Let the parton carry a finite fraction of the proton momentum $k \simeq z \cdot P \quad\left(k^{2} \simeq 0\right)$

$$
\begin{aligned}
\left(k^{\prime}\right)^{2} & =(z P+q)^{2} \\
& \simeq 2(P q) \cdot(z-x) \simeq 0
\end{aligned}
$$

DIS selects a quark with momentum $x \cdot P$

Conclusion: Proton is a loosely bound system

Let the parton carry a finite fraction of the proton momentum $k \simeq z \cdot P \quad\left(k^{2} \simeq 0\right)$

$$
\begin{aligned}
\left(k^{\prime}\right)^{2} & =(z P+q)^{2} \\
& \simeq 2(P q) \cdot(z-x) \simeq 0
\end{aligned}
$$

DIS selects a quark with momentum $x \cdot P$
Bjorken x has the meaning of parton momentum fraction; $F_{\text {inelastic }}^{2}$ becomes the probability of finding a parton with given momentum.

Conclusion: Proton is a loosely bound system

Let the parton carry a finite fraction of the proton momentum $k \simeq z \cdot P \quad\left(k^{2} \simeq 0\right)$

$$
\begin{aligned}
\left(k^{\prime}\right)^{2} & =(z P+q)^{2} \\
& \simeq 2(P q) \cdot(z-x) \simeq 0
\end{aligned}
$$

DIS selects a quark with momentum $x \cdot P$
Bjorken x has the meaning of parton momentum fraction; $F_{\text {inelastic }}^{2}$ becomes the probability of finding a parton with given momentum. Existence of the limiting distribution

$$
F_{\text {inelastic }}^{2}\left(q^{2}, x\right)=D_{P}^{q}(x) ; \quad\left|q^{2}\right| \rightarrow \infty, x=\text { const }
$$

constitutes the Bjorken scaling hypothesis.

Particle virtualities/transverse momenta in QFT are not limited. In particular, in a DIS process, "partons" (quarks and gluons) may have transverse momenta up to

$$
k_{\perp}^{2} \ll Q^{2}=\left|q^{2}\right| .
$$

Violation of scaling is inevitable in QFT

Particle virtualities/transverse momenta in QFT are not limited. In particular, in a DIS process, "partons" (quarks and gluons) may have transverse momenta up to

$$
k_{\perp}^{2} \ll Q^{2}=\left|q^{2}\right| .
$$

As a result, the number of particles turns out to be large in spite of small coupling :

$$
\int d w \propto \int^{Q^{2}} \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}} \sim \frac{\alpha_{s}}{\pi} \ln Q^{2}=\mathcal{O}(1)
$$

Violation of scaling is inevitable in QFT

Particle virtualities/transverse momenta in QFT are not limited. In particular, in a DIS process, "partons" (quarks and gluons) may have transverse momenta up to

$$
k_{\perp}^{2} \ll Q^{2}=\left|q^{2}\right| .
$$

As a result, the number of particles turns out to be large in spite of small coupling :

$$
\int d w \propto \int^{Q^{2}} \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}} \sim \frac{\alpha_{s}}{\pi} \ln Q^{2}=\mathcal{O}(1)
$$

Such - "collinear" - enhancement is typical for QFTs with dimensionless coupling - "logarithmic" Field Theories.

Violation of scaling is inevitable in QFT

Particle virtualities/transverse momenta in QFT are not limited. In particular, in a DIS process, "partons" (quarks and gluons) may have transverse momenta up to

$$
k_{\perp}^{2} \ll Q^{2}=\left|q^{2}\right| .
$$

As a result, the number of particles turns out to be large in spite of small coupling :

$$
\int d w \propto \int^{Q^{2}} \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}} \sim \frac{\alpha_{s}}{\pi} \ln Q^{2}=\mathcal{O}(1)
$$

Such - "collinear" - enhancement is typical for QFTs with dimensionless coupling - "logarithmic" Field Theories.
Physically, a QFT particle is surrounded by a virtual coat; its visible content depends on the resolution power of the probe $\lambda=\frac{1}{Q}=\frac{1}{\sqrt{-q^{2}}}$

Thus we learned that in QCD the probability to find a parton q inside the target h must depend on the resolution, Q^{2}

$$
D_{h}^{q}=D_{h}^{q}\left(x, \ln Q^{2}\right) .
$$

the Feynman-Bjorken picture of partons employed the classical (probabilistic) language:
\square

Thus we learned that in QCD the probability to find a parton q inside the target h must depend on the resolution,

$$
D_{h}^{q}=D_{h}^{q}\left(x, \ln Q^{2}\right) .
$$

Moreover,
the Feynman-Bjorken picture of partons employed the classical (probabilistic) language:

$$
\sigma_{h}=\sigma_{q} \otimes D_{h}^{q} .
$$

$$
\begin{aligned}
& \text { Is there any chance to rescue probabilistic interpretation } \\
& \text { of quark-gluon cascades, to speak of "QCD partons"? }
\end{aligned}
$$

Thus we learned that in QCD the probability to find a parton q inside the target h must depend on the resolution,

$$
D_{h}^{q}=D_{h}^{q}\left(x, \ln Q^{2}\right) .
$$

Moreover,
the Feynman-Bjorken picture of partons employed the classical (probabilistic) language:

$$
\sigma_{h}=\sigma_{q} \otimes D_{h}^{q}
$$

However, as we see, quarks and gluons multiply willingly, $w=\mathcal{O}(1)$.
Is there any chance to rescue probabilistic interpretation of quark-gluon cascades, to speak of "QCD partons"?

Thus we learned that in QCD the probability to find a parton q inside the target h must depend on the resolution,

$$
D_{h}^{q}=D_{h}^{q}\left(x, \ln Q^{2}\right) .
$$

Moreover,
the Feynman-Bjorken picture of partons employed the classical (probabilistic) language:

$$
\sigma_{h}=\sigma_{q} \otimes D_{h}^{q} .
$$

However, as we see, quarks and gluons multiply willingly, $w=\mathcal{O}(1)$.
Is there any chance to rescue probabilistic interpretation of quark-gluon cascades, to speak of "QCD partons"?

The question may sound silly, since in QFT the number of Feynman graphs grows as $(n!)^{2}$ with the number n of participating particles...

Thus we learned that in QCD the probability to find a parton q inside the target h must depend on the resolution,

$$
D_{h}^{q}=D_{h}^{q}\left(x, \ln Q^{2}\right) .
$$

Moreover,
the Feynman-Bjorken picture of partons employed the classical (probabilistic) language:

$$
\sigma_{h}=\sigma_{q} \otimes D_{h}^{q}
$$

However, as we see, quarks and gluons multiply willingly, $w=\mathcal{O}(1)$.
Is there any chance to rescue probabilistic interpretation of quark-gluon cascades, to speak of "QCD partons"?

The question may sound silly, since in QFT the number of Feynman graphs grows as $(n!)^{2}$ with the number n of participating particles... However, which are the most probable parton fluctuations?

Thus we learned that in QCD the probability to find a parton q inside the target h must depend on the resolution,

$$
D_{h}^{q}=D_{h}^{q}\left(x, \ln Q^{2}\right) .
$$

Moreover,
the Feynman-Bjorken picture of partons employed the classical (probabilistic) language:

$$
\sigma_{h}=\sigma_{q} \otimes D_{h}^{q}
$$

However, as we see, quarks and gluons multiply willingly, $w=\mathcal{O}(1)$.
Is there any chance to rescue probabilistic interpretation of quark-gluon cascades, to speak of "QCD partons"?

The question may sound silly, since in QFT the number of Feynman graphs grows as $(n!)^{2}$ with the number n of participating particles... However, which are the most probable parton fluctuations?

$$
\alpha_{s} \Longrightarrow \alpha_{s} \cdot \ln Q^{2}
$$

Thus we learned that in QCD the probability to find a parton q inside the target h must depend on the resolution,

$$
D_{h}^{q}=D_{h}^{q}\left(x, \ln Q^{2}\right) .
$$

Moreover,
the Feynman-Bjorken picture of partons employed the classical (probabilistic) language:

$$
\sigma_{h}=\sigma_{q} \otimes D_{h}^{q}
$$

However, as we see, quarks and gluons multiply willingly, $w=\mathcal{O}(1)$.
Is there any chance to rescue probabilistic interpretation of quark-gluon cascades, to speak of "QCD partons"?

The question may sound silly, since in QFT the number of Feynman graphs grows as $(n!)^{2}$ with the number n of participating particles... However, which are the most probable parton fluctuations?

$$
\left(\alpha_{s}\right)^{n} \Longrightarrow\left(\alpha_{s} \cdot \ln Q^{2}\right)^{n}
$$

Long-living partons fluctuations

Kinematics of the parton splitting $A \rightarrow B+C$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
k_{B} \simeq x \cdot P, \quad k_{A} \simeq \frac{x}{z} \cdot P
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
k_{B} \simeq x \cdot P, \quad k_{A} \simeq \frac{x}{z} \cdot P
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A}
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{aligned}
k_{B} & \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
\frac{\left|k_{B}^{2}\right|}{z} & =\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{aligned}
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{gathered}
k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
\frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{gathered}
$$

Probability of the splitting process:

$$
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2} k_{\perp}^{2}}{\left(k_{B}^{2}\right)^{2}}
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{aligned}
& k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
& \frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{aligned}
$$

Probability of the splitting process:

$$
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2} k_{\perp}^{2}}{\left(k_{B}^{2}\right)^{2}} \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}}
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{aligned}
& k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
& \frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{aligned}
$$

Probability of the splitting process:

$$
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2} k_{\perp}^{2}}{\left(k_{B}^{2}\right)^{2}} \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}},
$$

$$
\frac{\left|k_{B}^{2}\right|}{z} \simeq \frac{k_{\perp}^{2}}{z(1-z)} \gg \frac{\left|k_{A}^{2}\right|}{1}\left(\text { as well as } \frac{k_{C}^{2}}{1-z}\right)
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{gathered}
k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
\frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{gathered}
$$

Probability of the splitting process:

$$
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2} k_{\perp}^{2}}{\left(k_{B}^{2}\right)^{2}} \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}},
$$

$$
\frac{\left|k_{B}^{2}\right|}{z} \simeq \frac{k_{\perp}^{2}}{z(1-z)} \gg \frac{\left|k_{A}^{2}\right|}{1}\left(\text { as well as } \frac{k_{C}^{2}}{1-z}\right)
$$

This inequality has a transparent physical meaning:

$$
\frac{z \cdot E_{A}}{\left|k_{B}^{2}\right|} \ll \frac{E_{A}}{\left|k_{A}^{2}\right|}
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{aligned}
& k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
& \frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{aligned}
$$

Probability of the splitting process:

$$
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2} k_{\perp}^{2}}{\left(k_{B}^{2}\right)^{2}} \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}},
$$

$$
\frac{\left|k_{B}^{2}\right|}{z} \simeq \frac{k_{\perp}^{2}}{z(1-z)} \gg \frac{\left|k_{A}^{2}\right|}{1}\left(\text { as well as } \frac{k_{C}^{2}}{1-z}\right)
$$

This inequality has a transparent physical meaning:

$$
\frac{E_{B}}{\left|k_{B}^{2}\right|}=\frac{z \cdot E_{A}}{\left|k_{B}^{2}\right|} \ll \frac{E_{A}}{\left|k_{A}^{2}\right|}
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{aligned}
& k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
& \frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{aligned}
$$

Probability of the splitting process:

$$
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2} k_{\perp}^{2}}{\left(k_{B}^{2}\right)^{2}} \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}},
$$

$$
\frac{\left|k_{B}^{2}\right|}{z} \simeq \frac{k_{\perp}^{2}}{z(1-z)} \gg \frac{\left|k_{A}^{2}\right|}{1}\left(\text { as well as } \frac{k_{C}^{2}}{1-z}\right)
$$

This inequality has a transparent physical meaning:

$$
t_{B} \equiv \frac{E_{B}}{\left|k_{B}^{2}\right|}=\frac{z \cdot E_{A}}{\left|k_{B}^{2}\right|} \ll \frac{E_{A}}{\left|k_{A}^{2}\right|} \equiv t_{A}
$$

Long-living partons fluctuations

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{gathered}
k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
\frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{gathered}
$$

Probability of the splitting process:

$$
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2} k_{\perp}^{2}}{\left(k_{B}^{2}\right)^{2}} \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}},
$$

$$
\frac{\left|k_{B}^{2}\right|}{z} \simeq \frac{k_{\perp}^{2}}{z(1-z)} \gg \frac{\left|k_{A}^{2}\right|}{1}\left(\text { as well as } \frac{k_{C}^{2}}{1-z}\right)
$$

This inequality has a transparent physical meaning:

$$
t_{B} \equiv \frac{E_{B}}{\left|k_{B}^{2}\right|}=\frac{z \cdot E_{A}}{\left|k_{B}^{2}\right|} \ll \frac{E_{A}}{\left|k_{A}^{2}\right|} \equiv t_{A}
$$

strongly ordered lifetimes of successive parton fluctuations !

So long as probability of one extra parton emission is large, one has to consider and treat arbitrary number of parton splittings
-Parton cascades

$$
\frac{P}{\mu^{2}} \gg t_{1} \gg t_{2} \gg t_{3} \gg t_{4} \gg t_{5} \gg \frac{P}{Q^{2}}
$$

$$
\frac{P}{\mu^{2}} \gg t_{1} \gg t_{2} \gg t_{3} \gg t_{4} \gg t_{5} \gg \frac{P}{Q^{2}}
$$

Four basic splitting processes:

$$
\frac{P}{\mu^{2}} \gg t_{1} \gg t_{2} \gg t_{3} \gg t_{4} \gg t_{5} \gg \frac{P}{Q^{2}}
$$

Four basic splitting processes:
$\begin{aligned} & q \rightarrow q(z)+g \\ & \Phi_{q}^{q}(z)=C_{F} \cdot \frac{1+z^{2}}{1-z},\end{aligned}$
$z=k_{5} / k_{4}$

$$
\frac{P}{\mu^{2}} \gg t_{1} \gg t_{2} \gg t_{3} \gg t_{4} \gg t_{5} \gg \frac{P}{Q^{2}}
$$

Four basic splitting processes :

$$
\begin{aligned}
& q \rightarrow g(z)+q \\
& \Phi_{q}^{q}(z)=C_{F} \cdot \frac{1+z^{2}}{1-z} \\
& \Phi_{q}^{g}(z)=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
\end{aligned}
$$

$$
z=k_{2} / k_{1}
$$

$$
\frac{P}{\mu^{2}} \gg t_{1} \gg t_{2} \gg t_{3} \gg t_{4} \gg t_{5} \gg \frac{P}{Q^{2}}
$$

Four basic splitting processes :

$$
\begin{aligned}
g \rightarrow q(z)+\bar{q} & z=k_{4} / k_{3} \\
\Phi_{q}^{q}(z) & =C_{F} \cdot \frac{1+z^{2}}{1-z}, \\
\Phi_{q}^{g}(z) & =C_{F} \cdot \frac{1+(1-z)^{2}}{z}, \\
\Phi_{g}^{q}(z) & =T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
\end{aligned}
$$

$$
\frac{P}{\mu^{2}} \gg t_{1} \gg t_{2} \gg t_{3} \gg t_{4} \gg t_{5} \gg \frac{P}{Q^{2}}
$$

Four basic splitting processes:

$$
g \rightarrow g(z)+g \quad z=k_{3} / k_{2}
$$

$$
\begin{aligned}
\Phi_{q}^{q}(z) & =C_{F} \cdot \frac{1+z^{2}}{1-z} \\
\Phi_{q}^{g}(z) & =C_{F} \cdot \frac{1+(1-z)^{2}}{z} \\
\Phi_{g}^{q}(z) & =T_{R} \cdot\left[z^{2}+(1-z)^{2}\right] \\
\Phi_{g}^{g}(z) & =N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
\end{aligned}
$$

$$
\mu^{2} \ll k_{1 \perp}^{2} \ll k_{2 \perp}^{2} \ll k_{3 \perp}^{2} \ll k_{4 \perp}^{2} \ll k_{5 \perp}^{2} \ll Q^{2}
$$

Four basic splitting processes :
"Hamiltonian" for parton cascades

$$
\begin{aligned}
\Phi_{q}^{q}(z) & =C_{F} \cdot \frac{1+z^{2}}{1-z}, \\
\Phi_{q}^{g}(z) & =C_{F} \cdot \frac{1+(1-z)^{2}}{z}, \\
\Phi_{g}^{q}(z) & =T_{R} \cdot\left[z^{2}+(1-z)^{2}\right], \\
\Phi_{g}^{g}(z) & =N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
\end{aligned}
$$

Logarithmic "evolution time" $\quad d \xi=\frac{\alpha_{s}}{2 \pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}}$

Relating parton splittings

Nowadays we cannot predict, from the first principles, parton content (B) of a hadron (h). However, perturbative QCD tells us how it changes with the resolution of the DIS process - momentum transfer Q^{2}.

Relating parton splittings

Nowadays we cannot predict, from the first principles, parton content (B) of a hadron (h). However, perturbative QCD tells us how it changes with the resolution of the DIS process - momentum transfer Q^{2}. Evolution of parton distribution reminds the Schrödinger equation:

$$
\frac{d}{d \ln Q^{2}} D_{h}^{B}\left(x, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \sum_{A=q, \bar{q}, g} \int_{x}^{1} \frac{d z}{z} \Phi_{A}^{B}(z) \cdot D_{h}^{A}\left(\frac{x}{z}, Q^{2}\right)
$$

Relating parton splittings

Nowadays we cannot predict, from the first principles, parton content (B) of a hadron (h). However, perturbative QCD tells us how it changes with the resolution of the DIS process - momentum transfer Q^{2}. Evolution of parton distribution reminds the Schrödinger equation:

$$
\frac{d}{d \ln Q^{2}} D_{h}^{B}\left(x, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \sum_{A=q, \bar{q}, g} \int_{x}^{1} \frac{d z}{z} \Phi_{A}^{B}(z) \cdot D_{h}^{A}\left(\frac{x}{z}, Q^{2}\right)
$$

"wave function"

Relating parton splittings

Nowadays we cannot predict, from the first principles, parton content (B) of a hadron (h). However, perturbative QCD tells us how it changes with the resolution of the DIS process - momentum transfer Q^{2}. Evolution of parton distribution reminds the Schrödinger equation:

$$
\frac{d}{d \ln Q^{2}} D_{h}^{B}\left(x, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \sum_{A=q, \bar{q}, g} \int_{x}^{1} \frac{d z}{z} \Phi_{A}^{B}(z) \cdot D_{h}^{A}\left(\frac{x}{z}, Q^{2}\right)
$$

[^0]
Relating parton splittings

Nowadays we cannot predict, from the first principles, parton content (B) of a hadron (h). However, perturbative QCD tells us how it changes with the resolution of the DIS process - momentum transfer Q^{2}. Evolution of parton distribution reminds the Schrödinger equation:

$$
\frac{d}{d \ln Q^{2}} D_{h}^{B}\left(x, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \sum_{A=q, \bar{q}, g} \int_{x}^{1} \frac{d z}{z} \Phi_{A}^{B}(z) \cdot D_{h}^{A}\left(\frac{x}{z}, Q^{2}\right)
$$

"Hamiltonian"

Relating parton splittings

Nowadays we cannot predict, from the first principles, parton content (B) of a hadron (h). However, perturbative QCD tells us how it changes with the resolution of the DIS process - momentum transfer Q^{2}. Evolution of parton distribution reminds the Schrödinger equation:

$$
\frac{d}{d \ln Q^{2}} D_{h}^{B}\left(x, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \sum_{A=q, \bar{q}, g} \int_{x}^{1} \frac{d z}{z} \Phi_{A}^{B}(z) \cdot D_{h}^{A}\left(\frac{x}{z}, Q^{2}\right)
$$

Parton Dynamics turned out to be extremely simple.
Have a deeper look at parton splitting probabilities

- our evolution Hamiltonian -
to fully appreciate the power of the probabilistic interpretation of parton cascades

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

Four "parton splitting functions"

$$
{\underset{q}{q}[g]}^{[g),} \quad{\underset{q}{g}[q]}^{[z)}(z), \quad \quad_{g}^{q[\bar{q}]}(z), \quad{\underset{g}{g}}_{g[g]}(z)
$$

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$

$$
{ }_{q}^{q[g]}(z) \quad{ }_{q}^{g[q]}(z) \quad{ }_{g}^{q[\overline{q]}(z)} \quad{ }_{g}^{g[g]}(z)
$$

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=C_{F} \cdot \frac{1+z^{2}}{1-z}
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products: $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$

$$
{ }_{q}^{q[g]}(z) \quad{ }_{q}^{g[q]}(z), \quad{ }_{g}^{q[\bar{q}]}(z) \quad{ }_{g}^{g}[g](z)
$$

\sum^{z}

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products: $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$

Three (QED) "kernels" are inter-related; gluon self-interaction stays put :

Z

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products: $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$
- The story continues, however :

All four are related!

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

Z

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products: $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$
- The story continues, however :

All four are related!

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

z

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$
- The story continues, however :

All four are related! (over-constrained system [+ conformal symm. etc])

Collinear (mass) and soft (infrared) singularities make multi-parton configurations probable, in spite of the smallness of the coupling constant α_{s}, thus forcing us to analyze internal structure of small-distance Hard QCD Processes in all orders in perturbation theory.

Collinear (mass) and soft (infrared) singularities make multi-parton configurations probable, in spite of the smallness of the coupling constant α_{s}, thus forcing us to analyze internal structure of small-distance Hard QCD Processes in all orders in perturbation theory.

Collinear ones allow for probabilistic parton multiplication picture

Collinear (mass) and soft (infrared) singularities make multi-parton configurations probable, in spite of the smallness of the coupling constant α_{s}, thus forcing us to analyze internal structure of small-distance Hard QCD Processes in all orders in perturbation theory.

Collinear ones allow for probabilistic parton multiplication picture

Feynman-Bjorken Partons

Quarks inside proton.
They are point-like.
Bjorken scaling.
Probabilistic picture.

Collinear (mass) and soft (infrared) singularities make multi-parton configurations probable, in spite of the smallness of the coupling constant α_{s}, thus forcing us to analyze internal structure of small-distance Hard QCD Processes in all orders in perturbation theory.

Collinear ones allow for probabilistic parton multiplication picture

```
Feynman-Bjorken Partons QCD Partons
```

Quarks inside proton.
They are point-like.
Bjorken scaling.
Probabilistic picture.

QCD Partons

YES.
NO. They interact, radiate gluons, acquire (double logarithmic) form factors.
NO. $\quad\left(D=D\left(\ln Q^{2}\right)\right)$
YES. And a rich one in that.

Collinear (mass) and soft (infrared) singularities make multi-parton configurations probable, in spite of the smallness of the coupling constant α_{s}, thus forcing us to analyze internal structure of small-distance Hard QCD Processes in all orders in perturbation theory.

Collinear ones allow for probabilistic parton multiplication picture

```
Feynman-Bjorken Partons QCD Partons
Quarks inside proton.
They are point-like.
Bjorken scaling.
Probabilistic picture.
```


QCD Partons

YES.
NO. They interact, radiate gluons, acquire (double logarithmic) form factors.
NO. $\quad\left(D=D\left(\ln Q^{2}\right)\right)$
YES. And a rich one in that.
"How do we see and study QCD partons in nature?"

Hadron Jets

 and
QCD Radiophysics

Quarks \rightarrow jets of hadrons

Aleph Higgs event:

- Claim: it corresponds to $Z H \rightarrow q \bar{q} b \bar{b}$.
- But actually just bunches ('jets') of hadrons.

Quarks \rightarrow jets of hadrons

Aleph Higgs event:

- Claim: it corresponds to $Z H \rightarrow q \bar{q} b \bar{b}$.
- But actually just bunches ('jets') of hadrons.
- Can they be related? And How?

Quarks \rightarrow jets of hadrons

Aleph Higgs event:

- Claim: it corresponds to $Z H \rightarrow q \bar{q} b \bar{b}$.
- But actually just bunches ('jets') of hadrons.
- Can they be related? And How?

Existence of Jets was envisaged from "parton models" in the late 1960's. Kogut-Susskind vacuum breaking picture :

Existence of Jets was envisaged from "parton models" in the late 1960's.
Kogut-Susskind vacuum breaking picture :

- In a DIS a green quark in the proton is hit by a virtual photon;

virtual photon

Existence of Jets was envisaged from "parton models" in the late 1960's.
Kogut-Susskind vacuum breaking picture :

- In a DIS a green quark in the proton is hit by a virtual photon;
- The quark leaves the stage and the colour field starts to build up;

colour field

Existence of Jets was envisaged from "parton models" in the late 1960's.
Kogut-Susskind vacuum breaking picture :

- In a DIS a green quark in the proton is hit by a virtual photon;
- The quark leaves the stage and the colour field starts to build up;
- A green-anti-green quark pair pops up from the vacuum, splitting the system into two globally blanched sub-systems.

Existence of Jets was envisaged from "parton models" in the late 1960's.
Kogut-Susskind vacuum breaking picture :

- In a DIS a green quark in the proton is hit by a virtual photon;
- The quark leaves the stage and the colour field starts to build up;
- A green-anti-green quark pair pops up from the vacuum, splitting the system into two globally blanched sub-systems.

Repeating, one gets the "Feynman Plateau":
"One" hadron per $\frac{\Delta \omega}{\omega} ; \quad$ Hadron multiplicity $\propto \ln Q$.

Phenomenological realization of the Kogut-Susskind scenario

Phenomenological realization of the Kogut-Susskind scenario

\Longrightarrow a "String" of hadrons
The base of the Lund Model

Phenomenological realization of the Kogut-Susskind scenario

\Longrightarrow a "String" of hadrons
The base of the Lund Model

The key features of the Lund hadronization model:

- Uniformity in rapidity: $d N_{h}=$ const $\times \frac{d \omega_{h}}{\omega_{h}}$
- Limited k_{\perp} of hadrons
- Quark combinatorics at work: $\left\{\begin{array}{l}\text { u,d vs. } s \\ \text { mesons vs. baryons }\end{array}\right.$

Phenomenological realization of the Kogut-Susskind scenario

\Longrightarrow a "String" of hadrons
The base of the Lund Model

The key features of the Lund hadronization model:

- Uniformity in rapidity: $d N_{h}=$ const $\times \frac{d \omega_{h}}{\omega_{h}}$
- Limited k_{\perp} of hadrons
- Quark combinatorics at work: $\left\{\begin{array}{l}\text { u,d vs. } s \\ \text { mesons vs. baryons }\end{array}\right.$

The crucial step: Stress on the rôle of colour in multiple hadroproduction

Near 'perfect' 2-jet event

2 well-collimated jets of particles.

Near 'perfect' 2-jet event

2 well-collimated jets of particles.

HOWEVER :

Transverse momenta increase with Q;

Jets become "fatter" in k_{\perp} (though narrower in angle).

Near 'perfect' 2-jet event

2 well-collimated jets of particles.

HOWEVER :

Transverse momenta increase with Q;

Jets become "fatter" in k_{\perp} (though narrower in angle).

Moreover,
In 10% of $e^{+} e^{-}$annihilation events
— striking fluctuations!

By eye, can make out 3-jet structure.

By eye, can make out 3-jet structure.
No surprise : (Kogut \& Susskind, 1974)

Hard gluon bremsstrahlung off
the $q \bar{q}$ pair may be expected to
give rise to 3-jet events...

By eye, can make out 3-jet structure.
No surprise : (Kogut \& Susskind, 1974)

Hard gluon bremsstrahlung off
the $q \bar{q}$ pair may be expected to
give rise to 3-jet events...

The first QCD analysis was done by J.Ellis, M.Gaillard \& G.Ross (1976)

- Planar events with large k_{\perp};
- How to measure gluon spin ;
- Gluon jet - softer, more populated.

QCD possesses $N_{c}^{2}-1$ gauge fields - vector gluons g. At large distances, they are supposed to "glue" quarks together.
At small distances (space-time intervals) g is as legitimate a parton as q is.

QCD possesses $N_{c}^{2}-1$ gauge fields - vector gluons g. At large distances, they are supposed to "glue" quarks together.
At small distances (space-time intervals) g is as legitimate a parton as q is. The first indirect evidence in favour of gluons came from DIS where it was found that the electrically charged partons (quarks) carry, on aggregate, less than 50\% of the proton's energy-momentum.

QCD possesses $N_{c}^{2}-1$ gauge fields - vector gluons g. At large distances, they are supposed to "glue" quarks together.
At small distances (space-time intervals) g is as legitimate a parton as q is. The first indirect evidence in favour of gluons came from DIS where it was found that the electrically charged partons (quarks) carry, on aggregate, less than 50\% of the proton's energy-momentum.
Now, we see a gluon emitted as a "real" particle. What sort of final hadronic state will it produce?

QCD possesses $N_{c}^{2}-1$ gauge fields - vector gluons g.
At large distances, they are supposed to "glue" quarks together.
At small distances (space-time intervals) g is as legitimate a parton as q is. The first indirect evidence in favour of gluons came from DIS where it was found that the electrically charged partons (quarks) carry, on aggregate, less than 50\% of the proton's energy-momentum.

Now, we see a gluon emitted as a "real" particle. What sort of final hadronic state will it produce?
B.Andersson, G.Gustafson \& C.Peterson, Lund Univ., Sweden

Gluon \simeq quark-antiquark pair:
$3 \otimes \overline{3}=N_{c}^{2}=9 \simeq 8=N_{c}^{2}-1$.
Relative mismatch : $\mathcal{O}\left(1 / N_{c}^{2}\right) \ll 1 \quad$ (the large- N_{c} limit)

QCD possesses $N_{c}^{2}-1$ gauge fields - vector gluons g.
At large distances, they are supposed to "glue" quarks together.
At small distances (space-time intervals) g is as legitimate a parton as q is. The first indirect evidence in favour of gluons came from DIS where it was found that the electrically charged partons (quarks) carry, on aggregate, less than 50\% of the proton's energy-momentum.

Now, we see a gluon emitted as a "real" particle.
What sort of final hadronic state will it produce?
B.Andersson, G.Gustafson \& C.Peterson, Lund Univ., Sweden

Gluon \simeq quark-antiquark pair:
$3 \otimes \overline{3}=N_{c}^{2}=9 \simeq 8=N_{c}^{2}-1$.
Relative mismatch : $\mathcal{O}\left(1 / N_{c}^{2}\right) \ll 1 \quad$ (the large- N_{c} limit)
Lund model interpretation of a gluon -
Gluon - a "kink" on the "string" (colour tube) that connects the quark with the antiquark

Look at hadrons produced in a $q \bar{q}+$ photon $e^{+} e^{-}$annihilation event.
Look at hadrons produced in a $q \bar{q}+$ photon
$e^{+} e^{-}$annihilation event.
The hot-dog of hadrons that was "cylindric" in

Look at hadrons produced in a $q \bar{q}+$ photon $e^{+} e^{-}$annihilation event.

Now substitute a gluon for the photon in the same kinematics.

Look at hadrons produced in a $q \bar{q}+$ photon $e^{+} e^{-}$annihilation event.

Look at hadrons produced in a $q \bar{q}+$ photon $e^{+} e^{-}$annihilation event.
 quark pair is repainted into octet colour state.

Lund: hadrons $=$ the sum of two independent (properly boosted) colorless substrings, made of

$$
q+\frac{1}{2} g \quad \text { and } \quad \bar{q}+\frac{1}{2} g .
$$

Look at hadrons produced in a $q \bar{q}+$ photon $e^{+} e^{-}$annihilation event.
 quark pair is repainted into octet colour state.

Lund: hadrons $=$ the sum of two independent
 (properly boosted) colorless substrings, made of

$$
q+\frac{1}{2} g \quad \text { and } \quad \bar{q}+\frac{1}{2} g .
$$

The first immediate consequence :

Double Multiplicity of hadrons in fragmentation of the gluon

Look at experimental findings

Look at experimental findings

Lessons :

- N increases faster than $\ln E$ (\Longrightarrow Feynman was wrong)

Look at experimental findings

Lessons:

- N increases faster than $\ln E$ (\Longrightarrow Feynman was wrong)
- $N_{g} / N_{q}<2$

Comparing hadron multiplicities

Look at experimental findings

Lessons:

- N increases faster than $\ln E$ (\Longrightarrow Feynman was wrong)
- $N_{g} / N_{q}<2$ however
- $\frac{d N_{g}}{d N_{q}}=\frac{N_{c}}{C_{F}}=\frac{2 N_{c}^{2}}{N_{c}^{2}-1}=\frac{9}{4} \simeq 2$ (\Longrightarrow bremsstrahlung gluons add to the hadron yield; QCD respecting parton cascades)

Comparing hadron multiplicities

Look at experimental findings

Lessons:

- N increases faster than $\ln E$ (\Longrightarrow Feynman was wrong)
- $N_{g} / N_{q}<2$ however
- $\frac{d N_{g}}{d N_{q}}=\frac{N_{c}}{C_{F}}=\frac{2 N_{c}^{2}}{N_{c}^{2}-1}=\frac{9}{4} \simeq 2$ (\Longrightarrow bremsstrahlung gluons add to the hadron yield; QCD respecting parton cascades)

Now let's look at a more subtle consequence of Lund wisdom

Lund: final hadrons are given by the sum of two independent substrings made of

$$
q+\frac{1}{2} g \quad \text { and } \quad \bar{q}+\frac{1}{2} g .
$$

Lund: final hadrons are given by the sum of two independent substrings made of

$$
q+\frac{1}{2} g \quad \text { and } \quad \bar{q}+\frac{1}{2} g .
$$

Let's look into the inter-quark valley and compare the hadron yield with that in the $q \bar{q} \gamma$ event.
The overlay results in a magnificent
"String effect" - depletion of particle production in the $q \bar{q}$ valley!

QCD prediction :
$\frac{d N_{q \bar{q}}^{(q \bar{q} \gamma)}}{\left.d N_{q}^{q \bar{q}} \bar{q} g\right)} \simeq \frac{2\left(N_{c}^{2}-1\right)}{N_{c}^{2}-2}=\frac{16}{7}$
(experiment: 2.3 ± 0.2)

Lund: final hadrons are given by the sum of two independent substrings made of

$$
q+\frac{1}{2} g \quad \text { and } \quad \bar{q}+\frac{1}{2} g
$$

Let's look into the inter-quark valley and compare the hadron yield with that in the $q \bar{q} \gamma$ event.
The overlay results in a magnificent
"String effect" - depletion of particle production in the $q \bar{q}$ valley!

Destructive interference from the QCD point of view

Ratios of hadron flows between jets in various multi-jet processes - example of non-trivial CIS (collinear-and-infrared-safe) QCD observable

Rediscovery of the quantum-mechanical nature of gluon radiation played the major rôle in understanding the internal structure of jets as well.

Rediscovery of the quantum-mechanical nature of gluon radiation played the major rôle in understanding the internal structure of jets as well.

Why "rediscovery"?

Rediscovery of the quantum-mechanical nature of gluon radiation played the major rôle in understanding the internal structure of jets as well.

Why "rediscovery"?
Because, under the spell of the probabilistic parton cascade picture, theorists managed to make serious mistakes in the late 70's when they indiscriminately applied it to parton multiplication in jets.

Rediscovery of the quantum-mechanical nature of gluon radiation played the major rôle in understanding the internal structure of jets as well.

Why "rediscovery"?
Because, under the spell of the probabilistic parton cascade picture, theorists managed to make serious mistakes in the late 70's when they indiscriminately applied it to parton multiplication in jets.

Subtlety: When gauge fields (conserved currents) are concerned,

$$
\begin{gathered}
\hline \text { born later (time ordering) } \\
\text { does not mean } \\
\text { being born independently }
\end{gathered}
$$

Rediscovery of the quantum-mechanical nature of gluon radiation played the major rôle in understanding the internal structure of jets as well.

Why "rediscovery"?
Because, under the spell of the probabilistic parton cascade picture, theorists managed to make serious mistakes in the late 70's when they indiscriminately applied it to parton multiplication in jets.

Subtlety: When gauge fields (conserved currents) are concerned,
> born later (time ordering) does not mean
> being born independently

Coherence in radiation of soft gluons (photons) with $x \ll 1$

- the ones that determine the bulk of secondary parton multiplicity!

Rediscovery of the quantum-mechanical nature of gluon radiation played the major rôle in understanding the internal structure of jets as well.

Why "rediscovery"?
Because, under the spell of the probabilistic parton cascade picture, theorists managed to make serious mistakes in the late 70's when they indiscriminately applied it to parton multiplication in jets.

Subtlety: When gauge fields (conserved currents) are concerned,
> born later (time ordering) does not mean being born independently

Coherence in radiation of soft gluons (photons) with $x \ll 1$

- the ones that determine the bulk of secondary parton multiplicity!

Recall an amazing historical example: Cosmic ray physics (mid 50's); conversion of high energy photons into $e^{+} e^{-}$pairs in the emulsion

Charged particle leaves a track of ionized atoms in photo-emulsion. electron track

O

Charged particle leaves a track of ionized atoms in photo-emulsion. electron track

-
Photon converts into two electric charges : $\gamma \rightarrow e^{+} e^{-}$. $e^{+} e^{-}$track (expected)

Charged particle leaves a track of ionized atoms in photo-emulsion. electron track

Photon converts into two electric charges : $\gamma \rightarrow e^{+} e^{-}$. $e^{+} e^{-}$track (expected)

Why then do we see this ?
$e^{+} e^{-}$(observed)
03

Charged particle leaves a track of ionized atoms in photo-emulsion. electron track

Photon converts into two electric charges : $\gamma \rightarrow e^{+} e^{-}$. $e^{+} e^{-}$track (expected) $\bigcirc \bigcirc \bigcirc 00000000000000$

Why then do we see this ?
$e^{+} e^{-}$(observed)

Transverse distance between two charges (size of the $e^{+} e^{-}$dipole) is
$\rho_{\perp} \simeq c t \cdot \vartheta_{e}$

Charged particle leaves a track of ionized atoms in photo-emulsion. electron track

Photon converts into two electric charges : $\gamma \rightarrow e^{+} e^{-}$. $e^{+} e^{-}$track (expected) $\bigcirc \bigcirc 0000000000000$

Why then do we see this ?
$e^{+} e^{-}$(observed)

Transverse distance between two charges (size of the $e^{+} e^{-}$dipole) is
$\rho_{\perp} \simeq c t \cdot \vartheta_{e}$

The photon is emitted after the time (lifetime of the virtual $p+k$ state)
$t \simeq \frac{(p+k)_{0}}{(p+k)^{2}} \simeq \frac{p_{0}}{2 p_{0} k_{0}(1-\cos \vartheta)} \simeq \frac{1}{k_{0} \vartheta^{2}} \simeq \frac{1}{k_{\perp}} \cdot \frac{1}{\vartheta}=\lambda_{\perp} \cdot \frac{1}{\vartheta}$

Charged particle leaves a track of ionized atoms in photo-emulsion. electron track

Photon converts into two electric charges : $\gamma \rightarrow e^{+} e^{-}$. $e^{+} e^{-}$track (expected) $\bigcirc \bigcirc 00000000000000$
Why then do we see this?
$e^{+} e^{-}$(observed)

Transverse distance between two charges (size of the $e^{+} e^{-}$dipole) is $\rho_{\perp} \simeq c t \cdot \vartheta_{e}=\lambda_{\perp} \cdot \frac{\vartheta_{e}}{\vartheta}$. Angular Ordering $\vartheta<\vartheta_{e}$ - independent radiation off $e^{-} \& e^{+}$

The photon is emitted after the time (lifetime of the virtual $p+k$ state)
$t \simeq \frac{(p+k)_{0}}{(p+k)^{2}} \simeq \frac{p_{0}}{2 p_{0} k_{0}(1-\cos \vartheta)} \simeq \frac{1}{k_{0} \vartheta^{2}} \simeq \frac{1}{k_{\perp}} \cdot \frac{1}{\vartheta}=\lambda_{\perp} \cdot \frac{1}{\vartheta}$

Charged particle leaves a track of ionized atoms in photo-emulsion. electron track

Photon converts into two electric charges : $\gamma \rightarrow e^{+} e^{-}$. $e^{+} e^{-}$track (expected) $\bigcirc \bigcirc 00000000000000$
Why then do we see this?
$e^{+} e^{-}$(observed)

Transverse distance between two charges (size of the $e^{+} e^{-}$dipole) is $\rho_{\perp} \simeq c t \cdot \vartheta_{e}=\lambda_{\perp} \cdot \frac{\vartheta_{e}}{\vartheta}$. Angular Ordering

$\vartheta<\vartheta_{e}$ - independent radiation off $e^{-} \& e^{+}$
$\vartheta>\vartheta_{e}-$ no emission! $\quad\left(\rho_{\perp}<\lambda_{\perp}\right)$
The photon is emitted after the time (lifetime of the virtual $p+k$ state)
$t \simeq \frac{(p+k)_{0}}{(p+k)^{2}} \simeq \frac{p_{0}}{2 p_{0} k_{0}(1-\cos \vartheta)} \simeq \frac{1}{k_{0} \vartheta^{2}} \simeq \frac{1}{k_{\perp}} \cdot \frac{1}{\vartheta}=\lambda_{\perp} \cdot \frac{1}{\vartheta}$

Angular Ordering is more restrictive than the fluctuation time ordering: $\vartheta \leq \vartheta_{e}$ versus $\vartheta \leq \vartheta_{e} \cdot \sqrt{\frac{p_{0}}{k_{0}}}$ that follows from
(DGLAP)

$$
t_{\gamma}=\frac{p_{0}}{p_{\perp}^{2}} \simeq \frac{1}{p_{0} \vartheta_{e}^{2}}<\frac{1}{k_{0} \vartheta^{2}} \simeq \frac{k_{0}}{k_{\perp}^{2}}=t_{e}
$$

Angular Ordering is more restrictive than the fluctuation time ordering: $\vartheta \leq \vartheta_{e} \quad$ versus $\quad \vartheta \leq \vartheta_{e} \cdot \sqrt{\frac{p_{0}}{k_{0}}}$.
Significant difference when $k_{0} / p_{0}=x \ll 1$ (soft radiation).

Angular Ordering is more restrictive than the fluctuation time ordering: $\vartheta \leq \vartheta_{e} \quad$ versus $\quad \vartheta \leq \vartheta_{e} \cdot \sqrt{\frac{p_{0}}{k_{0}}}$.
Significant difference when $k_{0} / p_{0}=x \ll 1 \quad$ (soft radiation).

Coherence in large-angle gluon emission not only affected (suppressed) total parton multiplicity but had dramatic consequences for the structure of the energy distribution of secondary partons in jets.

Angular Ordering is more restrictive than the fluctuation time ordering: $\vartheta \leq \vartheta_{e} \quad$ versus $\quad \vartheta \leq \vartheta_{e} \cdot \sqrt{\frac{p_{0}}{k_{0}}}$.
Significant difference when $k_{0} / p_{0}=x \ll 1$ (soft radiation).

Coherence in large-angle gluon emission not only affected (suppressed) total parton multiplicity but had dramatic consequences for the structure of the energy distribution of secondary partons in jets.
It was predicted that, due to coherence, "Feynman plateau" $d N / d \ln x$ must develop a hump at

$$
(\ln k)_{\max }=\left(\frac{1}{2}-c \cdot \sqrt{\alpha_{s}(Q)}+\ldots\right) \cdot \ln Q, \quad k_{\max } \simeq Q^{0.35}
$$

Angular Ordering is more restrictive than the fluctuation time ordering: $\vartheta \leq \vartheta_{e} \quad$ versus $\quad \vartheta \leq \vartheta_{e} \cdot \sqrt{\frac{p_{0}}{k_{0}}}$.
Significant difference when $k_{0} / p_{0}=x \ll 1$ (soft radiation).

Coherence in large-angle gluon emission not only affected (suppressed) total parton multiplicity but had dramatic consequences for the structure of the energy distribution of secondary partons in jets.
It was predicted that, due to coherence, "Feynman plateau" $d N / d \ln x$ must develop a hump at

$$
(\ln k)_{\max }=\left(\frac{1}{2}-c \cdot \sqrt{\alpha_{s}(Q)}+\ldots\right) \cdot \ln Q, \quad k_{\max } \simeq Q^{0.35}
$$

while the softest particles (that seem to be the easiest to produce) should not multiply at all !

First confronted with theory in $e^{+} e^{-} \rightarrow h+X$.

CDF (Tevatron)
$p p \rightarrow 2$ jets
Charged hadron yield as a function of $\ln (1 / x)$ for different values of jet hardness, versus (MLLA) QCD prediction.

First confronted with theory in $e^{+} e^{-} \rightarrow h+X$.

CDF (Tevatron)
$p p \rightarrow 2$ jets
Charged hadron yield as a function of $\ln (1 / x)$ for different values of jet hardness, versus (MLLA) QCD prediction.
One free parameter overall normalization (the number of final π 's per extra gluon)

Position of the Hump as a function of $Q=M_{j j} \sin \Theta_{c}$ (hardness of the jet)

Position of the Hump as a function of $Q=M_{j j} \sin \Theta_{c}$ (hardness of the jet) is the parameter-free QCD prediction.

Position of the Hump as a function of $Q=M_{j j} \sin \Theta_{c}$ (hardness of the jet) is the parameter-free QCD prediction.

Yet another calculable CIS - quantity.

Position of the Hump as a function of $Q=M_{j j} \sin \Theta_{c}$ (hardness of the jet) is the parameter-free QCD prediction.

Yet another calculable CIS - quantity.

Mark Universality:
same behaviour seen in $e^{+} e^{-}$, DIS (ep), hadron-hadron coll.

Soft Confinement

So, the ratios of particle flows between jets (intERjet radiophysics), as well as the shape of the inclusive energy spectra of secondary particles (intRAjet cascades) turn out to be formally calculable (CIS) quantities. Moreover, these perturbative QCD predictions actually work.

Soft Confinement

So, the ratios of particle flows between jets (intERjet radiophysics), as well as the shape of the inclusive energy spectra of secondary particles (intRAjet cascades) turn out to be formally calculable (CIS) quantities.
Moreover, these perturbative QCD predictions actually work. Should we proudly claim the victory ? I would think NOT.

Soft Confinement

So, the ratios of particle flows between jets (intERjet radiophysics), as well as the shape of the inclusive energy spectra of secondary particles (intRAjet cascades) turn out to be formally calculable (CIS) quantities.
Moreover, these perturbative QCD predictions actually work. Should we proudly claim the victory ? I would think NOT.
We should rather feel puzzled than satisfied.

Soft Confinement

So, the ratios of particle flows between jets (intERjet radiophysics), as well as the shape of the inclusive energy spectra of secondary particles (intRAjet cascades) turn out to be formally calculable (CIS) quantities. Moreover, these perturbative QCD predictions actually work.
The strange thing is, these phenomena reveal themselves at present-day experiments via hadrons (pions) with extremely small momenta k_{\perp}, where we were expecting to hit the non-perturbative domain - large coupling $\alpha_{s}\left(k_{\perp}\right)$ - and potential failure of the quark-gluon language as such.

Soft Confinement

So, the ratios of particle flows between jets (intERjet radiophysics), as well as the shape of the inclusive energy spectra of secondary particles (intRAjet cascades) turn out to be formally calculable (CIS) quantities. Moreover, these perturbative QCD predictions actually work.
The strange thing is, these phenomena reveal themselves at present-day experiments via hadrons (pions) with extremely small momenta k_{\perp}, where we were expecting to hit the non-perturbative domain - large coupling $\alpha_{s}\left(k_{\perp}\right)$ - and potential failure of the quark-gluon language as such.
The fact that the underlying physics of colour is being impressed upon "junky" pions with $100-300 \mathrm{MeV}$ momenta, could not be a priori expected.

Soft Confinement

So, the ratios of particle flows between jets (intERjet radiophysics), as well as the shape of the inclusive energy spectra of secondary particles (intRAjet cascades) turn out to be formally calculable (CIS) quantities. Moreover, these perturbative QCD predictions actually work.
The strange thing is, these phenomena reveal themselves at present-day experiments via hadrons (pions) with extremely small momenta k_{\perp}, where we were expecting to hit the non-perturbative domain - large coupling $\alpha_{s}\left(k_{\perp}\right)$ - and potential failure of the quark-gluon language as such.
The fact that the underlying physics of colour is being impressed upon "junky" pions with 100-300 MeV momenta, could not be a priori expected. At the same time, it sends us a powerful message: confinement transformation of quarks and gluons into hadrons - has a non-violent nature: there is no visible reshuffling of energy-momentum at the hadronization stage.

Soft Confinement

So, the ratios of particle flows between jets (intERjet radiophysics), as well as the shape of the inclusive energy spectra of secondary particles (intRAjet cascades) turn out to be formally calculable (CIS) quantities. Moreover, these perturbative QCD predictions actually work. The strange thing is, these phenomena reveal themselves at present-day experiments via hadrons (pions) with extremely small momenta k_{\perp}, where we were expecting to hit the non-perturbative domain - large coupling $\alpha_{s}\left(k_{\perp}\right)$ - and potential failure of the quark-gluon language as such.
The fact that the underlying physics of colour is being impressed upon "junky" pions with 100-300 MeV momenta, could not be a priori expected. At the same time, it sends us a powerful message: confinement transformation of quarks and gluons into hadrons - has a non-violent nature: there is no visible reshuffling of energy-momentum at the hadronization stage. Known under the name of the Local Parton-Hadron Duality hypothesis (LPHD), explaining this phenomenon remains a challenge for the future quantitative theory of colour confinement.

Both Inter-Jet and Intra-Jet phenomena fully reveal colour coherence in QCD parton multiplication. Their solid imprint upon the angular and energy spectra of relatively soft hadrons are sending us a powerful message (- a free lunch that we have not found enzymes yet to devour)

Both Inter-Jet and Intra-Jet phenomena fully reveal colour coherence in QCD parton multiplication. Their solid imprint upon the angular and energy spectra of relatively soft hadrons are sending us a powerful message confinement ($=$ metamorphosis) is soft

Both Inter-Jet and Intra-Jet phenomena fully reveal colour coherence in QCD parton multiplication. Their solid imprint upon the angular and energy spectra of relatively soft hadrons are sending us a powerful message confinement (= metamorphosis) is soft
For the time being, we are exploiting this gift: hadron flow practitioners developing smart tools for triggering on new physics, colour glass brewers, small-x BFKL lovers, - no-one would hesitate to put gluons and hadrons into (more or less) one-to-one correspondence.
There is nothing wrong with this. In so doing we simply follow the opportunists' motto "ain't broken - don't fix it".

Both Inter-Jet and Intra-Jet phenomena fully reveal colour coherence in QCD parton multiplication. Their solid imprint upon the angular and energy spectra of relatively soft hadrons are sending us a powerful message confinement ($=$ metamorphosis) is soft
For the time being, we are exploiting this gift: hadron flow practitioners developing smart tools for triggering on new physics, colour glass brewers, small-x BFKL lovers, - no-one would hesitate to put gluons and hadrons into (more or less) one-to-one correspondence.
There is nothing wrong with this. In so doing we simply follow the opportunists' motto "ain't broken - don't fix it".

It becomes mandatory, however, that we start exploring The LPHD Gift rather than simply exploiting it.

Both Inter-Jet and Intra-Jet phenomena fully reveal colour coherence in QCD parton multiplication. Their solid imprint upon the angular and energy spectra of relatively soft hadrons are sending us a powerful message confinement (= metamorphosis) is soft
For the time being, we are exploiting this gift: hadron flow practitioners developing smart tools for triggering on new physics, colour glass brewers, small-x BFKL lovers, - no-one would hesitate to put gluons and hadrons into (more or less) one-to-one correspondence.
There is nothing wrong with this. In so doing we simply follow the opportunists' motto "ain't broken - don't fix it".

It becomes mandatory, however, that we start exploring The LPHD Gift rather than simply exploiting it.

To set up the Quest, we have to turn now to the problems of the non-perturbative domain:

Both Inter-Jet and Intra-Jet phenomena fully reveal colour coherence in QCD parton multiplication. Their solid imprint upon the angular and energy spectra of relatively soft hadrons are sending us a powerful message confinement (= metamorphosis) is soft
For the time being, we are exploiting this gift: hadron flow practitioners developing smart tools for triggering on new physics, colour glass brewers, small-x BFKL lovers, - no-one would hesitate to put gluons and hadrons into (more or less) one-to-one correspondence.
There is nothing wrong with this. In so doing we simply follow the opportunists' motto "ain't broken - don't fix it".

It becomes mandatory, however, that we start exploring The LPHD Gift rather than simply exploiting it.
To set up the Quest, we have to turn now to the problems of the non-perturbative domain:

- what is it,
- what do we know about it,
- and, more importantly, what we don't

BRIGHT IDEA

BRIGHT IDEA

Explore collisions with, and of, nuclei to study non-perturbative - large - colour fields

EXTRAS

We spoke about the Collinear enhancement in $1 \rightarrow 2$ parton splittings.

$$
d w[A \rightarrow A+g(z)] \propto C_{A} \cdot d z\left[\frac{2(1-z)}{z}+\mathcal{O}(z)\right]
$$

We spoke about the Collinear enhancement in $1 \rightarrow 2$ parton splittings. Radiation of gluons is enhanced even stronger :

$$
d w[A \rightarrow A+g(z)] \propto C_{A} \cdot d z\left[\frac{2(1-z)}{z}+\mathcal{O}(z)\right]
$$

We are facing an additional Soft (infra-red) enhancement which is

 characteristic for small-energy vector fields (photons, gluons), $z \ll 1$.
Soft gluons

We spoke about the Collinear enhancement in $1 \rightarrow 2$ parton splittings. Radiation of gluons is enhanced even stronger :

$$
d w[A \rightarrow A+g(z)] \propto C_{A} \cdot d z\left[\frac{2(1-z)}{z}+\mathcal{O}(z)\right] \propto \frac{d z}{z}
$$

We are facing an additional Soft (infra-red) enhancement which is characteristic for small-energy vector fields (photons, gluons), $z \ll 1$.

Soft gluons

We spoke about the Collinear enhancement in $1 \rightarrow 2$ parton splittings. Radiation of gluons is enhanced even stronger :

$$
d w[A \rightarrow A+g(z)] \propto C_{A} \cdot d z\left[\frac{2(1-z)}{z}+\mathcal{O}(z)\right] \propto \frac{d z}{z}
$$

We are facing an additional Soft (infra-red) enhancement which is characteristic for small-energy vector fields (photons, gluons), $z \ll 1$.

Divergence of the total emission probability at $z \rightarrow 0$ is known (from the good old QED times) under the catchy name of "Infra-Red catastrophe".

Soft gluons

We spoke about the Collinear enhancement in $1 \rightarrow 2$ parton splittings. Radiation of gluons is enhanced even stronger :

$$
d w[A \rightarrow A+g(z)] \propto C_{A} \cdot d z\left[\frac{2(1-z)}{z}+\mathcal{O}(z)\right]
$$

We are facing an additional Soft (infra-red) enhancement which is characteristic for small-energy vector fields (photons, gluons), $z \ll 1$.

Divergence of the total emission probability at $z \rightarrow 0$ is known (from the good old QED times) under the catchy name of "Infra-Red catastrophe".

Ain't any "catastrophe" but a simple consequence of the fact that any charged particle is always surrounded by a long-range Coulomb field which gets shaken off when the charge is accelerated.
As a result,

$$
w_{A} \sim C_{A} \frac{\alpha_{s}}{\pi} \ln ^{2} Q^{2} . \quad[\text { parton multiplicities, form factors, etc. }]
$$

Soft gluons

We spoke about the Collinear enhancement in $1 \rightarrow 2$ parton splittings. Radiation of gluons is enhanced even stronger :

$$
d w[A \rightarrow A+g(z)] \propto C_{A} \cdot d z\left[\frac{2(1-z)}{z}+\mathcal{O}(z)\right]
$$

We are facing an additional Soft (infra-red) enhancement which is characteristic for small-energy vector fields (photons, gluons), $z \ll 1$.

Divergence of the total emission probability at $z \rightarrow 0$ is known (from the good old QED times) under the catchy name of "Infra-Red catastrophe".

An important remark :
soft gluon radiation has a classical nature (celebrated F.Low theorem).

Soft gluons

We spoke about the Collinear enhancement in $1 \rightarrow 2$ parton splittings. Radiation of gluons is enhanced even stronger :

$$
d w[A \rightarrow A+g(z)] \propto C_{A} \cdot d z\left[\frac{2(1-z)}{z}+\mathcal{O}(z)\right]
$$

We are facing an additional Soft (infra-red) enhancement which is characteristic for small-energy vector fields (photons, gluons), $z \ll 1$.

Divergence of the total emission probability at $z \rightarrow 0$ is known (from the good old QED times) under the catchy name of "Infra-Red catastrophe".

An important remark :

soft gluon radiation has a classical nature.
This statement has rather dramatic consequences which still remain to be properly digested by the theoretical community ...

[^0]: "time derivative"

