Scaling laws for saturation at running coupling

Guillaume Beuf IPhT, CEA Saclay

Outline

Outline

Introduction

New scaling solution

Scalings in DIS data

Introduction: The BK equation and geometric scaling

A second asymptotic scaling solution for high energy QCD saturation with running coupling

G. B., arXiv:0803.2167

Phenomenological scaling properties in DIS

G. B., R. Peschanski, C. Royon, D. Šálek, arXiv:0803.2186

Dipole factorization of the DIS:

$$\sigma^{\gamma^* p}(Y, Q^2) = |\psi(Q^2, \boldsymbol{r})|^2 \otimes T(\boldsymbol{r}, Y)$$

Fourier transform: $r \mapsto k$

 $T({m r},Y)\mapsto N(L,Y)$, with $L\equiv \log({m k}^2/\Lambda_{QCD}^2)$

Introduction • BK equation

Universality

Traveling wave

(A)

• RC solution?

New scaling solution

Dipole factorization of the DIS:

$$\sigma^{\gamma^* p}(Y, Q^2) = |\psi(Q^2, \boldsymbol{r})|^2 \otimes T(\boldsymbol{r}, Y)$$

Fourier transform: $r \mapsto k$

 $T(m{r},Y)\mapsto N(L,Y)$, with $L\equiv \log(m{k}^2/\Lambda_{QCD}^2)$

Balitsky-Kovchegov equation:

 $\partial_Y N(L,Y) = \bar{\alpha}\chi(-\partial_L)N(L,Y) - \bar{\alpha}N(L,Y)^2$

Introduction • BK equation

Universality

Traveling wave

(A)

• RC solution?

New scaling solution

Dipole factorization of the DIS:

$$\sigma^{\gamma^* p}(Y, Q^2) = |\psi(Q^2, \boldsymbol{r})|^2 \otimes T(\boldsymbol{r}, Y)$$

Fourier transform: $r \mapsto k$

 $T(m{r},Y)\mapsto N(L,Y)$, with $L\equiv \log(m{k}^2/\Lambda_{QCD}^2)$

Balitsky-Kovchegov equation:

 $\partial_Y N(L,Y) = \bar{\alpha}\chi(-\partial_L)N(L,Y) - \bar{\alpha}N(L,Y)^2$

Running coupling prescription: $\bar{\alpha} \mapsto \bar{\alpha}(L) = 1/bL$

Introduction • BK equation

Universality

Traveling wave

• RC solution?

New scaling solution

Dipole factorization of the DIS:

$$\sigma^{\gamma^* p}(Y, Q^2) = |\psi(Q^2, \boldsymbol{r})|^2 \otimes T(\boldsymbol{r}, Y)$$

Fourier transform: $r \mapsto k$

 $T(m{r},Y)\mapsto N(L,Y)$, with $L\equiv \log(m{k}^2/\Lambda_{QCD}^2)$

Balitsky-Kovchegov equation with running coupling:

 $bL \,\partial_Y N(L,Y) = \chi(-\partial_L)N(L,Y) - N(L,Y)^2$

Introduction • BK equation

Universality

Traveling wave

• RC solution?

New scaling solution

Universality

Introduction

BK equation

Universality

Traveling wave

RC solution?

New scaling solution

Scalings in DIS data

Solution of the BFKL equation (or linearized BK):

$$N(L,Y) = \int \frac{d\gamma}{2\pi i} \ e^{-(\gamma L - \chi(\gamma)\bar{\alpha}Y)} \ N_0(\gamma)$$

Sum of scaling solutions with different parameters: no scaling in general.

For BK, at *Y* large enough, the existence of the nonlinear damping selects dynamically the wave solution with $\gamma = \gamma_c$ (defined by $\chi(\gamma_c) = \gamma_c \ \chi'(\gamma_c)$):

$$N(L,Y) \propto e^{-(\gamma_c L - \bar{\alpha}\chi(\gamma_c)Y)}$$

 \Rightarrow Geometric scaling.

Traveling wave and geometric scaling

CED

Universality

Traveling wave

• RC solution?

New scaling solution

Scalings in DIS data

Geometric scaling \leftrightarrow traveling wave solution of the BK (or B-JIMWLK) equation at fixed coupling.

Running coupling solution?

Introduction

BK equation
 Universality

Traveling wave

• RC solution?

New scaling solution

Scalings in DIS data

Within some approximations, a large Y and large L solution of the BK equation with running coupling has been found:

$$N(L,Y) \propto e^{-\gamma_c \bar{s}}$$
 Ai $\left(\xi_1 + rac{\bar{s}}{D_g Y^{1/6}}
ight)$
 $\bar{s} = L - v_g \sqrt{rac{Y}{b}} - rac{3\xi_1}{4} D_g Y^{1/6}$

Mueller, Triantafyllopoulos (2002) Munier, Peschanski (2004)

To what extent is the traveling wave formation mechanism different at running coupling from the one at fixed coupling?

Introduction

New scaling solution

CC

Scaling laws

New TW solution

Shape of the front

Saturation scale

Scalings in DIS data

$bL \,\partial_Y N(L,Y) = \chi(-\partial_L)N(L,Y) - N(L,Y)^2$

Exact scaling solution: $N(L, Y) \equiv N_s(s(L, Y))$

Introduction

New scaling solution

CQD

Scaling laws

New TW solution

Shape of the front

Saturation scale

Scalings in DIS data

 $bL \,\partial_Y N(L,Y) = \chi(-\partial_L)N(L,Y) - N(L,Y)^2$

Exact scaling solution: $N(L, Y) \equiv N_s(s(L, Y))$

Sufficient conditions:

 $bL \partial_Y s(L, Y) = f_1(s)$ $\partial_L s(L, Y) = f_2(s)$

Introduction

New scaling solution

 (\mathbf{A})

Scaling laws

New TW solution

Shape of the front

Saturation scale

Scalings in DIS data

 $bL \,\partial_Y N(L,Y) = \chi(-\partial_L)N(L,Y) - N(L,Y)^2$

Exact scaling solution: $N(L, Y) \equiv N_s(s(L, Y))$

Sufficient conditions:

$$bL \ \partial_Y s(L, Y) = f_1(s)$$
$$\partial_L s(L, Y) = f_2(s)$$

 \rightarrow Incompatible conditions, as they imply

 $\partial_L \partial_Y s(L, Y) \neq \partial_Y \partial_L s(L, Y)$.

Introduction

New scaling solution

(A)

Scaling laws

New TW solution

Shape of the front

Saturation scale

Scalings in DIS data

 $bL \,\partial_Y N(L,Y) = \chi(-\partial_L)N(L,Y) - N(L,Y)^2$

Approximate scaling solution: $N(L, Y) \simeq N_s(s(L, Y))$

First choice:

$$bL \partial_Y s(L, Y) \simeq f_1(s)$$

$$\partial_L s(L, Y) = f_2(s)$$

 \rightarrow RC geometric scaling: $s(L,Y) = L - \sqrt{v \frac{Y-Y_0}{b}}$

Valid scaling law when $L \gg 1$ and $|s(L, Y)| \ll L$.

Introduction

New scaling solution

(A)

Scaling laws

New TW solution

Shape of the front

Saturation scale

Scalings in DIS data

 $bL \ \partial_Y N(L,Y) = \chi(-\partial_L)N(L,Y) - N(L,Y)^2$

Approximate scaling solution: $N(L, Y) \simeq N_s(s(L, Y))$

Second choice:

 $bL \ \partial_Y s(L, Y) = f_1(s)$ $\partial_L s(L, Y) \simeq f_2(s)$

 \rightarrow New RC scaling: $s(L,Y) = \frac{L}{2} - v \frac{Y - Y_0}{2bL}$

Valid scaling law when $L \gg 1$ and $|s(L, Y)| \ll L$.

New traveling wave solution

Introduction

New scaling solution

CAD

Scaling laws

New TW solution

Shape of the front

Saturation scale

Scalings in DIS data

Approximate solution in the range $L \gg 1$ and $1 \leq \bar{s} \ll \sqrt{L}$:

$$N(L,Y) \propto e^{-\gamma_c \bar{s} + \mathcal{O}(\log L)} \left[\operatorname{Ai}\left(\xi_1 + \frac{\bar{s}}{(DL)^{1/3}}\right) + \mathcal{O}\left(L^{-1/3}\right) \right]$$

$$\bar{s} = \frac{L}{2} - \frac{v_c Y}{2bL} - \frac{3\xi_1}{4} (DL)^{1/3}$$

New traveling wave solution

Introduction

New scaling solution

 $C \in \mathcal{D}$

Scaling laws

New TW solution

Shape of the front

Saturation scale

Scalings in DIS data

Approximate solution in the range $L \gg 1$ and $1 \leq \bar{s} \ll \sqrt{L}$:

$$\begin{split} N(L,Y) \propto e^{-\gamma_c \bar{s} + \mathcal{O}(\log L)} & \left[\operatorname{Ai} \left(\xi_1 + \frac{\bar{s}}{(DL)^{1/3}} \right) + \mathcal{O} \left(L^{-1/3} \right) \right] \\ \bar{s} &= \frac{L}{2} - \frac{v_c Y}{2bL} - \frac{3\xi_1}{4} (DL)^{1/3} \end{split}$$

Leading behavior: new RC scaling law.

Saturation critical exponent: γ_c , solution of $\chi(\gamma_c) = \gamma_c \ \chi'(\gamma_c)$.

Critical velocity:
$$v_c = \frac{2\chi(\gamma_c)}{\gamma_c}$$

New traveling wave solution

Introduction

New scaling solution

(A)

Scaling laws

New TW solution

Shape of the front

Saturation scale

Scalings in DIS data

Approximate solution in the range $L \gg 1$ and $1 \leq \bar{s} \ll \sqrt{L}$:

$$\begin{split} N(L,Y) \propto e^{-\gamma_c \bar{s} + \mathcal{O}(\log L)} & \left[\operatorname{Ai} \left(\xi_1 + \frac{\bar{s}}{(DL)^{1/3}} \right) + \mathcal{O} \left(L^{-1/3} \right) \right] \\ \bar{s} &= \frac{L}{2} - \frac{v_c Y}{2bL} - \frac{3\xi_1}{4} (DL)^{1/3} \end{split}$$

Universal scaling violations:

Partly absorbed by a redefinition of the scaling law.

Scaling violations from BFKL diffusion remains.

Shape of the front

Introduction

New scaling solution

Scaling laws

New TW solution

Shape of the front

• Saturation scale

Cec Shape of the front

Introduction

New scaling solution

Scaling laws

New TW solution

Shape of the front

• Saturation scale

Certain Saturation scale

QF method

Introduction

New scaling solution

Scalings in DIS data

● QF method

Inclusive DIS

Other observables

Quality factor (QF) method: model-independent test of a scaling law, in particular independent of the scaling function.

Gelis, Peschanski, Soyez, Schoeffel (2006)

• Data points *i*: $D_i \equiv \log(\sigma^{\gamma^* p}(Q_i^2, Y_i))$

Scaling variable to be tested: $\tau_i \equiv \tau(Q_i^2, Y_i, \{\lambda, ...\})$

 $QF(\{\lambda,\ldots\}) \equiv \left[\sum_{i} \frac{(D_i - D_{i-1})^2}{(\tau_i - \tau_{i-1})^2 + \epsilon^2}\right]^{-1}$

 \rightarrow Optimal values of the parameters $\{\lambda, \dots\}$.

Introduction

New scaling solution

Scalings in DIS data

• QF method

Inclusive DIS

Other observables

Any geometric scaling of the dipole amplitude $N(L,Y) = N_g(\log(k^2/Q_s^2(Y)))$ crosses automatically the dipole factorization, with only the replacement $k^2 \rightarrow Q^2$, to give

$$\sigma^{\gamma^* p}(Y, Q^2) = \sigma(\tau(Y, Q^2)),$$

with $\tau(Y,Q^2) = \log(Q^2/\Lambda^2) - \lambda Y$ (FC),

or
$$\tau(Y,Q^2) = \log(Q^2/\Lambda^2) - \lambda\sqrt{Y - Y_0}$$
 (RC1).

Introduction

New scaling solution

(A)

Scalings in DIS data

• QF method

Inclusive DIS

Other observables

Any geometric scaling of the dipole amplitude $N(L,Y) = N_g(\log(k^2/Q_s^2(Y)))$ crosses automatically the dipole factorization, with only the replacement $k^2 \rightarrow Q^2$, to give

$$\sigma^{\gamma^* p}(Y, Q^2) = \sigma(\tau(Y, Q^2)),$$

with $\tau(Y, Q^2) = \log(Q^2/\Lambda^2) - \lambda Y$ (FC), or $\tau(Y, Q^2) = \log(Q^2/\Lambda^2) - \lambda \sqrt{Y - Y_0}$ (RC1).

Property only approximate for the new running coupling scaling, and also for the diffusive scaling. Let us test nevertheless the scalings

$$\tau(Y,Q^2) = \log(Q^2/\Lambda^2) - \lambda \frac{Y - Y_0}{\log(Q^2/\Lambda^2)}$$
 (RC2),

or $\tau(Y, Q^2) = [\log(Q^2/\Lambda^2) - \lambda(Y - Y_0)]/\sqrt{(Y - Y_0)}$ (DS).

Introduction

New scaling solution

Scalings in DIS data

• QF method

Inclusive DIS

Other observables

Inclusive DIS data used: from H1, ZEUS, NMC, E665,

in the range x < 0.01 and $3 \text{ GeV}^2 < Q^2 < 150 \text{ GeV}^2$.

For RC1, RC2 and DS scalings, Y_0 either set to 0, or included as a parameter in the QF fit.

For RC2 and DS, Λ either fixed (Λ_{QCD} for RC2 and 1 GeV for DS), or included as a parameter in the QF fit.

Introduction

New scaling solution

œ

Scalings in DIS data

• QF method

Inclusive DIS

• Other observables

New scaling solution

œ

Scalings in DIS data

• QF method

Inclusive DIS

• Other observables

FC	RC I	RC II	RC II bis	DS
λ =0.330	λ =1.841	λ = 3.436	λ = 3.905	λ = 0.362
			<i>Y</i> ₀ =-1.200	
			$\Lambda = 0.300$	
<i>QF</i> =1.63	<i>QF</i> =1.62	<i>QF</i> =1.69	<i>QF</i> =1.82	<i>QF</i> =1.44

Introduction

New scaling solution

Scalings in DIS data

• QF method

Inclusive DIS

• Other observables

Other observables

Introduction

New scaling solution

Scalings in DIS data

• QF method

Inclusive DIS

Other observables

Other observables admit a dipole factorization, and show (at fixed coupling) geometric scaling behavior.

Marquet, Schoeffel (2006)

- Deeply Virtual Compton Scattering
- Exclusive vector meson production
- Diffractive DIS

Let us test all the scaling variables with the QF method on these processes.

Scaling of the DVCS

Scaling of the DVCS

FC	RC I	RC II	RC II bis	DS
<i>λ</i> =0.361	λ =1.829	<i>λ</i> =3.481	λ =5.717	λ = 0.335
			<i>Y</i> ₀ =-1.89	
			$\Lambda = 0.01$	
<i>QF</i> =3.75	<i>QF</i> =3.62	<i>QF</i> =3.24	<i>QF</i> =3.52	<i>QF</i> =3.38

Œ

Exclusive vector meson production

Non-perturbative assumption for the γ^* - vector meson wave functions overlap: hard scale taken to be $Q^2 + M_V^2$.

The fit of the QF gives different optimal values for the λ . \rightarrow The assumption seems disfavored.

However: reasonable scaling behaviors with the λ obtained with the previous observables.

New scaling solution

Introduction

Scalings in DIS data • QF method • Inclusive DIS • Other observables

(A)

Diffraction at fixed β

We test the scaling:

$$\frac{d\sigma^{\gamma^* p \to Xp}}{d\beta}(\beta, x_{pom}, Q^2) = \frac{d\sigma^{\gamma^* p \to Xp}}{d\beta}(\beta, \tau[\log 1/x_{pom}, Q^2])$$

The fit of the QF gives different optimal values for the λ . However: reasonable scaling behaviors with the λ obtained with the previous observables.

New scaling solution

 (\mathcal{A})

Scalings in DIS data

• QF method

Inclusive DIS

Other observables

Diffraction at fixed x_{pom}

We test the scaling:

$$\frac{d\sigma^{\gamma^* p \to Xp}}{d\beta}(\beta, x_{pom}, Q^2) = \frac{d\sigma^{\gamma^* p \to Xp}}{d\beta}(x_{pom}, \tau[\log 1/\beta, Q^2])$$

Problem: no data for $\beta < 0.01$. Hence, we include all data with $\beta < 0.5$. \Rightarrow Rough scaling for the λ s fitted in inclusive DIS, for the higher values of x_{pom} .

(A)

Summary

Introduction

New scaling solution

Scalings in DIS data

Conclusion

The solution of the BK equation with running coupling has *no* exact scaling, but can be approached simultaneously by two asymptotic expansions, featuring two *different* scalings. Each of them give the same saturation scale.

- The data for various DIS observables shows the fixed coupling and the two running coupling scalings.
- Inclusive DIS favors the RC2 scaling.
- Inclusive DIS and DVCS shows good scaling properties, with consistent parameters.
- The scaling properties of VM production and diffraction, relying on additional assumption, are not so good and less consistent.