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Abstract

I
n this manuscript, we review the description of the initial stages of high energy
heavy ion collisions in the Color Glass Condensate framework. The primary
goal of this work is to provide a first principles approach, based on Quantum
Chromo-Dynamics, to the calculation of initial conditions for the subsequent
hydrodynamical evolution of the matter produced in heavy ion collisions such

as those studied at RHIC or at the LHC.

In the first part, we develop some general tools and results that are useful in any quantum
field theory coupled to strong external sources. We show how to organize the expansion in
powers of the coupling constant in these theories, with a particular emphasis on the simplifi-
cations that arise when one considers inclusive observables.

In the second part, we apply these techniques to the Color Glass Condensate. We show
that the dependence of inclusive observables on the collision energy arises from logarithmic
terms that can be factorized into universal distributions that describe the color charge content
of high energy nuclei. We then present some phenomenological applications of this factor-
ization theorem, and confront these predictions with measurements performed at RHIC.

In the last part, we focus on the final state evolution of the system, with emphasis on
the issue of thermalization of the matter produced in heavy ion collisions. Starting from the
existence of instabilities in the classical Yang-Mills equations, that lead to secular divergences
in observables when higher order corrections are included, we develop a resummation scheme
that collects all the dominant secular terms and leads to finite expressions. Finally, we show
on the example of a scalar field theory that this resummation has also the virtue of making
the system relax towards thermal equilibrium.
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Prologue

H
eavy Ion collisions, at least in their early stages, should in principle be amenable
to a description in terms of Quantum Chromo-Dynamics since they involve only
interactions among quarks and gluons. However, they present very interesting
challenges for QCD. Firstly, it is a priori not obvious that the typical momentum
transfer in the partonic collisions is large enough compared to the confinement

scale in order to allow a perturbative approach. Another difficulty is that heavy ion collisions
involve a very large number of constituents (mostly gluons) in the initial state, while stan-
dard perturbative techniques are designed to treat rare processes involving very few particles.
Moreover, the kinematics of particle production in heavy ion collisions is such that they are
dominated by constituents that carry a very small fraction of the momentum of their parent
nucleon. In this regime, the parton densities are large and receive non-linear corrections due
to gluon recombination, an effect known as gluon saturation. The standard parton model,
completed by the DGLAP or BFKL evolution equations for the parton distributions, does
not take these non-linear corrections into account. The two issues are in fact closely related,
since the non-linear interactions among the gluons dynamically generate a semi-hard scale
that enables an expansion in powers of the coupling.

My first encounter with the questions addressed in this manuscript goes back to 2000,
while a postdoc in the Nuclear Theory group at Brookhaven National Laboratory. L. McLer-
ran had told me about a recent work of him and A. Baltz [15], in which they had derived a
neat formula for the production of e+e− pairs in peripheral collisions of high energy nuclei,
in terms of retarded solutions of Dirac’s equation in the electro-magnetic field of the two
moving nuclei. Since in this approach the fast nuclei act as strong sources, it was natural to
obtain an answer in terms of classical solutions of the field equations of motion, but there was
still some confusion concerning their boundary conditions. In a work with A. Peshier [16],
we proved that inclusive observables are given by retarded boundary conditions, but that this
is incorrect for exclusive observables. A typical exclusive observable in this context is the
probability Pn for producing exactly n electron-positron pairs, while the mean number of
produced pairs

〈
N
〉
≡
∑
n nPn is an inclusive observable. Loosely speaking, time-ordered

amplitudes (i.e. standard Feynman diagrams) lead to P1,2,···, while
〈
N
〉

is directly given by
retarded amplitudes.

We employed similar techniques in 2004 with J.-P. Blaizot and R. Venugopalan [17–
19] to compute the yield of gluons and quark-antiquark pairs in proton-nucleus collisions.
The complications related to the choice of the boundary conditions are not essential in this
problem, thanks to the presence of one weak source – which implies that P1 ≈

〈
N
〉
�

1 and therefore that we need not distinguish so carefully between inclusive and exclusive
observables. Nevertheless, this problem was another instance where the approach in terms
of retarded classical fields proved superior to the direct computation of Feynman graphs,
because it simplified considerably the calculations.
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We went back to the problem of heavy ion collisions in 2006 with R. Venugopalan in
a series of two papers [2, 3]. A lot of work, mostly numerical, had already been done by
A. Krasnitz, R. Venugopalan, Y. Nara [20–25] and T. Lappi [26] on the computation of the
gluon yield in nucleus-nucleus collisions, using the Color Glass Condensate framework. In
this approach, the gluon yield is obtained by solving the classical Yang-Mills equations with
null boundary conditions in the remote past. Here also, the choice of the boundary conditions
had remained rather mysterious. In these two papers, we addressed several aspects of the
following question: In a field theory coupled to strong time-dependent sources, what can be
said of the distribution of produced particles? In particular, we noticed a general relationship
between the inclusiveness of an observable and the boundary conditions of the classical fields
that are needed for its evaluation. We showed that, at leading and next-to-leading orders, in-
clusive moments of the particle distribution involve retarded boundary conditions. Moreover,
we developed in these papers tools that were sufficiently powerful to extend the computation
of the gluon yield beyond leading order.

Next-to-leading order corrections to an observable contain terms that are enhanced by
large logarithms of the collision energy. For the Color Glass Condensate to be a consistent
effective theory, one should be able to factorize these logarithms into universal distributions
that represent the two projectiles. Proving this factorization requires to know analytically
these logarithms – a daunting task given the non-perturbative nature of the classical solutions
of the Yang-Mills equations. A crucial step to go around this difficulty was made during
the summer 2006 with T. Lappi: we managed to relate the NLO and LO gluon yields by the
action of an operator that involves only perturbative quantities. Moreover, the structure of this
operator was quite similar to that of the JIMWLK Hamiltonian that drives the evolution of
the source distributions in the Color Glass Condensate framework. Therefore, this expression
of the NLO corrections seemed to be a promising starting point to establish factorization.

Eventually, the logarithmic part of this operator was indeed proven to be identical to the
JIMWLK Hamiltonian [5]. Once this is established, the factorizability of the logarithms of
energy in the gluon spectrum becomes almost trivial. We then generalized this factoriza-
tion result to the case of the inclusive multigluon spectra [6, 7]. Moreover, these results for
correlations and fluctuations proved to be relevant for the phenomenology of heavy ion col-
lisions, since they can be applied to some experimental observations made at RHIC [8, 10]
and possibly even in proton-proton collisions at the LHC [27].

The JIMWLK factorization resums all the leading singularities that arise from the evo-
lution of the projectiles prior to their collision. The next question that arises is that of the
thermalization of the matter produced in heavy ion collisions. Here also, thanks to a rather
large saturation scale, one may hope to address the problem in a weak coupling setting. It
turns out that the final state evolution is plagued with secular divergences, and there is abun-
dant speculation [28–52] that they may play a role in the thermalization. We investigated
this issue in recent works [11, 13, 14], first by developing a resummation scheme that cures
these secular divergences, and secondly by showing via the example of a simpler toy model
that this leads indeed to the relaxation of the system towards the equation of state expected
at equilibrium. This is by no means a settled issue. Whether the same occurs in QCD in the
realistic conditions of a high energy heavy ion collision is still open for debate, and even if
the same applies to QCD it is unclear at the moment whether the system reaches full local
thermal equilibrium or not.
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Quantum Field Theory
with Strong External Sources
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Introduction

I
n the first chapter, we present a brief overview of heavy ion collisions, focus-
ing on the QCD aspects that are essential in their study. We then present the
McLerran-Venugopalan (MV) model, proposed as an effective description of
gluon saturation. Then, we end the chapter with a brief account of the Color
Glass Condensate (CGC), that improves over the MV model by providing a

renormalization group evolution equation.

The major feature of the CGC effective theory is that it couples quantum fields to an
external time-dependent classical source. Moreover, this external source is strong, which
makes calculations non-perturbative. In the chapter 2, we study the main features of such a
theory, focusing on aspects related to particle production. Since our intent is to focus on the
specificities of having a strong external source, we use a simpler toy scalar theory instead of
QCD in this discussion.

We end the chapter by some expressions for the inclusive spectra at Next-to-Leading Or-
der. This is a crucial step for our study of factorization in heavy ion collisions, discussed in
the second part of this manuscript. In particular, we derive a master formula, easily generaliz-
able to QCD, that expresses the NLO corrections in a form that already contains the essence
of factorization.
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Chapter 1

Quantum Chromo-Dynamics
in heavy ion collisions

L
attice simulations1 of Quantum Chromo-Dynamics (QCD) indicate the existence
of a transition at high temperature, from a phase where quarks and gluons are
bound into hadrons and chiral symmetry is spontaneously broken to a phase
where the quarks and gluons are deconfined and the chiral symmetry is restored.
QCD predicts that this transition occurs when the nuclear matter reaches a criti-

cal energy density around εc ≈ 1 GeV/fm3. A sketch of the phase diagram of nuclear matter
is represented in the figure 1.1. Note however that only the region of very small baryonic den-

Figure 1.1: QCD phase diagram.

Quark−Gluon

hadronic
phase Color superconductor

plasma

Temperature

Nuclei Neutron stars

Density

Heavy ion collisions

sity has been studied quantitatively by lattice simulations. At non-zero baryonic density, the
Euclidian QCD action is complex valued, making Monte-Carlo evaluations of the partition
function unpractical2. High energy collisions of large nuclei are a way to make an incursion

1See [53] for recent lattice results on the QCD equation of state.
2Several methods have been explored in the past years in order to overcome this difficulty. The principal strategies

that have been used are the analytic continuation from an imaginary baryonic chemical potential µ
B

, the Taylor
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into the deconfined region. In these collisions, one tries to infer the properties of the decon-
fined phase from features of the final products – such as their momentum spectra, chemical
composition, or correlations.

Due to the macroscopic nature of heavy ion collisions (compared to the typical hadronic
size), it makes sense to talk about the spatio-temporal development of the system created in
such a collision. In fact, experimental techniques such as Hanbury-Brown-Twiss intensity
interferometry give (to a limited extent) access to this history. The main stages of a heavy ion
collision are illustrated in the figure 1.2. A particularly successful description of this evolution

Figure 1.2: Stages of a heavy ion collision.

z 

t

strong fields classical dynamics

gluons & quarks out of eq. viscous hydro

gluons & quarks in eq. ideal hydro

hadrons kinetic theory

freeze out

is to treat it as the expansion of a fluid in empty space, via hydrodynamical equations [54–56].
Furthermore, it appears that this fluid is nearly perfect in the sense that it flows with almost
zero dissipation – in other words, it has a very small viscosity [57].

QCD enters at several places in this description. The equation of state of the quark gluon
plasma can be predicted from QCD lattice simulations [53], or even perturbative calculations
at a large enough temperature [58, 59]. Moreover, the hydrodynamical evolution needs some
initial conditions for the energy density, pressure and velocity fields. In collisions at high
energy, it is possible to calculate these initial conditions by a perturbative expansion3. This
statement is far from trivial: indeed, if most of the energy deposited in the collision were in
modes near the QCD confinement scale ΛQCD , then calculating the initial value of the energy-
momentum tensor would not be tractable by weak coupling methods. As we shall see, a weak
coupling treatment of this problem is made possible by the emergence of a dynamical scale,
called the saturation momentum and denotedQs, where all the relevant dynamics take place.
Most of the energy deposited in the collision is in momentum modes near Qs. Moreover,
the saturation momentum increases with the energy of the collision, and is much larger than
ΛQCD in high energy collisions. SinceQs is also the relevant scale for the QCD coupling, this
explains why this problem can be treated as a weak coupling problem, thanks to asymptotic
freedom.

expansion at small µ
B

, or reweighting techniques to compute expectation values at non-zero µ
B

from an ensemble
of gauge configurations obtained at µ

B
= 0. However, there is still a large uncertainty on the localization of the

critical point (where the first order transition line ends), or even on its existence.
3As we shall see later in this manuscript, the initial energy density has a well defined expansion in powers of the

QCD coupling αs. However, the calculation of a given order in this expansion requires to resum an infinite set of
graphs, and in that sense bears some non-perturbative features.
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The projectile modes that matter the most in a high energy collision are those that carry
only a very small fraction of the longitudinal momentum of the incoming projectiles. These
modes have a large occupation number, which makes their interactions important – a phe-
nomenon known as gluon saturation. The saturation momentum mentioned in the previous
paragraph originates in fact from these interactions. In this chapter, we describe qualitatively
the main aspects of gluon saturation, and present the Color Glass Condensate (CGC), an
effective theory based on QCD that enables quantitative calculations in the saturated regime.

1.1 Kinematics

The figure 1.3 shows a typical collision at small impact parameter between two heavy nuclei,
performed at RHIC (

√
s = 200 GeV per nucleon pair). A striking feature of such a collision

Figure 1.3: Event display of a central heavy ion collision in the STAR detector.

is the very high particle multiplicity in the final state, of the order of 1000 charged particles
per unit rapidity at this energy. Another important property is that most of these particles
carry a small transverse momentum, below 2 GeV. At a microscopic level, a nucleus-nucleus
collision is made of many elementary collisions between the quarks and gluons contained
in the incoming nuclei. For the sake of the argument, let us assume that a gluon moving in
the +z direction, with 4-momentum pµ1 = (p1, 0, 0, p1), collides with a gluon moving in
the opposite direction, with 4-momentum pµ2 = (p2, 0, 0,−p2), producing a final state of
4-momentum Pµ. From the conservation of energy and momentum, we have

pµ1 + pµ2 = Pµ . (1.1)

Thus, p1+p2 = P0 and p1−p2 = P3 (while P1 = P2 = 0). It is convenient to parameterize
the energy P0 of the final state and its longitudinal momentum P3 in terms of its transverse
massM⊥ and rapidity Y:

P0 ≡M⊥ cosh Y , P3 ≡M⊥ sinh Y , (1.2)

7



so that we have

p1 =
M⊥

2
eY , p2 =

M⊥

2
e−Y . (1.3)

The longitudinal momentum of a nucleon is
√
s/2 for a collision where the center of mass

Figure 1.4: Parton distributions in a proton. From [60].
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energy per nucleon pair is
√
s. Therefore, the two colliding gluons carry the following frac-

tions of the longitudinal momentum of their parent nucleon:

x1 ≡
2p1√
s
=
M⊥√
s
eY , x2 ≡

2p2√
s
=
M⊥√
s
e−Y . (1.4)

Since the typical transverse momentum scale for the produced particles is of the order of a
couple of GeVs, the corresponding longitudinal momentum fraction is

x ∼ 10−2 at RHIC (
√
s = 200 GeV) ,

x ∼ 4.10−4 at the LHC (
√
s = 5.5 TeV) . (1.5)

Thus, the partonic collisions that produce most of the particles in high energy heavy ion
collisions involve partons that carry a very small fraction of the momentum of their parent
nucleon. From measurements of the parton distributions in a proton (see the figure 1.4), we
see that at these values of x, the vast majority of these partons are gluons.

1.2 Nucleon structure at high energy

Before we discuss in more detail the physics that drives the gluon content of a nucleon at
small x, let us start with a qualitative description of the structure of a nucleon. A nucleon

8



Figure 1.5: Nucleon at low energy.

is a bound state of three valence quarks, and the binding force comes from gluon exchanges
between these quarks. In addition, vacuum fluctuations are also present, that for instance
turn momentarily a quark into a quark and a gluon. A cartoon of this structure is shown
in the figure 1.5. In this figure, the horizontal axis represents the time, and we have shown
several gluon exchanges between the valence quarks, and some vacuum fluctuations. These
fluctuations can exist on any space-time scale smaller than the nucleon size, but the very small
ones are not visible in a typical reaction. Indeed, when the nucleon is probed by an external
object (e.g. the virtual photon in Deep Inelastic Scattering), this probe is characterized by
certain time and length scales (the photon frequency and wavelength in the case of DIS).
Only the fluctuations that are longer lived and larger than the characteristic scales of the
probe are accessible to that probe.

This basic picture of a nucleon goes a long way into explaining the parton model for
nucleon interactions at high energy. At low energy, the main issue is that the non-perturbative
dynamics going on inside the nucleon mixes with the interaction with the external probe,
because the two have similar space-time scales. Let us now consider the same process with
a nucleon at a much higher energy, in a frame where the probe is unchanged (i.e. all the
boost is applied to the nucleon). All the internal time-scales of the nucleon are dilated by
the Lorentz factor of the boost: interactions among the constituents take much longer, and
quantum fluctuations are much longer lived. The main simplification is that the constituents
of the nucleon no longer interact significantly over the time-scale seen by the external probe
(represented in blue in the figure 1.6). Thus, at high energy, a nucleon appears as a collection
of quasi free constituents. The other outcome of the boost is that, by increasing the lifetime

Figure 1.6: Nucleon at high energy.

of the fluctuations, it made a larger number of them accessible to the probe. If the lifetime of
a fluctuation is large compared to the characteristic time-scale of the probe, this fluctuation
is seen as an extra on-shell gluon. Thus, the number of gluons (and also of sea quarks, not
represented on the figures 1.5 and 1.6) in a nucleon appears to increase as its energy increases.
The new gluons uncovered by the boost have smaller and smaller momentum fractions x: this
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is the qualitative explanation for the rise at small x of the gluon distribution that one can see
in the figure 1.4.

Another consequence of the boost is that the fluctuations that were already visible before
the boost are now very long lived: their time evolution is slowed down by the boost, and they
can be considered as static for the duration of the interaction process with the probe. The
only relevant information about these fast modes is the color current they carry. This remark
about the fast partons is at the basis of the McLerran-Venugopalan model and of the Color
Glass Condensate, that we shall introduce later in this chapter.

1.3 Gluon saturation

The previous discussion of the evolution of the nucleon structure under a boost suggests that
the gluon content evolves at small x via cascades such as those displayed in the figure 1.7:
each valence quark starts its own cascade of gluons, that have increasingly small longitudi-
nal momenta as one moves down in the cascade. As long as these gluon cascades do not

Figure 1.7: Linear evolution: gluons do not overlap in the transverse plane, and gluon cascades
evolve independently.

interact, the evolution can be described by a linear equation for the gluon distribution: the
Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [61, 62], that provides the x-dependence of
the non-integrated (i.e. transverse momentum dependent) gluon distribution. The kernel of
this equation has positive eigenvalues, which are responsible for the increase of the gluon
distribution when x→ 0 – and its solutions behave roughly as a positive power of 1/x.

However, this increase of the gluon density cannot continue forever. When the gluons
become densely packed in the wavefunction of a nucleon, the interactions between gluons
from different cascades cannot be neglected anymore, as illustrated in the figure 1.8. These
mergings of gluons from different cascades slow down4 the increase of the gluon distribution
at small x, by adding a term quadratic in the gluon density, with a negative coefficient, to the
BFKL equation. This effect is known as gluon saturation. Very schematically, the modified
equation reads5:

∂n(x, k⊥)

∂ ln(1/x)
= a

∂2n

∂k2⊥
+ bn︸ ︷︷ ︸

BFKL

−cαsn
2 , (1.6)

4It has also been argued that an uninterrupted rise of the gluon distribution of the form x−λ would eventually
violate unitarity bounds –such as the Froissart bound [63]– for hadronic cross-sections.

5The actual equation is more complicated than eq. (1.6). In particular, it has a non local kernel in transverse
momentum, which is mimicked here by a diffusion term.
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Figure 1.8: Non-linear evolution: gluons overlap in the transverse plane, and mergings from
different cascades occur.

where a, b and c are of order unity, and where the diffusion term in transverse momentum
mimics the actual behavior of the BFKL equation. The extra power of αs in front of the
quadratic term reflects the fact that the merging of two gluon cascades requires two extra
powers of the strong coupling g. Thus, we expect on the basis of this toy model that this
non-linear correction becomes important when the gluon density is of order 1/αs.

A more precise criterion for gluon saturation has been derived by Gribov, Levin and
Ryskin in [64], in terms of the transverse momentum of these gluons. First of all, the relevant
density here is the number of gluons per unit of transverse area. Indeed, the boost in the
longitudinal direction turns the nucleon into a thin pancake due to Lorentz contraction. The
wavelength of the probe being held fixed, it becomes larger than the thickness of the Lorentz
contracted nucleon, and the probe therefore cannot resolve the gluon distribution in the lon-
gitudinal direction: it sees only the number of gluons integrated over the z axis. This surface
density can be estimated by:

N ∼
xG(x, k2⊥)

πR2
, (1.7)

where R is the radius of the nucleon. To decide whether this density is large enough to have
gluon mergings, it should be compared to the cross-section for the recombination of two
gluons, that can be estimated as

σ ∼
αs

k2⊥
. (1.8)

When Nσ ≥ 1, gluon recombination cannot be neglected anymore. This condition can be
rewritten as an inequality for the transverse momentum of the gluons,

k⊥ ≤ Qs(x) , (1.9)

whereQs(x) is the saturation momentum and is defined in terms of the gluon distribution as

Q2s(x) ∼
αs xG(x,Q

2
s)

πR2
. (1.10)

From the inequality (1.9), one can divide the (x, k⊥) plane in two domains: respectively dilute
and saturated, as illustrated in the figure 1.9 (the red line separating the domains corresponds
to the equality k⊥ = Qs(x)).
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Figure 1.9: Dilute (high k⊥ and high x) and saturated (low k⊥ and low x) domains. The strip
at k⊥ ≤ ΛQCD is dominated by confinement physics, and not accessible via weak coupling
techniques.

log(k 2)

log(x -1)

Λ
QCD

saturated

dilute

The x dependence of the saturation momentum follows that of the gluon distribution. One
has roughly Q2s ∼ x−λ, where phenomenologically λ ≈ 0.3 [65, 66]. Note also that nothing
in the above derivation of the saturation condition is specific to a nucleon: the same condi-
tion applies to a nucleus, provided that one replaces in the saturation momentum the gluon
distribution and the radius by the appropriate ones. The gluon distribution of a nucleus is ap-
proximately proportional to the mass number A, and its radius to A1/3. Thus, the saturation
momentum squared of a nucleus is proportional to A1/3 [67] and x−0.3,

Q2s(x) ∼ A
1/3 1

x0.3
. (1.11)

For large nuclei like the ones employed in heavy ion collisions (Gold at RHIC and Lead at
the LHC), the nuclear enhancement of the saturation momentum is A1/3 ≈ 6. From fits
to existing data on deep inelastic scattering on various targets, one can get a more precise
idea of the numerical value of the saturation momentum. This as been done in the references
[67, 68], and the result is shown in the figure 1.10. Given the inequality (1.9), it is obvious
that a larger saturation momentum means that saturation effects exist in a wider kinematical
range. From eq. (1.11), we conclude that gluon saturation should be more prominent for
heavy ion collisions at high energy. In fact, estimates of the saturation momentum for Gold
nuclei at x ≈ 10−2 (RHIC kinematics) give Qs ≈ 1.2 GeV [67], indicated that the bulk of
particle production at RHIC is affected by saturation. At the LHC, this value could thus reach
Qs ≈ 2 GeV (at x ≈ 4.10−4), making saturation even more important.

1.4 McLerran-Venugopalan model

Up to now, we have described gluon saturation at a very qualitative level. An important
step towards a theoretical description of this phenomenon was provided by the McLerran-
Venugopalan (MV) model [70–72]. In order to have a technically tractable model of a nucleon
or nucleus, it is necessary to simplify the dynamics in the valence region, since this is the part
where confinement effects make a full QCD treatment impossible. Once one has a handle
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Figure 1.10: Numerical value of the saturation momentum, as a function of the longitudinal
momentum fraction x and of the atomic number A. From [69].

on the fast partons, it is easy to compute how slower partons are radiated by bremsstrahlung.
The main idea of the MV model is to replace the fast quanta in a nucleon or nucleus by
simpler degrees of freedom that retain only the aspects that are essential in order to compute
bremsstrahlung, while continuing to treat the slow gluons as full fledged gauge fields. As
we have noted before, time dilation means that the fast quanta are quasi-static over the time-
scales relevant in an interaction process. Moreover, in order to calculate the radiation of the
slower gluons from the fast ones, one needs only to know the color current associated with
the fast partons.

Thus, the MV model introduces a cutoffΛ+ in the longitudinal momentum k+ of partons.
Partons that have k+ > Λ+ are replaced by a color current Jµa, of the form:

Jµa(x) = δ
µ+δ(x−)ρa(x⊥) . (1.12)

This current has only a nonzero + component in light-cone coordinates (in ordinary Cartesian
coordinates, this current has equal 0 and 3 components and vanishing transverse components).
The factor ρa is a density of color charge per unit of transverse area. The static nature of these
degrees of freedom translates into the fact that Jµa does not depend on x+. The delta function
in x− is motivated by the Lorentz contraction6.

The slow gluons, for which k+ < Λ+, are still described by the usual gauge fields Aµa,
and their action is the standard Yang-Mills action7. Because of the time-scale separation
between the fast and slow degrees of freedom, the coupling between them is Eikonal and
appears in the action of the MV model as a term∫

d4x Jµa(x)Aµa(x) . (1.13)

6It is not crucial to have exactly a δ(x−), nor to have factorized x− and x⊥ dependences. Physical results are
insensitive to the details of the x− dependence, provided it is peaked around x− = 0, on scales that are small
compared to the physical longitudinal length scales.

7At small x, one usually disregards the quarks.

13



What is missing at this point is a theory or model for the color density ρa. ρa describes
the distribution of the partons that have momentum k+ larger than the cutoffΛ+. In a nucleon
or nucleus, their distribution varies in time8 and their configuration at the time of a collision is
a snapshot of this fluctuating distribution. Thus, one should treat ρa as a stochastic quantity,
and complement the MV model with a statistical distributionW[ρa] for the ρa’s.

The MV model goes one step further by proposing a model of the functionalW[ρa] for a
large nucleus. First of all, the MV model assumes that the values of the color charge density
at two distinct points in the transverse plane are not correlated. This assumption can be
seen as a consequence of confinement: two color charges belonging to different nucleons are
uncorrelated. Secondly, at a given x⊥, ρa(x⊥)d2x⊥ is made up of all the color charges in
a longitudinal tube of cross-section d2x⊥. These charges are also random and uncorrelated,
and there is a large number of them in a large nucleus (proportional to A1/3) – thus, ρa
is an incoherent sum of many random variables. The Central Limit Theorem implies that
the statistical distribution of ρa(x⊥) is a Gaussian distribution, characterized by a 2-point
correlator of the form:

〈ρa(x⊥)ρb(y⊥)〉 = µ2 δab δ(x⊥ − y⊥) . (1.14)

Under these assumptions, the distributionW[ρa] reads:

W[ρa] = exp

[
−

∫
d2x⊥

ρa(x⊥)ρa(x⊥)

2µ2

]
. (1.15)

Given the distribution W[ρa], the calculation of the expectation value of some observable O

in the MV model is performed as follows:

i. Compute the observable in an arbitrary configuration ρa of the color sources, O[ρa]. In
the saturated regime, the power counting should be done by assuming that ρa ∼ g−1.
In this regime, non-linearities in ρa are important even at Leading Order, which is the
reason why this model is suitable to describe gluon saturation. At Leading Order, the
sum of the relevant contributions can be resummed by solving the classical Yang-Mills
equations,

[Dµ,F
µν] = Jν . (1.16)

ii. Average O[ρa] over the distributionW[ρa]:

〈O〉 =
∫ [
Dρa

]
W
[
ρa
]
O[ρa] . (1.17)

To close this section, let us add a remark about gauge invariance. The distribution in eq. (1.15)
is invariant under gauge transformations9, as well as the functional measure

[
Dρa

]
. There-

fore, if O is a gauge invariant operator, then the expectation value
〈
O
〉

defined in eq. (1.17) is
also gauge invariant.

8It appears static only over the short duration of the collision process.
9Under a gauge transformation, ρa transforms as

ρa(x)t
a → Ω†(x) [ρa(x)t

a]Ω(x) .
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1.5 Color Glass Condensate

The MV model allows one to make a number of phenomenological calculations at tree level,
e.g. of the Deep Inelastic Scattering structure functions [73, 74] of a nucleon or nucleus or the
density of energy released at early times in heavy ion collisions [21]. However, complications
arise when one tries to use it beyond tree level. It was soon realized that the δ(x−) factor in
the color current leads to singularities in these calculations: in order to obtain finite results in
loop calculations, it is necessary to assume a less singular x− dependence:

δ(x−)ρa(x⊥)→ ρa(x
−, x⊥) , (1.18)

where now the x− dependence (absorbed into the definition of ρa because there is no reason
to assume that the x− and x⊥ dependences factorize) is still peaked around x− = 0 but not
singular.

The second problem in loop corrections with the MV model is that they lead to logarithms
of the cutoff Λ+ that separates the fast static sources from the slow gauge fields [75]. This
issue is in fact related to that of the x− dependence of the color sources. It has been shown
that the logarithms of Λ+ can be absorbed into a redefinition of the sources, that consist in
adding layers of new sources that slightly enlarge the support in x− of ρa. This modification
amounts to turn the distributionW[ρa] into a Λ+-dependent distribution,

W[ρa]→W
Λ+ [ρa] , (1.19)

that obeys an evolution equation of the form [76–83]

∂W
Λ+

∂ ln(Λ+)
= HW

Λ+ , (1.20)

where H is an operator that contains first and second derivatives with respect to ρa. This
evolution equation for W

Λ+ is known as the JIMWLK equation 10. By letting W
Λ+ evolve

according to this equation, observables become independent of the cutoff Λ+. Eq. (1.20) can
therefore be seen as a renormalization group equation, that ensures the consistency of the
MV effective description by making observables independent of its cutoff. One starts with
some initial distribution WΛ+

0
at a scale Λ+

0 , and eq. (1.20) describes how this distribution
evolves as the cutoff decreases. AsΛ+ → 0, one integrates out progressively all the quantum
fluctuations (at leading logarithmic accuracy) into the distributionW

Λ+ . With this extension
of W into a cutoff dependent distribution, the Gaussian distribution in eq. (1.15) should now
be seen as a model for the initial condition of eq. (1.20).

Let us add that the functional evolution equation (1.20) can also be formulated as an
infinite hierarchy of evolution equations for correlators of Wilson lines [84]. These equations
are nested because the evolution equation for a n-point function depends on the value of
some p-point function with p > n. In particular, the first equation of the hierarchy, for
the evolution of a 2-point function, depends on a 4-point function. In the limit of a large
number of colors and of large nuclei, it has been argued that this 4-point function can be
written as the product of two 2-point functions. This assumption leads to a closed, non-linear,
equation for the 2-point function [85, 86], now known as the Balitsky-Kovchegov equation.

10JIMWLK = Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner.

15



Because this equation is much simpler than the JIMWLK equation 11, it has been used in
many phenomenological applications where evolution to small x was important.

The Color Glass Condensate is the name under which this effective theory (i.e. the separa-
tion of degrees of freedom proposed in the MV model, plus the JIMWLK evolution equation)
is known12. The word glass refers to the fact that the degrees of freedom described by the
color density ρa evolve on a time scale much larger than the typical time-scale of collision
processes, and also refers to the similarity between the averaging procedure in eq. (1.17) and
spin glasses. The word condensate is due to the fact that gluons reach their largest possible
occupation number, of order 1/αs, in the saturated regime. Gluon saturation can be seen
as a repulsive interaction that prevents all the gluons from collapsing on the zero transverse
momentum state; because of this repulsion newly radiated gluons are forced to occupy mo-
mentum modes near k⊥ ∼ Qs(x).

Originally, the JIMWLK equation was proven for the expectation value of gauge invariant
operators in the wave function of a single nucleus, e.g. Deep Inelastic Scattering structure
functions. One of the main goals in the rest of this manuscript is to show that in collisions
of two saturated projectiles, like heavy ion collisions, one can also factorize the leading loga-
rithms by applying the JIMWLK equation to the distributionsW[ρa] of each projectile. This
result indicates the universality of these distributions, and establishes a connection between
measurements done in DIS experiments and inclusive observables in heavy ion collisions, in
the non-linear saturated regime. We will see in the part II how the JIMWLK equation arises
in the context of heavy ion collisions.

11By noticing that the JIMWLK equation is a Fokker-Planck equation in a functional space, one can reformulate
it as a Langevin equation [87]. This formulation paves the way for a numerical study of the JIMWLK equation on
the lattice [88]. This numerical study of the JIMWLK equation has shown that the Balitsky-Kovchegov equation
is indeed a rather good approximation, at least as far as 2-point correlators are concerned. Recently, this direct
numerical approach has started to find its way into more phenomenological applications [89, 90].

12See [91–93] for extensive reviews of the theoretical and phenomenological aspects of the Color Glass Conden-
sate.
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Chapter 2

Particle production from
strong classical sources

T
he Color Glass Condensate effective theory is a Yang-Mills theory coupled to
an external time-dependent color source. A crucial property in the saturation
regime is that this source is strong, reflecting the fact that the gluon occupation
number in a saturated hadron is of order α−1

s . Thus the source should be thought
of being of order g−1. The strength of the source implies that calculating ob-

servables in this effective theory is a non-perturbative problem, even if the coupling constant
g is weak. Indeed, even at leading order, infinitely many diagrams contribute to any given
observable. However, as we shall see, the situation is manageable because the sum of this
infinite series of diagrams usually has a compact expression in terms of classical solutions of
Yang-Mills equations.

In this chapter, based on [2, 3], we discuss in detail the main features of quantum field the-
ories coupled to a strong external source. The questions we focus on here are fairly general,
and the answers are valid for any sensible quantum field theory – the only crucial requirement
being unitarity. Therefore, in order to avoid the additional complexity (both notational and
in the handling of the gauge freedom) of gauge theories, we will use a simpler example in
this chapter, consisting of a scalar field theory. We will of course go back to QCD in the
second part of this manuscript, when we address the problem of particle production in heavy
ion collisions.

The first section of the chapter explains the power counting in such a theory, which is an
essential step in classifying the relevant contributions to a given observable. In the rest of
the chapter, we study several questions related to the distribution of the produced particles at
t → +∞. First, we define a generating functional that encodes all the relevant information
about the final state. We show also that its first derivative is the sum of two sets of connected
diagrams in the Schwinger-Keldysh formalism. At leading order, they can be expressed in
terms of solutions of the classical equations of motion of the theory, albeit with complicated
boundary conditions. From this generating functional, we proceed to the study of moments
of the distribution of produced particles, and show that at leading order they can all be written
in terms of classical fields with simple retarded boundary conditions. In order to stress the
special role played by inclusive observables, we discuss briefly in the last section the technical
complications that arise when one considers exclusive observables.
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Finally, we extend our study of inclusive quantities by computing the corrections they
receive at next-to-leading order (NLO). As we shall see when we turn to the Color Glass
Condensate and heavy ion collisions, the main goal of computing these quantities at NLO is
to extract the large logarithms of the collision energy that they contain, and to resum these
logarithms.

2.1 Power counting

Let us consider a scalar field theory coupled to a source j, whose Lagrangian is

L ≡ 1
2
(∂µφ)(∂

µφ) −U(φ) + jφ . (2.1)

The potential U(φ) encodes the self-interactions of the field φ. The points we discuss in this
chapter do not depend on the details of U(φ), but when we draw examples of diagrams we
usually assume cubic or quartic interactions for simplicity. For convenience in the subsequent
power counting, we write the terms in this potential as1

gφ3 , g2φ4 , g3φ5 · · · (2.2)

We assume that all the coupling constants have the same order of magnitude in case there
are several interaction terms in U(φ), so that a unique parameter g appears in the power
counting.

The Feynman rules for this theory are the usual ones, where the time-ordered propagator
in momentum space reads2

G0
F
(p) =

i

p2 + iε
, (2.3)

and where the contribution of a 4-particle vertex is −ig2. In momentum space, a source j
attached to the end of a propagator of momentum p contributes a factor ĩ(p) (where ̃ is the
Fourier transform of j).

The source j(x) is a given function of space-time, fixed once for all (we do not consider
the question of averaging over an ensemble of such j’s in this chapter). To make things
interesting, we assume that j(x) is large. By large, we mean that j is proportional to the
inverse coupling g−1 – we call this situation the dense regime. In contrast, the situation
where the external source j is small –typically of order g– is called the dilute regime. As
one can see in the figure 2.1, there is a crucial difference between the dense and the dilute
regimes when one studies particle production: in the dense regime, any vertex connected to a
source j does not contribute to the overall order of magnitude of the diagram, since the factor
g brought by the vertex is compensated by the g−1 from the source it is attached to.

Let us make this point more precise. Consider a simply connected diagram (see figure
2.2), with n

E
external legs, n

I
internal lines, n

L
independent loops, n

J
sources, and n(3)

V

1Only the dependence on the coupling constant is written here. In general, these interaction terms must have
additional dimensionful factors. For instance, in four space-time dimensions, the interactions terms should be of the
form gn−2Q4−nφn, where Q is some quantity or operator that has the dimension of a mass. In four dimensions,
only the φ4 interaction term has a dimensionless coupling constant. Terms with n > 4 are non-renormalizable
interactions, and Q is the scale at which they become relevant.

2Throughout this document, the propagators are normalized with an i in the numerator, so that in coordinate
space �xG0

F
(x, y) = −iδ(x − y).
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Figure 2.1: In these graphs, each circular dot represents one power of the external source j. Left:
typical graph contributing in the dilute limit j ∼ g. Right: typical graph in the dense case
j ∼ g−1.

Figure 2.2: Connected subdiagram of a generic graph in the dense regime. In this example,
n
E
= 5, n

I
= 11, n

J
= 4, n

L
= 1, n(3)

V
= 5 and n(4)

V
= 2.

cubic vertices, n(4)
V

quartic vertices, etc... These parameters are not all independent. First,
the number of propagator endpoints should match the available sites to which they can be
attached. This leads to a first identity,

n
E
+ 2n

I
= n

J
+ 3n(3)

V
+ 4n(4)

V
+ 5n(5)

V
+ · · · (2.4)

A second identity expresses the number of independent loops in terms of the other parameters,

n
L
= n

I
− (n(3)

V
+ n(4)

V
+ n(5)

V
+ · · · ) − n

J
+ 1 . (2.5)

It is obtained by recalling that the number of independent loops is the number of momenta
flowing in the diagram that are not constrained by energy momentum conservation or by the
choice of the external momenta that enter in the diagram. Each vertex provides a constraint
among the momenta running on the n

I
internal lines since the sum of the momenta arriving

at a vertex must be zero. Similarly, each source provides a constraint, for the same reason.
The final +1 is due to the fact that one of these constraints has to be a linear combination of
the others, because of the global momentum conservation in the diagram.

Thanks to these two relations, the order of a diagram can be written as

jnJ g
n(3)

V
+2n(4)

V
+3n(5)

V
+··· = g−2 gnE g2nL (gj)nJ . (2.6)

First, we see that the final result does not depend on the number of vertices and on the number
of internal lines; only the number of external legs, the number of independent loops and the
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number of sources appear in the result. Moreover, because we have assumed strong sources,
the factor (gj)nJ in the right hand side is of order unity and can be ignored in the power
counting. In this case, the order of a diagram does not depend on its number of sources, and
an infinite number of diagrams –with fixed n

E
and n

L
but arbitrary n

J
– contribute at each

order.

Note also that the previous power counting formula only applies to simply connected
graphs. For graphs that are made of several disconnected subgraphs, the formula should be
applied separately on each subgraph.

It is also interesting to discuss the order in the Planck constant h̄ of a given diagram.
Recall that h̄ has the dimension of an action, so that the relevant quantity is the dimensionless
ratio

S

h̄
=

∫
d4x

[
−
1

2
φ
�x
h̄
φ−

1

h̄
U(φ) +

j

h̄
φ
]
. (2.7)

One can thus apply the following mnemonic rules in order to compute the order in h̄ of a
given diagram,

i. a propagator has an h̄ in the numerator,

ii. each vertex has a h̄−1,

iii. each source has a h̄−1.

Therefore, the order in h̄ of a generic connected diagram is given by

h̄
n
E
+n

I
−n

J
−n(3)

V
−n(4)

V
−n(5)

V
−··· = h̄nE+nL−1 . (2.8)

We see that the order in h̄ increases as the number of loops, the number of external legs n
E

being held fixed. A particularly important case, that we shall encounter frequently later on,
is that of 1-point functions, i.e. n

E
= 1. At tree level (n

L
= 0), this object is of order h̄0,

and is thus classical. As we will see, 1-point functions at tree level are in fact solutions of the
classical equation of motion for the field, in accordance with the h̄0 power counting.

2.2 Generic features of the particle distribution

2.2.1 Exclusive and inclusive observables

Our main goal is to study particle production in a field theory whose Lagrangian is given by
eq. (2.1), having in mind applications to heavy ion collisions described in the Color Glass
Condensate framework. However, before exposing the tools that allow such a study, let us
discuss in this section some generic aspects of the distribution of the produced particles. We
limit ourselves here to those features that can be assessed without any detailed calculation,
e.g. that follow simply from power counting arguments or unitarity considerations.

The initial state will always be assumed to be empty3, i.e. to be the state
∣∣0in
〉
. Particle

production is encoded in the transition amplitudes〈
p1 · · ·pnout

∣∣0in
〉
, (2.9)

3Here, empty means that the only objects present in the initial state are those described by the external source j.
In applications to heavy ion collisions, the two colliding nuclei will be encoded in such source terms. In this context,
empty will therefore mean that only the two nuclei are present in the initial state.
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that connect the in- vacuum state to a final state populated with n on-shell particles of mo-
menta p1 to pn. Any observable related to particle production in this field theory can be
expressed in terms of these amplitudes. For instance, the differential probability of producing
exactly n particles is given by4

dPn

d3p1 · · ·d3pn
=
1

n!

1

(2π)32p1
· · · 1

(2π)32pn

∣∣〈p1 · · ·pnout
∣∣0in
〉∣∣2 , (2.10)

where p ≡ |p|. More important in practical applications are inclusive observables. The
simplest one is the inclusive single particle spectrum, defined by

dN1

d3p
≡
∞∑
n=0

(n+ 1)

∫
d3p1 · · ·d3pn

dPn+1

d3pd3p1 · · ·d3pn
. (2.11)

Experimentally, this observable is obtained by the following procedure: for each event, make
an histogram of the number of produced particles according to their momentum. Then, count
the number of particles in the bin of momentum p, and finally average this number over many
events. Such a quantity is said inclusive because in its definition one particle is singled out,
and all the other particles that may have been produced are integrated out.

2.2.2 Vacuum-vacuum diagrams

It is very handy to formulate the discussion of particle production from external sources
in terms of the vacuum-vacuum diagrams. Vacuum-vacuum diagrams are simply Feynman
diagrams that have no external legs (i.e. for which n

E
= 0). They are contributions to the

vacuum-to-vacuum transition amplitude
〈
0out
∣∣0in
〉
, hence their name. The vacuum-vacuum

diagrams also show up as disconnected factors in the perturbative expansion of any amplitude
with external legs.

When one considers a field theory in the vacuum (i.e. with no external source j), the
vacuum-vacuum diagrams are usually discarded. Indeed, it is easy to show that their sum is
a pure phase, that appears as a prefactor in every transition amplitude but has no effect on
transition probabilities. Physically, this is due to the fact that when j = 0, the in- vacuum
must evolve into the out- vacuum with probability unity (since in an unitary theory with j = 0,
particles cannot appear spontaneously from the vacuum).

The situation is very different in a theory in which the quantum fields are coupled to some
external source j. Let us assume that this source is such5 that at least one transition from the
in- vacuum to a populated state is non-zero:

∃α 6= 0 ,
〈
αout

∣∣0in
〉
6= 0 . (2.12)

From unitarity, we know that∣∣〈0out
∣∣0in
〉∣∣2 +∑

α6=0

∣∣〈αout
∣∣0in
〉∣∣2 = 1 , (2.13)

4Throughout this document, the states are normalized so that
〈
p
∣∣q〉 = 2p(2π)3δ(p − q).

5For instance if j(x) has time-like Fourier modes, particles can be produced by a single source. In the color
glass condensate, the kinematical properties of the sources are such that one needs at least two sources to produce a
particle. In some cases, particles cannot be produced by any finite number of sources, but can be produced by some
non-perturbative mechanisms (this is for instance what happens in the Schwinger mechanism).
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where we have isolated the vacuum from the populated states in the sum over the final states.
Thus, we conclude that∣∣〈0out

∣∣0in
〉∣∣2 < 1 , (2.14)

which means that the sum of the vacuum-vacuum diagrams is not a pure phase. Consequently,
they cannot be discarded because they have a non trivial effect on the transition probabilities.

The sum of the vacuum-vacuum diagrams,
〈
0out
∣∣0in
〉
, contains both simply connected

and multiply connected diagrams. However, it is well known that the complete sum is the
exponential of the sum of the simply connected diagrams. Hence, we can write〈

0out
∣∣0in
〉
≡ eiV[j] , (2.15)

where iV[j] is the sum of all the simply connected vacuum-vacuum diagrams (it is a func-
tional of the external source j). The prefactor i has been included for convenience. The
diagrammatic expansion of iV[j] starts as follows

iV[j] = + + + + . . .1

6

1

8

1

8
(2.16)

in a theory with cubic interactions. We have represented only tree diagrams in the right hand
side, but of course iV[j] contains diagrams at any loop order. The rational number preceding
each diagram is its symmetry factor. Note that the condition of eq. (2.14), that must be
fulfilled in order to produce particles from the sources, can be rewritten as

e−2Im V[j] < 1 , (2.17)

which requires that ImV[j] 6= 0. This can only happen in a field theory coupled to an external
source. If j = 0, all the vacuum-vacuum diagrams are purely real and this condition cannot
be satisfied.

If we write eq. (2.6) in the specific case n
E
= 0 of connected vacuum-vacuum diagrams,

we get

g−2 g2nL (gj)nJ ∼ g−2 g2nL . (2.18)

(The right hand side is valid in the regime of strong sources, where gj ∼ 1.) Thus, we see that
all the tree connected vacuum-vacuum diagrams are of order g−2, all the 1-loop ones are of
order g0, etc...

This has several consequences. First, the argument of the exponential in eq. (2.15) is
of order g−2 � 1, which means that the vacuum-to-vacuum transition amplitude is very
different from unity (we already knew that its modulus is smaller than one, we now know
that it is exponentially small). Also, since the argument of the exponential is of order g−2,
this implies that any quantity in which

〈
0out
∣∣0in
〉

appears as a prefactor is bound to have a
pathological perturbative expansion6, since expanding the exponential generates arbitrarily
high powers of g−2. We will see that this problem affects the expression of the probabilities
Pn, but that the inclusive quantities are free of this pathology.

The second consequence of the above power counting is that all the tree diagrams con-
tribute at the same order in iV[j], which means that even the calculation of its leading order
requires the resummation of an infinite series of diagrams.

6The function f(z) ≡ exp(−1/z) does not have a Taylor expansion around z = 0. Note however that quantities
that have this problem may have a generalized expansion of the form exp(−A)∗B, whereA and B have well defined
perturbative series.
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2.2.3 Cutting rules

Let us first discuss the cutting rules [94, 95] for vacuum-vacuum graphs in theories with
external sources. These rules, for instance, can be employed to compute the imaginary part
of V[j], which plays a crucial role in the study of the distribution of the produced particles.

One starts by decomposing the free Feynman (i.e. time-ordered) propagator in two pieces
according to the time-ordering of the endpoints7

G0
F
(x, y) ≡ θ(x0 − y0)G0−+(x, y) + θ(y

0 − x0)G0+−(x, y) . (2.19)

This equation defines the functionsG0−+ andG0+−. The notations for these objects have been
chosen in order to emphasize the analogy with the Schwinger-Keldysh formalism (see [96,
97], and our brief summary in appendix A). Pursuing this analogy, the Feynman propagator
G0
F

will be denoted G0++. We introduce also the anti–time-ordered propagator G0−− defined
as

G0−−(x, y) ≡ θ(x0 − y0)G0+−(x, y) + θ(y
0 − x0)G0−+(x, y) . (2.20)

Note that the four propagators so defined are not independent, but obey the identity

G0++ +G0−− = G0−+ +G0+− . (2.21)

In addition to these four propagators, we will introduce two kinds of vertices, of type + or −.
The vertex of type + is the ordinary vertex and gives a factor −ig in Feynman diagrams. The
vertex of type − is the opposite of the + vertex, and its Feynman rule is +ig. Likewise, for
insertions of the source j, insertions of type + appear with the factor +ij(x) while insertions
of type − appear instead with −ij(x). The motivation for introducing these additional vertices
and sources will become clear shortly.

For each Feynman diagram iV (containing only “+” vertices and sources) contributing
to the sum of connected vacuum-vacuum diagrams, define a corresponding set of diagrams
iV{εi} by assigning the type εi to the vertex or source i of the original diagram (and connect-
ing a vertex or source of type ε to a vertex or source of type ε′ with the propagator G0εε′).
Each εi can be either of the “+” or “-” type. Clearly the original Feynman diagram under
consideration is nothing but iV{+···+}. This generalized set of diagrams has 2n terms if the
original diagram had n vertices and sources. These diagrams obey the so-called largest time
equation [95, 98]. If one considers these diagrams before the times at the vertices and sources
have been integrated out, and if one assumes that the vertex or source with the largest time is
numbered i, it is easy to prove that

iV{···εi··· } + iV{···−εi··· } = 0 , (2.22)

where the dots denote the exact same configuration of ε’s in both terms for the vertices and
sources that do not carry the largest time. This equation leads immediately to a constraint,∑

{εi=±}

iV{εi} = 0 , (2.23)

where the sum is extended to the 2n possible configurations of the ε’s in the Feynman dia-
gram of interest.

7The superscript 0 indicates free propagators.
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This identity, being true for arbitrary times and positions of the vertices and sources, is
also valid for the Fourier transforms of the corresponding diagrams. This is where its role
as a tool for calculating the imaginary part of a Feynman diagram becomes apparent. To see
this, we first write down the explicit expressions for the Fourier transforms of the propagators
G0±±

G0++(p) =
i

p2 + iε
,

G0−−(p) =
−i

p2 − iε
,

G0−+(p) = 2πθ(p0)δ(p2) ,

G0+−(p) = 2πθ(−p0)δ(p2) . (2.24)

G0−−(p) is the complex conjugate of G0++(p), while G0+−(p) and G0−+(p) are purely real.
We are dealing only with vacuum-vacuum diagrams here, and all the momenta in the dia-
gram are therefore dummy integration variables that we are free to change. Exploiting this,
changing the signs of all the momenta flowing from the sources, and using the fact 8 that
j(−k) = j∗(k), we see that a vacuum-vacuum diagram with only − vertices and sources is
the complex conjugate of the corresponding diagram with only + vertices and sources. As a
consequence, we have

iV{+···+} + iV{−···−} = iV{+···+} +
(
iV{+···+}

)∗
= −2 ImV . (2.25)

We can therefore rewrite the imaginary part of the original Feynman diagram V as

2 ImV =
∑

[εi=±]

iV{εi} , (2.26)

where the subscript [εi = ±] in the sum indicates that the two terms where all the vertices
and sources are of type + or all of type − are excluded from the sum.

For a given term in the right hand side of the above formula, one can divide the diagram in
a set of simply connected subgraphs, each containing only + or only − vertices and sources.
Note that such subgraphs can exist only if they contain at least one external source. They
would otherwise be zero by energy conservation9. The frontier between the + regions and the
− regions of the diagram is referred to as a cut and each diagram in the r.h.s. of eq. (2.26) is
a cut vacuum-vacuum diagram. Eq. (2.26) is an identity for the imaginary part of a particular
connected vacuum-vacuum Feynman graph; the imaginary part of the sum of all connected
vacuum-vacuum Feynman graphs is therefore the sum of all cut connected vacuum-vacuum
Feynman diagrams. At tree level, the first terms generated by these cutting rules (applied to
compute the imaginary part of the sum of connected vacuum-vacuum diagrams) are

2 ImV[j] =
- + + -

1

2

- +

+

-
+1

6
+

-
+

1

6
+

+ -

1

6
+

+
-1

6
+

+
-

1

6

-

+

+

-
+

1

6
+

-+

1

6
+

+

-

1

6
+

+
-

1

6
+

+-

1

6

+ · · · (2.27)
8This is because the source j(x) is real, which, in turn, follows because the Lagrangian defined in eq. (2.1) should

be Hermitian. Of course, this is the case in the Color Glass Condensate framework.
9This explains why the vacuum-vacuum diagrams in a theory where j = 0 are purely real.
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The + and − signs adjacent to the grey line in each diagram here indicate the side on which
the set of + and − vertices is located. As one can see, there are cuts intercepting more than
one propagator. In the following, a cut going through r propagators will be called a r-particle
cut.

The above discussion explains at a more technical level why vacuum-vacuum diagrams
are not pure phases in theories with fields coupled to time-dependent external sources. The
squared modulus of their sum is the exponential of the imaginary part of the connected
vacuum-vacuum diagrams, which is a sum of cut Feynman diagrams. These cuts are zero
in the vacuum because energy cannot flow from one side of the cut to the other in the absence
of external legs or sources. This constraint is lifted if the fields are coupled to time-dependent
external sources. Thus, in this case, cut vacuum-vacuum diagrams, and hence the imaginary
part of vacuum-vacuum diagrams, differ from zero.

2.2.4 Probability of producing n particles

Our previous discussion focused on the vacuum-vacuum diagrams generated in the per-
turbative expansion of transition amplitudes. All transition amplitudes contain the factor
exp

(
iV[j]

)
, which, in the squared modulus of the amplitudes, transforms into the factor

exp
(
− 2 ImV[j]

)
. The power counting rules derived earlier tell us that the sum of all the

connected vacuum-vacuum diagrams starts at order10 g−2. Hence, we will write

2 ImV[j] ≡ a

g2
, (2.28)

where a denotes a series in g2n that starts at order n = 0; the coefficients of this series
are functions of gj. Thus, the vacuum-to-vacuum transition probability is exp(−a/g2). The
simplest tree diagrams entering in a/g2 were displayed in eq. (2.27).

We now turn to the probabilities for producing n particles. For now, our discussion is
more intuitive than rigorous, with precise definitions to be introduced later in the chapter.
Besides the overall factor exp

(
iV[j]

)
, the transition amplitude from the vacuum state to a

state containing one particle is the sum of all the Feynman diagrams with one external line.
These diagrams start at order g−1. The probability to produce one particle from the vacuum
can therefore be parameterized as

P1 = e
−a/g2 b1

g2
, (2.29)

where b1 is, like a, a series in g2n that starts at n = 0. b1/g2 can be obtained by performing
a 1-particle cut through vacuum-vacuum diagrams. In other words, b1/g2 is one of the
contributions in a/g2. Diagrammatically, b1/g2 starts at tree level with

b1

g2
=

- +

1

2
+ -

1

2

+

- +

1

6
+

-
+1

6
+

-
+

1

6
+

+ -

1

6
+

+
-1

6
+

+
-

1

6

+ · · · (2.30)
10From now on, we do not write explicitly the dependence in the combination gj because we assume that the

sources are strong and this combination is of order unity. All the coefficients in the expressions we write in this
section depend implicitly on gj.
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Consider now the probability P2 for producing two particles from the vacuum. There
is an obvious contribution to this probability that is obtained simply by squaring the b1/g2

piece of the probability for producing a single particle. This term corresponds to the case
where the two particles are produced independently from one another. But two particles can
also be produced correlated to each other. This correlated contribution to P2 must come from
a 2-particle cut through simply connected vacuum-vacuum diagrams. Let us represent this
quantity as b2/g2. Diagrammatically, b2/g2 is a series whose first terms are

b2

g2
=

-

+

+

-
+

1

6
+

-+

1

6
+

+

-

1

6
+

+
-

1

6
+

+-

1

6

+ · · · (2.31)

The net probability, from correlated and uncorrelated production, of two particles can there-
fore be represented as

P2 = e
−a/g2

[
1

2!

b21
g4

+
b2

g2

]
. (2.32)

The prefactor 1/2! in front of the first term is a symmetry factor which is required because
the two particles in the final state are indistinguishable.

Let us further discuss the case of three particle production before proceeding to the gen-
eral case. One (uncorrelated) term will be the cube of b1/g2 (with a symmetry factor 1/3!).
A combination b1b2/g4 will also appear, corresponding to the case where two of the parti-
cles are produced in the same subdiagram, and the third is produced independently. Finally,
there is a fully correlated three particle production probability corresponding to the three par-
ticles produced in the same simply connected diagram. We shall represent this contribution
by b3/g2. More precisely, b3/g2 is the sum of all 3-particle cuts in a/g2. Diagrammatically,
some of the simplest terms in b3/g2 are

b3

g2
=

1

8
- +

+
1

8

-

+
+
1

8

+ -

- +

+ · · · (2.33)

(Only a few terms have been represented at this order, due to the large number of possible
permutations of cuts across the various legs.) The probability of producing three particles
from the vacuum is then given by

P3 = e
−a/g2

[
1

3!

b31
g6

+
b1b2

g4
+
b3

g2

]
. (2.34)

The previous examples can be generalized to obtain an expression for the production of
n particles –for any n– that reads

Pn = e−a/g
2

n∑
p=1

1

p!

∑
r1+···+rp=n

br1 · · ·brp
g2p

. (2.35)

In this formula, p is the number of simply connected subdiagrams producing the n particles,
and br/g2 denotes the contribution to the probability of the sum of all r-particle cuts through
the connected vacuum-vacuum diagrams. This formula gives the probability of producing n
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particles to all orders in the coupling g. (Recall also that, in addition to the factors of g2

that appear explicitly in the formula, the quantities a, br are themselves series in g2n where,
further, the coefficients of the series are functions of gj ∼ 1). It should be noted that this
formula has in fact little to do with quantum field theory: any probability distribution for a
discrete quantity can be written in this form that expresses how a set of n identical objects
can be decomposed into p independent clusters. Similar formulas can be found in [99, 100].

2.2.5 Unitarity

In our framework, unitarity implies that the sum of the probabilities Pn is unity:

∞∑
n=0

Pn = 1 . (2.36)

From eq. (2.35), it is a simple matter of algebra to show that the l.h.s. above is given by

∞∑
n=0

Pn = exp

[
−
a

g2
+
1

g2

∞∑
r=1

br

]
. (2.37)

Unitarity therefore requires that

a =

∞∑
r=1

br . (2.38)

This relationship between a and the br’s is in fact an identity following directly from their
respective definitions. Indeed, recall that (see eq. (2.28)) a/g2 is the sum of all the possible
cuts of simply connected vacuum-vacuum diagrams. On the other hand, br/g2 was defined
as the subset of connected vacuum-vacuum diagrams with r-particle cuts. (Recall that these
are cuts that intercept r propagators.) The sum of these over all values of r is therefore equal
to a/g2 by definition.

2.2.6 Moments of the distribution

Moments of the distribution of probabilities Pn are easily computed from the generating
function

G(x) ≡
∞∑
n=0

Pn e
nx , (2.39)

such that
〈
Np
〉
= G(p)(0). Using eq. (2.35), this generating function can be evaluated in

closed form, and one obtains

G(x) = e−a/g
2

exp

[
1

g2

∞∑
r=1

bre
rx

]
= exp

[
1

g2

∞∑
r=1

br(e
rx − 1)

]
. (2.40)

The mean of the distribution of multiplicities,
〈
N
〉
≡
∑
n nPn, is

〈
N
〉
= G′(0) =

1

g2

∞∑
r=1

r br . (2.41)
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The average multiplicity is therefore given by the sum of all r-particle cuts through the con-
nected vacuum-vacuum diagrams, weighted by the number r of particles on the cut. The
second derivative of G(x) at x = 0 is simply

G′′(0) =
〈
N2
〉
. (2.42)

The variance of the distribution,
〈
N2
〉
−
〈
N
〉2

, can instead be obtained directly from the
second derivative of

g(x) ≡ lnG(x) =
1

g2

∞∑
r=1

br(e
rx − 1) (2.43)

at x = 0. Thus,

〈
N2
〉
−
〈
N
〉2

= g′′(0) =
1

g2

∞∑
r=1

r2br . (2.44)

More generally, the connected part of the moment of order p reads

〈
Np
〉

connected = g(p)(0) =
1

g2

∞∑
r=1

rpbr . (2.45)

One sees that if br 6= 0 for at least one r > 1, the variance and the mean are not equal
and the distribution is not a Poisson distribution. The converse is true: it is trivial to check
that eq. (2.35) is a Poisson distribution if b1 6= 0 and br = 0 for all r > 1. Indeed, in this
case, eq. (2.35) becomes

Pn = e−b1/g
2 1

n!

(
b1

g2

)n
. (2.46)

2.2.7 Clustering properties

Eq. (2.35) also provides informations about the clustering properties of the distribution of
produced particles. Here, we call a cluster of size r a set of r correlated particles – i.e. r
particles which are produced in the same simply connected graph.

Given the definition of br/g2 as the sum of all the simply connected cut vacuum graphs
that have exactly r cut lines, it is clear that the r on-shell particles corresponding to the cut
lines form a cluster (since they belong to the same connected graph). Therefore, eq. (2.35)
can be seen as a sum over all the possible cluster decompositions of a set of n particles. In this
formula, p is the number of clusters (ranging from 1 to n), and for a given p one sums over all
the partitions of n particles into p clusters of respective sizes r1, · · · , rp (n = r1+ · · ·+ rp).

From this interpretation, one can derive a number of results regarding the distribution of
clusters in the final state. In order to do this, one needs the probability of having m1 clusters
of size 1,m2 clusters of size 2,etc. It is given by

P({mr}) = e
−a/g2 1

(
∑∞
r=1mr)!

∞∏
r=1

(
br

g2

)mr
. (2.47)
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From this formula, one can first rederive the probability distribution of the particle number n
by writing Pn as

Pn =
∑

{mr}|
∑
r rmr=n

P({mr}) . (2.48)

Naturally, one recovers eq. (2.35).

The next quantity one can obtain is the probability distribution for the number p of clus-
ters in an event:

P(p) =
∑

{mr}|
∑
rmr=p

P({mr}) =
(
∑
r br/g

2)p

p!
e−a/g

2

. (2.49)

Since a =
∑
r br, we see that the number of clusters follows a Poisson distribution of av-

erage
〈
p
〉
=
∑
r br/g

2. The fact that this distribution is a Poisson distribution was obvious
from the start, since by definition there are no correlations between clusters (each cluster is a
separate disconnected graph). One can also compute the average number of clusters of size r
in an event:〈

mr
〉
=
∑
{ms}

P({ms}) mr =
br

g2
, (2.50)

which provides another interpretation for the meaning of the quantity br/g2. In particular,
for a Poisson distribution the only clusters are 1-particle clusters, i.e. the only non-zero

〈
mr
〉

is
〈
m1
〉
. Thus, we recover the fact that for a Poisson distribution, the only non-zero br is b1.

As one sees, all the properties of the distribution of clusters are encoded in the br’s. Given
the br’s, one can obtain the multiplicity distribution via eq. (2.35) but it is also possible to do
the reverse, by noting for instance that

br

g2
=

1

2πi

∮
γ

dz

z1+r
ln
∞∑
n=0

Pnz
n , (2.51)

where the integration is done in the complex z-plane over any closed curve γ that circles once
around the origin z = 0 in the counter-clockwise direction.

2.3 Generating functional

2.3.1 Definition of the generating functional

Any quantity that can be expressed in terms of the squares of the amplitudes defined in
eq. (2.9) can be derived from the following generating functional 11,

F[z(p)]≡
∞∑
n=0

1

n!

∫
d3p1

(2π)32p1
· · · d3pn

(2π)32pn
z(p1) · · · z(pn)

∣∣〈p1 · · ·pnout
∣∣0in
〉∣∣2, (2.52)

11This generating functional is a generalization of the generating function introduced in eq. (2.39). Indeed, one
obtains G(x) by evaluating F[z(p)] for a constant z(p) equal to ex: G(x) = F[z(p) ≡ ex]. The main purpose
of introducing a generating functional that depends on a momentum-dependent argument (as opposed to a constant
one) is that this more general object allows one to keep track of the momentum of the produced particles.
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where z(p) is an arbitrary test function over the 1-particle phase-space. In particular, the
differential probabilities and the single particle inclusive spectrum are obtained as functional
derivatives of F[z(p)] :

dPn

d3p1 · · ·d3pn
=

1

n!

δnF[z(p)]

δz(p1) · · · δz(pn)

∣∣∣∣
z(p)=0

,

dN1

d3p
=

δF[z(p)]

δz(p)

∣∣∣∣
z(p)=1

. (2.53)

As one can see on these two example, observables in which the final state is fully specified
correspond to derivatives evaluated at z(p) = 0, while inclusive observables –in which most
of the final state is simply integrated out– correspond to derivatives evaluated at z(p) = 1.
This is in fact a general property. For instance, the inclusive 2-particle spectrum is

dN2

d3pd3q
=

δ2F[z(p)]

δz(p)δz(q)

∣∣∣∣
z(p)=1

, (2.54)

and this formula has an obvious generalization to the case of the inclusive n-particle spec-
trum.

2.3.2 Importance of unitarity

As we shall see, inclusive observables are much simpler to calculate than the exclusive ones.
To a large extent, this simplification is due to unitarity. The simplest consequence of unitarity
is

F[z(p) = 1] = 1 . (2.55)

To check this identity, one should start from the definition of the generating functional in
eq. (2.52), to see that

F[z(p) = 1] =

∞∑
n=0

Pn , (2.56)

where Pn is the total probability of producing exactly n particles. The sum of these prob-
abilities must be equal to one in a unitary theory. Had one evaluated F[z(p)] at z(p) = 0
instead, one would have obtained F[z(p) = 0] = P0, which is a very complicated object.
These considerations show that it is much simpler to study the generating functional near the
point z(p) = 1 than near the point z(p) = 0. In terms of a diagrams, the identity (2.55)
corresponds to an exact cancellation among an infinite set of diagrams when one evaluates
F[z(p)] at z(p) = 1.

2.3.3 Diagrammatic interpretation of F[z(p)]

The reason why we discussed at length vacuum-vacuum diagrams in the previous subsection
is that they play an important role in organizing the calculation of other quantities. The key
observation here is that the sum of the vacuum-vacuum diagrams is nothing but the generating
functional for time-ordered Green’s functions. More precisely, one has〈

0out
∣∣Tφ(x1) · · ·φ(xn)∣∣0in

〉
=

δ

iδη(x1)
· · · δ

iδη(xn)
eiV[j+η]

∣∣∣
η=0

. (2.57)
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In order to see this, one should compare the eq. (A.10) for the generating functional Z[η] of
time-ordered Green’s functions (in the appendix A) with the following formula12 for the sum
of the vacuum-vacuum diagrams :

eiV[j] ≡
〈
0out
∣∣0in
〉
=
〈
0in
∣∣T exp i

∫+∞
−∞d

4x [Lint(φin(x))]
∣∣0in
〉
. (2.58)

Therefore, we obviously have

Z[η] = eiV[j+η] , (2.59)

which implies eq. (2.57).

Then, it is easy to obtain a formal but useful formula for F[z(p)]. Start from the Leh-
mann–Symanzik–Zimmermann [101] reduction formula for the transition amplitude to a final
state with n particles,

〈
p1 · · ·pnout

∣∣0in
〉

= in
∫
d4x1 · · ·d4xn ei(p1·x1+···+pn·xn)

×�x1 · · ·�xn
〈
0out
∣∣Tφ(x1) · · ·φ(xn)∣∣0in

〉
. (2.60)

By plugging eq. (2.57) in this reduction formula and squaring the result, we can write the
squared amplitude as∣∣〈p1 · · ·pnout

∣∣0in
〉∣∣2 = Cp1 · · ·Cpn e

iV[j+η+] e−iV
∗[j+η−]

∣∣∣
η±=0

, (2.61)

where the operator Cp is defined by

Cp ≡
∫
d4xd4y eip·(x−y) �x�y

δ2

δη+(x)δη−(y)
. (2.62)

In the right hand side of eq. (2.61), the factors exp(iV) and exp(−iV∗) come respectively
from the amplitude and its complex conjugate. Note that it is essential to keep their arguments
distinct–hence the separate η+ and η−–so that the two derivatives in the operators Cp act on
different factors. One should set η± to zero only after all the derivatives have been evaluated.
The final step is to substitute eq. (2.61) into the definition (2.52) of F[z(p)]. One obtains
immediately

F[z(p)] = exp
[∫

d3p

(2π)32p
z(p)Cp

]
eiV[j+η+] e−iV

∗[j+η−]
∣∣∣
η±=0

. (2.63)

We will use extensively this formula in order to derive expressions for various observables.

Let us now turn to the diagrammatic interpretation of F[z(p)], which can be inferred from
eq. (2.63). In order to do that, we need the eq. (A.22) established in the appendix A.3. Indeed,
the last two exponentials are respectively Z[η+] and Z∗[η−] (thanks to eq. (2.59)), and it is
easy to check that the operator in the first exponential is identical to the first exponential of
eq. (A.22) except for the additional factor z(p), since

G0+−(x, y) =

∫
d3p

(2π)32p
eip·(x−y) . (2.64)

12Here, the interaction term of the Lagrangian Lint comprises both the self-interactions of the fields, and their
coupling to the external source, i.e. Lint = −U(φ) + jφ.
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Therefore, eq. (2.63), before we set the sources η± to zero, is the generating functional for
correlators in a z-modified Schwinger-Keldysh formalism 13 in which every off-diagonal free
propagator (G0+− andG0−+) is multiplied by z(p) in momentum space. Because we are going
to reuse this object later, let us denote

eiW[η±,j] ≡ exp
[∫

d3p

(2π)32p
z(p)Cp

]
eiV[j+η+] e−iV

∗[j+η−] . (2.65)

Since we must set η± to zero in order to obtain F[z(p)] according to eq. (2.63), we see
that F[z(p)] is the sum of all the vacuum-vacuum diagrams14 in the z-modified Schwinger-
Keldysh formalism.

2.3.4 First derivative of F[z(p)]

General formula

There is no simple expression for the generating functional F[z(p)] itself, but it turns out that
it is much easier to find a formula for its first derivative δF[z(p)]/δz(p). Using eq. (2.63)
and the explicit form of the operator Cp, we can write this derivative as

δF[z(p)]

δz(p)
=

1

(2π)32p

∫
d4xd4y eip·(x−y) eiW[η±,j] �x�y

×
[
δiW[η±, j]

δη+(x)

δiW[η±, j]

δη−(y)
+

δ2iW[η±|j]

δη+(x)δη−(y)

]
η±=0

. (2.66)

Since when evaluated at η± = 0 the exponential in the first line is nothing but the generating
functional F[z(p)] itself, we can also write

δ lnF[z(p)]
δz(p)

=
1

(2π)32p

∫
d4xd4y eip·(x−y) �x�y

× [ϕ+(x)ϕ−(y) + G+−(x, y)] . (2.67)

where we have introduced the following objects :

ϕ±(x) ≡ δiW[η±, j]

δη±(x)

∣∣∣∣
η±=0

,

G+−(x, y) ≡ δ2iW[η±, j]

δη+(x)δ−(y)

∣∣∣∣
η±=0

. (2.68)

Note that these objects depend on the external source j and on the function z(p), although we
have not written this dependence explicitly in order to keep the notations compact. From this
definition, and the fact that exp(iW) is the generating functional for Green’s functions in the
z-modified Schwinger-Keldysh formalism, we see thatϕ±(x) and G+−(x, y) are respectively

13See the appendix A for a reminder on the Schwinger-Keldysh formalism.
14It is a general result that the generating functional for correlators, when evaluated at η = 0, is equal to the sum

of the vacuum-vacuum diagrams in the theory under consideration.
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connected 15 1- and 2-point Green’s functions in this formalism. Diagrammatically, eq. (2.67)
can be represented as follows:

δ lnF[z(p)]
δz(p)

= p

ϕ+

ϕ−

+

p

G+− , (2.69)

where the shaded blobs represent the functions ϕ± and G+− that have been amputated of
their external legs (by the �x,y operators), and where the crossed line that appears in the
diagrams carries the on-shell momentum p.

Leading order

The order of magnitude of these objects is easily obtained from our general results for the
power counting of connected graphs :

ϕ± ∼ O(g−1) ,

G+− ∼ O(1) . (2.70)

Therefore, the first derivative of lnF[z(p)] starts at the order g−2. Moreover, at this order,
only the first term in ϕ+(x)ϕ−(y) contributes. The term in G+− starts contributing only at
the next-to-leading order. A further simplification at leading order is that it is sufficient to
keep tree level contributions to the 1-point functions ϕ±. Thanks to their tree structure, it is
possible to write recursive integral equations that sum all the diagrams contributing to ϕ± at
leading order :

ϕ+(x) = i

∫
d4y G0++(x, y)

[
j(y) −U′(ϕ+(y))

]
−i

∫
d4y G

0

+−(x, y)
[
j(y) −U′(ϕ−(y))

]
,

ϕ−(x) = i

∫
d4y G

0

−+(x, y)
[
j(y) −U′(ϕ+(y))

]
−i

∫
d4y G0−−(x, y)

[
j(y) −U′(ϕ−(y))

]
. (2.71)

In these equations, G0++ and G0−− are the diagonal components of the free propagator in the

Schwinger-Keldysh formalism, and G
0

+−, G
0

−+ are its non-diagonal components, appropri-
ately modified by the function z(p). In momentum space, they read:

G
0

+−(p) = 2π z(p) θ(−p0) δ(p2) ,

G
0

−+(p) = 2π z(p) θ(+p0) δ(p2) . (2.72)

In the appendix B.5.2, we show that the solutions ϕ± of coupled integral equations such as
eqs. (2.71) are solutions of the classical equation of motion,

�xϕ±(x) +U
′(ϕ±(x)) = j(x) , (2.73)

15They are connected because they are obtained by differentiating the logarithm of the generating functional.
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with the following boundary conditions

f
(+)
+ (−∞,p) = f

(−)
− (−∞,p) = 0 ,

f
(−)
+ (+∞,p) = z(p) f

(−)
− (+∞,p) ,

f
(+)
− (+∞,p) = z(p) f

(+)
+ (+∞,p) . (2.74)

Here, the boundary conditions have been written in terms of the coefficients of the Fourier
decomposition of the fields ϕ±,

ϕε(y) ≡
∫

d3p

(2π)32p

[
f(+)
ε (y0,p) e−ip·y + f(−)

ε (y0,p) e+ip·y
]
. (2.75)

By plugging the Fourier representation of ϕ± in the general formula (2.67) (and setting
G+− = 0 at this order), we get a very simple formula for the first derivative of lnF[z(p)] at
leading order:

δ lnF[z(p)]
δz(p)

∣∣∣∣
LO

=
1

(2π)32p
f
(+)
+ (+∞,p) f(−)

− (+∞,p) . (2.76)

One can note that the dependence on the function z(p) enters in the fields ϕ± only via the
boundary conditions they satisfy, since the equation of motion itself does not contain z(p)
explicitly. The second remark is that it is in general extremely difficult to solve a non-linear
partial differential equation with boundary conditions imposed both at x0 = −∞ and at
x0 = +∞. Therefore, one should not hope to be able to find solutions of this problem (either
analytically or numerically). Nevertheless, this result for the first derivative of the generating
functional F[z(p)] is very useful as an intermediate tool for deriving other results, as will be
shown in the rest of this chapter.

2.4 Inclusive moments at leading order

2.4.1 Single inclusive spectrum

Let us now show how to obtain inclusive moments (for now, at leading order) from eq. (2.76).
The simplest one is the single inclusive spectrum,

dN1

d3p
=
δF[z(p)]

δz(p)

∣∣∣∣
z(p)=1

. (2.77)

At leading order, it is simply obtained by evaluating eq. (2.76) at the special point z(p) = 1,
since F[z(p) = 1] = 1. This means that one must solve the classical equation of motion with
boundary conditions (2.74) in which one sets z(p) = 1. As explained in appendix B.5.2,
setting z(p) = 1 in these boundary conditions simplifies them considerably: when z(p) = 1
the two fields ϕ+ and ϕ− are identical,

ϕ+(x) = ϕ−(x) ≡ ϕ(x) , (2.78)

and obey the simple retarded boundary condition

lim
x0→−∞ϕ(x0, x) = 0 , lim

x0→−∞∂0ϕ(x0, x) = 0 . (2.79)

Thus, the prescription for computing the single inclusive spectrum at leading order is the
following:
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i. Solve the classical equation of motion with a null initial condition in the remote past,

ii. At x0 → +∞, compute the coefficients 16 f(±)(+∞,p) of the Fourier decomposition
of this classical field,

iii. The single inclusive spectrum is then obtained as:

dN1

d3p

∣∣∣∣
LO

=
1

(2π)32p

∣∣∣f(+)(+∞,p)∣∣∣2 . (2.80)

In eq. (2.80), we used the fact that the retarded classical field ϕ is purely real 17. Therefore,
its positive and negative energy Fourier coefficients are mutual complex conjugates:

f(−)(+∞,p) = [f(+)(+∞,p)]∗ . (2.81)

This ensures that the spectrum is a positive definite real number.

2.4.2 Multi-particle inclusive spectra

The n-particle inclusive spectrum is also obtained from derivatives of the generating func-
tional F[z(p)] evaluated at z(p) = 1,

dNn

d3p1 · · ·d3pn
=

δnF[z(p)]

δz(p1) · · · δz(pn)

∣∣∣∣
z(p)=1

. (2.82)

Note that the n-gluon spectrum defined in this way gives the expectation value of N(N −
1) · · · (N− n+ 1) when integrated over the momenta p1 to pn :∫

d3p1 · · ·d3pn
dNn

d3p1 · · ·d3pn
=

∞∑
N=n

N(N− 1) · · · (N− n+ 1) P
N
, (2.83)

where P
N

is the total probability of producing exactly N particles. Since we already have an
expression for the first derivative of lnF[z(p)], it is simpler to rewrite eq. (2.82) as follows

dNn

d3p1 · · ·d3pn
=

δneln F[z(p)]

δz(p1) · · · δz(pn)

∣∣∣∣
z(p)=1

. (2.84)

By performing explicitly the derivatives, we obtain :

dNn

d3p1 · · ·d3pn
=

n∏
i=1

[
δ lnF
δz(pi)

]
z(p)=1

+
∑
i<j

[
δ2 lnF

δz(pi)δz(pj)

]
z(p)=1

∏
k6=i,j

[
δ lnF
δz(pk)

]
z(p)=1

+ · · · (2.85)

The terms we have not written explicitly have increasingly high order derivatives (but less
and less factors), up to an n-th derivative in a single factor. However, we do not need these

16Since the fields ϕ+ and ϕ− are equal, there is no need to have a subscript ± for these coefficients.
17Its initial condition is real, and its equation of motion involves only real quantities.
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terms. Indeed, we already know that at leading order lnF is of order g−2 since it is a sum
of simply connected vacuum-vacuum diagrams. Therefore, in the right hand side of this
equation, the first term is of order g−2n, the second term is of order g−2(n−1), etc... The
leading contribution is thus the first term, and all the subsequent terms are subleading 18. We
see that, at leading order, the n-particle inclusive spectrum is simply the product of n single
particle spectra:

dNn

d3p1 · · ·d3pn

∣∣∣∣
LO

=

n∏
i=1

dN1

d3pi

∣∣∣∣
LO

. (2.86)

Any deviation from this factorized result has to be a subleading effect 19. Note also that at
this order, there is no difference between the factorial moments

〈
N(N− 1) · · · (N−n+ 1)

〉
and the ordinary moments

〈
Nn
〉
.

2.5 Exclusive quantities at leading order

Let us now consider exclusive quantities. This discussion will be very short, and its purpose
is only to illustrate the fact that the calculation of exclusive quantities is considerably more
difficult than that of inclusive quantities.

Let us consider as an example the calculation of the differential probability of producing
exactly one particle. It is obtained from F[z(p)] by the formula

dP1

d3p
=
δF[z(p)]

δz(p)

∣∣∣∣
z(p)=0

= F[z(p) = 0]︸ ︷︷ ︸
P0

δ lnF[z(p)]
δz(p)

∣∣∣∣
z(p)=0

. (2.87)

We can see two major differences compared to the inclusive quantities studied in the previous
section :

i. The derivative of lnF[z(p)] must be evaluated at the point z(p) = 0. At leading order,
it can still be expressed in terms of the Fourier coefficients of a pair of solutions of
the classical equation of motion, via eq. (2.76). However, because now we must set
z(p) = 0 in the boundary conditions (2.74) for these classical fields, they are not
retarded fields anymore20, and it is much more difficult to calculate them.

ii. The quantity F[z(p) = 0] appears as a prefactor in front of all the exclusive quantities.
This prefactor is nothing but the probability P0 for not producing anything, i.e. the
vacuum survival probability. Calculating P0 directly is a very difficult task. However,
if one was able to calculate the second factor for all the probabilities P1, P2, · · · , one
could then obtain P0 from the unitarity condition

∑∞
n=0 Pn = 1.

These difficulties, observed here on the example of dP1/d3p, are in fact generic to all exclu-
sive quantities. They have so far prevented any progress in the evaluation of these quantities.
Note however that this is to a large extent an academic problem, since exclusive quantities

18We will need the second term later when we study the next-to-leading order corrections.
19As we will see in the following chapters, some of these subleading corrections are enhanced by large logarithms

of the energy, and can thus be quantitatively comparable to the leading order contribution.
20It is precisely because in exclusive observables the final state is constrained that the boundary conditions for the

fields cannot be purely retarded.
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–where one specifies in minute detail the final state– are not very interesting for the phe-
nomenology of processes in which the final state has typically a very large number of parti-
cles, parametrically of order g−2. Indeed, in this context, the probability of occurrence of a
given fully specified final state is exponentially suppressed, like e−c/g

2

.

2.6 Next-to-Leading Order corrections

2.6.1 Preliminary remarks

In order to save some work, it is useful to determine precisely what one really needs to
calculate in order to obtain the inclusive spectra at NLO. This can be done easily by going
back to eq. (2.85). The first line of the right hand side, evaluated at leading order, gives the
leading order contribution to the n-particle inclusive spectrum. NLO contributions come in
two places:

i. Via an NLO correction to one of the factors δ lnF/δz(pi) in the first line,

ii. In the second line, with all the factors it contains evaluated at leading order. Thus we
also need the LO contribution to the second derivative δ2 lnF/δz(p)δz(q).

The first type of NLO correction just amounts to calculating the single inclusive spectrum at
NLO. The second type of NLO correction is somewhat different, and occurs only in the 2-
and more particle inclusive spectra.

2.6.2 Single inclusive spectrum

The single particle inclusive spectrum is given by the first derivative of the generating func-
tional F[z(p)], for which a general formula was given in eq. (2.67). We must now evaluate
this formula at NLO, i.e. at the order g0. Therefore, we need to calculate two quantities:

i. The 1-loop corrections β± to the 1-point functions ϕ±,

ii. The 2-point function G+− at tree level.

Since we are not going to calculate further derivatives21 with respect to z(p), it is sufficient
to evaluate these quantities at the point z(p) = 1 – which will simplify considerably the
calculations. In particular, by setting z(p) = 1, we need not distinguish the two fields ϕ±
since they are both equal to the retarded classical field ϕ with a null initial condition at
x0 = −∞. In terms of these two objects, the NLO correction to the single inclusive spectrum
reads22

dN1

d3p

∣∣∣∣
NLO

=
1

(2π)32p

∫
d4xd4y eip·(x−y) �x�y

×
[
ϕ(x)β−(y) + β+(x)ϕ(y) + G+−(x, y)

]
, (2.88)

21The second derivative δ2 lnF/δz(p)δz(q) –that we need in the calculation of the 2-particle spectrum– will only
be needed at leading order. We will obtain it from eq. (2.76), which is valid at LO for any z(p).

22The last term, proportional to G+−(x, y), can be shown to contain the contribution due to the production of
pairs of particle by the Schwinger mechanism [102].
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to be compared with its leading order expression

dN1

d3p

∣∣∣∣
LO

=
1

(2π)32p

∫
d4xd4y eip·(x−y) �x�yϕ(x)ϕ(y) . (2.89)

Let us start with β±. These quantities are the 1-loop corrections to 1-point simply con-
nected Green’s functions. To the propagators that constitute the loop, one can attach any
number of fields ϕ: in other words, they are nothing but the Schwinger-Keldysh propagators
in the presence of a background field ϕ. For a generic interaction potential, it is easy to write
β±(x) as follows:

βε(x) = −
i

2

∑
ε′=±

∫
d4z ε′ Gεε′(x, z)U

′′′(ϕ(z))Gε′ε′(z, z) . (2.90)

In this formula, the 1/2 is a symmetry factor, the factor ε′ in the integrand takes into account
the fact that vertices of type − have an opposite sign in the Schwinger-Keldysh formalism,
and the factor −iU′′′(ϕ(z)) is the general form of the 3-particle vertex in the presence of an
external field (for an arbitrary interaction potential U).

Thus, we have reduced the calculation of β± to that of the 2-point functions G±± at tree
level. These four propagators are defined recursively by the following equations :

Gεε′(x, y) = G
0
εε′(x, y) − i

∑
η=±

η

∫
d4z G0εη(x, z)U

′′(ϕ(z))Gηε′(z, y) . (2.91)

Here, −iU′′(ϕ(z)) is the general form for the insertion of a background field on a propagator
in a theory with potential U(ϕ). From these equations23, it is easy to derive the following
equations :[

�x +U
′′(ϕ(x))

]
G+−(x, y) =

[
�y +U

′′(ϕ(y))
]
G+−(x, y) = 0 ,[

�x +U
′′(ϕ(x))

]
G−+(x, y) =

[
�y +U

′′(ϕ(y))
]
G−+(x, y) = 0 .

(2.92)

In addition to these equations of motion, these propagators must become equal to their free
counterpartsG0+− andG0−+ when x0, y0 → −∞. Once G+− and G−+ have been determined,
it is possible to obtain G++ and G−− by the following expressions,

G++(x, y) = θ(x0 − y0)G−+(x, y) + θ(y
0 − x0)G+−(x, y) ,

G−−(x, y) = θ(x0 − y0)G+−(x, y) + θ(y
0 − x0)G−+(x, y) , (2.93)

which follow from the definition of the various components of the Schwinger-Keldysh prop-
agators.

The above conditions determine G+− and G−+ uniquely. In order to find these propaga-
tors, it is convenient to start from the following representation of their free counterparts :

G0+−(x, y) =

∫
d3p

(2π)32p
a∗p(x)ap(y) ,

G0−+(x, y) =

∫
d3p

(2π)32p
ap(x)a

∗
p(y) , (2.94)

23For a more explicit method of solving these equations, see the appendix A.4.
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where

�x ap(x) = 0 , lim
x0→−∞ap(x) = e−ip·x . (2.95)

It is trivial to generalize this representation of the off-diagonal propagators to the case of a
non zero background field. One can write :

G+−(x, y) =

∫
d3p

(2π)32p
a∗p(x)ap(y) ,

G−+(x, y) =

∫
d3p

(2π)32p
ap(x)a

∗
p(y) , (2.96)

with [
�x +U

′′(ϕ(x))
]
ap(x) = 0 , lim

x0→−∞ap(x) = e−ip·x . (2.97)

By construction, these expressions of G+− and G−+ obey the appropriate equations of
motion, and go to the correct limit in the remote past. Thus, the problem of finding the
Schwinger-Keldysh propagators in a background field has been reduced to solving the equa-
tion of motion of a small fluctuation on top of the background field, with retarded boundary
conditions.

2.6.3 Surgery of retarded graphs

At this point, we have all the building blocks in order to obtain the single inclusive spectrum at
NLO. One can go further and obtain a formal relationship between the LO and NLO inclusive
spectra, that will be very useful when we discuss factorization in heavy ion collisions.

The general idea of the following manipulations is that retarded fields evolve causally.
Therefore, it is possible to split their time evolution in two parts, separated by a certain
surface Σ on which we assume that all the fields or field fluctuations are known. The final
formula of this section will show that all the relevant dynamics above the surface Σ is already
contained in the LO inclusive spectrum. As discussed in the appendix B, the surface Σ must
be locally space-like (or at least light-like), i.e. such that specifying the fields and canonical
momenta on Σ uniquely determines the fields above Σ. Thanks to eq. (B.16), one can write
the small fluctuation ak as

ak(x) =

∫
Σ

d3Su

[
ak ·Tu

]
ϕ(x) , (2.98)

where the operator ak ·Tu is defined by

ak ·Tu = ak(u)
δ

δϕ(u)
+ (n · ∂ak(u))

δ

δ(n · ∂ϕ(u))
. (2.99)

(nµ is a unit vector normal to the surface Σ at the point u, and d3Su is the measure on Σ.)
In this formula, one must consider the classical field ϕ(x) as a functional of its initial value
on the surface Σ.
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Thus, the propagator G+−(x, y) that enters in the NLO inclusive spectrum can be written
as

G+−(x, y) =

∫
d3k

(2π)32k

∫
Σ

d3Su d
3Sv

[[
a∗k ·Tu

]
ϕ(x)

] [[
ak ·Tv

]
ϕ(y)

]
. (2.100)

The important point for the applicability of this formula is that the points x and y are both
located above the surface Σ. This is indeed the case since the single inclusive spectrum
involves only fields in the limit x0 → +∞. (This can be seen for instance in eq. (2.80),
which contains only the Fourier coefficients of the classical field at x0 → +∞.) Moreover,
in the case of this observable, the times x0 and y0 can be taken equal, which allows one to
interchange24 ak and a∗k and to symmetrize the formula

G+−(x, y) =
1

2

∫
d3k

(2π)32k

∫
Σ

d3Su d
3Sv

{[[
a∗k ·Tu

]
ϕ(x)

] [[
ak ·Tv

]
ϕ(y)

]
+
[[
ak ·Tv

]
ϕ(x)

] [[
a∗k ·Tu

]
ϕ(y)

]}
. (2.101)

As we shall see now, a similar expression can be obtained for the quantities β± that also
enter in the NLO inclusive spectrum. Let us start from eq. (2.90). From eqs. (2.93), we see
that the propagators G++ and G−− are equal when the two endpoints are evaluated at equal
times25. Therefore, we can write

βε(x) = −
i

2

∫
d3k

(2π)32k
d4z

[
Gε+(x, z) − Gε−(x, z)︸ ︷︷ ︸

G
R
(x, z)

]
U′′′(ϕ(z)) a∗k(z)ak(z) , (2.102)

where G
R

is the retarded propagator in the presence of the background fieldϕ. This equation
shows that the two field fluctuations β+ and β− are equal. Therefore, we will simply denote
them by β in the following. Moreover, it is easy to see that

[
�x +U

′′(ϕ(x))
]
β(x) = −

1

2
U′′′(ϕ(x))

∫
d3k

(2π)32k
a∗k(x)ak(x) ,

lim
x0→−∞β(x) = 0 . (2.103)

This formula means that β(x) is a small fluctuation propagating on top of ϕ, that vanishes
in the remote past, with a 1-loop tadople acting as a source. One can then write a Green’s
formula (see the appendix B for the derivation) for the solution of this partial differential
equation, with a boundary condition set on the surface Σ :

β(x) = −
i

2

∫
d3k

(2π)32k

∫
Ω

d4y G
R
(x, y)U′′′(ϕ(y))a∗k(y)ak(y)︸ ︷︷ ︸
β1(x)

+ i

∫
Σ

d3Su G
R
(x, u)(n·

→
∂u −n·

←
∂u)β(u)︸ ︷︷ ︸

β2(x)

, (2.104)

24The propagators G+−(x, y) and G−+(x, y) are equal at equal times (see the section C.3).
25It seems that there is an ambiguity due to the fact that one needs the value of θ(0) in order to evaluate these

propagators at equal times. However, this is not the case since G+− and G−+ are equal at equal times.
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where Ω is the region of space-time above the surface Σ. This formula gives the value of β
at the point x (above the surface Σ) if we know it at any point u ∈ Σ. Thanks to eq. (B.19),
the second term in the right hand side can be written directly as

β2(x) =

∫
Σ

d3Su

[
β ·Tu

]
ϕ(x) . (2.105)

Let us now write the first term, β1(x), in a similar way. The first step is to write the interac-
tions with the background field more explicitly,

β1(x) = −i

∫
Ω

d4y G0
R
(x, y)

[
U′′(ϕ(y))β1(y)

+
1

2
U′′′(ϕ(y))

∫
d3k

(2π)32k
a∗k(y)ak(y)

]
. (2.106)

Consider now the quantity

ξ(x) ≡ 1
2

∫
d3k

(2π)32k

∫
Σ

d3Su d
3Sv

[
a∗k ·Tu

][
ak ·Tv

]
ϕ(x) . (2.107)

Our goal is to show that β1(x) = ξ(x). First, by using the fundamental relation (2.98), this
can be rewritten as

ξ(x) =
1

2

∫
d3k

(2π)32k

∫
Σ

d3Su

[
a∗k ·Tu

]
ak(x) . (2.108)

Next, replace in this equation the fluctuation ak(x) by its representation in terms of the
Green’s formula (B.12):

ξ(x) = −
i

2

∫
d3k

(2π)32k

∫
Σ

d3Su

[
a∗k ·Tu

] ∫
Ω

d4y G0
R
(x, y)U′′(ϕ(y))ak(y) , (2.109)

where we have dropped the boundary term from this Green’s formula since the action ofTu
on it gives zero (this boundary term does not depend on the value of ϕ on Σ). Finally, we can
expand the action ofTu, by exploiting the fact that it is a first order differential operator. We
get

ξ(x) = −
i

2

∫
d3k

(2π)32k

∫
Σ

d3Su

∫
Ω

d4y G0
R
(x, y)

{
U′′(ϕ(y))

[[
a∗k ·Tu

]
ak(y)

]
+U′′′(ϕ(y))

[[
a∗k ·Tu

]
ϕ(y)

]
ak(y)

}
= −i

∫
Ω

d4y G0
R
(x, y)

[
U′′(ϕ(y)) ξ(y)

+U′′′(ϕ(y))
1

2

∫
d3k

(2π)32k
a∗k(y)ak(y)

]
. (2.110)

The second equation is identical to the equation (2.106) that determines β1(x). Therefore,
we have β1(x) = ξ(x), as announced.
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By combining the results for β1(x) and β2(x), we finally obtain

β(x) =

[
1

2

∫
d3k

(2π)32k

∫
Σ

d3Su d
3Sv

[
a∗k ·Tu

][
ak ·Tv

]
+

∫
Σ

d3Su

[
β ·Tu

]]
ϕ(x) . (2.111)

By inserting this expression, as well as eq. (2.101), in eq. (2.88), we can write the single
inclusive spectrum at NLO as follows

dN1

d3p

∣∣∣∣
NLO

=

[
1

2

∫
d3k

(2π)32k

∫
Σ

d3Su d
3Sv

[
a∗k ·Tu

][
ak ·Tv

]
+

∫
Σ

d3Su

[
β ·Tu

]] dN1

d3p

∣∣∣∣
LO

. (2.112)

This is the central result of this chapter, and it will play a crucial role in the discussion of
factorization in heavy ion collisions. Some remarks should be made about this formula:

i. In this formula, the LO inclusive spectrum that appears in the right hand side must be
considered as a functional of the classical field on the surface Σ,

ii. The LO and NLO spectra cannot be obtained in closed analytical form, because they
contain the classical fieldϕ – retarded solution of a non-linear partial differential equa-
tion that cannot be solved analytically in general,

iii. In practical applications such as heavy ion collisions, the dynamics of ϕ is simple
below the forward light-cone (i.e. at any point in space-time before the collision), and
complicated above the light-cone,

iv. Therefore, one can chose the surface Σ in such a way that the small field fluctuations
ak and β are calculable analytically on Σ,

v. By doing this, the non-perturbative non-linear dynamics appears only in the factor
[dN1/d

3p]LO , while the operator in the square bracket can be calculated analytically,

vi. One can already foresee structural similarities between the operator between the square
brackets and the JIMWLK Hamiltonian, that both contain terms with one and two
functional derivatives. In the second part of this manuscript, our goal will be to show
that in the collision of two nuclei, the logarithms of energy arise from this operator,
with coefficients that are precisely the JIMWLK Hamiltonians of the projectiles.

2.6.4 Higher inclusive moments

Let us now turn to higher inclusive moments. Our goal is to prove that eq. (2.112) is also valid
in this more general case. The starting point is the general formula (2.85) for the n-particle
inclusive spectrum. This formula is valid to all orders. At leading order, the n-particle
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spectrum is simply given by eq. (2.86) as the product of n 1-particle spectra. At next-to-
leading order, eq. (2.85) leads to:

dNn

d3p1 · · ·d3pn

∣∣∣∣
NLO

=

n∑
i=1

dN1

d3pi

∣∣∣∣
NLO

∏
j6=i

dN1

d3pj

∣∣∣∣
LO

+
∑
i<j

[
δ2 lnF

δz(pi)δz(pj)

]
z(p)=1

∏
k 6=i,j

dN1

d3pk

∣∣∣∣
LO

. (2.113)

Therefore, the only new quantity that we need to evaluate is the second derivative of
lnF[z(p)]. It is sufficient to evaluate it at leading order (O(g−2)), i.e. at tree level. From
eq. (2.76), we get

δ2 lnF[z(p)]
δz(p)δz(q)

∣∣∣∣
LO

=
1

(2π)32p

[δf(+)
+ (+∞,p)
δz(q)

f
(−)
− (+∞,p)

+f
(+)
+ (+∞,p) δf(−)

− (+∞,p)
δz(q)

]
. (2.114)

From eq. (2.75), it is obvious that the derivatives with respect to z(q) of the Fourier coeffi-
cients f(±)± are the Fourier coefficients of

b±q(x) ≡
δϕ±(x)

δz(q)
. (2.115)

By differentiating the equation of motion ofϕ±(x) with respect to z(q), we find the equation
of motion of b±q(x),[

�x +U
′′(ϕ±(x))

]
b±q(x) = 0 , (2.116)

and we see that b±q(x) is a small field fluctuation propagating on top of the classical field
ϕ±. In order to fully determine b±q(x), we also need to know its boundary conditions.
These can be obtained by differentiating the boundary conditions of ϕ±(x) with respect to
z(q). If we denote b(±)±q (x0,p) the Fourier coefficients of b±q(x), we have the following
boundary conditions:

b
(+)
+q (−∞,p) = b

(−)
−q (−∞,p) = 0 ,

b
(−)
+q (+∞,p) = z(p) b

(−)
−q (+∞,p) + δ(p− q) f

(−)
− (+∞,p) ,

b
(+)
−q (+∞,p) = z(p) b

(+)
+q (+∞,p) + δ(p− q) f

(+)
+ (+∞,p) . (2.117)

Although the equation of motion (2.116) has no source term, the non homogeneous terms in
the boundary conditions ensure that the small fluctuations b±q(x) are non-zero.

At this point, since we are not going to take further derivatives, it is safe to set z(p) = 1.
This simplifies things a bit since ϕ+ = ϕ− when z(p) = 1. Therefore, we need not distin-
guish between f(±)+ and f(±)− , and we can simplify the notation for these Fourier coefficients
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into f(±) (which are the Fourier coefficients of the classical field ϕ with null retarded bound-
ary conditions). After this simplification, the boundary conditions for the small fluctuations
become

b
(+)
+q (−∞,p) = b

(−)
−q (−∞,p) = 0 ,

b
(−)
+q (+∞,p) = b

(−)
−q (+∞,p) + δ(p− q) f(−)(+∞,p) ,

b
(+)
−q (+∞,p) = b

(+)
+q (+∞,p) + δ(p− q) f(+)(+∞,p) . (2.118)

The difficulty with these boundary conditions is that they are neither retarded nor advanced.
However, since the equation of motion for the fluctuations b±q(x) is linear, we can write
b±q(x) as a superposition of solutions of the same equation, but with retarded boundary
conditions. A basis of such solutions has been introduced already in eq. (2.97). From the
boundary conditions at x0 = −∞, we can write

b+q(x) =

∫
d3k

(2π)32k
βk
+q a

∗
k(x)

b−q(x) =

∫
d3k

(2π)32k
βk
−q ak(x) . (2.119)

(Indeed, the first of eqs. (2.118) tells us that b+q(x) has no positive energy component and
b−q(x) no negative energy component when x0 → −∞, while ak(x) is a positive energy
plane wave in this limit.) In order to use this representation in order to solve the eqs. (2.118),
we need to decompose the fluctuation ak(x) in Fourier modes:

ak(x) ≡
∫

d3p

(2π)32p

[
a
(+)
k (x0,p) e−ip·x + a

(−)
k (x0,p) e+ip·x

]
. (2.120)

Then, one can rewrite the second and third boundary conditions in eqs. (2.118) as∫
d3k

(2π)32k

[
βk
−q a

(+)
k (p) − βk

+q a
∗(+)
k (p)

]
= δ(p− q) f(+)(p) ,∫

d3k

(2π)32k

[
βk
+q a

∗(−)
k (p) − βk

−q a
(−)
k (p)

]
= δ(p− q) f(−)(p) , (2.121)

where we have not written the time argument in the Fourier coefficients since it is x0 = +∞
everywhere. Since f(−)(p) = [f(+)(p)]∗, we see that the solution obeys

βk
−q =

[
βk
+q

]∗
, (2.122)

which implies that b−q(x) = [b+q(x)]
∗. Eqs. (2.121) thus reduce to a single equation.

Moreover, one can see it as a system of linear equations for the coefficients βk
+q. It turns

out that this linear system can be solved in closed form26, in terms of the Fourier coeffi-
cients a(±)k (p), thanks to the equation (C.14) derived in appendix C. One can check that the
following formulas solve eqs. (2.121),

βk
+q =

1

(2π)32q

[
a
(−)
k (q)f(+)(q) + a

(+)
k (q)f(−)(q)

]
,

βk
−q =

1

(2π)32q

[
a
∗(−)
k (q)f(+)(q) + a

∗(+)
k (q)f(−)(q)

]
. (2.123)

26Even though the Fourier coefficients a(±)
k (p) are not known analytically, the fact that small field fluctuations

evolve unitarily is sufficient to invert the system of eqs. (2.121).
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These formulas completely determine the coefficients in the decompositions (2.119) in terms
of the Fourier coefficients of the retarded classical field ϕ, and of the retarded small field
fluctuations ak, a∗k.

Inserting this result back into the formula for δ2 lnF[z]/δz(p)δz(q), we can write it as:

δ2 lnF[z]
δz(p)δz(q)

∣∣∣∣
LO
z≡1

=
1

2

1

(2π)64pq

∫
d3k

(2π)32k

×

{(
a
∗(−)
k (p)a

(−)
k (q) + a

(−)
k (p)a

∗(−)
k (q)

)
f(+)(p)f(+)(q)

+
(
a
∗(+)
k (p)a

(+)
k (q) + a

(+)
k (p)a

∗(+)
k (q)

)
f(−)(p)f(−)(q)

+
(
a
∗(−)
k (p)a

(+)
k (q) + a

(−)
k (p)a

∗(+)
k (q)

)
f(+)(p)f(−)(q)

+
(
a
∗(+)
k (p)a

(−)
k (q) + a

(+)
k (p)a

∗(−)
k (q)

)
f(−)(p)f(+)(q)

}

−
1

(2π)32p
δ(p− q)

∣∣∣f(+)(p)
∣∣∣2 . (2.124)

Thus, we have managed to express this quantity entirely in terms of the Fourier coefficients
of the retarded classical field and of retarded small field fluctuations. This will play a crucial
role later in the proof of factorization for the multigluon inclusive spectra. Moreover, this
formula is explicitly symmetric under the exchange of the momenta p and q, as expected
for a second derivative. Note also the last term, equal to δ(p − q) times the single inclusive
gluon spectrum. It arises because we have chosen to define the 2-gluon spectrum so that its
integral over p and q gives the average value ofN(N− 1) instead ofN2 – this term leads to
the −N in this integral.

A final step in obtaining a useful expression for the NLO correction to the multiparticle
inclusive spectrum is to rewrite everything in terms of the operators Tu introduced for the
NLO corrections to the single inclusive spectrum. Let us recall eq. (2.98), from which we
deduce the following relations for the Fourier coefficients at x0 = +∞,

a
(ε)
k (p) =

∫
Σ

d3Su

[
ak ·Tu

]
f(ε)(p) ,

a
∗(ε)
k (p) =

∫
Σ

d3Su

[
a∗k ·Tu

]
f(ε)(p) . (2.125)

Inserting these identities into eq. (2.124), we see that we can write it in a very compact fashion

δ2 lnF[z]
δz(p)δz(q)

∣∣∣∣
LO
z≡1

=
[
T2

]
connected

dN1

d3p

∣∣∣∣
LO

dN1

d3q

∣∣∣∣
LO

− δ(p− q)
dN1

d3p

∣∣∣∣
LO

, (2.126)

where the operator T2 is the quadratic part of the operator that appears in eq. (2.112),

T2 ≡
1

2

∫
d3k

(2π)32k

∫
Σ

d3Su d
3Sv

[
a∗k ·Tu

][
ak ·Tv

]
, (2.127)
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and where the subscript connected indicates that the two factorsTu,v cannot act on the same
factor dN1/d3p or dN1/d3q. More explicitly,[

TuTv

]
connected

AB ≡
[
TuA

][
TvB

]
+
[
TvA

][
TuB

]
. (2.128)

Now, it is trivial to insert this result –as well as eq. (2.112)– into eq. (2.113), in order to obtain
the following formula for the n-particle inclusive spectrum at NLO,

dNn

d3p1 · · ·d3pn

∣∣∣∣
NLO

=

[
1

2

∫
d3k

(2π)32k

∫
Σ

d3Su d
3Sv

[
a∗k ·Tu

][
ak ·Tv

]
+

∫
Σ

d3Su

[
β ·Tu

]] ∏
i

dN1

d3pi

∣∣∣∣
LO

−
∑
i<j

δ(pi − pj)
dN1

d3pi

∣∣∣∣
LO

∏
k 6=i,j

dN1

d3pk

∣∣∣∣
LO

. (2.129)

This is the generalization of eq. (2.112) to the case of the n-particle spectrum. We see that,
except for the last term whose origin is due to our choice of normalizing the n-particle spec-
trum so that its integral is the average of N(N − 1) · · · (N − n + 1), the NLO contribution
is obtained by acting on the LO result with the same operator as in the case of the single
particle spectrum. This goes a long way in the direction of proving factorization for all the
inclusive multiparticle spectra. Thanks to this formula, the proof of factorization that we shall
develop for the single particle spectrum can be generalized without further effort to the case
of multiparticle spectra.

To close this chapter, it is important to stress again the importance of considering inclusive
observables in order to obtain relations such as (2.112) and (2.129). Indeed, these formulas
explicitly factorize the NLO corrections into an object that depends on space-time points
below the surface Σ and an object that depend on points above Σ. This was made possible
because all the expressions we had to manipulate could be expressed in terms of fields and
field fluctuations that obeyed retarded boundary conditions. In turn, this is true only for
quantities that are defined in an inclusive manner.
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Part II

Initial State Factorization
in Heavy Ion Collisions
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Introduction

I
n the first part of this manuscript, we have derived the necessary tools and results
in order to study particle production in a quantum field theory coupled to strong
external sources. All the derivations have been done in the simpler case of a
scalar field theory, but their generalization to a gauge theory is straightforward.
In this second part, we apply these results to heavy ion collisions described by

the Color Glass Condensate effective theory.

In chapter 3, we show that NLO corrections to observables contain logarithms of the
cutoff that separates the sources from the fields in the color glass condensate framework.
However, it turns out that these logarithms are universal properties of the incoming nuclei,
that can be factorized into the probability distribution of sources for each projectile. We dis-
cuss thoroughly this factorization in the case of the inclusive gluon spectrum in heavy ion
collisions. We also show how this result can be extended to the calculation of the expectation
value of the energy-momentum tensor, which is a more interesting quantity in practical ap-
plications, since it is the initial condition for the subsequent hydrodynamical evolution of the
system. Then we extend the proof of factorization to correlations between multiple gluons,
or between the values of the energy momentum tensor at different spatial points.

Then, we discuss in chapter 4 some applications of these results to the phenomenology
of heavy ion collisions at high energy, and compare these predictions to experimental results
from the Relativistic Heavy Ion Collider (RHIC). In particular, we show that the color glass
condensate description of heavy ion collisions may explain rather naturally some striking
correlations that have been observed at RHIC.
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Chapter 3

Inclusive gluon spectra at
Leading Log accuracy

T
his chapter is devoted to the calculation of the single inclusive gluon spectrum
produced in the collision of two high energy nuclei. We will start with its eval-
uation at leading order, in order to prove that it can be obtained from retarded
classical solutions of the Yang-Mills equations. Then, we resum the leading
logarithmic corrections that arise in higher orders, and show that they can all

be factorized into distributions that describe the gluon content of the incoming projectiles.
Moreover, we recover for these distributions the JIMWLK renormalization group equation,
originally derived in the context of deep inelastic scattering. This result is therefore a first
hint of the universality of the distributions that appear in the calculation of this quantity.

Strictly speaking, the gluon spectrum is not a good observable. Indeed, the number of
produced gluons is not stable against soft and collinear splittings, and therefore cannot be
defined properly. In the study of hadronic collisions, this issue is related to hadronization and
is solved by introducing fragmentation functions, that describe how partons become hadrons
and resum the logarithms associated with this process. However, it is not clear whether a
similar treatment can be generalized to obtain single hadron spectra in heavy ion collisions,
due to the very dense environment in which the produced gluons evolve.

A better point of view in heavy ions collisions is to consider the Color Glass Condensate
calculation as an initial condition for the subsequent evolution, usually treated via hydro-
dynamical equations. With this in mind, a much better quantity to calculate is the spatial
distribution of the energy-momentum tensor, at some fixed initial time. Moreover, since this
quantity measures the distribution of energy and momentum in the system, it is insensitive
to soft and collinear emissions, and therefore can be calculated unambiguously in QCD. As
we shall see later in the chapter, the calculation of the energy-momentum tensor and its fac-
torization can be achieved by the same techniques, previously developed for the single gluon
spectrum.
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3.1 Gluon spectrum at Leading Order

3.1.1 Generalities

The single inclusive gluon spectrum is defined in the same way as for scalar fields. One can
first define a generating functional F[z] by

F[z]≡
∞∑
n=0

1

n!

∫
d3p1

(2π)32p1
· · · d3pn

(2π)32pn
z(p1) · · · z(pn)

∣∣〈p1 · · ·pnout
∣∣0in
〉∣∣2, (3.1)

where z(p) is some arbitrary function over the 1-gluon phase space. The only difference
with the scalar case here is that the produced gluons carry polarizations λi and colors ai.
The squared transition amplitude that appears in the right hand side of this formula must be
summed over the polarizations and colors of the produced gluons. Note that only the two
physical (transverse) polarizations must be included in this sum. This implies the following
change in the operator Cp defined in eq. (2.62). It now reads1

Cp ≡
∑
λ,a

∫
d4xd4y eip·(x−y) �x�y ε

µ
λ(p)ε

ν∗
λ (p)

δ2

δηµa+ (x)δηνa− (y)
. (3.2)

In this definition, εµλ(p) is the polarization vector for a gluon of momentum p and polariza-
tion λ. Note also that the currents η± must now carry both a Lorentz and a color index in
order to be coupled to the gauge fields.

Assuming that the above generating functional is known, the single inclusive gluon spec-
trum is obtained from the first derivative of F[z] evaluated at z ≡ 1:

dN1

d3p
=
δF[z]

δz(p)

∣∣∣∣
z(p)=1

. (3.3)

Then, all the steps of the derivation in the scalar case can be reproduced in the case of gauge
fields. At leading order, i.e. O(g−2), one finds that the inclusive gluon spectrum can be
expressed as

dN1

d3p

∣∣∣∣
LO

=
1

(2π)32p

∑
λ,a

∫
d4xd4y eip·(x−y) �x�y ε

µ
λ(p)ε

ν∗
λ (p) Aµa(x)Aνa(y) , (3.4)

where the color field Aµ(x) obeys the classical Yang-Mills equations,

[Dµ,F
µν] = Jν , (3.5)

where Fµν is the field strength,

Fµν ≡ ∂µAν − ∂νAµ + ig [Aµ,Aν] , (3.6)

and with a null retarded boundary condition

lim
x0→−∞Aµ(x) = 0 , lim

x0→−∞∂x0Aµ(x) = 0 . (3.7)

1Since we sum over the polarizations of the produced gluons, the generating functional defined here is not suitable
for the calculation of polarized observables.
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Although eq. (3.4) apparently involves an integration of the gauge field over the entire
space-time, it is easy to show that one needs in fact only its asymptotic behavior at x0 → +∞.
In order to see this, note first the identity∫

d3x eip·x �xAµ(x) = ∂
0
x

∫
d3x eip·x (∂ox − ip) Aµ(x) . (3.8)

In other words, the integrand for the dx0 integral in eq. (3.4) is a total time derivative. There-
fore, the integral depends only on the behavior of the gauge field at infinite time. Moreover,
given the boundary condition (3.7) obeyed by the gauge field, the boundary at x0 = −∞
does not contribute, and one is left with a formula that involves only x0, y0 = +∞:

dN1

d3p

∣∣∣∣
LO

= lim
t→+∞ 1

(2π)32p

∑
λ,a

∫
d3xd3y e−ip·(x−y) (∂0x − ip)(∂

0
y + ip)

×εµλ(p)ε
ν∗
λ (p) Aµa(t, x)Aνa(t,y) . (3.9)

3.1.2 Covariant current conservation

In non abelian gauge theories, where the gauge fields themselves carry a charge, there is an
additional constraint that must be obeyed by the external current Jν:

[Dµ, J
µ] = 0 . (3.10)

This is the generalization to QCD of the usual current conservation law. It is usually named
covariant current conservation, since it involves a covariant derivative instead of an ordinary
derivative. The physical meaning of this difference is that the color flux encoded in the current
Jµ can have its color altered by a gauge field. Eq. (3.10) quantifies the color precession of
the current due to the background gauge field. Therefore, the Yang-Mills equations and the
covariant current conservation constraint must be solved simultaneously, with the external
current Jν specified only in the remote past, where the gauge field vanishes thanks to the
boundary condition (3.7).

There are some gauges in which the constraint due to covariant current conservation be-
comes trivial. Consider for instance the color current Jν created by a projectile moving at
the speed of light in the +z direction. Its only non zero component is J+. Therefore, in the
light-cone gauge A− = 0, eq. (3.10) simply becomes

∂µJ
µ = 0 , (3.11)

i.e. the ordinary current conservation. The covariant current conservation constraint thus
decouples from the Yang-Mills equations, and can be solved once for all. In the case of the
collision of two fast projectiles, moving respectively in the +z and −z directions, the current
has the following form before the collision:

Jµ(x) = δµ+ρ1(x
−, x⊥) + δ

µ−ρ2(x
+, x⊥) . (3.12)

ρ1 is taken independent of x+ and ρ2 independent of x− so that the projectiles are invariant
along their trajectory (in other words, if they did not collide, nothing would happen at all).
The x⊥ dependence of these sources reflect both the transverse size of the colliding nuclei
and the impact parameter of the collision. In contrast, we keep an x− dependence for ρ1
and an x+ dependence for ρ2. However, due to the Lorentz contraction factor that applies to
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these fast moving color charges, these color charge densities are non zero only if x− ≈ 0 or
x+ ≈ 0 respectively:

ρ1(x
−, x⊥) ∼ δ(x

−) , ρ2(x
+, x⊥) ∼ δ(x

+) . (3.13)

Note also that this form of the current satisfies the abelian current conservation law ∂µJµ = 0.
The peculiarity of eq. (3.12) is that it has a + component whose support is restricted to the
x− = 0 hyperplane, and a − component whose support is the x+ = 0 hyperplane. Therefore,
the gauge condition [103, 104]

x+A− + x−A+ = 0 , (3.14)

known as the Fock-Schwinger gauge, renders the covariant current conservation law equiv-
alent to the abelian one. Indeed, a gauge field that satisfies eq. (3.14) has A− = 0 on the
x− = 0 hyperplane and A+ = 0 on the x+ = 0 hyperplane. This is the reason why the
Fock-Schwinger gauge is often used in the study of high energy hadronic collisions in the
CGC framework.

3.1.3 Initial conditions on the forward light-cone

Given the sources ρ1,2 that describe the configuration of color charges in the two colliding
projectiles, eqs. (3.5), (3.7) and (3.4) completely determine the corresponding inclusive 1-
gluon spectrum at leading order. The main difficulty resides in the fact that one cannot solve
analytically the Yang-Mills equations 2.

Therefore, one has to use numerical methods [20–26] in order to obtain this solution.
This is straightforward, since the boundary conditions that specify the classical solution of
interest are retarded boundary conditions. However, one cannot start the numerical resolution
at x0 = −∞, because the sources ρ1,2 contain δ(x±) singularities that cannot be handled by
a computer. Since these singularities lie on the light-cones x± = 0, it is preferable to start
the numerical resolution on a surface τ = const just above the two light-cones, in order to
completely avoid the singularities in the numerical algorithm.

Fortunately, it turns out that it is possible to find an analytical solution to the Yang-Mills
equations with these boundary conditions and external sources, on the surface τ = 0+ [104]
(The + superscript indicates that this surface is above the light-cones, at some infinitesimal
positive proper time). Then, the numerical solution is started from this analytical solution on
the light-cone.

In order to obtain this initial condition, it is useful to divide the space-time into four dis-
tinct regions, as illustrated in the figure 3.1. The two diagonal lines represent the trajectories
of the two nuclei. Therefore, any point located below these two lines (region 0) is a point
where none of the projectiles has passed yet. Since the initial condition for the gauge field in
the remote past is Aµ = 0, the value of Aµ remains zero throughout the entire region 0.

Finding the solution in the domains 1 and 2 is also rather easy, thanks to causality. In
these regions, one of the projectiles has passed, but the second projectile has not yet arrived.

2Several analytical approximations have been developed. An expansion in the sources ρ1,2 has been developed
in [105], where the radiated field was evaluated at the lowest order. [106] assumes the cancellation of a certain set of
graphs in light-cone gauge in order to obtain a closed result. However, this cancellation is only established if one of
the two sources is weak. In [107], the solution of the classical Yang-Mills equations was organized as an expansion
in commutators of Wilson lines, while in [108] the solution was expanded in powers of the proper time τ. More
recently, in [109], it was argued that one can chose the gauge in a way that minimizes the final state interactions and
thus where the solution at τ = 0+ is already a good approximation of the late time solution.
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Figure 3.1: Division of space-time in four regions for the solution of Yang-Mills equations.
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Therefore, one only needs to solve the Yang-Mills equations with a single source. Let us do
this explicitly for the region 1. The relevant Yang-Mills equation is[

Dµ,F
µν
1

]
= δν+δ(x−)ρ1(x⊥) . (3.15)

(The subscript 1 indicates that this is the solution of Yang-Mills equations in the presence of
the source ρ1 only.) In order to solve this equation, it is useful to go temporarily to the Lorenz
gauge, where the gauge field obeys the condition

∂µÃ
µ
1 = 0 . (3.16)

(A tilde distinguishes quantities expressed in the Lorenz gauge.) When this condition is
satisfied, one can rewrite the Yang-Mills equations as

�Ãν1 = δν+ρ̃1(x
−, x⊥) + ig[Ã1µ, F̃

µν
1 + ∂µÃν1 ] . (3.17)

Written in this form, it is clear that one can solve this equation iteratively in successive powers
of the source ρ̃1. Indeed, the gauge field Ã

µ
1 and field strength F̃

µν
1 are both at least of order

one in ρ̃1. Therefore, the commutator that appears in the right hand side is of order two and
can be dropped in the first iteration. One gets

Ã
(1)ν
1 (x) = −δν+

1

∇2
⊥
ρ̃1(x

−, x⊥) , (3.18)

where the superscript (1) indicates that this is the first order in an expansion in powers of the
source ρ̃1. The object δν+ is defined by

δν+ = 1 if ν = + ,

δν+ = 0 if ν = −, i . (3.19)

It is important to note that this field has no − component, and therefore has no effect on the
covariant conservation constraint. Therefore, the current δν+ρ̃1(x−, x⊥) is not modified by
the radiated field at this order. One can then proceed to calculate the second order contribution
to the gauge field. But it is easy to see that the only possible source for such terms –the
commutator in the right hand side of eq. (3.17)– vanishes. Therefore,

Ã
(2)ν
1 (x) = 0 . (3.20)
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By induction, one sees that in fact all the contributions of higher order in ρ̃1 to Ãν1 (x) are
zero. Therefore, the full solution of eq. (3.17) reads

Ãν1 (x) = −δν+
1

∇2
⊥
ρ̃1(x

−, x⊥) . (3.21)

We must now find the gauge rotation that transforms this solution into the Fock-Schwinger
gauge solution. Let us write

A
µ
1 = Ω†1Ã

µ
1Ω1 +

i

g
Ω†1∂

µΩ1 , (3.22)

where Ω1 is an element of SU(3). A trivial way to satisfy the Fock-Schwinger gauge condi-
tion is to have both A+

1 = A−
1 = 0. It is possible to have A−

1 = 0 simply by taking an Ω1
that does not depend on x+. In order to have also A+

1 = 0, the matrixΩ1 must obey

∂+Ω1 = igÃ
+
1 Ω1 , (3.23)

which can be solved by3

Ω1(x
−, x⊥) = T− exp ig

∫x−
−∞ dz

− Ã+
1 (z

−, x⊥) . (3.24)

(In this equation T− denotes an ordering of the exponential in the x− direction, such that the
fields with the largest x− always appear on the left of the expression.) Therefore, we now
know all the components of the gauge field A

µ
1 in the Fock-Schwinger gauge, in the region

1 [110]:

A±1 = 0 ,

Ai1 =
i

g
Ω†1∂

iΩ1 . (3.25)

This solution of Yang-Mills equations is a pure gauge in the transverse plane, since it obeys

F
ij
1 = 0 . (3.26)

In fact, the gauge field is also obviously a pure gauge in region 0 –albeit a different one–, and
the field strength is non zero at the discontinuity between these two pure gauges, i.e. on the
surface x− = 0.

Note also that this formula determines A
µ
1 explicitly in terms of the color source ρ̃1 in

the Lorenz gauge. Only implicit relations between A
µ
1 and the color source ρ1 in the Fock-

Schwinger gauge can be obtained. This is not an important limitation in practice.
It is trivial to mimic this derivation for the region 2, where the only relevant source is ρ2.

One finds that for this region, the gauge field in the Fock-Schwinger gauge is given by:

A±2 = 0 ,

Ai2 =
i

g
Ω†2∂

iΩ2 , (3.27)

3This solution is not unique. A more general solution isΩ′1(x
−, x⊥) ≡ Ω1(x−, x⊥)Θ(x⊥), which leads to the

following gauge fields:

A′± = 0 , A′i = Θ†Ω†1(∂
iΩ1)Θ +

i

g
Θ†∂iΘ .

This residual arbitrariness is due to the fact that the Fock-Schwinger gauge condition imposed on the gauge field
does not determine it uniquely. We use the choice Θ ≡ 1.
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with

Ω2(x) = T+ exp ig
∫x+
−∞ dz

+ Ã−
2 (z

+, x⊥) ,

Ãν2 (x) = −δν−
1

∇2
⊥
ρ̃2(x

+, x⊥) . (3.28)

The final step is to find the gauge field in region 3, at least on the surface τ = 0+, so that
one can solve the Yang-Mills equations numerically at later times. Let us make the following
ansatz for the solution above the forward light-cone:

Ai(x) = Ai3(τ, x⊥) , A+(x) = x+γ(τ, x⊥) , A−(x) = −x−γ(τ, x⊥) . (3.29)

This ansatz automatically obeys x+A− + x−A+ = 0, and γ(x) is an unknown function
that we must determine from the Yang-Mills equation. Moreover, we have used the boost
invariance of the problem in the longitudinal direction, which implies that the function γ(x)
cannot depend on the rapidity η ≡ ln(x+/x−)/2 (the prefactors x± in A± ensure that Aµ

transforms like a 4-vector under longitudinal boosts). Similarly, the transverse components
Ai of the gauge field cannot depend on η. Therefore, the gauge field takes the following form
over the entire space-time,

A+(x) = θ(x+)θ(x−)x+γ(τ, x⊥) ,

A−(x) = −θ(x+)θ(x−)x−γ(τ, x⊥) ,

Ai(x) = θ(−x+)θ(−x+)Ai1(x) + θ(x
+)θ(−x−)Ai2(x)

+θ(x+)θ(x−)Ai3(τ, x⊥) . (3.30)

Consider now the equation
[
Dµ,F

µi
]
= 0. The left hand side of this equation can poten-

tially contain a singularity δ(x+)δ(x−), while the right hand side is zero. This singularity
disappears provided that we have

Ai3(τ = 0
+, x⊥) = Ai1(x) +Ai2(x) . (3.31)

This is the initial condition for Ai3 in the forward light-cone. Similarly, by matching the
δ(x±) singularities in the left and right hand sides of the equation

[
Dµ,F

µ±] = J±, one
obtains the following conditions for the initial value of the function γ:

γ(τ = 0+, x⊥) =
ig

2

[
Ai1(x),A

i
2(x)

]
,

∂τγ(τ = 0
+, x⊥) = 0 . (3.32)

Note that in eqs. (3.31) and (3.32), the fields Ai1,2(x) depend only on the transverse coordi-
nate x⊥. Indeed, since the sources ρ1 and ρ2 are proportional to delta functions in x− and x+

respectively, the fields Ai1 and Ai2 are proportional to theta functions θ(x−) and θ(x+) re-
spectively. Therefore, when evaluated just above the forward light-cone, these theta functions
are equal to one, and the fields depend only on x⊥.
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Figure 3.2: Single gluon spectrum at Leading Order (the MV model is assumed for the distribu-
tion of color sources ρ1,2). From [25].
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3.1.4 Phenomenological implications

The equations (3.31) and (3.32) completely determine the evolution of the gauge field in the
Fock-Schwinger gauge at τ > 0. However, no analytic solution is known at the moment, and
this evolution has to be computed numerically.

In numerical evaluations of the gluon yield, one does a Monte-Carlo sampling of the
distributions4 of color sources ρ1,2 (or equivalently distributions for the Wilson lines Ω1,2).
Then, for each configuration ρ1,2 of the sources, one evaluates the fields Ai and γ at τ = 0+,
thanks to eqs. (3.31) and (3.32). The next (and most time consuming) step is to solve the
Yang-Mills equations numerically in the forward light-cone, until one reaches a time of the
order of a few timesQ−1

s . The final step is to perform the Fourier decomposition of the gauge
field at this late time, in order to obtain the gluon spectrum with eq. (3.9).

Such computations have been performed in [20–26, 111–113], in which various quantities
relevant to heavy ion collisions have been calculated, such as the gluon multiplicity discussed
above or the transverse energy released in the collision (see also [93] for a review). In these
calculations, these two quantities are usually parameterized as

dN

dη
= f

N

(g2µ)2S⊥
g2

dE⊥

dη
= f

E

(g2µ)2S⊥
g2

, (3.33)

where f
N
≈ 0.25 and f

E
≈ 0.3 are non-perturbative numerical prefactors determined numer-

ically, S⊥ is the transverse area of the interacting region, and µ a parameter of the MV model
that characterizes the density of color charges. µ is related to the saturation momentum Qs,
and the precise relationship between the two can be obtained by a computation of Wilson line
correlators in the MV model [114]:

Q2s ≈ 0.57g2µ . (3.34)

4A popular choice is to use the color source distribution of the McLerran-Venugopalan model [70–72]. It is
expected to provide a good description of a large nucleus at moderately small values of x ∼ 10−2.

58



The best numerical estimates of the saturation momentum for average central collisions of
Gold nuclei at RHIC energy is Qs ≈ 1.2 GeV, which corresponds to an MV parameter
g2µ ≈ 2.1 GeV. Using this value in eq. (3.33), one gets the estimate

dN

dη
≈ 1100 (3.35)

for the number of gluons released per unit rapidity in these collisions. This number is in good
agreement with the measured total hadronic multiplicity.

3.2 Leading logarithms in the single gluon spectrum

3.2.1 Introduction

Although it leads to a reasonable phenomenology, the calculation of the gluon spectrum at
leading order has some important shortcomings. Its main limitation is that it gives a spectrum
which is rapidity independent. A non trivial rapidity dependence arises only from higher
order corrections. As we shall see in this section, there is a special subset of these higher order
corrections –called the leading logarithmic corrections– that can be resummed simply by
letting the distributions for the sources ρ1,2 evolve with rapidity according to the JIMWLK5

equation.

In other words, all these logarithms of the collision energy can be assigned to one of the
projectiles, and can be hidden into a redefinition of the distributionsW[ρ1,2]. This renormal-
ization of the distributions W[ρ1,2] turns them into rapidity dependent objects. Moreover,
it will become apparent in the next sections that these logarithms are in fact universal: the
same evolved distributions also resum the leading logarithms that arise in other observables,
such as the expectation value of the energy-momentum tensor, or the inclusive multi-gluon
correlations.

After presenting a general argument based on causality that explains qualitatively why
these logarithms are universal and can be factorized, we reproduce in the case of a gauge
theory the calculation of the NLO corrections to the inclusive single gluon spectrum. The
next step will be to extract the large logarithms contained in these corrections, and to show
that they can be expressed in a very compact way in terms of the JIMWLK Hamiltonian.
Finally, one uses the hermiticity of this Hamiltonian in order to show that its action can be
shifted onto the distributionsW[ρ1,2].

3.2.2 Causality argument

Before going into the technical details of the factorization of the leading energy logarithms,
let us describe a qualitative argument that explains the relationship between factorization and
causality, illustrated in the figure 3.3.

i. First, the duration of a collision between two projectiles at the energy E decreases with
the collision energy as E−1. Indeed, this is the energy scaling of the time it takes for
the two projectiles to go through one another.

5Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov and Kovner.
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Figure 3.3: Causal aspects of a high energy collision.

τcoll ∼ E
-1

space-like interval

ii. Next, one should note that the logarithms of the collision energy that we want to re-
sum are due to radiation in the initial state: one gets such a logarithm if an incoming
parton radiates a secondary parton that has a much lower longitudinal momentum (the
logarithm comes from the integration over the longitudinal momentum of the radiated
parton).

iii. The final point in the argument is that the two projectiles are not in causal contact be-
fore they actually collide. Therefore, anything that happens inside one of the projectiles
before the collision must be independent of the second projectile, and also of the ob-
servable that is going to be measured after the collision. Therefore, all the logarithms
that occur in the evolution of the projectiles before the collision must be universal, and
factorizable into the distributions that describe the incoming projectiles.

Although this argument is very qualitative and hides all the technical intricacies of gauge
theories, it is based on very robust principles such as causality that are valid in any sensible
quantum field theory. It therefore suggests that the factorization of the initial state logarithms
is a very general property of high energy collisions, regardless of the details of the theory
under consideration.

Although it is very general, note however that this argument does not tell us the precise
nature of the distributions into which one can factorize these logarithms. It only tells us that,
for a given type of logarithms, these distributions must be universal. But the amount of detail
with which one must describe the projectiles may depend on the nature of the observable one
wishes to calculate. In particular, one expects that exclusive observables need much more
detailed information about the incoming projectiles than inclusive observables. In practice,
this may mean that one needs more general distributions6 in order to calculate exclusive
observables7. Nevertheless, one should expect from this causality argument that the leading
logarithms coming from initial state radiation in exclusive observables can also be factorized

6The distributions W[ρ1,2] that enter into the calculation of the inclusive gluon spectrum and other inclusive
quantities can be interpreted as probability distributions, i.e. as the diagonal elements of the density matrices that
describe the projectiles. It is reasonable to expect that more complicated observables require to know the non
diagonal elements of these density matrices as well (see [115] for a work that hints at this possibility).

7Of course, one could also calculate inclusive observables with these more general distributions. Any information
they contain that is not necessary in order to calculate an inclusive observable could easily be integrated out (since
the observable under study does not depend on it), reducing these distributions to simpler distributions that contain
only the amount of details necessary to compute these inclusive observables.

60



into these more general distributions – although a complete theory of exclusive processes is
still missing in the Color Glass Condensate framework.

3.2.3 NLO corrections to the gluon spectrum

Let us now turn to a rigorous proof of the factorizability of the leading logarithms of the
collision energy, in the case of the single inclusive gluon spectrum. The starting point is the
gluon spectrum at leading order, whose calculation has been detailed in the first section of
this chapter.

Before studying the Next to Leading Order corrections, it is important to remember that
there are cutoffs Λ± that separate the fast and the slow partons: the gluon modes k+ >
Λ+ are described by the sources ρ1, those with k− > Λ− by the sources ρ2, and the rest
is contained in the gauge field Aµ. Although these cutoffs do not show up explicitly at
leading order, they become crucial at NLO. Indeed, one should use these cutoffs in loop
integrations, in order to avoid double counting of the modes already included in the sources
ρ1,2. In practice, we shall integrate out the field modes in a small layer just below the cutoff,
Λ′± < k± < Λ±, and in the next subsection we will show that the corresponding logarithmic
contribution can be absorbed into a redefinition of the distributions of the sources.

The calculation of the NLO corrections to the gluon spectrum is very similar to what we
have presented in the section 2.6 for scalar fields. In particular, the final result in eq. (2.112)
is formally identical in the case of gluon production, provided the definition of the operator
Tu is slightly modified. Therefore, we are not going to reproduce here all the derivation, but
we limit ourselves to a discussion of the differences.

First of all, eq. (2.88) should be generalized to the case of gluons into

dN1

d3p

∣∣∣∣
NLO

=
1

(2π)32p

∑
λ,a

∫
d4xd4y eip·(x−y) �x�y ε

µ
λ(p)ε

ν∗
λ (p)

×
[
Aµa(x)βνa(y) + βµa(x)Aνa(y) + G+−

µaνa(x, y)
]
. (3.36)

βµa(x) is a 1-loop correction to the classical field Aµa(x). Here, we have used the experience
gained in the section 2.6 in order to anticipate the fact that we need not distinguish the + and
− Schwinger-Keldysh indices attached to the end-point for this quantity. G+−

µaνa(x, y) is the
+− component of the Schwinger-Keldysh propagator at tree level, in which the color indices
at the end-points are identical. Note that the objects βµa and G+−

µaνa must be determined in
the same gauge as the one used to compute the gluon spectrum at leading order, i.e. in the
Fock-Schwinger gauge.

The next step is to express these quantities in terms of a basis of small fluctuations that
propagate over the classical field Aµ. In order to do this, it is convenient to chose small
fluctuations that obey simple retarded boundary conditions:

[
�xg

µν − ∂µx∂
ν
x −

∂2U(A)

∂Aµ(x)∂Aν(x)

]
aν±kλa(x) = 0 ,

lim
x0→−∞aν±kλa(x) = ενλ(k) T

a e±ik·x . (3.37)

In words, the aν±kλa(x) are small field fluctuations that have a definite momentum k, color
a and polarization λ in the remote past. Each of them can have a positive or negative energy
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when x0 → −∞. In the equation of motion for these fluctuations, U(A) is the interaction
potential of the Yang-Mills theory – it contains all the terms of the potential that have a degree
of three or higher in the gauge field (note that the color indices have not been written in this
equation of motion – only the color label of the initial condition has been written explicitly).

Then, it is possible to mimic the definition of the operator Tu in order to write, for any
small fluctuation aµ(x),

aµa(x) =

∫
Σ

d3Su

[
a ·Tu

]
Aµa(x) . (3.38)

In this identity, Σ is some locally space-like surface inR4 andTu is defined as the generator
for shifts of the initial conditions on the surface Σ. More precisely, if Bµ[A] is the boundary
term in the Green’s formula that expresses the classical field Aµ(x) in terms of its initial
condition on the surface Σ, then

Bµ[a] =

∫
Σ

d3Su

[
a ·Tu

]
Bµ[A] . (3.39)

This definition is identical to the case of a scalar field theory. However, the details are a bit
more involved. First, in a gauge theory, it is crucial that the classical field Aµ and the small
fluctuation aµ be expressed in the same gauge. Moreover, the precise form of the operator
Tu should be derived from the boundary term in the Green’s formula, that depends on the
gauge condition and on the surface Σ. This study is carried out in detail in the case of the
light-cone gauge A+ = 0 in the appendix D.

At this point, it is immediate to reproduce the derivation of eqs. (2.101) and (2.111), in
order to obtain

G+−
µaνa(x, y) =

1

2

∑
λ,b

∫
d3k

(2π)32k

∫
Σ

d3Su d
3Sv

×
{[[

a−kλb ·Tu
]
Aµa(x)

] [[
a+kλb ·Tv

]
Aνa(y)

]
+
[[
a+kλb ·Tv

]
Aµa(x)

] [[
a−kλb ·Tu

]
Aνa(y)

]}
, (3.40)

and

βµa(x) =

[
1

2

∑
λ,b

∫
d3k

(2π)32k

∫
Σ

d3Su d
3Sv

[
a−kλb ·Tu

][
a+kλb ·Tv

]
+

∫
Σ

d3Su

[
β ·Tu

]]
Aµa(x) . (3.41)

From these two identities, one obtains for the gluon spectrum at NLO a formula which is
formally identical to eq. (2.112),

dN1

d3p

∣∣∣∣
NLO

=

[
1

2

∑
λ,a

∫
d3k

(2π)32k

∫
Σ

d3Su d
3Sv

[
a−kλa ·Tu

][
a+kλa ·Tv

]
+

∫
Σ

d3Su

[
β ·Tu

]] dN1

d3p

∣∣∣∣
LO

. (3.42)
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All the differences that exist between scalar field theory and Yang-Mills theory are hidden in
the shift operatorTu, and in the form of the fluctuations aν±kλa and βν on the initial surface
Σ. To a large extent, this formula relies only on the fact that the inclusive gluon spectrum
is expressible in terms of fields and field fluctuations with retarded boundary conditions,
and on the causal structure of these retarded objects. For this reason, it is also valid in any
gauge. In particular, although we have emphasized the Fock-Schwinger gauge in the previous
section –because it is the gauge employed in numerical solutions of the Yang-Mills equations
inside the forward light-cone–, eq. (3.42) is not restricted to this particular gauge (in fact, no
explicit mention of the gauge choice needs to be made in its derivation). The detailed form
of the operatorTu, as well as the fluctuations aµ±kλa and βµ, depend on the gauge condition
– but all these details are transparent at the level of eq. (3.42). Naturally, for this formula
to make sense, the quantity dN1/d3p

∣∣
LO

in the right hand side must be a functional of the
gauge fields on Σ in the same gauge.

3.2.4 Choice of the gauge and initial surface

Two loop integrations are contained in eq. (3.42). One appears explicitly in the term that
contains two operators Tu,v. The second momentum integral is hidden in the value of the
fluctuation βµ on the surface Σ. As we shall see now, these integrals are logarithmically
divergent, when either k+ or k− go to infinity. Fortunately, since we are working in the CGC
effective theory, we should not integrate over field modes that have an arbitrarily high longi-
tudinal momentum, because these modes are already included in the sources ρ1,2. Therefore,
the above mentioned integrals are finite, but display an unphysical logarithmic sensitivity to
the cutoff scales Λ±. Our task in this subsection is to calculate these logarithms, and to show
that they can be resummed via a renormalization of the distributions W[ρ1,2] for the hard
sources.

In order to calculate these logarithms explicitly, we need expressions for the fluctuations
aµ±λa and βµ on the surface Σ. This is where the choice of Σ becomes important. Let us
recall that eq. (3.42) is valid for any locally space-like surface Σ. Thus, we are free to chose
it in a way that simplifies the calculations and exhibits the physics we are interested in. Since
computations inside the forward light-cone are not feasible analytically, we should chose a
surface Σ contained entirely below the forward light-cone, i.e. a surface located before the
collision of the two projectiles. However, since we are interested in the evolution inside the
incoming projectiles, the surface should be located above the backward light-cone. It turns
out that the simplest choice is a surface Σ that runs just above the backward light-cone, as
illustrated in figure 3.4. The two half planes Σ1 and Σ2 that constitute this surface are defined
by the equations:

(Σ1) x− = ε , x+ ≤ ε ,
(Σ2) x+ = ε , x− ≤ ε . (3.43)

The value of the small parameter ε should be such that the color sources are located below
the surface Σ. It may seem that this choice of Σ somewhat disobeys our requirement that Σ
be entirely below the forward light-cone. However, the tip of the wedge (the part of Σ located
above the forward light-cone) is too small to produce any logarithmic contribution.

Although all the numerical studies of the Yang-Mills equations in the forward light-cone
are performed in the Fock-Schwinger gauge –whose advantages are to treat the two nuclei
symmetrically and to render trivial the constraint of covariant current conservation–, this
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Figure 3.4: Choice of the surface Σ in eq. (3.42).

Σ
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gauge condition is not well suited to the present problem. This is readily seen by calculating
the free propagator in this gauge[116, 117], which is made very complicated by the explicit
space-time dependence of the gauge condition. Fortunately, as explained after eq. (3.42), the
relationship that exists between the gluon spectrum at LO and at NLO is valid in any gauge.

Since the JIMWLK equation has been originally derived in light-cone gauge, it is conve-
nient for us to also use this gauge, since this will facilitate the interpretation of our results.
There is however a complication in our case: since there are two projectiles, there are also
two different light-cone gauges one may chose. In order not to break the symmetry of the
problem, one can use the fact that the two branches of the surface Σ are not causally con-
nected, and use different light-cone gauges on each branch. We thus make the following
gauge choices:

(Σ1) A+ = 0 ,

(Σ2) A− = 0 . (3.44)

This means that, depending on whether they are evaluated on the branch Σ1 or Σ2 of the
surface Σ, the fluctuations aµ±λa and βµ must be obtained either in the A+ = 0 or in the
A− = 0 light-cone gauge.

According to the appendix D, when the initial surface is defined by x− = ε and the gauge
condition is A+ = 0, the operator Tu is given by:

a ·Tu = ∂−(Ω1ab(u)a
ib(u))

δ

δ
(
∂−Aia

Ω
(u)
)

+Ω1ab(u)a
−b(u)

δ

δ
(
A−a
Ω

(u)
)

+∂µ(Ω1ab(u)a
µb(u))

δ

δ
(
∂νAνaΩ (u)

) , (3.45)

where Ω1 is the Wilson line that we have already encountered in eq. (3.24). The field Aµ
Ω

that appears in the functional derivatives is obtained by a residual gauge transformation of
the field Aµ,

Aµ
Ω
≡ Ω1

(
Aµ +

i

g
∂µ
)
Ω†1 , (3.46)
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which has the virtue of eliminating the pure gauge field above the boundary Σ while pre-
serving A±

Ω
= 0. (The same transformation must be performed on the branch Σ2, that in-

volves instead the Wilson line Ω2.) Thanks to this formula, we see that for each fluctuation
a ∈ {β, a±kλa}, we need to calculate the following quantities on the branch Σ1:

∂−(Ω1ab(u)a
ib(u)) , Ω1ab(u)a

−b(u) , ∂µ(Ω1ab(u)a
µb(u)) . (3.47)

As we shall see shortly, only the third of these quantities is necessary in the calculation of the
logarithmic divergences.

3.2.5 Field fluctuations on the initial surface

Let us now calculate the quantities listed in eq. (3.47) on the branch Σ1, in the case of the
fluctuations aµ±kλa(x) . In the remote past, they start as plane waves:

lim
x0→−∞aµ±kλa(x) = εµλ(k) Ta e±ik·x , (3.48)

and they propagate unmodified in the region 0 (see the figure 3.1), since the classical back-
ground field is zero in this region. When crossing the light-cone in order to reach the branch
Σ1 of the surface Σ, we face a difficulty since the − component of the incoming fluctuation
induces a correction to the J+ current that lives on the light-cone, because of covariant current
conservation. However, this is easily circumvented by going temporarily into a gauge where
the − component of the fluctuation is zero [1]. In this gauge, where we denote the fields and
field fluctuations with a tilde, the modification of the fluctuation when crossing the region
0 ≤ x− ≤ ε is calculated in the appendix C. But before, let us write explicitly the gauge
transformation that relates the two gauges:

Aµ + aµ = Ω†
(
Ãµ + ãµ

)
Ω+

i

g
Ω†∂µΩ . (3.49)

Note that we already know the gauge transformation that relates the classical fields Aµ and
Ãµ in these two gauges, since it is precisely the transformation of eq. (3.22) with the Ω1
given in eq. (3.24). Since the fluctuation we are adding on top of the classical field is a small
perturbation, we can write the transformationΩ of eq. (3.49) as a small correction toΩ1:

Ω ≡ (1+ igω)Ω1 , (3.50)

where ω is an SU(3) element with components of order one. Subtracting from eq. (3.49)
the gauge transformation of the classical part of the gauge field, and keeping only terms of
relative order g, we find the following gauge transformation for the fluctuations:

aµ = Ω†1
(
ãµ − ig

[
ω, Ãµ

]
− ∂µω

)
Ω1 . (3.51)

In order to determineω, we need to request that a+ = 0, which leads to

∂+ω+ ig
[
ω, Ã+

]
= ã+ , (3.52)

the solution of which can be written as

ω(x) = Ω1(x
−, x⊥)f(x

+, x⊥) +

∫x−
−∞ dz

− Ω1(x
−, z−, x⊥) ã

+(x+, z−, x⊥) . (3.53)
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In this equation, f(x+, x⊥) can be any function independent of x−, and Ω1(x−, z−, x⊥) is a
Wilson line along the − direction, where one integrates only between z− and x−:

Ω1(x
−, z−, x⊥) ≡ T− exp

[
ig

∫x−
z−
dy− Ã+(y−, x⊥)

]
. (3.54)

The arbitrariness in the choice of the function f means that there is a residual gauge freedom
after one has enforced the gauge condition a+ = 0.

A crucial point in the derivation is how this residual gauge freedom is fixed. In our
calculation of the NLO corrections, the small field fluctuations entered in the formula (2.96)
for the propagator G+−. This way of writing this propagator is valid only if the initial value
of the fluctuations a±kλa are plane waves with on-shell momenta, as one can easily check
on the corresponding free propagator. Thus, eq. (3.53) must lead to a plane wave for the
fluctuation in light-cone gauge if x− < 0. The simplest way to achieve this is to take a plane
wave for the fluctuation ãµ in the original gauge and to set the function f to zero8. Therefore,
the requirement that eq. (2.96) be valid leaves no room for a residual gauge freedom.

We only need to know ω on the branch Σ1 of the surface Σ, i.e. at x− = ε. Because the
components of Ω1 and of ãµ are of order one, it is legitimate to neglect the values of z− in
the range between 0 and ε in the integration in eq. (3.53). Moreover, for z− < 0 and x− = ε,
the incomplete Wilson lineΩ1 is equal to the complete oneΩ1. Thus we can factor it out of
the integration,

ω(x+, x− = ε, x⊥) = Ω1(ε, x⊥)

∫0
−∞ dz

− ã+(x+, z−, x⊥) . (3.55)

Once ω has been determined, the − and i components of the fluctuation in light-cone
gauge are given by

a− = Ω†1

(
− ∂−ω

)
Ω1 ,

ai = Ω†1

(
ãi − ∂iω

)
Ω1 . (3.56)

As we will see later, the logarithmic divergences we are interested in come from the inte-
gration over the longitudinal momentum k+, when k+ → +∞. However, the first two quan-
tities listed in eq. (3.47) carry a − index, which implies that they scale like k− ∼ k2⊥/k

+ → 0
in this limit. This is the reason why they do not contribute to the divergence. Let us therefore
focus on the third combination9

∂µ
(
Ω1a

µΩ†1
)

= ∂µ
(
ãµ − ig

[
ω, Ãµ

]
− ∂µω

)
= −∂+∂−ω− ∂i(ãi − ∂iω) . (3.57)

(In the second line, we have used eq. (3.52) as well as ã− = 0.) Using again eq. (3.52) to
replace ∂+ω, and the fact that Ã+ = 0 at x− = ε, we get

∂µ
(
Ω1a

µΩ†1
)
= ∇2

⊥ω− ∂−ã+ − ∂iãi . (3.58)

8This choice is still not unique. There are other combinations of choices for the initial value of ãµ and for the
function f that also give a plane wave for aµ. But our choice is the most natural.

9Here, we use the relation (Ω1aΩ
†
1)c = Ω1cba

b in order to adopt a matricial notation. The validity of this
identity follows from the definition of the adjoint representation. In the left hand side of the identity, a is the SU(3)
matrix a ≡ abTb. This matricial notation is more convenient here given eqs. (3.56) for the fluctuations.
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Let us now consider specifically the fluctuations a±kλa. In the gauge ã− = 0, their
expression below the light cone (i.e. for x− < 0) reads

ãµ±kλa(x) = ε̃
µ
λ(k) T

a e±ik·x , (3.59)

with the following polarization vectors:

ε̃−λ (k) = 0 ,∑
λ=1,2

ε̃iλ(k)ε̃
j
λ(k) = δij ,

ε̃+λ (k) =
k⊥ · ε̃λ⊥(k)

k−
. (3.60)

The formulas that govern the light-cone crossing in this gauge [1] are derived in the appendix
C. Using this result, one obtains the following expressions10 for these fluctuations just above
the light-cone, at x− = ε:

ã+b±kλa(x) =
[
Ω1ba(ε, x⊥) ε̃

+
λ (k)±

(
∂iΩ1ba(ε, x⊥)

) 1

ik−
ε̃iλ(k)

]
e±ik·x ,

ãib±kλa(x) = Ω1ba(ε, x⊥) ε̃
i
λ(k) e

±ik·x . (3.61)

Note that for these fluctuations, on has

∂−ã+±kλa = ∂iãi±kλa . (3.62)

(It is in fact a general property of the ã− = 0 gauge that ∂+(∂µãµ) = 0.) Therefore, we
have

∂µ
(
Ω1a

µ
±kλaΩ

†
1

)
= ∂i

(
∂iω− 2ãi±kλa

)
. (3.63)

Substituting eq. (3.60) into eq. (3.55), one gets the value ofω on the hyperplane x− = ε,

ωb(x
+, ε, x⊥) = ∓2iΩ1ba(ε, x⊥)

kj

k2⊥
ε̃jλ(k) e

±ik·x . (3.64)

Therefore,

∂µ
(
Ω1bca

µc
±kλa

)
= ∂µ

(
Ω1a

µ
±kλaΩ

†
1

)
b
= −2∂i

[
e±ik·x αilb±kaε̃

l
λ(k)

]
, (3.65)

where we denote

αilb±ka ≡
(
δil −

kikl

k2⊥

)
Ω1ba(ε, x⊥)± i

kl

k2⊥
∂iΩ1ba(ε, x⊥) . (3.66)

10In the notation ãµb±kλa(x), the color index a is the initial color of the fluctuation (i.e. when x0 → −∞), while
b is its color index at the point x.
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3.2.6 Origin of the logarithmic divergences

In eq. (3.42), let us consider first the term which is bilinear in the operator Tu (real correc-
tion). As we will see later, the term in β ·Tu (virtual correction) can be derived easily from
it. For a fixed momentum k, this term is in fact finite, and the divergences arise from the
integration over this on-shell momentum. More precisely, the dangerous integral is the k+

integral. Indeed, the momentum kµ being on-shell, one has an integral

∫+∞
0

dk+

k+
, (3.67)

which can potentially diverge at both ends. Note that wherever k− appears in the integrand,
it should be replaced by its on-shell value,

k− =
k2⊥
2k+

. (3.68)

By inspecting the integrand in eq. (3.42), we see that it contains the following exponential
factor

exp

(
i
k2⊥(v

+ − u+)

2k+

)
. (3.69)

Among the exponential factors, this is the only one that depends on k+. Indeed, the term in
k+(v−−u−) does not appear thanks to our choice of the surface Σ, since on its branch Σ1 we
have u− = v− = ε. Moreover, given the structure of the previous exponential, it is clear that
the integral is convergent at the limit k+ → 0, since the fast oscillations of the exponential
cancel out any potential logarithmic divergence. However, no such cancellation happens at
the other end, since the exponential goes to 1. Whether one gets a divergence or not depends
on the other k+-dependent factors in the integrand: in order to get a divergence, these factors
should not go to zero when k+ → +∞.

It is straightforward to see that the combinations Ω1a− and ∂−(Ω1ai) contain an extra
power of k−, i.e. of 1/k+. If any of these terms is kept in the k+ integral in eq. (3.42), one
gets a finite result. Thus, as previously announced, the only divergence arises when we have
the term in ∂µ(Ω1aµ) in front of both T’s.

Naturally, in the Color Glass Condensate effective theory, the k+ integral is not really
divergent, since there is an upper cutoff Λ+ that separates the modes that are described as
color sources (k+ > Λ+) from those that are described as color fields (k+ < Λ+). Moreover,
in view of the forthcoming discussion of the CGC renormalization group, it will be useful to
consider only a small slice of field modes, located just below the cutoff,

Λ′+ < k+ < Λ+ . (3.70)

We will show that the leading contribution coming from this slice of field modes can be
absorbed into a redefinition of the color sources, thus leading to a new CGC effective theory
with a lower cutoff and a renormalized distribution of sources.
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3.2.7 Real corrections

The relevant part of the bilinear term in eq. (3.42) is

1

8π
ln
(
Λ+

Λ′+

) ∫
d2k⊥

(2π)2

∫
d2u⊥ d

2v⊥

×
∑
λ,a

∂uµ

(
Ω1bd(ε,u⊥)a

µd
+kλa(u)

)
∂vν

(
Ω1ce(ε, v⊥)a

µe
−kλa(v)

)
×
∫ε
−∞ du

+dv+
δ

δ∂µAµbΩ (u)

δ

δ∂µAµcΩ (v)
. (3.71)

Note that this is only the contribution one gets when the two points u and v are both on the
branch Σ1 of Σ, as illustrated in the figure 3.5. When they are both on the branch Σ2, it is

Figure 3.5: One-loop correction to the expectation value of an observable O where the points u
and v are located on the same branch of the surface Σ.

O
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-k(u)
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+k(v)
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easy to guess the answer by symmetry, and when they are on different branches we will show
that there is no logarithmic contribution at all.

In order to simplify the notations, let us use the shorthand ϑ1(u+,u⊥) ≡ ∂µA
µ
Ω1

(u).
The quantity on which the functional derivatives with respect to ϑ1 are acting depends on the
value of the classical field (in the LC gauge) on the surface Σ. This initial classical field has
no + or − component, and its i component does not depend on the u+ coordinate along the
branch Σ1 of Σ. Therefore, the observable depends only on the u+-independent mode of ϑ1,

ϑ1(u⊥) ≡
1

L

∫ε
−L+ε

du+ ϑ1(u
+,u⊥) , (3.72)

where L is the length of the u+ interval11. Thus, one can replace derivatives with respect to
ϑ1(u

+,u⊥) by derivatives with respect to ϑ1(u⊥),

δ

δϑ1(u+,u⊥)
F[ϑ1(u⊥)] =

1

L

δ

δϑ1(u⊥)
F[ϑ1(u⊥)] . (3.73)

Moreover, since this derivative is obviously independent of u+, the subsequent integration
with respect to u+ simply produces a factor L, so that we have∫ε

−L+ε

du+ δ

δϑ1(u+,u⊥)
F[ϑ1(u⊥)] =

δ

δϑ1(u⊥)
F[ϑ1(u⊥)] . (3.74)

11Since the u+ interval is semi-infinite, it is better to consider u+ ∈ [−L+ ε, ε] in all the intermediate steps, and
to take L→ +∞ at the end. All the L dependence disappears in this limit.
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We are now free to take the limit L→ +∞, since the right hand side does not depend on L.

The quantity ϑ1(u⊥) can be expressed in terms of the gauge field Ai
Ω1

,

ϑ1b(u⊥) = −∂iAib
Ω1

(ε,u⊥) , (3.75)

where Ai
Ω1

is related to Ai1 by eq. (3.46). Recalling the expression of Ai1 in terms of the
Lorenz gauge field Ã+

1 ,

Ai1(ε,u⊥) =
i

g
Ω†1(ε,u⊥)∂

iΩ1(ε,u⊥)

= −

∫ε
−∞ dz

− Ω†1(z
−,u⊥)

(
∂iÃ+

1 (z
−,u⊥)

)
Ω1(z

−,u⊥) , (3.76)

it is easy to relate12 variations of ϑ1(u⊥) to variations of Ã+
1 (z

−,u⊥) in the z−-bin neigh-
boring the endpoint z− = ε:

δϑ1(u⊥) = ∇2
⊥ dz

− δÃ+
1 (ε,u⊥) . (3.77)

In this relation, dz− is the width of the bin of z− in which the variation of Ã+
1 occurs13. A

variation δÃ+
1 (ε,u⊥) in the slice [ε − dz−, ε] also amounts to multiplying the Wilson line

Ω1 on the left by the factor 1+ igdz− δÃ+
1 (ε,u⊥). If we introduce the left Lie derivative14

∇ax⊥ , we can thus write

δ

δϑa1 (u⊥)
=

∫
d2x⊥ G(u⊥ − x⊥) ∇ax⊥ , (3.78)

where G(u⊥ − x⊥) is a Green’s function of the two-dimensional Laplacian operator:

∇2
⊥G(u⊥ − x⊥) = δ(u⊥ − x⊥) . (3.79)

(Some useful properties of this Green’s function are derived in the appendix E.) We can now
rewrite the operator in eq. (3.71) as

1

2
ln
(
Λ+

Λ′+

) ∫
d2x⊥d

2y⊥ η
bc(x⊥,y⊥) ∇bx⊥∇

c
y⊥
, (3.80)

where we have defined

ηbc(x⊥,y⊥) ≡ 1

4π

∫
d2k⊥
(2π)2

∫
d2u⊥ d

2v⊥ G(x⊥ − u⊥)G(y⊥ − v⊥)

×
∑
λ,a

∂uµ

(
Ω1bd(ε,u⊥)a

µd
+kλa(u)

)
∂vν

(
Ω1ce(ε, v⊥)a

µe
−kλa(v)

)
.

(3.81)
12In doing this, it is important to keep the transformation from Ai1 to Ai

Ω1
fixed. (Otherwise, one would always

get δϑ1(u⊥) = 0). This transformation was introduced in order to eliminate the background field Ai1 above the
surface Σ (by using the residual gauge freedom of the light-cone gauge), and the exact same transformation must be
applied to perturbations over the background field.

13Indeed, since Ai1 depends on the integral of Ã+
1 over z−, changing Ã+

1 at a single point has no effect on the
value of Ai1.

14This derivative is defined in such a way that

∇ax⊥Ω(y⊥) = igδ(x⊥ − y⊥)t
aΩ(y⊥) , ∇ax⊥Ω

†(y⊥) = −igδ(x⊥ − y⊥)Ω
†(y⊥)t

a .
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Thanks to eq. (3.65), this quantity can be rewritten as follows

ηbc(x⊥,y⊥) ≡ 1

4π3

∫
d2k⊥
(2π)2

∫
d2u⊥d

2v⊥
∑
a

αilb−ka(u⊥)α
jlc
+ka(v⊥)

× eik⊥·(u⊥−v⊥)
ui⊥ − xi⊥

(u⊥ − x⊥)2
vj⊥ − yj⊥

(v⊥ − y⊥)
2
. (3.82)

In order to obtain this formula, we have integrated by parts in order to shift the action of
the derivatives ∂iu and ∂jv onto the propagators G(u⊥ − x⊥) and G(v⊥ − y⊥) respectively
(explicit formulas for the derivatives of the 2-dimensional propagator can be found in the
appendix E). Moreover, the sum over the two physical polarization states has already been
performed in this formula, using eqs. (3.60).

From the explicit formula (3.66) for the coefficients αilc±ka that appear in this expression,
it is easy to express ηbc(x⊥,y⊥) in terms of the Wilson line Ω1. Note that αilc±ka is the
sum of two terms that are mutually orthogonal, since one is parallel to ki while the other is
orthogonal to ki. We obtain a first contribution to ηbc by keeping only the first term of each
α in eq. (3.82),

ηbc⊥⊥(x⊥,y⊥) = −
1

8π4

∫
d2u⊥d

2v⊥
xi⊥ − ui⊥

(x⊥ − u⊥)2
yj⊥ − vj⊥

(y⊥ − v⊥)2

×∆ij(u⊥ − v⊥)
[
Ω1(ε,u⊥)Ω

†
1(ε, v⊥) − 1

]
bc
, (3.83)

where the function ∆ij(u⊥ − v⊥) is defined in eq. (E.11) in the appendix E. If we keep the
second term in each of the α’s, we get

ηbc‖‖ (x⊥,y⊥) =
1

π

∫
d2u⊥
(2π)2

(x⊥ − u⊥) · (y⊥ − u⊥)

(x⊥ − u⊥)2 (y⊥ − u⊥)2

×
[
1+Ω1(ε, x⊥)Ω

†
1(ε,y⊥)

−Ω1(ε, x⊥)Ω
†
1(ε,u⊥) −Ω1(ε,u⊥)Ω

†
1(ε,y⊥)

]
bc

+
1

8π4

∫
d2u⊥d

2v⊥
xi⊥ − ui⊥

(x⊥ − u⊥)2
yj⊥ − vj⊥

(y⊥ − v⊥)2

×∆ij(u⊥ − v⊥)
[
Ω1(ε,u⊥)Ω

†
1(ε, v⊥) − 1

]
bc
. (3.84)

Thanks to the orthogonality between the first and second terms in α, the mixed terms are
zero:

ηbc‖⊥(x⊥,y⊥) = η
bc
⊥‖(x⊥,y⊥) = 0 . (3.85)

We see that when we add up all the contributions to ηbc(x⊥,y⊥), the terms containing ∆ij

cancel out, leaving only

ηbc(x⊥,y⊥) =
1

π

∫
d2u⊥
(2π)2

(x⊥ − u⊥) · (y⊥ − u⊥)

(x⊥ − u⊥)2 (y⊥ − u⊥)2

×
[
1+Ω1(ε, x⊥)Ω

†
1(ε,y⊥) −Ω1(ε, x⊥)Ω

†
1(ε,u⊥) −Ω1(ε,u⊥)Ω

†
1(ε,y⊥)

]
bc
.

(3.86)
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It is interesting to note that the integrand in this formula can be factorized as follows:

ηbc(x⊥,y⊥) =
1

π

∫
d2u⊥ J(x⊥,u⊥) · J†(y⊥,u⊥)

Jiba(x⊥,u⊥) ≡ 1

2π

(x⊥ − u⊥)
i

(x⊥ − u⊥)2
[Ω(x⊥) −Ω(u⊥)]ba . (3.87)

(The first of these two equations has an implicit sum over the indices i and a.) Eqs. (3.80)
and (3.86) provide an explicit result for the contribution of the term bilinear inT, when both
u and v are on the branch Σ1 of the surface Σ. If they are both on the branch Σ2, one obtains
a large logarithm in the k integration when k− → +∞, and it is easy to guess the result by
symmetry:

1

2
ln
(
Λ−

Λ′−

) ∫
d2x⊥d

2y⊥ η
bc(x⊥,y⊥) ∇bx⊥∇

c
x⊥
, (3.88)

with Lie derivatives that act now onΩ2 and

ηbc(x⊥,y⊥) =
1

π

∫
d2u⊥
(2π)2

(x⊥ − u⊥) · (y⊥ − u⊥)

(x⊥ − u⊥)2 (y⊥ − u⊥)2

×
[
1+Ω2(ε, x⊥)Ω

†
2(ε,y⊥) −Ω2(ε, x⊥)Ω

†
2(ε,u⊥) −Ω2(ε,u⊥)Ω

†
2(ε,y⊥)

]
bc
.

(3.89)

The only remaining case to consider is when the points u and v belong to different
branches of the surface Σ, as illustrated in the figure 3.6. In this case, neither u+ − v+

nor u−−v− vanishes. Therefore, the exponential factors in the integrand oscillate both when
k+ → +∞ and when k− → +∞, preventing the occurrence of any divergence in these
limits.

Figure 3.6: One-loop configuration where the points u and v are located on different branches of
the surface Σ.

O

aµ
-k(u) a ν

+k(v)

Σ
2Σ 1

There is also a potential complication with the tip of the wedge in the figure 3.6. Indeed,
if the points u or v are located in the part of Σ that sits above the forward light-cone, then
our calculations are not correct because the background classical field that one should use
is the radiated field resulting from the collision. However, we need not bother with this
complication in the limit ε→ 0, since the terms coming from the tip of the wedge vanish like
ε or ε2 (depending on whether only one or both of u, v are located there).
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3.2.8 Virtual corrections

Figure 3.7: Linear term in β ·Tu in eq. (3.42).

O

x
-  =

 ε

β µ(u)

We must now calculate the term in β ·Tu in eq. (3.42), illustrated in the figure 3.7. By
mimicking the evaluation of the real contribution, we can first write, when the point u is on
the branch Σ1 of Σ,∫ε

−∞ du
+d2u⊥

[
β ·Tu

]
=

=

∫
d2x⊥

∫
d2u⊥ G(u⊥ − x⊥) ∂

u
µ (Ω1bd(ε,u⊥)β

µ
d(u))︸ ︷︷ ︸

ln
(
Λ+

Λ′+

)
νb(x⊥)

∇bx⊥ .

(3.90)

In writing this equation, we have anticipated that a logarithm of Λ+/Λ′+ arises from the k+

integral hidden in βµd(u), and we denote by νb(x⊥) its prefactor.

In principle, one could calculate directly the function νb(x⊥), by extracting the logarith-
mic divergences in the k+ integral (hidden in the source term in the equation of motion for
βµ). However, it is much simpler to try to relate νb(x⊥) to the previously obtained function
ηbc(x⊥,y⊥). This relation will save us a fair amount of calculations, and by doing this we
will get for free the additional result that the renormalization group evolution is unitary. The
starting point for doing this is the Green’s formula for βµ(u), that expresses it in terms of its
value on the hypersurface defined by v− = 0,

βµ(u) = −i

∫
v−>0

d4v Gµν0R (u, v)
[ ∂2U(A)

∂Aν(v)∂Aρ(v)
βρ(v)

+
1

2

∂3U(A)

∂Aν(v)∂Aρ(v)∂σ(v)
G
ρσ
++(v, v)

]
. (3.91)

In this formula,Gµν0R is the free retarded propagator for a gauge field in light-cone gauge, and
G
ρσ
++ is the ++ component of the Schwinger-Keldysh propagator, dressed by the background

classical field. Note that there is no boundary term in this Green’s formula, thanks to our
choice of the surface v− = 0 for the boundary. Indeed, the fluctuation βµ is identically zero
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at v− ≤ 0. The propagator Gρσ++ can be expressed in terms of the fluctuations a±kλa thanks
to eqs. (2.93) and (2.96). Consider now the Green’s formula that expresses the fluctuation
a+kλa(x) in terms of its value on the surface y− = 0,

aµ+kλa(x) = −i

∫
y−>0

d4y Gµν0R (x, y)
∂2U(A)

∂Aν(v)∂Aρ(v)
aρ+kλa(y)+Bµ[a+kλa] . (3.92)

It is not necessary here to make the boundary term more explicit (its detailed form in light-
cone gauge can be found in the appendix D). In this formula, both the fluctuation a+kλa and
the second derivative of the gauge potential depend on the background classical field. Let us
introduce an operator a · Tv that substitutes a power of the background field A by a power of
the fluctuation a at the point vµ. This operator is somewhat similar to the operator a · Tv,
except that it acts in the bulk, while the latter performs this substitution only in the boundary
term. Now, define

ζµ(u) ≡ 1
2

∑
λ,a

∫
d3k

(2π)32k

∫
v−>0

d4v
[
a−kλa · Tv

]
aµ+kλa(u) . (3.93)

By using the above Green’s formula for aµ+kλa, we obtain

ζµ(u) = −i

∫
v−>0

d4v Gµν0R (u, v)
[ ∂2U(A)

∂Aν(v)∂Aρ(v)
ζρ(v)

+
1

2

∂3U(A)

∂Aν(v)∂Aρ(v)∂σ(v)
G
ρσ
++(v, v)

]
. (3.94)

Thus, we see that ζµ and βµ are equal, which proves that

βµ(u) =
1

2

∑
λ,a

∫
d3k

(2π)32k

∫
v−>0

d4v
[
a−kλa · Tv

]
aµ+kλa(u) . (3.95)

Inserting this identity into the equation (3.90) that defines νb(x⊥), we get

ln
(Λ+

p+

)
νb(x⊥) =

1

2

∑
λ,a

∫
d3k

(2π)32k

∫
v−>0

d4v
[
a−kλa · Tv

]
×
∫
d2u⊥ G(u⊥ − x⊥) ∂

u
µ

(
Ω1bd(ε,u⊥)a

µd
+kλa(u)

)
. (3.96)

Note that in this equation, the k+ integration is confined to the slice Λ′+ ≤ k+ ≤ Λ+.
Moreover, this equation is only valid for the logarithmic part of this integral, but not for the
finite terms. Therefore, in order to obtain νb(x⊥), we must identify the logarithms in the
right hand side of this equation. In order to get a logarithm from the integration over k+, we
need to tame the oscillations that arise from the factor exp(ik+(u− − v−)). This is only the
case if v− is very close to the endpoint u− = ε (due to the retarded propagator in eq. (3.91),
v− cannot be larger than u−). Thus, the diagrammatic representation in the figure 3.7 is a bit
misleading: the vertex where the loop is attached must lie very close to the surface Σ in order
to pick up the terms enhanced by a logarithm. A more faithful graphical representation is that
of the figure 3.8.
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Figure 3.8: Log enhanced part of the term β ·Tu in eq. (3.42).

O
x

-  =
 ε

The final step in the calculation of νb is to note that if one integrates the bulk operator
a · Tv over v− in a very small slice near Σ, one gets the boundary operator a · Tv. More
precisely,

lim
δx−→0

∫ε
ε−δx−

dv−
[
a · Tv

]
= a ·Tv . (3.97)

Using this identity, as well as the relation between the operator Tv and the derivative with
respect to Ã+

1 , we obtain∫
v−>0

d4v
[
a−kλa · Tv

]
=

LLog

∫
d2y⊥

∫
d2v⊥ G(y⊥ − v⊥)

× ∂vν
(
Ω1ce(ε, v⊥)a

νe
−kλa(v)

)
∇cy⊥ . (3.98)

(This identity is only valid for the logarithmic terms, as emphasized by the LLog subscript
below the equality sign; indeed it is only for these terms that the v− integral is restricted to
an infinitesimal slice near v− = ε, so that we can use eq. (3.97).) Once inserted in eq. (3.96),
this leads to

ln
( Λ+

Λ′+

)
νb(x⊥) =

1

2

∫
d2y⊥

∑
λ,a

∫
d3k

(2π)32k

×
∫
d2v⊥ G(y⊥ − v⊥) ∂

v
ν

(
Ω1ce(ε, v⊥)a

νe
−kλa(v)

)
×∇cy⊥

∫
d2u⊥ G(x⊥ − u⊥) ∂

u
µ

(
Ω1bd(ε,u⊥)a

µd
+kλa(u)

)
.

(3.99)

If we consider the underlined terms alone and recall eq. (3.81), we recognize

ln
( Λ+

Λ′+

)
ηbc(x⊥,y⊥) . (3.100)

The final step in our derivation is to notice that since ∇cy⊥ shares a color index with Ω1, we
have the identity [81, 83, 118]

∇cy⊥ ∂
v
ν

(
Ω1ce(ε, v⊥)a

νe
−kλa(v)

)
= 0 , (3.101)
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because of the antisymmetry of the adjoint generators of SU(3). We can therefore move the
operator ∇cy⊥ immediately after the measure d2y⊥ to obtain

νb(x⊥) =
1

2

∫
d2y⊥ ∇cy⊥ η

bc(x⊥,y⊥) , (3.102)

which expresses νb in terms of the coefficient ηbc (the latter being known explicitly in terms
of the Wilson line Ω1). Let us finally recall that this is the contribution that one gets when
the operator β · Tu is taken on the branch Σ1 of Σ. We must add the contribution from the
branch Σ2, which is obtained by replacing the ln(Λ+/Λ′+) by ln(Λ−/Λ′−), and the field Ã+

1

and Wilson lineΩ1 by Ã+
2 andΩ2 respectively.

Let us now combine the results from eqs. (3.86), (3.89) and (3.102). We see that the
logarithmic part of the single gluon spectrum at NLO can be written as

dN1

d3p

∣∣∣∣
NLO

=
LLog

Λ′±<k±<Λ±

[
ln
(
Λ+

Λ′+

)
H1 + ln

(
Λ−

Λ′−

)
H2

] dN1

d3p

∣∣∣∣
LO

, (3.103)

where the operator H1, known as the JIMWLK Hamiltonian [76–83], is defined by

H1 ≡
1

2

∫
d2x⊥d

2y⊥ ∇cy⊥ η
bc(x⊥,y⊥) ∇bx⊥ , (3.104)

and H2 by the same definition with Ã−
2 instead of Ã+

1 . We have made use of eq. (3.102) in
order to write this operator as a total derivative. This property is crucial, because it ensures
that it is a self-adjoint operator. The inequality under the equal sign in eq. (3.103) is a re-
minder of the fact that this formula gives only the logarithmic NLO terms that arise from a
slice of field modes located just below the cutoff of the CGC effective theory. Modes that
have a longitudinal momentum smaller than Λ′± are not included in this result. Note also
that, although the coupling constant g does not appear explicitly in the JIMWLK Hamilto-
nian, it gives nevertheless a correction of relative order g2. This is due to the presence of two
functional derivatives with respect to fields of order A ∼ g−1.

3.2.9 Renormalization group evolution

Eq. (3.103) gives the logarithmic NLO contributions to the single gluon spectrum from the
slice of field modes Λ′± < k± < Λ±. This formula is valid for a given configuration of the
sources ρ̃1,2 (in Lorenz gauge) describing the projectiles. Since the JIMWLK Hamiltonian
in eq. (3.104) contains derivatives with respect to the fields Ã±1,2, i.e. with respect to the
sources near the cutoffs Λ±, this formula suggests that these NLO corrections can be taken
into account simply by adding a layer of slower sources just below the cutoff. Let us see in
more detail how this works.

In the CGC with cutoffs Λ±, the sources ρ̃1,2(x∓, x⊥) are defined over the range 0 <
x∓ < 1/Λ±, and their distribution is given by a pair of functionalsWΛ± [ρ̃1,2(x∓, x⊥)]. The
expectation value for the single gluon spectrum, including both the leading order and the slice
Λ′± < k± < Λ± from the next-to-leading order, can be written in this effective theory as〈

dN1

d3p

〉Λ±
LO+[Λ′±,Λ±]

=

∫ [
Dρ̃1(x

−, x⊥)Dρ̃2(x
+, x⊥)

]
×WΛ+ [ρ̃1(x

−, x⊥)]WΛ− [ρ̃2(x
+, x⊥)]

×
[
1+ ln

(
Λ+

Λ′+

)
H1 + ln

(
Λ−

Λ′−

)
H2

] dN1
d3p

∣∣∣∣
LO

. (3.105)
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(The superscript Λ± in the left hand side is a reminder of the fact that the calculation is done
in an effective theory where all the modes above Λ± are treated as sources.) At this point,
two properties are crucial. First, we can use the fact that the operators H1,2 are self-adjoint
in order to integrate by parts. Secondly, if the slice of modes that we integrate out in the NLO
correction is small enough, then we can write

1+ ln
(
Λ+

Λ′+

)
H1+ ln

(
Λ−

Λ′−

)
H2 =

[
1+ ln

(
Λ+

Λ′+

)
H1

][
1+ ln

(
Λ−

Λ′−

)
H2

]
, (3.106)

up to terms of order α2s . Let us now extend the sources ρ̃1,2 into sources ρ̃′1,2 that are defined
over the range 0 < x∓ < 1/Λ′±, by the following relations:

i. The sources ρ̃′1,2 and ρ̃1,2 coincide over the common part of their domain of definition:
if x∓ < 1/Λ±, then ρ̃′1,2(x

∓, x⊥) = ρ̃1,2(x
∓, x⊥),

ii. The value of the sources in the range 1/Λ± < x∓ < 1/Λ′± is stochastic, with a
probability distribution given by

W′Λ′± [ρ̃
′
1,2(x

∓, x⊥)] ≡
[
1+ ln

(
Λ±

Λ′±

)
H1,2

]
WΛ± [ρ̃1,2(x

∓, x⊥)] . (3.107)

By doing this, we are changing the original CGC effective theory into another effective theory,
whose cutoffs are now at the scales Λ′±, and the field modes that we have integrated out in
this process are now described as classical sources. Note also that the probability for ρ̃′1,2 in
the new slice depends on the value it takes in all the previous slices, since the Hamiltonians
H1,2 contain the Wilson linesΩ1,2. Thus we have proven the following identity:〈

dN1

d3p

〉Λ±
LO+[Λ′±,Λ±]

=

〈
dN1

d3p

〉Λ′±
LO

. (3.108)

In words, this equation means that in order to include at leading log accuracy the NLO con-
tributions that arise from the slice Λ′± < k± < Λ±, it is sufficient to perform the calculation
at LO and to use a CGC effective theory with lower cutoffs, where the source distributions in
the new effective theory are defined by eq. (3.107).

What has been done here for one slice of quantum modes can be repeated indefinitely,
until all the modes have been integrated out down to k± → 0. One should consider a sequence
of increasingly smaller cutoffs:

· · ·Λ±n < · · · < Λ±1 < Λ
±
0 . (3.109)

Λ±0 are the cutoff scales of the original CGC effective theory, and they must be taken close
to the fragmentation region of the two projectiles. Then, one uses the result of eq. (3.108)
repeatedly in order to integrate out the leading contribution from the loop corrections in the
successive slices Λ±i+1 < k± < Λ±i . At the end of this resummation, one obtains the
complete leading log answer for the single gluon spectrum, that we can write as:〈

dN1

d3p

〉
LLog

=

∫ [
Dρ̃1(x

−, x⊥)Dρ̃2(x
+, x⊥)

]
×W[ρ̃1(x

−, x⊥)]W[ρ̃2(x
+, x⊥)]

dN1

d3p

∣∣∣∣
LO

. (3.110)
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In this formula, W[ρ̃1,2(x
∓, x⊥)] are the limiting distributions obtained by repeating in-

finitely many steps such as (3.107), until Λ± → 0. This is a central result of this chapter;
it shows that all the leading logarithms that arise from loop corrections can be absorbed into
the distributionsW[ρ̃1,2] that represent the distribution of sources in the projectiles.

At this stage, we have not said a word about the universality of these distributions, i.e.
about whether they are intrinsic properties of the projectiles, regardless of the observable one
is measuring. A first indication of their universality is the fact that the JIMWLK evolution
equation (3.107) that drives the evolution of these distributions as one lowers the cutoff was
first encountered in the context of inclusive deep inelastic scattering off a nucleus. Moreover,
in the next sections, we will see that the same distributions enter in the formula for the multi-
gluon inclusive spectra.

Let us end with a note concerning how far one must carry the evolution of the distributions
W[ρ̃1,2(x

∓, x⊥)] in practice. The single gluon spectrum contains a Fourier transform of
the classical fields, with the momentum pµ. Thus, it is sensitive to sources in the region
0 < x∓ < 1/p±. Sources at higher values of x∓ –or equivalently that carry a longitudinal
momentum smaller than p±– are irrelevant in this observable. Therefore, it is sufficient to
evolve the distributionsWΛ± [ρ̃1,2] down to scales Λ± ∼ p±. One can of course evolve them
further down in longitudinal momentum, but the slower sources one adds to the distribution
by doing this do not contribute to the production of a gluon of longitudinal momentum p±.

3.2.10 Iteration of the JIMWLK kernel

Eq. (3.107) is the form of the JIMWLK equation for a small change in the cutoffsΛ± → Λ′±

of the effective theory. Naturally, it can be written in differential form as follows15

∂WΛ±

∂ ln(Λ±)
= −H1,2(Λ

±)WΛ± . (3.111)

Here, we have included an argument Λ± in the Hamiltonian itself, to recall that it depends
on Wilson lines Ω1,2 that integrate sources down to the scale Λ± and that the derivatives
it contains are with respect to sources near the cutoff. This is important, because it means
that the Hamiltonians at different values of the cutoff do not commute. Therefore, when we
formally solve eq. (3.111), we must write the solution as an ordered exponential:

WΛ± = T± exp
[
−

∫Λ±
Λ±
0

dκ±

κ±
H1,2(κ

±)
]

︸ ︷︷ ︸
U1,2(Λ

±, Λ±0 )

WΛ±
0
, (3.112)

where Λ±0 is the scale where the initial condition is given. T± is an ordering such that
products of Hamiltonians are ordered from left to right in order of increasing cutoffs16. As is
the case with other evolution equations in QCD (such as DGLAP, BFKL), the initial condition
WΛ±

0
is a priori non-perturbative.

15This equation is often written in terms of the rapidity interval Y ≡ ln(Λ±0 /Λ
±) between the initial value of the

cutoff and its current value. It has the same form as eq. (3.111), except for the minus sign.
16I.e. Hamiltonians with a lower cutoff must appear on the left of the product.
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By inserting eq. (3.112) (with Λ± → 0) into eq. (3.110), and by integrating by parts, we
get 〈

dN1

d3p

〉
LLog

=

∫ [
Dρ̃1(x

−, x⊥)Dρ̃2(x
+, x⊥)

]
×WΛ+

0
[ρ̃1(x

−, x⊥)]WΛ−
0
[ρ̃2(x

+, x⊥)]

×U
†
1(0,Λ

+
0 )U

†
2(0,Λ

−
0 )

dN1

d3p

∣∣∣∣
LO

. (3.113)

Although too formal to be of any use in phenomenological applications, this equation sheds
some light on the structure of the leading logarithms that arise in higher loop corrections.
Note first that the Hermitian conjugate of the evolution operator U1,2 is simply obtained by
reversing the ordering, since the Hamiltonian H1,2 is Hermitian:

U
†
1,2(Λ

±, Λ±0 ) = T± exp
[
−

∫Λ±
Λ±
0

dκ±

κ±
H1,2(κ

±)
]
. (3.114)

(T± denotes the opposite ordering to T±.) Thus, in U
†
1,2, Hamiltonians with the largest value

of the cutoff appear on the left. Moreover, an essential property of the JIMWLK Hamiltonian
at the scale Λ+ is that it contains derivatives with respect to the sources at the scale Λ+, and
has prefactors that depends on all the sources that have longitudinal momenta k+ ≥ Λ+.
Thus, in a combination of the form

H1(κ
+
1 )H1(κ

+
2 ) O (3.115)

with κ+1 > κ+2 , the derivatives in the leftmost Hamiltonian (H1(κ+1 )) can act both on the
observable O and on the Hamiltonian H1(κ

+
2 ). This possibility has a simple diagrammatic

interpretation. Consider the leading logs of Λ+ at 2-loop in eq. (3.113). This amounts to
expanding the evolution operator U†1 to second order in the JIMWLK Hamiltonian. Because
of the κ+ ordering in U1, these 2-loop terms are of the form

O2−loop =
LLog

∫Λ+

Λ+
0

dκ+1
κ+1

∫Λ+

κ+
1

dκ+2
κ+2

H(κ+1 )H(κ+2 ) OLO . (3.116)

The terms where the derivatives in H(κ+1 ) do not act on H(κ+2 ) correspond to the diagrams
of figure 3.9. If we look only at what happens below the line x− = ε, these contributions are
just disconnected products of terms we had already at 1-loop. The analysis we performed of
the logarithmic contributions at one loop extends trivially to these terms and it is easy to see
that they have two powers of the logarithms.

In addition, eq. (3.116) also contains terms in which at least one of the derivatives in
H(κ+1 ) acts on H(κ+2 ). This corresponds to topologies of the type displayed in figure 3.10.
Such terms, that have a gluon vertex inside the region where the sources live, have a large
logarithm for the same reason that the tadpole has a logarithm in the 1-loop terms. Thus one
can see that it is crucial to properly order the powers of the Hamiltonian H in longitudinal
momentum in order not to lose these terms.

Note also that there are some two loops topologies that never appear in eq. (3.116), such
as those of the figure 3.11. The contributions in this figure are radiative corrections to the
coefficients of the operators Tu,v in eq. (3.42). In other words, these terms generate correc-
tions of order αs to the coefficients in the JIMWLK equation, and do not have double logs of
Λ+. This explains why they are not generated by the leading log formula in eq. (3.116).
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Figure 3.9: Two-loop contributions made of products of pieces already encountered at 1-loop.
Although we do not make this distinction in the figure, one of the factors is attached at a
slightly smaller value of x−, because the two Hamiltonians in eq. (3.116) are at different
longitudinal momentum scales.

x

-  =
 ε

x

-  =
 ε

x

-  =
 ε

Figure 3.10: Example of term obtained when the derivatives in H(κ+1 ) can act on the coefficients
of H(κ+2 ). Here, one of the derivatives in H(κ+1 ) acts on the function ηbc(x⊥,y⊥) of
H(κ+2 ) and the second derivative in H(κ+1 ) acts directly on OLO .
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Figure 3.11: Two-loop corrections to the observable O that do not appear at leading log.
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3.2.11 The dense-dilute limit

It is interesting to study the limit of the single inclusive spectrum at leading log accuracy,
given in eq. (3.110), when one of the two colliding projectiles is dilute. Let us assume for
instance that the source ρ̃1 is that of a dilute projectile, i.e. that it is of order g (instead
of g−1). In this case, it turns out that the classical Yang-Mills equation can be solved an-
alytically [18, 119] and that a closed expression for the gluon spectrum in the integrand of
eq. (3.110) can be obtained:

dN1

d3p

∣∣∣∣
LO

=
αs

p

∫
d2k⊥
(2π)2

d2δ⊥

(2π)2
eiδ⊥·b

(p⊥ − k⊥)
2

p2⊥k
2
⊥

×
tr
[
Ω2(p⊥ − k⊥ + δ⊥

2
)Ω†2(p⊥ − k⊥ − δ⊥

2
)
]

N2c − 1

×ρ̃1a(k⊥ +
δ⊥

2
)ρ̃†1a(k⊥ −

δ⊥

2
) , (3.117)

where ρ̃1 is the color source of the dilute projectile, andΩ2 the Wilson line constructed from
the source of the dense projectile (both are Fourier transformed in this formula). Here, the
formula has been written here for a collision at impact parameter b. For mean bias collisions,
one would integrate over b, which would eliminate the integral over the skewness δ⊥.

Because ρ̃1 is weak, one can also truncate the JIMWLK Hamiltonian H1 to the lowest
order in ρ̃1, which is quadratic order. In this approximation, it is well known that the evolution
of the correlators

〈
ρ̃1ρ̃1

〉
simplifies into the BFKL evolution17.

Therefore, the leading log result for the single gluon spectrum in collisions of dense-
dilute projectiles is fairly simple: the dilute projectile is entirely described by an unintegrated
gluon distribution that evolves according to the BFKL equation, while the dense projectile is
described by a correlator of two Wilson lines that evolves according to the JIMWLK equa-
tion. Note that the JIMWLK evolution of tr (Ω2Ω

†
2) mixes with that of more complicated

operators that contain more than two Wilson lines. It is only in the Balitsky-Kovchegov
approximation that it evolves via a closed equation [84–86].

3.3 Logarithms in the energy-momentum tensor

So far in this chapter, we have used the example of the single inclusive gluon spectrum in
order to illustrate the factorization of large logarithms of the longitudinal momentum. How-
ever, the number of produced gluons is not an infrared and collinear safe quantity. At NLO,
it contains divergences due to the splitting of a gluon in two gluons in the final state. Because
gluons are massless, this splitting can be either collinear or can produce a very soft gluon,
both situations leading to a divergent contribution. Naturally, hadrons and not gluons are the
observed final particles. In proton-proton collisions, it is well known that one should con-
volute the gluon spectrum with a gluon–to–hadron fragmentation function, and that all the
above divergences can be absorbed into a renormalization of these fragmentation function.

In heavy ion collisions, it is unclear whether this approach remains effective due to the
complicated final state dynamics. And even if one could still use the concept of fragmen-
tation function, it is most likely incorrect to convolute them with the CGC-predicted gluon

17Up to some prefactors, the correlator
〈
ρ̃1ρ̃1

〉
is in fact an unintegrated gluon distribution.
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spectrum. Indeed, the CGC calculation enables one to describe the dynamics of the collision
up to a proper time equal to a few timesQ−1

s . Beyond such a time, additional effects that are
not encompassed in the CGC description –such as two body collisions [120]– start affecting
the evolution of the system. On the other hand, the infrared and collinear divergences that are
resummed into the fragmentation functions correspond to very late stages of the evolution
of the system. Therefore, there is most likely a gap between the stage at which the CGC
applies and the stage at which fragmentation functions become relevant, and one should not
convolute directly one with the other.

On the other hand, the CGC is thought to be an appropriate framework in order to de-
termine the initial conditions for an hydrodynamical description of the final state evolution.
In this context, the initial information one needs is the energy-momentum tensor at a certain
proper time τ0, as a function of the spatial rapidity η = ln(x+/x−)/2 and of the transverse
position x⊥. The advantages of this point of view are two-fold. Firstly, by choosing an initial
time τ0 of the order of a few timesQ−1

s , one does not need to use the CGC beyond its range of
applicability. And secondly, since the quantity of interest is now the energy-momentum ten-
sor, which encodes the flow of energy and momentum in the system, one avoids the collinear
and infrared singularities due to gluon splittings in the final state. Indeed, since these split-
tings conserve the energy and momentum, they have no effect on any observable that only
measures energy and momentum – as opposed to an observable that counts the number of
gluons, like the gluon spectrum. In this section, we will argue that the factorization theorem
that we proved earlier for the inclusive gluon spectrum also applies to the expectation value
of the energy-momentum tensor.

The energy-momentum tensor is a local composite operator, whose expression in a Yang-
Mills theory is given by

Tµν =
1

4
gµνFλσFλσ − FµλFνλ , (3.118)

where Fµν is the field strength. Note that this formula does not contain any contribution due
to quarks. While present in QCD, the quarks are suppressed by a power of αs in the CGC
framework (for the collision of two saturated projectiles), and therefore they do not contribute
until the next-to-leading order.

At leading order, the expectation value of the energy momentum tensor for a given con-
figuration of the color sources ρ̃1,2 is simply obtained by substituting the operator Fµν by
the classical value of the field strength Fµν (i.e. the field strength obtained from the classical
solution of Yang-Mills equations):

Tµν
LO

=
1

4
gµνFλσFλσ − FµλFνλ . (3.119)

For this quantity, the power counting indicates that

Tµν
LO

∼
Q4s
g2

. (3.120)

Before turning to the next-to-leading order corrections, let us make an important comment on
the evaluation of Tµν

LO
. Strictly speaking, one is evaluating the out energy momentum tensor

in the in vacuum state, i.e.〈
0in
∣∣Tµνout

∣∣0in
〉
. (3.121)
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Because this matrix element has the in vacuum on both sides18, the appropriate diagrammatic
rules for its perturbative expansion are those of the Schwinger-Keldysh formalism. In partic-
ular, one must sum over the± indices at each vertex of a given diagram. Similarly to the case
of the inclusive gluon spectrum, this sum implies that the boundary condition for the classical
field that enters in Fµν must be a null retarded boundary condition,

lim
x0→−∞Aµ(x) = 0 , (3.122)

as was also the case for the inclusive gluon spectrum.

At Next to Leading Order, there are two types of corrections. One of them consists in
replacing one instance of the classical field Aµ(x) in Tµν

LO
(x) by the 1-loop correction βµ(x)

already encountered in the study of the 1-loop corrections to the gluon spectrum. The second
kind of NLO correction consists in replacing a pair of classical fields Aµ(x)Aν(x) by the
propagator Gµν(x, x). At this point, one can reproduce all the manipulations performed in
section 3.2.3. Likewise, one obtains the following relationship between the expectation value
of the energy-momentum tensor at LO and NLO,

Tµν
NLO

(x) =

[
1

2

∑
λ,a

∫
d3k

(2π)32k

∫
Σ

d3Su d
3Sv

[
a−kλa ·Tu

][
a+kλa ·Tv

]
+

∫
Σ

d3Su

[
β ·Tu

]]
Tµν

LO
(x) , (3.123)

identical to what we had in the case of the inclusive gluon spectrum. Therefore, all the
subsequent analysis of the large logarithms of the cutoffs Λ± remains valid, since we have
shown that these logarithms arise from the coefficients in front of the operators Tu,v. In
other words, the results of the sections 3.2.7 and 3.2.8 can be summarized by the formula

1

2

∑
λ,a

∫
d3k

(2π)32k

∫
Σ

d3Su d
3Sv

[
a−kλa ·Tu

][
a+kλa ·Tv

]
+

∫
Σ

d3Su

[
β ·Tu

]
=

LLog
Λ′±<k±<Λ±

ln
(
Λ+

Λ′+

)
H1(Λ

+) + ln
(
Λ−

Λ′−

)
H2(Λ

−) ,

(3.124)

which tells us what logarithms arise when we integrate out one small layer of quantum modes
just below the cutoffs Λ±. Obviously, thanks to this formula, the structure of the leading
logarithms of Λ± is universal for all the quantities for which eq. (3.123) is valid. When this
relationship between LO and NLO is valid, the coefficients of the logarithms are given by
the JIMWLK Hamiltonians of the projectiles, and as a consequence it is possible to factorize
these logarithms in the distributionsW[ρ̃1,2] of color sources for these projectiles.

Applied to the expectation value of the energy momentum tensor, this factorization for-
mula reads

〈Tµν(τ, η, x⊥)〉LLog
=

∫ [
Dρ̃1(x

−, x⊥)Dρ̃2(x
+, x⊥)

]
×W[ρ̃1(x

−, x⊥)]W[ρ̃2(x
+, x⊥)] T

µν
LO

(τ, η, x⊥) . (3.125)

18As opposed to S-matrix elements, that have the in vacuum on one side and the out vacuum on the other side.
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Here also, theW[ρ̃1,2(x
∓, x⊥)] are the limiting distributions obtained by evolving the distri-

butions of color sources of the two projectiles down to Λ± → 0. In practice, it is sufficient to
evolve them to a sufficiently low cutoff so that all the sources faster than the local comoving
frame are included in the distributions. Evolving to smaller values of the cutoff has no impact
on the final result since the inclusion of these slower color sources do not affect the deposition
of energy or momentum at the rapidity η.

3.4 Multigluon correlations at Leading Log accuracy

3.4.1 Introduction

Let us now extend the discussion of the factorization of the leading logarithms of the collision
energy to the case of multi-gluon inclusive spectra. The proof follows closely what we have
already done for the case of the single inclusive spectrum, and its starting point is again a
formula that formally expresses the NLO corrections in terms of the LO result.

However, a delicate aspect of the discussion is the case of correlations between gluons
with a wide rapidity separation between them. Indeed, if this rapidity interval is α−1

s .
∆Y, then the probability of radiating additional gluons in the interval ∆Y is of order unity.
This radiation leads to corrections that behave like powers of αs∆Y, and therefore should be
included on the same footing as the leading logarithms of the collision energy. We will see
that these terms are also resummed via the JIMWLK evolution of the distributions of color
sources of the two projectiles. This observation will lead us to the following striking result:
in the collision of two saturated projectiles, all the correlations among the produced gluons
are, at leading logarithmic accuracy, correlations that pre-exist in the wavefunctions of the
projectiles. Any correlation built up during the collision itself or via final state interactions is
a next-to-leading-log effect (i.e. of relative order αs, but without any enhancement by a large
logarithm or rapidity interval).

3.4.2 Expressions at LO and NLO

As we have seen in chapter 2, at Leading Order, the n-gluon inclusive spectrum in a fixed
configuration of sources ρ̃1,2 is simply the product of n single inclusive spectra:

dNn

d3p1 · · ·d3pn

∣∣∣∣
LO

=

n∏
i=1

dN1

d3pi

∣∣∣∣
LO

. (3.126)

This result is extremely simple, but to be valid it is crucial that both sources ρ̃1 and ρ̃2 are
strong. If one or both of the sources become weak (i.e. if the number of color sources in
at least one of the projectiles is of order unity), this formula must be completed by some
additional contributions of the same order. This phenomenon is illustrated in the figure 3.12,
where we show how the order of magnitude of three contributions to the 2-gluon spectrum
evolve as we decrease the magnitude of the source ρ̃1 (the source ρ̃2 is fixed to a value of
order g−1). We see on this plot that the case where one collides a dense projectile on a
dilute one (as would be the case in some kinematical range in proton-nucleus collisions) is
the most complicated situation, since the three diagrams have the same order of magnitude
and all contribute at leading order. Although this is not the subject of this manuscript, let us
note here that the importance of these extra terms in the calculation of multi-gluon spectra is
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Figure 3.12: Evolution of three contributions to the 2-gluon spectrum as one evolves from dense-
dense to dilute-dense collisions (i.e. when ρ̃1 goes from g−1 to g, while ρ̃2 is fixed and of
order g−1).
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possibly related to the pomeron splittings that also play a role in the discussion of pomeron
loops (see [121–127] for partial attempts to derive an effective theory that includes these
effects) in the dilute regime.

Each of the factors in the right hand side of eq. (3.126) is obtained from the classical
solution of Yang-Mills equations, with null retarded boundary conditions. It is also important
to realize that at this order, the multi-gluon spectrum is totally independent of the rapidities
of the measured gluons: it does not depend on the position of these rapidities with respect
to the rapidities of the two projectiles, nor does it depend on the position of these rapidities
relative to one another.

In order to discuss the factorization of large logarithms, we also need the next-to-leading
order formula for the multi-gluon spectrum. This formula was derived in the case of a scalar
theory in eq. (2.129). As we have seen earlier in this chapter, going from scalar fields to
gluons does not change the general structure of such a formula, and one needs only to prop-
erly track the color and polarization indices of the fluctuations βµa and aµ±pλa. The other
difference between a scalar theory and QCD lies in the detailed form of the operator a ·Tu.
Therefore, without further discussion, we can directly write the following formula for the
NLO correction to the n-gluon inclusive spectrum

dNn

d3p1 · · ·d3pn

∣∣∣∣
NLO

=

[
1

2

∑
λa

∫
d3k

(2π)32k

∫
Σ

d3Su d
3Sv

[
a−kλa ·Tu

][
akλa ·Tv

]
+

∫
Σ

d3Su

[
β ·Tu

]] ∏
i

dN1

d3pi

∣∣∣∣
LO

−
∑
i<j

δ(pi − pj)
dN1

d3pi

∣∣∣∣
LO

∏
k 6=i,j

dN1

d3pk

∣∣∣∣
LO

. (3.127)

In this identity, the fluctuations βµa and a±pλa are the same as those already introduced in
the previous section.
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3.4.3 Leading logarithms and factorization

Our next task is to extract the logarithms in this expression. For the terms on the first two lines,
this is best done by using the eq. (3.124) derived in the previous section. This formula tells us
that the operator enclosed in the square brackets contains logarithms, and indicates that when
one integrates out only a small slice of longitudinal momentum modes, just below the cutoffs
Λ±, the coefficients in front of these logarithms are nothing but the JIMWLK Hamiltonians
of the projectiles at the scalesΛ±. The term in the third line is even simpler: since it is a mere
product of single inclusive gluon spectra at leading order, it does not contain any logarithm.
This term is therefore a NLO correction but not a leading logarithmic correction.

From now on, we can reproduce the reasoning that led us in the previous section to the
renormalization group evolution for the single gluon spectrum. We start at cutoff scales
Λ±0 , with distributions of sources WΛ±

0
[ρ̃1,2]. Then, we integrate out the quantum fluctu-

ations whose longitudinal momentum lies in a small slice just below these cutoffs. Thanks
to eqs. (3.127) and (3.124), the leading logarithmic part of these quantum corrections can
be included simply by modifying the distributions WΛ±

0
[ρ̃1,2] according to the JIMWLK

equation. One must repeat this process until Λ± → 0, or at least until one has incorporated
in these distributions all the color sources that have longitudinal momentum larger than that
of the slowest of the gluons p1, · · · ,pn. Finally, we end up with the following factorized
formula for the inclusive n-gluon spectrum, at leading log accuracy:〈

dNn

d3p1 · · ·d3pn

〉
LLog

=

∫ [
Dρ̃1(x

−, x⊥)Dρ̃2(x
+, x⊥)

]
×W[ρ̃1(x

−, x⊥)]W[ρ̃2(x
+, x⊥)]

∏
i

dN1

d3pi

∣∣∣∣
LO

. (3.128)

As one can see, this formula provides a very simple generalization of our previous result for
the single inclusive gluon spectrum. It possesses a very striking property: since the product
of LO 1-gluon spectra in the integrand is independent of rapidity, all the rapidity dependence
of the n-gluon spectrum is contained in the evolved distributions of the sources ρ̃1,2. In other
words, all the rapidity correlations among the gluons produced in the collision are correlations
that pre-exist in the wavefunctions of the incoming projectiles. This simple result is valid
only for the collision of two densely occupied projectiles, and only at leading logarithmic
accuracy. New correlations that cannot be factorized into the distributions W arise if one
of the projectiles is dilute or if one considers next-to-leading-log terms. Note also that the
dependence on the rapidity differences yi−yj between the measured gluons are no different
– they are also completely determined by the JIMWLK evolution of the two distributionsW.
This formula provides another example of the universality of the distributions W[ρ̃] and of
the JIMWLK evolution equation.

It is interesting to see in more detail how the rapidity dependence (or equivalently their x±

dependence) of the distributions of sources is transferred into the rapidity dependence of the
multi-gluon spectrum. The factor (dN1/d3p)LO depends on the color sources ρ̃1,2(x∓, x⊥)
for 0 ≤ x∓ ≤ 1/p± respectively. More precisely, the relevant quantity is the integrated color
charge in the strip 0 ≤ x∓ ≤ 1/p±, since the factor (dN1/d3p)LO depends on the color
sources only via Wilson lines along the x− or x+ axis respectively. Therefore, if one sees
the functions ρ̃1,2(x∓, x⊥) as trajectories with x∓ playing the role of the time, the n factors
in the integrand of eq. (3.128) are sensitive to the integrated color charge along different
portions of these trajectories: the larger p± and the smaller the relevant extent in x∓ is.
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This also means that if p±i ≈ p
±
j , then the gluons i and j are strongly correlated since the

corresponding factors in the integrand of eq. (3.128) see very similar integrated color charges.
On the contrary, two gluons with a wide separation in rapidity are less correlated, since the
corresponding factors do not probe the same integrated charge. The further separated in
rapidity they are and the weaker is the correlation, since the portions of ρ̃1,2-trajectories they
are sensitive to differ more and more (or equivalently overlap less and less).

3.4.4 Generating functional

All our results on the multigluon inclusive spectra at leading logarithmic accuracy can be
summarized in a simple generating functional. Indeed, the inclusive spectra are the functional
derivatives of the following generating functional at the point z(p) ≡ 1,

F[z(p)] =

∞∑
n=0

1

n!

∫ [ n∏
i=1

d3pi (z(pi) − 1)

] 〈
dNn

d3p1 · · ·d3pn

〉
LLog

=

∫ [
Dρ̃1(x

−, x⊥)Dρ̃2(x
+, x⊥)

]
W[ρ̃1(x

−, x⊥)]W[ρ̃2(x
+, x⊥)]

× exp

[ ∫
d3p (z(p) − 1)

dN1

d3p

∣∣∣∣
LO

]
. (3.129)

An interesting feature of this generating functional is that the integrand is the exponential
of a linear functional of z(p), i.e. the generating functional of a Poisson distribution. The
logarithm of a generating functional tells us about the clustering properties of the produced
particles: if this logarithm contains a term zq, then there are clusters of q correlated particles.
Therefore, the fact that the logarithm of the integrand is of degree 1 indicates that the only
gluon clusters that exist in a given configuration of the sources ρ̃1,2 are clusters of size 1. In
other words, gluons are produced independently of one another.

The situation is changed by the average over the configurations of ρ̃1,2, and lnF[z] con-
tains terms zq of arbitrary orders. Thus, the distribution of particles has some non-trivial
clustering, but it comes entirely from the correlations that pre-exist in the distributions of
color sources of the projectiles – not from the production mechanism itself. This is of course
due to the fact that the gluons are produced uncorrelated at leading order, and that the lead-
ing log part of higher order corrections –that bring correlations– can be absorbed into the
distributionsW thanks to factorization.

3.4.5 Multi-point correlations of the energy-momentum tensor

If one sees the Color Glass Condensate as a framework to obtain initial conditions for the
hydrodynamical evolution of the matter produced in heavy ion collisions, then one must
calculate the value of the energy-momentum tensor on some surface of constant proper time
τ. In the section 3.3, we have derived a formula (see eq. (3.125)) for the expectation value
of the energy-momentum tensor at a given point (η, x⊥), at leading logarithmic accuracy.
This result is sufficient if one wishes to perform a hydrodynamical simulation with an event
averaged initial condition.

However, this is insufficient in order to study fluctuations. Indeed, since the equations
of hydrodynamics are non-linear, solving them for an average initial condition does not lead
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to the same result as solving them for an ensemble of initial conditions and performing the
average at the end of the hydrodynamical evolution. The latter procedure is the correct one if
one wants to study the effects of fluctuations. Therefore, it is necessary to obtain multi-point
correlators of the energy-momentum tensor on a surface of fixed τ :

〈Tµ1ν1(τ, η1, x1⊥) · · · Tµnνn(τ, ηn, xn⊥)〉 . (3.130)

At leading order, in a fixed configuration of the sources ρ̃1,2, this correlator is of order
(Q4s/g

2)n and is simply the product of the LO values of Tµν at the n points under con-
sideration:

[Tµ1ν1(τ, η1, x1⊥) · · · Tµnνn(τ, ηn, xn⊥)]LO
=

n∏
i=1

Tµiνi
LO

(τ, ηi, xi⊥) . (3.131)

The right hand side of this formula is a product of n disconnected terms, each of them cor-
responding to one power of the energy-momentum tensor at LO. At Next to Leading Order,
there are two types of corrections. Firstly, one can pick up the NLO correction to one of the
n factors in the right hand side of the previous formula, while keeping the LO value for the
n − 1 remaining factors. The second type of correction is made of a gluon connecting two
points i and j. When both types of corrections are combined, one gets a simple generalization
of eq. (3.123) to the case of n points19:

[Tµ1ν1(x1) · · · Tµnνn(xn)]NLO
=

=

[
1

2

∑
λ,a

∫
d3k

(2π)32k

∫
Σ

d3Su d
3Sv

[
a−kλa ·Tu

][
a+kλa ·Tv

]
+

∫
Σ

d3Su

[
β ·Tu

]]
Tµ1ν1

LO
(x1) · · · TµnνnLO

(xn) . (3.132)

The relationship between the LO and NLO contributions to the n-point correlation of the
energy-momentum tensor is formally identical to that for the expectation value of Tµν at a
single point. Therefore, by using eq. (3.124), we immediately see that the resummation of the
leading logarithms of the longitudinal momentum leads to the following factorized formula :

〈Tµ1ν1(τ, η1, x1⊥) · · · Tµnνn(τ, ηn, xn⊥)〉LLog
=

=

∫ [
Dρ̃1(x

−, x⊥)Dρ̃2(x
+, x⊥)

]
W[ρ̃1(x

−, x⊥)]W[ρ̃2(x
+, x⊥)]

× Tµ1ν1
LO

(τ, η1, x1⊥) · · · TµnνnLO
(τ, ηn, xn⊥) . (3.133)

3.4.6 Generating heavy ion collision events

The formula (3.133) suggests a straightforward procedure in order to build a generator for
initial conditions for hydrodynamics. Note that the initial classical color field Aµ(τ0, η, x⊥)

19Let us mention here a subtlety in the proof of this formula. A technical step in the derivation requires that all
the components of the dressed Schwinger-Keldysh propagators be equal when the endpoints are the points where
the value of the energy momentum tensor are needed, e.g. G++(xi, xj) = G+−(xi, xj). This is equivalent to a
vanishing retarded propagator between these pairs of points, which is true in the case of interest to us because there
is no causal connection between pairs of points located on the same proper time surface. However, eq. (3.132)
would not work for the calculation of a commutator such as [Tµν(x), Tρσ(y)], since this object is non-zero only for
time-like intervals. See the section 6.4.3 for an example of computation of a correlator at a time-like separation.
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depends on the color charge distributions ρ̃1,2 only via Wilson lines Ω1,2 that integrate all
the sources that move faster than the comoving frame at the rapidity η. Thus, if the label
1 denotes the sources moving in the +z direction and the label 2 those moving in the −z
direction, Ω1 integrates ρ̃1 from the rapidity y = η to the beam rapidity of the projectile
1, and Ω1 integrates ρ̃2 from the (negative) beam rapidity of the projectile 2 to the rapidity
y = η. For this reason, it is convenient to replace the functional integrations over the sources
ρ̃1,2 in eq. (3.133) by functional integrations over the Wilson lines themselves. In order to
do this, one needs the formulation of the JIMWLK equation that uses Wilson lines and group
Lie derivatives instead of the ρ̃’s themselves [87, 128].

With this in mind, the algorithm for generating such events can be sketched as follows:

i. Solve the JIMWLK equations in order to obtain the probability distributions for the
Wilson linesΩ1,2.

ii. Pick two Wilson linesΩ1,2(η, x⊥) according to these probability distributions.

iii. Solve the classical Yang-Mills equations with initial conditions built with these Wilson
lines. The classical solution must be evolved up to the time at which one wishes to
calculate the initial condition for hydrodynamics – typically τ ∼ Q−1

s .

iv. At a proper time of the order ofQ−1
s , compute the energy momentum tensor Tµν from

the classical field Aµ.

v. Repeat steps ii-iv in order to perform the functional integration overΩ1,2 by a Monte-
Carlo sampling.

The step i –solving the JIMWLK equation– amounts to obtaining an ensemble of Wil-
son lines {Ω1,2(η, x⊥)}, given an ensemble of Wilson lines {Ω1,2(η0, x⊥)} at a rapidity
close to the fragmentation region of the projectiles. This can be done by interpreting the
JIMWLK equation as a diffusion equation on the space of mappings from R2 to the gauge
group SU(N), the rapidity η playing the role of the time in this diffusion process [87]. From
this formulation, it is possible to turn the JIMWLK equation into a Langevin equation for
individual configurationsΩ1,2(η, x⊥) of the Wilson lines. Thus, each elementΩ1,2(η0, x⊥)
of the initial ensemble is the starting point of a random walk, and it is sufficient to look at
where these points have moved at a time η in order to obtain the ensemble of configurations
evolved at a different rapidity. This method of solving the JIMWLK equation has been im-
plemented by Rummukainen and Weigert in [88]. The approach of [88] has recently been
repeated independently in [89] and [90], and solving the JIMWLK equation is now becoming
routinely doable in applications to phenomenology.
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Chapter 4

RHIC phenomenology

W
e now explore some of the consequences of the factorization results obtained in
the previous chapter, when applied to the description of high energy heavy ion
collisions. We consider only observables that are sensitive to the physics at early
stages of the evolution after the collision, and which are the least affected by the
evolution at later stages.

Let us try to characterize these observables. The color glass condensate can only make
predictions regarding the evolution of the matter produced in heavy ion collisions up to a
proper time of the order of τ ∼ Q−1

s . Beyond this time, one must use another description
–e.g. some flavor of kinetic theory or of hydrodynamics– which is beyond the scope of
the CGC. Moreover, it is expected that the system evolves towards a state close to local
thermal equilibrium, which means that it loses memory of the details of its initial stages,
except for a few quantities preserved by conservation laws. Therefore, many observables are
unsuitable for the purpose of testing the predictions of the color glass condensate, since they
are irremediably lost in the thermalization process.

After a general discussion of the structure of the classical chromo- electric and magnetic
fields at early times, we will focus on two observables for which the CGC can make predic-
tions. The first one is the 2-particle correlation function, especially in the situation where
the two particles are separated by a large rapidity interval. Indeed, in this configuration, a
simple causality argument indicates that the correlation must have been created at early times
– making the observation of these long range rapidity correlations a very good probe of the
color glass condensate.

The second observable we shall consider is the multiplicity distribution in heavy ion col-
lisions. It has been observed experimentally that the multiplicity is well described by a neg-
ative binomial distribution, and we will show that this type of distribution is obtained quite
naturally in the CGC framework.

4.1 Glasma and color flux tubes

From the initial conditions for the classical color field on the forward light-cone, given in
eqs. (3.31) and (3.32) of section 3.1.3, one can calculate the initial value of the chromo-
electric and chromo-magnetic fields [129]. One finds that the transverse components of both
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fields are zero at τ = 0+, while their longitudinal components are non-zero:

Ei = Bi = 0 ,

Ez = ig
[
Ai1(x),A

i
2(x)

]
,

Bz = igεij
[
Ai1(x),A

j
2(x)

]
, (4.1)

where εij is the totally antisymmetric tensor in two dimensions, normalized to ε12 = 1.
One sees that the non-zero components of these fields are proportional to commutators, and
would therefore be zero in an abelian gauge theory like QED. Indeed, it is well known in QED
that the gauge field inside the forward light-cone is simply the superposition of the two pure
gauge fields Ai1 and Ai2 and is a pure gauge field itself – therefore, in QED the gauge field in
the forward light-cone does not carry any field strength and the corresponding components
of the electric and magnetic field are all zero. Physically, this means that no photon can
be produced1 when two abelian Weizäcker-Williams fields cross each other in the collision
process. In contrast, this is perfectly possible in QCD since gluons carry a color charge.

In order to go beyond τ = 0+, one must solve the Yang-Mills equations numerically.
The results are shown in the figure 4.1. This numerical simulation confirms that all the trans-

Figure 4.1: Classical field components at early times. From [129].
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verse components vanish at τ = 0+, and shows that it takes a time of the order of Q−1
s

(the parameter g2µ in the figure is equivalent to Qs, up to a factor of order one) for all the
components to reach values that are of comparable magnitude. Therefore, during most of
the period where the color glass condensate description is relevant, the chromo-electric and
magnetic fields are predominantly longitudinal. Another crucial property of these early time
fields is that they do not depend on the rapidity2 η. Thus, one can picture this situation as
illustrated in the figure 4.2, where one has longitudinal color flux tubes – i.e. field configura-
tions where all the field lines are parallel to the collision axis. What determines the diameter
of these tubes is the correlation length of the color charges ρ̃1,2 in the transverse plane. It has

1Naturally, this is only true at this order of the expansion in the coupling constant. At higher orders, photons can
be emitted via a fermion loop.

2This property of invariance under boosts in the longitudinal direction is broken by the leading log quantum
corrections whose resummation has been discussed in the previous chapter. In particular, after one has resummed
the leading logarithmic corrections, the fields depend on the rapidity at which they are measured. However, this
rapidity dependence is significant only for rapidity variations of the order of ∆η ∼ α−1

s or larger.
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Figure 4.2: Topology of the field lines shortly after the collision.

Q
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been shown [130] that in the CGC, the quantum evolution leads to a screening of these color
charges at distances r ≥ Q−1

s . This is thus the effective diameter of the flux tubes. Such a
configuration of chromo-electric and magnetic color fields has been named glasma in [129],
a contraction of the words glass and plasma, justified by its position as an intermediate stage
between the color glass condensate that describes the wavefunctions of the incoming nuclei,
and the quark-gluon plasma that is formed later on.

It is also interesting to look in detail at the components of the energy-momentum tensor,
whose expression at leading order is

Tµν
LO

=
1

4
gµνFλσFλσ − FµλFνλ . (4.2)

By an explicit calculation [129], one can obtain analytically its value at the initial time τ =
0+,

Tµν
LO

=
E2z + B

2
z

2
× diag (1, 1, 1,−1) . (4.3)

Naturally, this tensor is traceless, as expected for the energy-momentum tensor in QCD in a
classical approximation3. A remarkable feature of this tensor is that it has a negative longi-
tudinal pressure, and is therefore quite far from the situation one would need to have an ideal
fluid – where all the components of the pressure would be equal and positive.

Note finally that this picture of color flux tubes has many similarities with the old string
description of hadronic collisions (see for instance [131–134]). Two things are new how-
ever compared to these old models: one has here a perturbative QCD-based description of
the dynamics of the collision, and there is also a chromo-magnetic field of the same mag-
nitude as the chromo-electric field (string models only have the electric component of the
field). Another essential difference is the diameter of a string in these models (typically,
r ∼ Λ−1

QCD
, since the underlying dynamics was thought to be non-perturbative and related to

confinement), which is much larger than the diameter of a flux tube in the CGC (r ∼ Q−1
s ,

where Qs � ΛQCD ). To pursue the analogy further, one can also notice that the negative
longitudinal pressure in the glasma fields can be identified to a string tension, the parameter
that characterizes the energy per unit length of the hadronic strings. Moreover, in hadronic
string models, the string breaks via the production of qq̄ pairs by the Schwinger mechanism.
One can prove [102] that in the CGC approach, the 1-loop corrections to the gluon spectrum
contain the Schwinger contribution to the production of gluon pairs.

3The Yang-Mills Lagrangian has an exact scale invariance. This implies that the energy-momentum tensor con-
structed from solutions of the classical equation of motion is traceless. This property may be broken by quark masses
and by running coupling corrections – both of which are effects that come into play at higher orders.
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4.2 Long range rapidity correlations

4.2.1 Rapidity correlations and early stages of the collision

Figure 4.3: Causal relationship between a pair of particles separated by a large rapidity interval.
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In the introduction of this chapter, we have stated that correlations between particles can
only be produced at early times if the rapidity separation between the particles is large. This
is illustrated in the figure 4.3. There, a pair of particles A and B are detected with respective
momentum rapidities y

A
and y

B
. In heavy ion collisions, there is a freeze out time τf.o.

after which the particle density is too small to allow interactions. Therefore, between this
freeze out time and the time of their detection, the particles A and B simply propagate on
straight lines at constant velocity. Any event that had an influence on these particles must
be located inside a cone whose tip is the position of the particle on the freeze out surface,
and whose opening angle is determined by the speed of light. This cone plays the role of an
event horizon for the particle under consideration: any event located outside of this cone is
not visible to an observer comoving with the particle. Any event that induces a correlation
between the particles A and B must lie within the intersection of the event horizons of the
two particles. From the figure 4.3, it is straightforward to see that there exists a maximal time
for this intersection. Simple geometry tells us that this maximal time4 is

τmax = τf.o. e
−|y

A
−y

B
|/2 . (4.4)

Note that one assumes in this argument that particles with a momentum rapidity y come from
a point of spatial rapidity η = y on the freeze-out surface. This is a good approximation
for a nearly boost invariant flow of the particles, since the local thermal motion blurs the
correspondence between η and y at most by an amount of order unity.

A reasonable estimate of the freeze out time for heavy ion collisions at RHIC energy
is τf.o. ∼ 10 fm/c. Therefore, if a correlation is observed between particles separated in
rapidity by |y

A
− y

B
| = 4, it must have been produced by an event that occurred at a time

τ ≤ 1.4 fm/c. For a separation |y
A
− y

B
| = 6, this limit would become τ ≤ 0.5 fm/c. One

sees the great potential that these correlations have in telling us something about the earliest

4Note that processes taking place before the collision –i.e. in the evolution of the wavefunctions of the
projectiles– can also be responsible for this kind of correlation, since they lie also inside the intersection of the
two event horizons.
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stages of the evolution after and/or before the collision5: because the rapidity interval enters
in an exponential in the above bound, the maximal time for the creation of the correlation
decreases extremely fast as one increases the rapidity interval.

4.2.2 RHIC data

Figure 4.4: 2-hadron correlations measured by the STAR experiment. From [135].

Two-hadron correlations in heavy ion collisions have been studied in detail by three RHIC
collaborations: STAR [135–138], PHENIX [139] and PHOBOS [140]. A common observa-
tion in central collisions is the existence of long range rapidity correlations –that span at least
four units of rapidity– in conjunction with a fairly narrow correlation in azimuthal angle (see
the figure 4.4). This striking feature of the 2-hadron correlation function has been named the
ridge. The same measurement, when done in proton-proton collisions, shows only a narrow
peak centered at ∆η = ∆φ = 0. Moreover, this peak is symmetrical in all directions, unlike
the elongated structure seen in nucleus-nucleus collisions. A similar ridge has also been seen
by the CMS collaboration [141] in proton-proton collisions at LHC energy. There, the cor-
relation is much weaker than in nucleus-nucleus collisions, and requires that one triggers on
high multiplicity events in order to be seen.

Note that there are two ways of performing this measurement: triggered or untriggered.
In the triggered measurement, one first selects a hadron that fulfills some criterion (usually
that its transverse momentum exceeds a given value), and then one looks at the distribution
of the other hadrons relative to the first one. In the untriggered measurement, one considers
all the pairs of hadrons in a given event. The ridge is observed in both measurements, but the
triggered correlation function displays in addition to the ridge a narrow central peak similar
to the one observed in proton-proton collisions. This narrow peak is interpreted as an effect
of jet fragmentation, and will not be discussed further here.

5This is analogous to the way angular correlations observed in the Cosmic Microwave Background (CMB) pro-
vide us with information about what occurred at the time of inflation in the expansion of the early universe: this is
possible because points that appear far apart on the sky today have not been in causal contact since the inflationary
epoch.
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4.2.3 Qualitative explanation

First of all, as explained earlier, the measured long range correlation in rapidity can only be
explained by features that existed at very early times. This makes the color glass condensate
the most suitable place to look for an explanation of this structure.

Figure 4.5: Correlation between particles emitted at various rapidities in a single flux tube.

A crucial property of the glasma color fields is their independence with respect to rapidity
(at leading order). This translates into a correlation between particles produced at all rapidi-
ties. Consider for the sake of the argument a single flux tube (see the figure 4.5). This flux
tube is characterized by a certain chromo-electrical field E and magnetic field B, which have
the same value at all rapidities. Locally, the mechanism of particle production from classical
fields depends only on the value of these fields, which means that particles are emitted in this
tube with the same intensity at all rapidities, hence the correlation.

It is also easy to understand by the same qualitative argument how the strength of the
correlation varies with the centrality of the collision. For this, one needs to realize that there
is no correlation between the particles emitted from distinct flux tubes (see the figure 4.6).
This is because the color fields in two distinct tubes are not correlated – simply because our
definition of the diameter of a single flux tube is precisely based on the color correlation
length in the transverse plane. Therefore, a given pair of particles exhibits a correlation only

Figure 4.6: Particles emitted from separate flux tubes are not correlated.
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if they come from the same flux tube. The total number of pairs in a given event scales like
the square of the transverse area S⊥,

Nall pairs ∝ S2⊥ , (4.5)

while the number of pairs coming from the same flux tube is the total transverse area (the first
particle in the pair can be produced anywhere) multiplied by the typical area of one flux tube
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(since the second particle has to be in the same tube as the first one), i.e. Q−2
s ,

Nsame tube ∝ S⊥Q−2
s . (4.6)

Therefore, the CGC prediction for the strength of the 2-particle correlation normalized by the
square of the particle yield is

Correlation ∝ 1

S⊥Q2s
. (4.7)

At this point, we have a natural explanation for the existence of a long range rapidity
correlation, and an estimate for its strength. However, as one can see in the figure 4.5, one
would naively expect this correlation to be flat in the azimuthal angle difference ∆φ. Indeed,
on the average, flux tubes emit particles isotropically in φ. Therefore, there should not be a
preferred direction of emission of one particle in the pair relative to the second particle. The

Figure 4.7: Collimation in azimuthal angle due to radial flow.
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r

collimation in ∆φ of the 2-particle correlation has a natural explanation from the evolution
of the system at later stages6. It is important to recall the existence of a non-zero transverse
pressure gradient in the system, whose effect is to push the matter outwards – a phenomenon
known as radial flow. The fact that the matter is flowing radially outwards is what collimates
the correlation in∆φ, as illustrated in the figure 4.7. Indeed, the spectra of particles emitted at
two rapidities from the same tube are both collimated in the same manner (here, we assume
that the radial flow velocity vr depends only weakly on the rapidity). Therefore, after the
radial flow has developed, there is a greater probability to find two particles emitted from the
same tube with nearby azimuthal angles.

4.2.4 Semi-quantitative description

After having seen that the color glass condensate framework offers a natural explanation for
the ridge structure observed in 2-particle correlations in high energy heavy ion collisions, let
us now turn to a semi-quantitative calculation of the effect. The main result of the section
3.4 tells us that the 2-particle inclusive spectrum, at leading logarithmic accuracy, reads (see
eq. (3.128), applied here for n = 2):〈

dN2

d3pd3q

〉
LLog

=

∫ [
Dρ̃1Dρ̃2

]
W[ρ̃1]W[ρ̃2]

dN1

d3p

∣∣∣∣
LO

× dN1

d3q

∣∣∣∣
LO

. (4.8)

6Note that this is not in contradiction with the causality argument developed earlier in the chapter. Only the
correlation in rapidity needs to be produced by some very early time process. The correlation in azimuth can be
created at any time.
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Note that the interesting quantity to discuss the ridge is not the 2-gluon spectrum itself, but
the correlated part defined as

C(p,q) ≡
〈

dN2

d3pd3q

〉
LLog

−

〈
dN1

d3p

〉
LLog

〈
dN1

d3q

〉
LLog

. (4.9)

At this point, the only way to pursue the calculation without making further approximations
is numerical [142]. This involves solving the JIMWLK equation in order to obtain the distri-
butionsW[ρ̃1,2] and solving the Yang-Mills equations for fixed sources ρ̃1,2 – both of which
are quite challenging in practice (in [142], only the latter was done exactly – the distributions
W where taken from the MV model rather than from solving the JIMWLK equation).

It is however possible to perform a simple approximate analytical calculation in order
to assess semi-quantitatively the effects that lead to the ridge. For this, let us assume that
|p|, |q| � Qs. In this regime, non-linearities in the solution of the Yang-Mills equations
become small and it has a simple analytical form in terms of ρ̃1,2. In addition, to avoid
the complications associated with solving the JIMWLK equation, we simply disregard the
effects of quantum evolution and use the McLerran-Venugopalan Gaussian model for the
distributions of ρ̃1,2. In this large momentum approximation, the Fourier transform of the
classical gauge field is

Aµa(p) =
igfabc

p2

∫
d3k⊥
(2π)2

Lµ(p,k⊥)
ρ̃1b(k⊥)

k2⊥

ρ̃2c(p⊥ − k⊥)

(p⊥ − k⊥)2
, (4.10)

where Lµ denotes the so called Lipatov effective vertex. Here, we won’t need the components
of this 4-vector – the only properties we will use are

Lµ(p,k⊥) = Lµ(p,p⊥ − k⊥) ,

Lµ(p,k⊥)Lµ(p,k⊥) = −4
k2⊥(p⊥ − k⊥)

2

p2⊥
. (4.11)

When inserted in the formula for the single particle spectrum, and after summing over the
polarization and color of the produced gluon, this result leads to

dN1

d3p

∣∣∣∣
LO

= −g2fabcfade
∫
d2k⊥
(2π)2

d2l⊥
(2π)2

Lµ(p,k⊥)Lµ(p, l⊥)

× ρ̃1b(k⊥)
k2⊥

ρ̃2c(p⊥ − k⊥)

(p⊥ − k⊥)2
ρ̃1d(l⊥)

l2⊥

ρ̃2e(p⊥ − l⊥)

(p⊥ − l⊥)2
(4.12)

for a fixed configuration of the color sources ρ̃1,2.

The next step is to insert this formula into eq. (4.8) and to perform an average over the
sources ρ̃1,2, using the Gaussian distribution of the MV model (see eq. (1.15)) as a simplify-
ing assumption. In the MV model, the average of a functional of ρ̃1,2 amounts to perform all
the possible pairwise contractions, with the following elementary building block

〈ρ̃1a(k⊥)ρ̃1b(l⊥)〉 = (2π)2δ(k⊥ + l⊥)δab g
4µ2 , (4.13)

where µ2 is the only parameter in the Gaussian distribution. The saturation scaleQs is related
to µ2 by Q2s ∼ g

4µ2.
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Figure 4.8: Trivial color connection. This type of connection between the sources leads to a non
correlated contribution to the 2-gluon spectrum.
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In eq. (4.8), we must perform Gaussian averages of an expression that contains four pow-
ers of ρ̃1 and four powers of ρ̃2. Since this requires to make all the possible pairwise links
among four factors (both for ρ̃1 and ρ̃2), there are three possibilities for ρ̃1 and three possi-
bilities for ρ̃2, hence 9 terms in total. One of these terms is trivial, illustrated in the figure
4.8, since it is a disconnected contribution that has no correlation between the two produced
gluons. This term therefore does not contribute to C(p,q).

Of the remaining 8 terms, four give identical leading contributions in the region where
|p⊥|, |q⊥| � Qs. Two of these terms, as shown in figure 4.9, have a topology such that a
single source in the amplitude is attached to the two produced gluons7. Note that the sources
on opposite sides of the cut may be localized at different transverse positions. The other

Figure 4.9: Two gluons are emitted from the same source line in the amplitude and likewise in
the complex conjugate amplitude. This emission however occurs at different spatial positions
for the sources, which are localized in a transverse area of size Q−1

s . There is an identical
contribution with ρ̃1 ↔ ρ̃2.

p

q

p

q

two terms with leading contributions have the structure of an interference graph depicted
in figure 4.10. Of the four remaining terms, two are suppressed respectively by additional
powers of p−1⊥ or q−1⊥ and two give δ-function contributions for p⊥ = ±q⊥. The delta
function terms are also suppressed relative to the terms we keep at large p⊥ and q⊥.8

An explicit calculation of the four leading contributions gives the following result for the

7One may characterize this contribution as single diffractive, however this denomination is misleading here since
we are computing an inclusive spectrum and therefore the unmeasured gluons produced along with the two tagged
ones most likely prevent the appearance of a gap between the projectile and the measured gluon.

8Moreover, they would give a contribution not localized in the transverse coordinate, so that they would give a
flat background once flow effects are included.
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Figure 4.10: Interference contribution in which the transverse positions of the participating
sources are exchanged in the complex conjugate amplitude for ρ̃2 while they are the same
for ρ̃1. There is an identical contribution for ρ̃1 ↔ ρ̃2.
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2-gluon correlation in the Color Glass Condensate approach:

C(p,q) =
S⊥

(2π)6
(g2µ)8

g4Q2s

πN2c(N
2
c − 1)

|p||q| p4⊥ q
4
⊥
, (4.14)

where S⊥ is the transverse area of the interacting region (i.e. simply S⊥ = πR2 for a central
collision of identical nuclei). The Q2s in the denominator arose from the regulation of an
integral that diverges in the infrared, for which a cutoff at the scale Qs was introduced by
hand9. As a consequence, the numerical prefactor in C(p,q) is somewhat uncertain. Note
also that the factors |p||q| in the denominators are there due to our choice of using d3p as the
1-particle measure instead of dypd2p⊥ (|p| is the Jacobian that converts one measure into
the other). The relation of g2µ toQs can be quantified numerically by computing Wilson line
correlators in the nuclear wavefunction. A careful comparison [114] (see also [143]) gives
Qs ≈ 0.57 g2µ. It is instructive to express the result in eq. (4.14) in terms of the inclusive
single gluon spectrum. This is given by the Gunion-Bertsch formula [144], and has been
computed previously in the CGC framework [103–105, 145] to have the form〈

dN1

d3p

〉
=
S⊥

4π4
(g2µ)4

g2
Nc(N

2
c − 1)

|p| p4⊥
ln
(
p⊥

Qs

)
. (4.15)

Therefore, up to logarithms that we do not control in eq. (4.14), we can write:

C(p,q) =
κ

S⊥Q2s

〈
dN1

d3p

〉〈
dN1

d3q

〉
, (4.16)

with a numerical constant κ ∼ 4. The quantity which is measured experimentally [146] (and
displayed in the figure 4.4) is

∆ρ
√
ρref
≡ C(p,q)

〈
dN1
dy

〉
〈
dN1
d3p

〉〈
dN1
d3q

〉 . (4.17)

Parametrically, one can write〈
dN1

dy

〉
=
κ′

αs
S⊥Q

2
s , (4.18)

9In the McLerran-Venugopalan model, the only natural infrared cutoff is at the scale set by the nucleon size, i.e.
at ΛQCD . However, it has been shown [130] that quantum evolution leads to color screening at transverse distances
of the order of Q−1

s . We have implemented this feature of the CGC by hand here.
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with κ′ ∼ 0.075 for an SU(3) gauge theory. Therefore, one gets

∆ρ
√
ρref

=
K
N

αs
, (4.19)

with K
N
≈ κκ′ ≈ 0.3. Note however that our computation was performed for large momenta

p⊥, q⊥ � Qs while we are interested in the p⊥, q⊥ . Qs region. While we expect the
structure of eq. (4.19) to be quite robust, as mentioned earlier, we cannot trust the accuracy of
this prefactor. We will therefore only assume it is a number of order unity to be determined
by a more accurate numerical computation.

This relationship is basically a consequence of dimensionality: the correlations are due to
a classical effect and there is only one dimensional scale which characterizes the Glasma. The
expression in eq. (4.17) is very interesting because it is independent both of the rapidities10

yp and yq of the particles as well as of their azimuthal angles φp and φq respectively. It
confirms our picture of flux tubes of transverse size Q−1

s stretching between the two nuclei
(as shown in figure 4.5) and emitting particles isotropically, with equal probability along their
length. This is not the full picture though. In the high parton density environment created in
central heavy ion collisions, the pressure created by interactions among those particles has a
gradient that leads to collective radial flow. The particles emitted by the Glasma tubes will
also experience this collective flow. As we shall now discuss, this collimates the relative
azimuthal distribution of the pairs.

Figure 4.11: Notations for the azimuthal angles.
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We define the particles azimuthal angles φp,q with respect to the radius of the point
of emission (see the figure 4.11), and we denote ζp,q ≡ − ln(tan(φp,q/2)) the pseudo-
rapidities of the particles in the radial direction. It is important to note that the two particles
will experience the same radial boost since they are localized within Q−1

s of each other in
the transverse plane–indeed, they come from the same flux tube, and we assume that the
radial flow velocity does not depend on rapidity. Expressing the angular distribution (which
is independent of φp and φq) in terms of these variables, and boosting it in the direction of
radial flow, one obtains11

C(p,q) ∝ 1

cosh(ζp) cosh(ζq)
Boost−→ 1

cosh(ζp − ζB) cosh(ζq − ζ
B
)
. (4.20)

10Quantum corrections, not considered here, will introduce a modest dependence on rapidity over scales ∆y ∼

α−1
s .
11The hyperbolic cosines in the denominator come from the Jacobian of the change of variables φ→ ζ.
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Here, ζ
B

is the rapidity of the radial boost and is given by tanh(ζ
B
) ≡ vr, where vr is the

radial flow velocity. Defining Φ ≡ (φp + φq)/2, ∆φ ≡ φp − φq, and re-expressing the
boosted 2-gluon distribution in terms ofΦ and ∆φ, one can re-write eq. (4.17) as

∆ρ
√
ρref

=
K
N

αs

cosh ζp cosh ζq
cosh(ζp − ζB) cosh(ζq − ζ

B
)
. (4.21)

Substituting cosh ζp = 1/ sinφp and sinh ζp = cosφp / sinφp, we finally obtain

∫+π
−π

dΦ

2π

∆ρ
√
ρref

=

=
K
N

αs

+π∫
−π

dΦ[
cosh ζ

B
−cos(Φ+∆φ

2
) sinh ζ

B

][
cosh ζ

B
−cos(Φ−∆φ

2
) sinh ζ

B

] .
(4.22)

The integral over Φ leads to the following result for the 2-gluon correlation, averaged over
the mean angle Φ〈

∆ρ
√
ρref

〉
Φ

=
K
N

αs

cosh ζ
B

cosh2 ζ
B
− sinh2 ζ

B
cos2 ∆φ

2

. (4.23)

In the particular cases of ∆φ = 0 or ∆φ = π, the results are

∆ρ
√
ρref

(∆φ = 0) =
K
N

αs
γ
B

∆ρ
√
ρref

(∆φ = π) =
K
N

αs

1

γ
B

, (4.24)

where γ
B
≡ cosh ζ

B
is the γ-factor of the radial boost. Hence, the amplitude of the peak,

relative to the pedestal, is given by

A =
K
N

αs
(γ
B
− γ−1

B
) . (4.25)

Thus, we see clearly here that there is a collimation in ∆φ of the 2-gluon correlation, caused
by the radial flow.

From blast wave fits to the RHIC data, the PHENIX collaboration [147] has extracted
the average transverse velocity 〈vr〉 as a function of the number of participants in a heavy
ion collision. To estimate the centrality dependence of the coupling12, αs(Qs), we note that
the square of the saturation momentum is Q2s ' 1-1.3 GeV2 for central Au+Au collisions
at full RHIC energy, decreasing like N1/3part [148, 149] towards peripheral collisions13. The
magnitude of A in central collisions fixes K

N
∼ 0.1, in the ballpark of our naive earlier

estimate. The resulting A(Npart) is compared to preliminary STAR data in the figure 4.12,
which shows a fairly good agreement with RHIC data.

12We determine the running coupling from the one-loop QCDβ-function withβ0 = 11NC−2Nf = 27, assuming
ΛQCD ' 200MeV.

13The dependence ofQ2s on centrality is in fact more complex (we refer to refs. [113, 150, 151]) but the simplified
form Q2s ∼ N

1/3
part is sufficient for the present purposes.
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Figure 4.12: Evolution of the amplitude of the ridge (peak at ∆φ = 0 relative to pedestal at
∆φ = π) with the number of participants.
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Figure 4.13: Angular correlation function for three different radial boost rapidities ζ
B
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The angular width of the correlation function is not reproduced very well by the simple
radial boost model; the integral from eq. (4.22), without any prefactors, is shown as a function
of ∆φ in the figure 4.13. The width narrows to '1 radians only for boost rapidities ζ

B
' 2,

corresponding to large boost velocities
〈
vr
〉
≥ 0.9. To improve the agreement with the

measured angular distributions one may also need to account for the absorption of high-p⊥
particles by the medium [152]. Let us also mention the work of [153], where a much better
agreement is obtained via a more realistic modeling of the radial flow.

4.2.5 Rapidity dependence

So far, we have only evaluated the 2-gluon inclusive spectrum at leading order, where all
the fields are independent of rapidity. This crude approximation leads to a correlation that is
infinitely long ranged in rapidity. In order to get the rapidity dependence of the correlation
function, one needs to take into account the rapidity evolution of the distributions W[ρ̃1,2]
when evaluating eq. (4.8).
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In eq. (4.8), the sources ρ̃1,2 are both dependent on the transverse position x⊥ and on
the rapidity y. However, the factors dN1/d3p and dN1/d3q under the integral depend on
the color sources only locally in rapidity, i.e. near yp and yq respectively. Let us denote by
ρ̃p1,2(x⊥) and ρ̃q1,2(x⊥) these sources (these sources are functions that depend solely on x⊥).
Eq. (4.8) can be rewritten as〈

dN2

d3pd3q

〉
LLog

=

∫ [
Dρ̃p1Dρ̃

q
1Dρ̃

p
2Dρ̃

q
2

]
Zyp,yq [ρ̃

p
1 , ρ̃

q
1 ] Zyq,yp [ρ̃

q
2 , ρ̃

p
2 ]

×
dN1[ρ̃

p
1,2]

d3p

∣∣∣∣
LO

×
dN1[ρ̃

q
1,2]

d3q

∣∣∣∣
LO

, (4.26)

where the double distribution Zyp,yq [ρ̃
p, ρ̃q] is the combined probability to have the source

ρ̃p(x⊥) at the rapidity yp and the source ρ̃q(x⊥) at the rapidity yq. We have written the
arguments for the factors dN1/d3p and dN1/d3q, to stress the fact that they depend only on
the sources located near the rapidity of the produced gluon. The double distribution Zyp,yq
is related to the distributionW[ρ̃] of eq. (4.8) via the formal relation:

Zyp,yq [ρ̃
p, ρ̃q] =

∫ [
Dρ̃(y, x⊥)

]
W
[
ρ̃
]
δ[ρ̃(yp, x⊥)− ρ̃

p(x⊥)]δ[ρ̃(yq, x⊥)− ρ̃
q(x⊥)] .

(4.27)

In other words, Zyp,yq [ρ̃
p, ρ̃q] is obtained by summing over all the rapidity dependent ρ̃’s,

with the constraints that ρ̃ takes specific values ρ̃p and ρ̃q at the rapidities yp and yq. There
are two limiting behaviors of the double distribution Zyp,yq [ρ̃

p, ρ̃q], that correspond to com-
pletely correlated or completely decorrelated sources at the rapidities yp and yq,

Zyp,yq [ρ̃
p, ρ̃q] = Zyp [ρ̃

p] δ[ρ̃p − ρ̃q] (complete correlation) ,
Zyp,yq [ρ̃

p, ρ̃q] = Zyp [ρ̃
p]Zyq [ρ̃

q] (complete decorrelation) . (4.28)

The first case is what was implicitely assumed in the study of the ridge in the previous sec-
tions, where we neglected the evolution of the sources between the rapidities yp and yq.
The second case is what happens if the evolution is very important between the rapidities yp
and yq. In this case, the 2-gluon spectrum factorizes into the product of two single gluon
spectra, and there will be no correlation between the two gluons. Our goal in this section is
to quantitatively assess how one goes from the first to the second situation.

From eq. (4.27), it is easy to check that Zyp,yq can be factored into a single distribution
for ρ̃p and a propagator for the JIMWLK evolution from yp to yq (assuming yp < yq),

Zyp,yq [ρ̃
p, ρ̃q] = Zyp [ρ̃

p]Gyp,yq [ρ̃
p, ρ̃q] , (4.29)

where

Zyp [ρ̃
p] =

∫ [
Dρ̃(y, x⊥)

]
W
[
ρ̃
]
δ[ρ̃(yp, x⊥) − ρ̃

p(x⊥)] , (4.30)

and

∂yqGyp,yq [ρ̃
p, ρ̃q] = Hyq Gyp,yq [ρ̃

p, ρ̃q] ,

lim
yq→(yp)+

Gyp,yq [ρ̃
p, ρ̃q] = δ[ρ̃p − ρ̃q] . (4.31)
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The propagator Gyp,yq [ρ̃
p, ρ̃q] can be used to relate the single source distributions at two

rapidities, e.g.

Zyq [ρ̃
q] =

∫
[Dρ̃p] Zyp [ρ̃

p] Gyp,yq [ρ̃
p, ρ̃q] . (4.32)

Arguably, determining Zyp [ρ̃
p] and the propagatorGyp,yq [ρ̃

p, ρ̃q] is as difficult as solv-
ing the JIMWLK equation. However, this formulation is convenient in order to use the large
Nc limit and replace the JIMWLK equation by the Balitsky-Kovchegov equation [84–86].
In this approximation, all the rapidity evolution is reduced to that of a 2-point function (the
dipole amplitude), and higher-point functions are assumed to factorize as products of 2-point
functions. Thus, the single distribution Zy[ρ̃y] is a Gaussian in the BK limit,

Zy[ρ̃
y] = exp

[
−
1

2

∫
d2x⊥d

2y⊥
ρ̃ya(x⊥)ρ̃

y
a(y⊥)

µ2(y; x⊥ − y⊥)

]
, (4.33)

where the function µ2(y; x⊥ − y⊥) determines the correlations between sources at different
locations in the transverse plane, at a given rapidity (here we assume translation invariance in
the transverse plane, in order to write it as a function of the difference x⊥ − y⊥). Since the
distributions Zyp,q in eq. (4.32) are both Gaussians, the propagator Gyp,yq should itself be
a Gaussian,

Gyp,yq [ρ̃
p, ρ̃q] = exp

[
−
1

2

∫
d2x⊥d

2y⊥
∆ρ̃a(x⊥)∆ρ̃a(y⊥)

∆µ2(x⊥ − y⊥)

]
, (4.34)

where we denote

∆ρ̃(x⊥) ≡ ρ̃q(x⊥) − ρ̃
p(x⊥)

∆µ2(r⊥) ≡ µ2(yq, r⊥) − µ
2(yp, r⊥) . (4.35)

We can already see in the form of this propagator the effect of the rapidity evolution of the
sources, namely the progressive spreading in ρ̃q−ρ̃p as yq−yp increases. This is reminiscent
of the fact that the JIMWLK equation can be interpreted as a diffusion equation in ρ̃-space,
with the rapidity playing the role of a time variable.

Thus, in the BK approximation, all one needs to determine is the rapidity evolution of the
function µ2(y, r⊥) (there are in fact two such functions, one for each projectile). In more
detail, the steps to perform in order to compute the rapidity evolution of the 2-gluon spectrum
are the following:

i. choose an initial condition for the dipole amplitude T(y0, r⊥) in a nucleus at a rapidity
close to the fragmentation region, e.g. from the McLerran-Venugopalan model,

ii. solve the BK equation,

∂yT(y, r⊥) =

∫
d2r1⊥ K(r⊥; r1⊥, r2⊥)

[
T(y, r1⊥) + T(y, r2⊥)

−T(y, r⊥) − T(y, r1⊥)T(y, r2⊥)
]
, (4.36)

where r2⊥ ≡ r⊥ − r1⊥ and where the kernel K is given by

K(r⊥; r1⊥, r2⊥) =
αsNc

2π2
r2⊥

r21⊥r
2
2⊥

(4.37)
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in the fixed coupling case and by

K(r⊥; r1⊥, r2⊥) =
αs(r

2
⊥)Nc
2π2

[ r2⊥
r21⊥r

2
2⊥

+
1

r21⊥

(αs(r21⊥)
αs(r22⊥)

− 1
)
+

1

r22⊥

(αs(r22⊥)
αs(r21⊥)

− 1
)]

(4.38)

in the running coupling case (we adopt Balitsky’s prescription14 here [160, 161]),

iii. extract the function µ2(y, r⊥) from the solution of the BK equation, compute the single
distribution Zy at the lowest of the two rapidities yp,q and the propagator Gyp,yq ,

iv. insert these distributions in eqs. (4.29) and (4.26), and use eq. (4.12) for the single
gluon spectrum. All the integrals that need to be performed are Gaussian integrals, and
can be computed analytically.

Note that the steps i,ii,iii must be performed for each of the two projectiles in case they are
not identical.

Figure 4.14: Unintegrated gluon distribution in the adjoint representation at rapidities Y =
0, 2, 6, 10, 15 (from left to right) in the fixed coupling and running coupling cases (with
Balitsky’s prescription in the latter case).
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In the figure 4.14, we plot the result of solving the BK equation for a 2-point function
closely related to the dipole amplitude, namely the unintegrated gluon distribution (i.e. the
Fourier transform of the dipole amplitude, up to a prefactor). We see that it has a peak that
shifts to higher momenta as the rapidity increases, which is a consequence of the increase of
the saturation scale with rapidity. This increase is slower if one uses the running coupling
BK equation instead of the fixed coupling one, and there is a lot of data from Deep Inelastic
Scattering indicating that the former indeed provides a better description.

The rapidity dependence of the ridge obtained in this approach for RHIC energy is shown
in the figure 4.15, and compared to a measurement by the PHOBOS collaboration [162] (that

14For other prescriptions, see [154, 155]. See also [156–159] for a discussion of numerical solutions of the BK
equation using various prescriptions for the implementation of the running coupling.
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Figure 4.15: Comparison with data from the PHOBOS collaboration [162]. The curves shown
are the sum of our result for long range rapidity correlations in the PHOBOS acceptance
and of the short range jet correlation obtained using PYTHIA.
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covers 6 units of rapidity). To our calculation, we have superimposed a short range contribu-
tion to the rapidity dependence of the correlation, due to jet fragmentation (dotted curve in the
figure 4.15). This contribution is not contained in the present approach, and has been taken
from the PYTHIA event generator. The Gaussian spreading of the propagatorGyp,yq [ρ̃

p, ρ̃q]
due to the JIMWLK diffusion in ρ̃-space leads to a decorrelation when the rapidity separation
between the two tagged hadrons becomes large. However, this is a slow effect, that requires
a rapidity interval parametrically of the order of α−1

s to produce visible deviations from a flat
correlation. Over the range of ∆η covered by the PHOBOS measurement, the predicted long
range rapidity correlation is almost flat, in good agreement with the data outside of the region
|∆η| < 1 dominated by jet fragmentation. In order to see deviations from this flat behavior,
one would have to perform the measurement at a larger rapidity difference, which unfortu-
nately is impossible at RHIC due to a limited acceptance. Also interesting but presumably
equally beyond the reach of RHIC experiments is the fact that the correlation function is not
mirror symmetric around ∆η = 0, unless the trigger particle is taken at mid rapidity. The
amount by which it is skewed when the trigger is not at mid rapidity is also a prediction of
the BK equation. Finally, we close this section with the same calculation at LHC energy,
whose results are displayed in the figure 4.16. Note that there, we have not superimposed the
short range correlation due to jet fragmentation.

4.3 Multiplicity fluctuations

Another interesting observation [163–166] has been made in high energy hadronic or nuclear
collisions, that has a natural explanation in the glasma flux tube picture: multiplicities of
charged particles in high energy hadronic collisions are well described as a negative binomial
distribution. Similarly, multiplicity fluctuations at RHIC have been found to agree with the
negative binomial distribution by the PHENIX collaboration [167, 168].

Let us first recall here that a negative binomial distribution is a two-parameter distribution
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Figure 4.16: Prediction for the 2-gluon correlation at LHC energy, for two gluons of transverse
momenta p⊥ = q⊥ = 2 GeV, as a function of the rapidity separation yq − yp. The trigger
gluon rapidity yp varies from 0 to −4.5. The dashed parts of the curves involve one or
more gluon distribution at large x > 0.01, while for the solid portions all the distributions
are probed at small x < 0.01. Some curves have been scaled by the indicated factor for
clarity.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-4 -2  0  2  4  6  8  10  12

d
2
N

/(
d

2
p

T
 d

2
q

T
 d

y
p
 d

y
q
) 

[G
e

V
-4

]

yq - yp

Pb+Pb at LHC

× 10
-2

× 0.5

× 0.65
× 0.85

pT = 2 GeV

qT = 2 GeV

yp = 0

yp = -1.5

yp = -3

yp = -4.5

defined by the following probability law

P
NB

n =
Γ(k+ n)

Γ(k)Γ(n+ 1)

〈n〉nkk

(〈n〉+ k)n+k
, (4.39)

where Γ(n) is Euler’s gamma function (for integer arguments Γ(n) = (n − 1)!). With these
notations, 〈n〉 is the mean of the distribution, 〈n〉 ≡

∑
n nPn, and k is a parameter that

controls how different the distribution is from a Poisson distribution. It is easy to check that
one recovers a Poisson distribution in the limit k→ +∞, while holding 〈n〉 fixed:

lim
k→+∞P

NB

n =
〈n〉n

n!
e−〈n〉 . (4.40)

At any finite and positive k, P
NB

n is wider than the Poisson distribution of same average. For
instance, its variance,

σ2 ≡
〈
n2
〉
−
〈
n
〉2

= 〈n〉+ 〈n〉
2

k
, (4.41)

is larger than that of a Poisson distribution, namely 〈n〉. Another related difference between a
negative binomial distribution and a Poisson distribution is how the tail behaves whenn→∞
(at fixed 〈n〉 and k). In the Poissonian case, this behavior is dominated by the factorial n! in
the denominator, and thus the tail decreases faster than any exponential of n. In the case of
the negative binomial distribution, the behavior of the tail is dominated by (〈n〉/(〈n〉+ k))n
(up to some corrections that are polynomial in n), and therefore decays much slower than the
tail of the Poisson distribution.

A very useful object in calculations involving a negative binomial distribution is the gen-
erating function for the probability law,

FNB(z) ≡
+∞∑
n=0

zn P
NB

n =
1

(1− 〈n〉
k
(z− 1))k

. (4.42)
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Conversely, the generating function of a Poisson distribution is FP(z) = exp(〈n〉(z− 1)).
The fact that the negative binomial distribution has a much wider tail than a Poisson distri-
bution is linked to the fact that the radius of convergence of FNB(z) is finite, while that of
FPoisson(z) is infinite.

Another way to characterize a negative binomial distribution, that we are going to use
later here, is via its moments. Let us consider the factorial cumulants,

mq ≡
〈
n(n− 1) · · · (n− q+ 1)

〉
connected =

dq ln FNB(z)

dzq

∣∣∣∣
z=1

, (4.43)

where the subscript connected indicates that we subtract the disconnected contributions to the
moment of order q, that depend only on the lower order moments. A simple calculation tells
us that in the case of a negative binomial distribution, the momentsmq read

mq = k (q− 1)!

[
〈n〉
k

]q
. (4.44)

After these preliminaries, let us show how a negative binomial distribution emerges natu-
rally in the glasma flux tube picture. In line with the approximations made in the calculation
of the 2-gluon spectrum (see the previous section), let us focus on counting only particles
with a transverse momentum p⊥ larger than some cutoffΛ� Qs. Since we chose the cutoff
Λ to be larger than the saturation scale, it is legitimate to approximate the spectrum as in
eq. (4.12) where we keep only the lowest order term in ρ̃1,2. Using eq. (4.15) and integrating
it in the range |p⊥| ≥ Λ leads immediately to the first moment

m1 =
〈
n
〉
=
S⊥∆Y

4π3
(g2µ)4

g2
Nc(N

2
c − 1)

Λ2
ln
(
Λ

Qs

)
, (4.45)

where ∆Y is the size of the rapidity interval in which we count the gluons (there is no rapidity
dependence of the spectrum in the MV model, therefore we can factorize ∆Y in front of the
integral).

In order to obtain the moment mq, we must now generalize the method of the previous
section in order to perform the average over Gaussian distributions of sources of q factors
such as eq. (4.12). In order to do so, we introduce in the figure 4.17 a convenient graphical
representation for the one-gluon production amplitude, that emphasizes the sources ρ̃1,2 that
must be connected in the process of averaging over the sources. For each produced gluon,

Figure 4.17: Compact notation for the fundamental building block, the one-gluon production
amplitude.

p

p-k

k

= p

there are two such building blocks: one in the amplitude and one in its complex conjugate.
Therefore, in the calculation of the moment mq, there are 2q such blocks, as illustrated in
the figure 4.18. The Gaussian average over the sources amounts to connecting pairwise the
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Figure 4.18: Diagrams that have to be contracted into a single connected graph.

p
1

p
2
... pq pq ... p

2
p
1

green dots among themselves, and the red dots among themselves. Note that since mq is
defined by subtracting the disconnected contributions, we must pair the 2q sources ρ̃1 and
the 2q sources ρ̃2 in such a way that we get a simply connected graph at the end.

In addition, we should discard the terms that are suppressed by powers of Q2s/Λ
2, since

we have assumed that Λ � Qs. In fact, this requirement selects a very special set of con-
nections among the sources. In order to see this, compare the figures 4.19 and 4.20. In the

Figure 4.19: Contraction contributing to the dominant correlation, building block of rainbow
diagram.
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Figure 4.20: Contraction contributing to a subdominant correlation, non-rainbow diagram.
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figure 4.19, we have connected the ρ̃1’s from matching amplitudes and complex conjugate
amplitudes. This constrains the momentum flow in the graph in such a way that there are four
gluon propagators with the momentum k, two of which are compensated by the momentum
dependence of the Lipatov vertices attached at the endpoint of these propagators. Thus, the
integration over k⊥ is of the form∫

d2k⊥

k4⊥
∼
1

Q2s
. (4.46)

The infrared divergent integral over k⊥ is a sign that multigluon correlations are sensitive to
the transverse size over which the color sources are correlated, i.e. Q−1

s . This is why the
glasma flux tubes are the relevant entity when discussing these correlations. On the other
hand, in the figure 4.20, there are only two propagators carrying the same momentum, which
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means that the integrals have at most a logarithmic sensitivity to the scaleQ−1
s . Overlooking

these logarithms, the momentum integrals are typically of the form∫
d2k⊥

(p1⊥ − k⊥)2(p2⊥ − k⊥)2
.

1

Λ2
� 1

Q2s
. (4.47)

Thus, the source connection pictured in the figure 4.20 leads to a suppression by a factor
Q2s/Λ

2 compared to the contribution of figure 4.19. In order to avoid this kind of suppression
completely, one must connect all the ρ̃1’s (or all the ρ̃2) in a rainbow-like manner, as shown
in the figure 4.21. Then, one needs to connect all the ρ̃2’s pairwise. In order to do so, it is

Figure 4.21: Rainbow diagram.

p
1
... pq pq 

... p
1

convenient to introduce an even more compact notation that hides the details of how the ρ̃1’s
are connected, as illustrated in the figure 4.22. We have q such objects, totaling 2q sources

Figure 4.22: Dimer notation for rainbow-like links.

p p = p

ρ̃2, and we must connect them pairwise in order to make a simply connected graph. The first
end of the first dimer can be connected to 2q− 2 other loose dimer ends. Let us assume it is
connected to dimer r. The second end of dimer r has 2q−4 loose ends available – indeed, we
cannot connect it to the first dimer as this would immediately create a disconnected subgraph.
The only possibility is to make a loop by chaining all the dimers together, as shown in figure
4.23. There are (2q− 2)(2q− 4) · · · 2 = 2q−1(q− 1)! possible ways of making such a loop.

Figure 4.23: Connected diagram in the polymer notation introduced in Fig. 4.22
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Remembering that we can form the rainbow either with the ρ̃1’s or with the ρ̃2’s, we finally
arrive at 2q(q− 1)! topologies.
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The color structure can be simplified in as follows. Let us denote the color indices of
the sources i = 1 . . . q contracted on the upper side of the diagram in the figure 4.21 by ai
(because of the rainbow structure of the connections on the upper side, we do not need sepa-
rate indices for the sources in the complex conjugate amplitude), the color index of the gluon
with pi by bi and the color indices on the lower side of the diagram ci (source connected
to gluon pi in the amplitude) and c ′i (in the complex conjugate). Now the color structure is
fa1b1c1fa1b1c

′
1 . . . faqbqcqfaqbqc

′
q = (C

A
)qδc1c

′
1 . . . δcqc

′
q . C

A
= Nc is the Casimir of

the adjoint representation of SU(Nc). The {ci, c
′
i} indices must now be contracted pairwise

into a single loop as in the figure 4.23, which yields a factor tr(1adj) = N2c − 1, making the
total color factor (Nc)q(N2c − 1).

Let us then turn to the structure of momentum flow in the diagram. Transverse momen-
tum is conserved at the vertices and in the sources connections due to the expectation value
in eq. (4.13). Altogether there are originally 4q transverse momentum integrals from the
powers of the sources. There are 2q delta functions from the source correlators (4.13) and
2q momentum conservation delta functions from the three gluon vertices. Not all these delta
functions are independent: two of them end up having the same argument, yielding one factor
(2π)2δ(0) that we interpret as the transverse area S⊥. Therefore, there is only one remain-
ing transverse momentum integral. One can choose this remaining momentum to be the one
circulating in all of the lower part of the diagram, which we shall denote by k⊥ (this is the
momentum that circulates along the loop in the figure 4.23). On the rainbow side of the
diagram there is a squared propagator 1/(k⊥ − pi⊥)

4 for all the sources i = 1 . . . q. On
the non-rainbow side the transverse momentum in all the propagators is the same, giving a
factor 1/k4q⊥ . Half of these propagators are cancelled by the squares of the Lipatov vertices,
which also contribute an inverse square of the external momentum. Combining the combina-
torial factors from the source averages, the propagators, Lipatov vertices and factors from the
invariant measure, we finally get〈

dNq

dy1d2p1⊥ . . . dyqd
2pq⊥

〉
conn.

= 2q(q− 1)!
(Nc)

q(N2c − 1)S⊥
(p1⊥)

2 · · · (pq⊥)2
1

g2q
2q

(2π)3q

×
∫
d2k⊥
(2π)2

(
g4µ2

k2⊥

)q
(g4µ2)q

(p1⊥ − k⊥)2 · · · (pq⊥ − k⊥)2
. (4.48)

This general formula also reproduces the result of [103, 105, 145] for the single inclusive
spectrum case q = 1; in this case the combinatorial factor in the square bracket must be
taken to be 1 instead of 2 to avoid double counting the only contributing diagram.

The weak source result in eq. (4.48) is infrared divergent in the MV model (i.e. when
g4µ2 is independent of momentum). Physically, this is modified by several effects. Even in
the weak field limit, BK or BFKL evolution leads to an anomalous dimension 0 < γ < 1 that
changes this constant into

g4µ2(k⊥) ∼ k
2(1−γ)
⊥ , (4.49)

in the geometric scaling region k⊥ & Qs. Moreover, deep inside the saturation regime it has
been argued in [130] that the correlator effectively behaves as

g4µ2(k⊥) ∼ k
2
⊥ . (4.50)

And ultimately, the infrared behavior of the multigluon spectrum is regulated by the nonlinear
interactions that are not included in our present computation. This is seen explicitly and
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analytically in the proton-nucleus case [18, 119, 169] and in numerical computations of the
glasma fields in the fully nonlinear case [20, 23, 26]. Since the full nonlinear dynamics is
known to regulate the infrared behavior in the case of the single gluon spectrum, we have
strong reasons to expect that they will also do so in the case of multiple gluon production, at
the same scale k⊥ . Qs. An essential point in this argument is that the quantity appearing in
eq. (4.48) is not a single color charge correlator divided by a large power k2q⊥ , but the same
combination g4µ2/k2⊥ that appears in the single inclusive gluon spectrum raised to the power
q.

The effect of saturation on the multigluon spectrum at k⊥ . Qs has a very intuitive in-
terpretation in the glasma flux tube picture. The transverse size of a flux tube, Q−1

s , is the
correlation length of color charges in the transverse plane and we should not have contribu-
tions from longer distance scales. We effectively take this into account by regulating all the
infrared divergences at the scale Qs, and thus approximating the integral in eq. (4.48) by(

2πκq−1Q2(q−2)s p21⊥ · · ·p2q⊥
)−1

. (4.51)

Here κ is a constant of order one that depends on the details of how the infrared divergences
are regulated at that scale. In our analytical calculation, we do not have control over the value
of this coefficient.

We also use the corresponding approximation for the single inclusive spectrum,〈
dN1

dyd2p⊥

〉
≈ Nc(N

2
c − 1)

4π4g2
S⊥(g

2µ)4

p4⊥
, (4.52)

where we disregard the logarithm (see eq. (4.12)). We can now express our result for the
connected part of the q-gluon spectrum as〈

dNq

dy1d2p1⊥ . . . dyqd
2pq⊥

〉
conn.

=

= (q− 1)!
(N2c − 1)κQ

2
sS⊥

2π

(
(g2µ)4

g2
1

2π3
Nc

κQ2s

)q
1

(p1⊥)
4 · · · (pq⊥)4

= (q− 1)!
(N2c − 1)κQ

2
sS⊥

2π

∏q
i=1

〈
dN1

dyid2pi⊥

〉
((N2c − 1)κQ

2
sS⊥/(2π))

q . (4.53)

If we integrate this equation over the rapidities (in the range of size ∆Y) and transverse mo-
menta of the q gluons (fromΛ to∞), we obtain the following result for the factorial cumulant

mq = (q− 1)!k

[
〈n〉
k

]q
, (4.54)

with

k = κ
(N2c − 1)Q

2
sS⊥

2π
. (4.55)

The exact constant factors, encoded in the coefficient κ, depend on the precise way the in-
frared divergences (logarithmic in the single inclusive spectrum, power law for the multigluon
correlations) are regulated. These factors cannot be obtained exactly in an analytic calculation
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to lowest order in the sources. However, the leading parametric dependences in the relevant
variables αs, Qs, S⊥ and Nc can be expected to be the same to all orders in the sources. A
possible additional (mild) q-dependence in κ would be a minor correction to the behavior of
the probability distribution, mostly determined by the combinatorial factor (q− 1)!.

Equations (4.54) and (4.55) are the main result of this section. One can see that these
factorial cumulants are those that define a negative binomial distribution. It arises very nat-
urally in the glasma based on the Gaussian combinatorics of the classical sources and the
assumption of the fluctuations in the system being dominated by a correlation length Q−1

s .
It is important to stress the main difference between the moments in eq. (4.54) and what one
would get for a Poisson distribution (i.e. in the absence of correlations among the produced
particles): with a Poisson distribution, all the mq’s for q > 1 are zero, while in eq. (4.54)
they are growing factorially.

It is also easy to interpret this result as the superposition of k incoherent sources15, each
of them emitting 〈n〉/k gluons distributed according to the Bose-Einstein distribution. This
is seen by noticing that the generating function for the negative binomial distribution is the
k-th power of (1 − 〈n〉

k
(z − 1))−1, which is the generating function for the Bose-Einstein

distribution. In the glasma flux tube picture, these elementary sources emit gluons of one
given color from one given flux tube, as one can see from their number given by eq. (4.55).
Geometrically, the transverse area S⊥ is filled with Q2sS⊥ independent flux tubes of trans-
verse area ∼ 1/Q2s . Each of these tubes emits gluons in Nc

2 − 1 different colors. Our result
shows that the probability distribution of gluons of a given color emitted from one flux tube
is approximately a Bose-Einstein distribution.

Experimentally, the parameter k increases somewhat with ∆Y, the size of the rapidity in-
terval in which the particles are measured. The dependence is, however, very slow for large
∆Y, pointing to the presence of a long range rapidity correlation in the system [170]. This
is natural in the glasma picture, since flux tubes are coherent over large rapidity intervals.
The number of flux tubes, which gives the parameter k of the negative binomial distribu-
tion, essentially depends only on the transverse area of the projectiles and on the saturation
momentum.

The main difficulty in interpreting the experimental results arises from the geometrical
fluctuations that result from averaging over different impact parameters in one finite centrality
bin. To minimize this effect one should use as small centrality bins as possible. To the extent
that this uncertainty allows us to compare results in gold-gold and pp̄ collisions, the picture
we present seems fairly consistent. For a fixed collision energy, we would expect a scaling k ∼

Q2sS⊥ ∼ Npart. While keeping this caveat in mind, the results from UA5 [166] and E735 [171]
(k ≈ 2 . . . 4, Npart = 2) and PHENIX k ≈ 350 for 0-5% most central collisions [167] or
k = 690 when extrapolated to a zero centrality bin width [168],Npart ≈ 350) seem consistent
with this estimate.

From the fit of the parameter k in central gold-gold collisions by the PHENIX exper-
iment [168] and the value Qs ≈ 1.1 GeV estimated from measurements of the charged
multiplicity, one can use eq. (4.55) to obtain an estimate κ ≈ 0.2 for the parameter that re-
flects our uncertainty in the infrared sector. This means that at RHIC energies the flux tube

15Explicitly, consider n = n1 + · · · + nk where the ni’s are k random variables independent of each
other that have the same probability distribution pni . The probability distribution of the random variable
n is then Pn =

∑
n1
· · ·
∑
nk
δ(n −

∑k
i=1 ni)pn1 · · · pnk and the generating function

∑
n z
nPn =∑

n1
· · ·
∑
nk
zn1+···+nkpn1 · · · pnk , which is the k-th power of the generating function for one of the variables

ni.
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size, as measured from the multiplicity distribution, is not yet very clearly separated from the
confinement scale. At LHC energies we can expect this separation to be better.

For increasing collision energy we would expect Qs and therefore k to increase. The en-
ergies where the UA5 measurements are done are still in the transition region from a behavior
of k decreasing with energy from lower

√
s, but we would expect k at the LHC to be clearly

larger. The decreasing behavior at low energy follows because of the Poisson nature of low
energy particle emission, and that for a Poisson distribution k→∞.

In other approaches, the negative binomial has been interpreted as resulting from a partial
stimulated emission or cascade process [170]. A popular approach has been to interpret
the observations in terms of a fluctuating number of strings [131], each producing particles
typically with a Poisson distribution [172, 173] (see also [174, 175] for a more pQCD based
approach). While the picture of flux tubes in the glasma has many similarities to ideas in
string model phenomenology, they differ in the distribution of particles produced from a
single flux tube: the probability distribution of gluons from a glasma flux tube is not a narrow
Poissonian, but has instead a longer tail.
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Part III

Final State Evolution,
Thermalization?
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Introduction

I
n the previous part of this manuscript, we have shown how the dependence of
observables on the collision energy or on rapidity arises from universal distribu-
tions that describe the color charge content of the projectiles. Then we discussed
a number of phenomenological consequences of this factorization, that can be
evaluated based on the assumption that they are not much affected by the evolu-

tion of the system after the collision. However, it is also well known that some observables
depend crucially on the final state evolution. One key example of these observables is the
elliptic flow, that measures that momentum space anisotropy of the distribution of particles
in collisions with a non-zero impact parameter. At the time of the collision, the locality of the
particle production processes makes them insensitive to the geometry of the colliding region,
and therefore there is no reason to expect any significant momentum anisotropy of the pro-
duced particles. The appearance of the elliptic flow can be explained by the evolution of the
system after the collision, but seems to require that it expands like a fluid with a very small
viscosity [57].

In the first section of chapter 4, we have seen that the classical color fields produced in the
collision of two nuclei have chromo-magnetic field lines that are parallel to the collision axis
at τ = 0. Such a configuration of color fields, called the Glasma, has a negative longitudinal
pressure, making the system less than ideal for the applicability of hydrodynamics. This
observation raises an interesting question in the CGC description of heavy ion collisions: how
does one go from highly coherent but anisotropic classical fields to a nearly perfect fluid? A
natural question to ask is whether there are some important higher order contributions, not
included in the classical solutions of Yang-Mills equations, that make the system behave
closer to a perfect fluid.

In the chapter 5, we show that classical solutions of the Yang-Mills equations are subject
to instabilities, that produce unphysical secular divergences in higher order corrections to ob-
servables. We modify our power counting rules in order to track these pathological terms, and
we resum them into a manifestly finite expression that amounts to add Gaussian fluctuations
to the initial conditions for the classical color field fluctuate at τ = 0+.

In the chapter 6, we study the effect of these Gaussian fluctuations in a simpler scalar field
theory, in order to avoid some difficulties of the implementation in QCD. We demonstrate that
these fluctuations, via a decoherence process, lead the pressure of the system of fields to relax
in time towards the equilibrium value of the pressure. We also show that they significantly
alter the energy density fluctuations in the system, making the system more thermal-like.
Then, we investigate more thoroughly the properties of the system of fields when the Gaussian
fluctuations are included, by computing its spectral density, the mass of its quasi-particles,
its occupation number and entropy density. All these quantities point to the conclusion that,
although the system has the equation of state of an ideal fluid, it has not yet reached local
thermal equilibrium.
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Chapter 5

Unstable modes, Resummation
of the Secular Terms

A
t leading order (or leading log, if the initial state logarithms have been re-
summed), the CGC describes the matter produced in heavy ion collisions as
a solution of classical Yang-Mills equations. The energy-momentum tensor of
this classical field configuration is however very peculiar, because its longitudi-
nal pressure is negative, making it unsuitable for an hydrodynamical description

of its expansion. Moreover, the existence of a negative pressure suggests that the system of
fields may in fact be unstable.

As we shall discuss in this chapter, this is indeed the case: the classical Yang-Mills equa-
tions suffer from an instability that makes their solutions extremely sensitive to their initial
condition (see the section 5.1). In other words, subleading perturbations (in powers of g)
to their initial condition grow exponentially in time and eventually become as large as the
leading order classical field. The existence of these unstable modes implies that some NLO
corrections to the energy-momentum tensor will have an unbounded growth as time increases
(a phenomenon known as a secular divergence), and after some time they will become as
large as the LO contribution.

Therefore, one should alter the power counting in order to resum these corrections. In the
section 5.2, we present a resummation scheme that collects the fastest growing corrections at
higher loop orders, and we show that this resummation can be reformulated as an average over
a Gaussian ensemble of initial conditions at τ = 0+ for the classical Yang-Mills equations. In
the next section, we discuss the time evolution of this ensemble of classical fields, and argue
that it is controlled by a classical Liouville equation.

5.1 Unstable modes in Yang-Mills equations

As we have seen before, the classical solutions of the Yang-Mills equations that are relevant in
the CGC description of heavy ion collisions at leading logarithmic accuracy are independent
of the space-time rapidity η. An important question is whether these rapidity independent
solutions are stable under small perturbations. In other words, what happens if one super-
imposes a small perturbation (possibly η-dependent) to their initial condition? In order to
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Figure 5.1: Numerical simulation of the time evolution of rapidity dependent perturbations. From
[176].
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answer this question, one must now solve numerically the classical Yang-Mills equations in
3+1 dimensions, which has been done in [12, 31, 176, 177]. A result of this numerical simu-
lation is shown in the figure 5.1. The horizontal axis is the proper time in units of the inverse
saturation scale, and the vertical axis represents the largest Fourier η-mode of the longitudinal
pressure, defined as

max
ν6=0

[∫
dηd2x⊥ e

iνη τ2Tηη
]
, (5.1)

where we denote

τ2Tηη ≡ sinh2(η) T00 + cosh2(η) T33 . (5.2)

Note that with the leading order Glasma fields, τ2Tηη is independent of the rapidity η, and
thus its only Fourier mode is the mode ν = 0. Therefore, the maximum over the non-zero
modes defined in eq. (5.1) is zero. We see in the figure 5.1 that it indeed starts at a very small
value at τ = 0, a consequence of the fact that the initial value of the perturbation is taken to
be very small. Subsequently, this quantity grows exponentially in time1, as exp(

√
const× τ),

suggesting that the perturbation of the gauge field itself grows exponentially fast. This ex-
ponential growth of a seemingly negligible perturbation is the sign of an instability in the
classical Yang-Mills equations, which should have been expected since it has been shown in
[28, 29, 178] that they have positive Lyapunov exponents. Semi-analytic studies of small
perturbations to solutions of the Yang-Mills equations have also confirmed the existence of
unstable modes [179, 180].

A similar instability, known as the Weibel instability (or filamentation instability), has
also been observed in the study of a quark-gluon plasma that has an anisotropic distribution
of particles in momentum space. In this case, certain modes develop an imaginary Debye
screening mass [40, 41], that signals the instability.

1It is easy to understand at a qualitative level that the square root of time (as opposed to a linear dependence in
time) inside the exponential is due to the expansion of the system. Indeed, one can see the unstable modes as having
imaginary screening masses. In a system whose volume is proportional to time due to the longitudinal expansion,
the square of the screening masses decreases as 1/τ since it is proportional to the square of the classical field. Such
a screening term in the equation of motion of a field leads to solutions that behave like Bessel In functions, whose
leading behavior at late time contains an exponential of

√
τ. See also [48].
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Note that the quantity displayed in the figure 5.1 cannot grow indefinitely in time. Indeed,
when the perturbation becomes comparable in size to the underlying Glasma field, the non-
linearities of the Yang-Mills equations should prevent the energy momentum tensor from
growing any further. However, this observation leads to the hope that fluctuations that are
not included in the Glasma leading order calculation may grow fast enough to make the
longitudinal pressure become positive (recall that the Glasma classical field gives a negative
value τ2Tηη = −ε). In the toy calculation of [176], the perturbations that led to this positive
growing contribution to the longitudinal pressure have been introduced by hand. However,
such perturbations are naturally generated by the quantum fluctuations in the system. In the
CGC formalism, these should arise at higher orders via loop corrections. In the next section
we show how to resum the loop contributions that give the fastest growing corrections due to
this instability, we justify the averaging procedure used in [176], and argue about what the
ensemble of initial conditions should be.

5.2 Resummation of the secular divergences

5.2.1 NLO correction

Let us first recall the one-loop result for the energy-momentum tensor. We have derived in
the chapter 3 a formal expression for the NLO correction to the energy momentum tensor in a
given configuration ρ̃1,2 of the color sources that represent the fast partons in the two nuclei:

Tµν
NLO

(x) =

[
1

2

∑
λ,a

∫
d3k

(2π)32k

∫
Σ

d3Su d
3Sv

[
a−kλa ·Tu

][
a+kλa ·Tv

]
+

∫
Σ

d3Su

[
β ·Tu

]]
Tµν

LO
(x) , (5.3)

In this NLO correction, some of the terms that are independent of the rapidity η have loga-
rithms of the cutoff of the CGC effective theory, and can be interpreted as being part of the
wavefunctions of the incoming projectiles. We assume in the following that these leading
logarithmic terms have already been absorbed in the distributions of the sources ρ̃1,2 via the
JIMWLK evolution equation.

In order to keep the subsequent formulas compact, we will use the notation2

Γ2(u, v) ·TuTv ≡
∑
λ,a

∫
d3k

(2π)32k

[
a−kλa ·Tu

][
a+kλa ·Tv

]
. (5.4)

Although we do not introduce a new notation, from now on Γ2 and β denote what is left
in eq. (5.3) after one has isolated the leading logarithmic terms that are resummed via the
JIMWLK evolution. In this chapter, we focus mostly on what happens for a fixed configu-
ration ρ̃1,2 of the sources that describe the incoming projectiles, since our goal is to argue
whether thermalization and/or flow occurs in a given collision. In order to stress the fact that
the energy-momentum tensor at leading order is a functional of the initial classical fields at
τ = 0+, we may use the notation

Tµν
LO

(x) ≡ Tµν
LO

[
A0[ρ̃1,2]; x

]
, (5.5)

2Since in Yang-Mills theory, the operator a ·Tu is the sum of three terms (see eq. (3.45)), the quantity Γ2(u, v)
that we have introduced via this notation should therefore be though of as being a 3× 3 matrix.
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A0 is the pair (A0,E0) where A0 is the initial value of the gauge field and E0 the initial value
of the corresponding canonical momentum3 (which is an electric field, hence the notation).
A0 and E0 are themselves functions of ρ̃1,2. x is the space-time point at which the energy-
momentum tensor is evaluated.

The numerical evidence shown in the figure 5.1 for the existence of instabilities in the
classical solutions of Yang-Mills equations implies that the NLO correction to the energy-
momentum tensor contains secular divergences: some of its components4 at least should
divergence when τ→∞. Therefore, a strict application of the g2 expansion for the calcula-
tion of the energy-momentum tensor is bound to fail after a finite amount of time, after which
the CGC predictions cannot be trusted unless the behavior of the perturbative expansion can
be cured by a resummation.

5.2.2 Modified power counting rules

So far, our power counting has been limited to keeping track of the powers of the coupling
constant g, coming either explicitly from the vertices in Feynman diagrams or implicitly via
the sources ρ̃1,2 that are parametrically of order g−1 in the saturated regime. We have in
fact already departed from a strict application of this counting by resumming the higher order
terms that come with a sufficiently high power of a logarithm of the cutoffΛ± – the so-called
leading logarithmic corrections. Now, the instabilities that introduce secular divergences in
the NLO corrections to the energy-momentum tensor call for another improvement to this
power counting. Ideally, we would like to resum all the terms that have secular divergences
in higher loop corrections. In order to achieve that, we need now some power counting rules
to determine which terms are important and which terms can be neglected.

At leading order (tree level), the energy momentum tensor is of order Q4s/g
2. In the

absence of any secular divergence, its NLO corrections should therefore be of orderQ4s . This
can be recovered from eq. (5.3) by the following counting rules:

Γ2(u, v) ∼ a−kλa(u)a+kλa(v) ∼ O(1) , (5.6)

β(u) ∼ O(g) , (5.7)

Tu ∼
δ

δA0
∼ O(g) . (5.8)

The existence of instabilities implies that we must alter our estimate of the order of magnitude
of the operators Tu. Indeed, since TuA(τ, x) is the propagator of a small fluctuation over
the background field between the initial surface Σ and the point (τ, x), it grows at the same
pace as the unstable fluctuations. Thus, the counting rule forTu should be modified to read :

Tu ∼ O(ge
√
µτ) , (5.9)

3Since the Yang-Mills equations contain second derivatives with respect to time, the initial condition must specify
both the initial field A0 and its first time derivative E0. Moreover, we have not written here the Lorentz indices of
the gauge potential and electric field – A0 and E0 are themselves multicomponent objects.

4The conservation of the energy-momentum tensor, ∂µTµν = 0, which is valid order by order in g2, ensures
that some combinations of its components are protected from any such divergences.
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and the combination Γ2(u, v)TuTv that enters in eq. (5.3) leads to a relative correction of
order g2e2

√
µτ to the energy momentum tensor. At short times, this is indeed a correction

suppressed by a factor g2 –as expected for a 1-loop correction– but it is enhanced exponen-
tially at later times due to the instability. When this corrective factor becomes of order unity,
the loop expansion breaks down. This happens at a time

τmax ∼ µ−1 ln2
(
1

g

)
. (5.10)

When this time is reached, the 1-loop correction becomes as large as the leading order contri-
bution, and one should in fact expect that an infinite series of higher loop corrections become
equally important.

5.2.3 Dominant higher loop corrections

Our goal now is to collect from the higher orders all the terms that are leading at the time
τmax. This comprises all the terms where the extra powers of g2 are compensated by an equal
number of factors such as e2

√
µτ.

A typical higher order correction to the energy momentum tensor can still be written in
the form of eq. (5.3), but with a more general operator acting on Tµν

LO
(x):∫

Σ

d3Su1 · · ·d3Sun Γn(u1, · · · ,un) ·Tu1 · · ·Tun , (5.11)

where Γn is some n-point function (simply connected or not). If eq. (5.11) is a piece of a
L-loop correction to the energy-momentum tensor, the order gp and the number n of points
of the function Γn are related by:

n+ p = 2L . (5.12)

In the figures 5.2 and 5.3, we illustrate this formula by some examples of 1-loop and 2-loop
contributions. This formula also works if Γn contains tadpole contributions (such as β for
instance) that are disconnected from the rest of the n-point function. Note that p = 0 is the
smallest possible value for p. Taking into account the effect of the instabilities, the order of
magnitude of a contribution obtained from eq. (5.11) is

gp
[
ge
√
µτ
]n
. (5.13)

If we disregard the time-dependent factors in this formula, the naive power counting would
indicate that this is a correction of order g2L. However, at the time τmax it is in reality of
order gp. In other words, at the time τmax all the terms for which p = 0 are of the same order
and leading, while all the terms for which p > 0 are suppressed. Therefore, it is natural to
resum all the p = 0 terms, and to neglect all those with p > 0. This implies that the numbers
n of points must be even, equal to 2L. Moreover, if we restrict ourselves to terms of order
p = 0 in Γ2L, the only possibility is to construct Γ2L as a product of L factors Γ2. In particular,
tadpole contributions such as β are excluded in the p = 0 terms, since they contain at least
one power of g. Any non-factorized contribution to Γ2L requires extra powers of the coupling
g, and therefore cannot contribute at the order p = 0.
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Figure 5.2: Representation of the 1-loop contribution involving the function Γ2(u, v). The thick
red line is the Σ surface on which the initial value problem is set up. The open circles
represent the initial data. The filled blue circles represent the two operators Tu,v, and the
U-shaped wavy line below the light-cone is the function Γ2(u, v).
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µν
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vΓ
2
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Therefore, the leading operator at L loops in eq. (5.11) is in fact the L-th power of the
2-point operator that appears at 1-loop, i.e.

1

L!

[
1

2

∫
Σ

d3Sud
3Sv Γ2(u, v) ·TuTv

]L
, (5.14)

where the inverse factorial prefactor is a symmetry factor that prevents multiple countings.
When we sum all these contributions from L = 0 (leading order) to L = +∞, we obtain the
exponential of the leading order result

Tµνresummed(x) = exp

[
1

2

∫
Σ

d3Sud
3Sv Γ2(u, v) ·TuTv

]
Tµν

LO
(x) . (5.15)

Figure 5.3: Representation of two examples of 2-loop contributions. The thick red line is the
τ = 0+ surface on which the initial value problem is set up. The open circles represent the
initial data. The filled blue circles represent operatorsTu,v. Left: contribution with a Γ4 that
factorizes into two Γ2’s. Right: contribution with a Γ3.

T
µν
(x) T

µν
(x)

Γ3(u,v,w)
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5.2.4 Average over initial fluctuations

Eq. (5.15) provides an expression that resums all the leading contributions at the time τ =
τmax. However, this is a very formal expression, and in this form it is not obvious that it leads
to a result that is free of the secular divergences encountered at NLO. Moreover, this is not a
formula that one can evaluate numerically since it contains functional derivatives with respect
to the initial condition of the classical color field.

Fortunately, eq. (5.15) can be rewritten in a much more intuitive way. One should recall
that the operator Tu is the generator of shifts of the initial conditions at the point u ∈ Σ for
the classical field A. In other words, if a0(u) is a perturbation of this initial condition, we
can write:

exp

[ ∫
Σ

d3Su [a0 ·Tu]

]
F
[
A0

]
= F

[
A0 + a0

]
, (5.16)

for any functional F[A0]. (A0 ≡ (A0,E0) is the collection of the initial classical fields A0
and their canonical momenta E0 – similarly, a0 combines the perturbation to the gauge fields
and the perturbation to the electric fields). The second step is to note that5

exp

[
1

2

∫
Σ

d3Sud
3Sv Γ2(u, v)·TuTv

]
=

∫[
Da0

]
F0
[
a0
]

exp

[ ∫
Σ

d3Su [a0 ·Tu]

]
, (5.17)

with6

F0
[
a0
]
∝ exp

[
−
1

2

∫
Σ

d3Sud
3Sv a0(u)Γ

−1
2 (u, v)a0(v)

]
. (5.18)

In eq. (5.17), the measure [Da0] contains one functional integration for each gauge field
component and each electric field component involved in the initial condition on Σ. Thus,
one can rewrite:

Tµνresummed(x) =

∫ [
Da0

]
F0
[
a0
]
Tµν

LO

[
A0[ρ̃1,2] + a0; x

]
. (5.19)

In other words, the resummation of the terms that give the leading contribution at the time
τmax can equivalently be performed by adding a fluctuating component to the initial condition
of the classical field7 on Σ, with a Gaussian distribution. The previous formula can also be
rewritten as

Tµνresummed(x) =

∫ [
DA0

]
F0
[
A0; ρ̃1,2

]
Tµν

LO

[
A0; x

]
, (5.20)

5An elementary form of this identity,

e
α
2
∂2x f(x) =

∫+∞
−∞ dz

e−z
2/2α

√
2πα

f(x + z) ,

can be proven by doing a Taylor expansion of the exponential in the left hand side and of f(x + z) in the right hand
side. In this simple example, one sees that an operator which is Gaussian in derivatives is a smearing operator that
amounts to convoluting the target function with a Gaussian.

6The unwritten constant prefactor, proportional to [det(Γ2)]−1/2, is such that the distribution F0
[
a0

]
has an

integral over a0 normalized to unity.
7The same conclusion was reached in [4, 181], via different approaches.
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where F0[A0; ρ̃1,2] is now a Gaussian functional whose center value depends on the config-
uration of ρ̃1,2 of the fast sources:

F0
[
A0; ρ̃1,2

]
≡ F0[A0 −A0[ρ̃1,2]] . (5.21)

The result obtained in eq. (5.20) is quite remarkable: the resummation of the loop corrections
(i.e. quantum corrections) that lead to the most unstable behavior is equivalent to an average
over a Gaussian ensemble of classical field configurations.

At this stage, it is easy to see why eq. (5.20) cures the problems encountered in a fixed
loop order expansion. Indeed, the secular divergences at NLO are due to the fact that the
strict g2 expansion amounts to linearizing the equation of motion for perturbations around
the classical field. The resummation that we have performed restores all the non-linearities
in the dynamics of these perturbations –this is done by promoting the perturbation into a
shift of the initial conditions for the non-linear evolution of the classical field– and as a
consequence, eq. (5.20) does not contain secular divergences anymore. Indeed, since the
Yang-Mills potential is bounded from below, the classical field A whose initial condition
is A0 leads to an energy-momentum tensor whose components are bounded at all times.
Averaging overA0 with a Gaussian ensemble does not alter this conclusion.

5.3 Initial spectrum of fluctuations

5.3.1 Gauge invariance

For applications to heavy ion collisions, it is necessary to know the spectrum of fluctuations
described by the distribution F0

[
a0
]

on a surface Σ at some very small proper time τ→ 0+.
Before doing this, let us discuss some formal properties of these fluctuations, starting with
gauge invariance.

From eq. (5.19), one can check that the resummed energy-momentum tensor is invariant
under gauge transformations of the background classical gauge field:

A0[ρ̃1,2]→ Ω†Aµ0 [ρ̃1,2]Ω+
i

g
Ω†∂µΩ . (5.22)

We already know that the energy-momentum tensor calculated in a given configuration of
classical field is invariant under gauge transformations of this classical field. Therefore,
Tµν

LO

[
A0[ρ̃1,2] + a0; x

]
is invariant under the transformation

A0[ρ̃1,2] + a0 → Ω†
[
A
µ
0 [ρ̃1,2] + a0

]
Ω+

i

g
Ω†∂µΩ . (5.23)

For the left hand side of eq. (5.19) to have the announced invariance property, it is suffi-
cient that the distribution of fluctuations F0

[
A0; ρ̃1,2

]
be invariant when we simultaneously

perform the transformation of eq. (5.22) for the background field and the transformation

a0 → Ω†a0Ω (5.24)

for the fluctuation. Note that this is the expression of the gauge transformation when a0 is
expressed in the fundamental representation. Using Ω†tarΩ = tbrΩ

†
ba (where the index r
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denotes an arbitrary representation, andΩab the components ofΩ in the adjoint representa-
tion), this transformation law is equivalent to8

aa0 → Ω†aba
b
0 . (5.25)

Formally, the invariance of the distribution of fluctuations under this transformation is satis-
fied provided the kernel Γ2(u, v) transforms as

Γ2ab(u, v)→ Ω†ac(u)Γ2cd(u, v)Ωdb(v) (5.26)

when the classical field A0[ρ̃1,2] is gauge rotated according to eq. (5.22). Note that eq. (5.22)
is nothing but the gauge transformation of the propagator of a small fluctuation on top of the
background A0[ρ̃1,2], so it should be satisfied by construction, given the definition (5.4).

5.3.2 Ultraviolet divergences

Another important aspect of eq. (5.20) is the fact that it is potentially plagued by ultraviolet
divergences. Indeed, since one is resumming quantum fluctuations, the energy-momentum
tensor should receive a contribution from the (infinite) zero point energy. In order to regu-
larize these divergences, one should temporarily limit by a cutoff Λ the largest momentum
mode of the fluctuation a0. Since the energy-momentum tensor has a canonical dimension
four, we expect that its dependence on this cutoff can be organized as follows:

Tµνresummed(x) = c1Λ
4 + c2Λ

2 + c3 , (5.27)

where c1,2,3 are finite quantities. It is easy to renormalize the energy-momentum tensor by
subtraction if one can prove that the divergences are truly a property of the vacuum and do
not depend on the background classical field A0[ρ̃1,2]. The coefficient c1 is dimensionless –
it is therefore a pure number, that cannot depend on the background field. The case of c2 is
a bit more tricky. Indeed, its dimension two a priori allows a dependence on the background
field. However, since we know that the left hand side in eq. (5.27) is invariant under gauge
transformations of the background field, we conclude that the coefficient c2 must be a gauge
invariant, local (because the left hand side is a local quantity), dimension two quantity. There
is no such quantity in Yang-Mills theory, except for c2 = 0. Thus, on the basis of gauge
symmetry and locality, we expect that the only ultraviolet divergence in our expression for
the resummed energy-momentum tensor is a quartic divergence, with a coefficient that does
not depend on the background field. Because of this, it can in principle be computed once for
all (by taking ρ̃1,2 = 0) and subtracted.

5.3.3 Locality of the spectrum

From the definition in eq. (5.18), it appears that the distribution of fluctuations on the initial
surface is a Gaussian that is entirely determined by the 2-point function Γ2(u, v). In eq. (5.4),
this 2-point function is expressed in terms of the small fluctuations aµ±kλa, that are plane
waves that have evolved from x0 = −∞ to the time of interest, over the classical background
field A0. This formula suggests that the spectrum of fluctuations on the Cauchy surface Σ
depends on the entire past history of the system, from x0 = −∞ to the proper time τ of the

8The aa0 (C-number) introduced here is related to the a0 (matrix in the representation r of SU(3)) of eq. (5.24)
by a0 = aa0 t

a
r .
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surface Σ. However, this spectrum is in fact a local (in time) property of the system, that
depends only on the background field in the vicinity of the surface Σ and on a basis of small
fluctuations over the background in that neighborhood.

Consider the equation for the propagation of small fluctuations on top of a classical field
configuration A,

1√
−g

Dα
(√

−ggαβgνµ (Dβaµ −Dµaβ)
)
− ig gαβgνµFµβ aα = 0 . (5.28)

written here for a generic system of coordinates, possibly curvilinear. gµν is the metric tensor
in this system of coordinates, and g denotes its determinant (negative since the signature of
the metric is chosen to be (+,−,−,−).

Since the equations of motion (5.28) of the small fluctuations are linear, the set of its
solutions is a vector space, and it is sufficient to know a basis of this space in order to be
able to construct any solution. For a real background field such as the classical field Aµ, the
evolution in time of the small fluctuations is unitary9. Therefore, there should be an inner
product between pairs of solutions of eq. (5.28) that remains invariant during the evolution of
these solutions. To construct this inner product, rewrite eq. (5.28) as

Oνµaµ = 0 , (5.29)

with

Oνµ ≡ Dα
√
−g
(
gνµgαβ − gνβgµα

)
Dβ − ig

√
−ggναgµβFαβ . (5.30)

Consider now two solutions aµ and bµ of eq. (5.29), and start from the identity

0 =

∫
Ω

d4x a∗ν(x)
[ −→
Oνµ −

←−
Oνµ∗

]
bµ(x) , (5.31)

whereΩ is some domain of space-time. This identity is a trivial consequence of the equations
of motion for a∗ and b. A remarkable property of the integrand in the right hand side is that
it is a total derivative10,

a∗ν(x)
[ −→
Oνµ −

←−
Oνµ∗

]
bµ(x) =

= ∂α

[√
−g
(
gνµgαβ −

1

2
gνβgµα −

1

2
gναgµβ

)(
a∗ν(x)

↔
Dβ bµ(x)

)]
. (5.32)

Therefore, one can use Stokes’ theorem,∫
Ω

d4x ∂αF
α =

∫
∂Ω

d3Su nαF
α (5.33)

where d3Su is the measure on the boundary ∂Ω, and nα is a normal vector to the boundary,
oriented outwards. Let us assume that the boundary ∂Ω is made of two locally space-like

9In event of confusion from the apparent structure of the last term of eq. (5.28), note that the components of the
adjoint generators are purely imaginary, and therefore the function that multiplies aµ in this term is real.

10For this property to be true, it is crucial that the last term in eq. (5.30) is real and one should properly take the
complex conjugate of the covariant derivatives when they act on the left. This property is in fact closely related to
the operator Oνµ being Hermitian; the evolution of the fluctuations is unitary.
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surfaces Σ1 and Σ2, and a third boundary located at infinity in the spatial directions on which
all the fields are vanishing. Then eq. (5.31) is equivalent to∫

Σ1

d3Su

√
−g
(
gνµgαβ −

1

2
gνβgµα −

1

2
gναgµβ

)
nα

(
a∗ν(u)

↔
Dβ bµ(u)

)
=

∫
Σ2

d3Su

√
−g
(
gνµgαβ −

1

2
gνβgµα −

1

2
gναgµβ

)
nα

(
a∗ν(u)

↔
Dβ bµ(u)

)
.

(5.34)

We have thus proved, most generally, that an inner product defined as

(
a
∣∣b) ≡ i ∫

Σ

d3Su

√
−g
(
gνµgαβ−

1

2
gνβgµα−

1

2
gναgµβ

)
nα

(
a∗ν(u)

↔
Dβ bµ(u)

)
,

(5.35)

is independent of the Cauchy surface Σ used to define it, provided aµ and bµ obey the equa-
tion of motion of small fluctuations. Note that we have added a factor i to its definition to
ensure that it is Hermitian,(

a
∣∣b)∗ =

(
b
∣∣a) ,(

a∗
∣∣b∗) = −

(
b
∣∣a) = −

(
a
∣∣b)∗ . (5.36)

In the special case where Σ is a surface of constant τ and we work in the Fock-Schwinger
gauge Aτ = 0, we have n ·D = ∂τ, and n · a = 0, n · b = 0. Therefore the inner product
simplifies into(

a
∣∣b) ≡ i ∫

τ=const

d3Su

√
−g gνµ

(
a∗ν(u)

↔
∂τ bµ(u)

)
. (5.37)

Now let us evaluate the inner product for pairs of field fluctuations taken from the set of
the a±kλa. Since the inner product does not depend on the chosen time surface and since
we know these fields at x0 → −∞ (because they are defined via their initial condition in
the remote past), we can evaluate the inner product by using plane wave initial conditions for
these fluctuation fields. This gives(

a+kλa

∣∣a−lρb

)
= 0(

a+kλa

∣∣a+lρb

)
= δλρδab(2π)

32kδ(k− l)(
a−kλa

∣∣a−lρb

)
= −δλρδab(2π)

32kδ(k− l) . (5.38)

Thus this particular basis of the space of solutions of eq. (6.44) is orthonormal with respect
to the invariant inner product defined in eq. (5.35). Note also that the a+kλa’s represent
only one half of the basis of the vector space of solutions of eq. (5.28) –namely the solu-
tions that have a positive frequency in the remote past. The other half is simply obtained
by complex conjugation. It easy to check that any unitary transformation of the positive en-
ergy solutions (and a concomitant change to the negative energy ones, that are their complex
conjugates) transforms an orthonormal basis into another orthonormal basis, and leaves the
formula eq. (5.4) unchanged. This remark is useful because it leaves us the freedom to label
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the elements of the basis by other quantities than the Cartesian 3-momentum. This will be
true in our specific case where we are interested in a basis in a curvilinear co-ordinate system.

It is important to note that the prefactor in front of the δ functions in eq. (5.38) exactly
cancels the factors that are included in the integration measure in eq. (5.4), namely one has

∑
λ,a

∫
d3k

(2π)32k

(
a+kλa

∣∣a+lρb

)
= 1 . (5.39)

This remark in fact defines uniquely how the inner product of the basis elements should be
normalized given a generic choice for the integration measure in eq. (5.4). Moreover, this
makes clear that eq. (5.4) is just one particular representation of the correlator Γ2; there exists
such a representation for any orthonormal basis of the space of solutions of eq. (5.28), as we
shall explain now. Thanks to the above inner product, one can spell out a general procedure11

for constructing the correlator Γ2:

i. Find a complete set of independent positive energy solutions a
K

of eq. (5.28), where
K denotes collectively (usually a mix of continuous and discrete labels) all the labels
necessary to index these solutions.

ii. This set of solutions should obey the orthogonality condition,(
a
K

∣∣a
K′

)
= N

K
δ
KK′ (5.40)

with N
K

real and positive definite12,

iii. The correlator Γ2 is then given by

Γ2(u, v) =

∫
dµ

K
a
K
(u)a∗

K
(v) , (5.41)

where the measure dµ
K

(a mix of integrals and discrete sums) is such that∫
dµ

K
N
K
δ
KK′ = 1 . (5.42)

It is clear from eqs. (5.40) and (5.42) that the Γ2 given by eq. (5.41) is independent of how we
normalize the solutions, provided we choose the integration measure accordingly. Moreover,
the correlator Γ2 does not depend on the orthonormal basis of solutions one chooses, and we
only need to know the solutions at the time of interest (and thus we can avoid the complication
of evolving the plane waves from the past through the forward light-cone).

A further simplification is possible because in practice we won’t need to use directly
eq. (5.41) for Γ2. Indeed, an ensemble of real-valued field fluctuations aµ that have a 2-point
equal-time correlation given by Γ2 can be generated by the following formula,

aµ(x) =

∫
dµ

K

[
c
K
aµ
K
(x) + c∗

K
aµ∗
K
(x)
]
, (5.43)

11In this light, eq. (5.4) which represents Γ2 in terms of the a±kλa’s, exploits one possible method of constructing
such an orthonormal basis. In this case, one starts at x0 = −∞ with the plane waves, that are known to form an
orthonormal basis, and evolves them forward to the time of interest. The time invariance of the inner product then
guarantees us that we get an orthonormal basis on the forward light-cone.

12This means that the solutions a
K

will in general be complex solutions.
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where the coefficients c
K

are random Gaussian-distributed complex numbers whose variance
is given by

〈
c
K
c∗
K′

〉
=

N
K

2
δ
KK′〈

c
K
c
K′

〉
=

〈
c∗
K
c∗
K′

〉
= 0 . (5.44)

Based on these ideas, we have constructed in [13] an orthonormal basis of positive frequency
solutions, that can be used in order to generate an appropriate ensemble of fluctuations. Nat-
urally, since the background field Aµ is known analytically only at τ = 0+ (and in a small
neighborhood of this surface by performing an expansion in powers of τ), the solutions we
have obtained are themselves only valid at small τ. This is however sufficient in practice,
provided one starts the time evolution at a time τ0 � Q−1

s .

5.4 Time evolution of the distribution of initial conditions

5.4.1 Liouville equation

So far, we have not specified the initial surface Σ. To be able to use the power counting rules
that led to the exponentiation of the 1-loop result, i.e. to a Gaussian distribution for the initial
value of the classical field, it is necessary that this surface be located before the instabilities
develop. For instance, eq. (5.20) is valid with a Gaussian F0 if the surface Σ is taken just
above the light-cone, at a fixed proper time τ = 0+. If the initial surface Σ was taken at a
time where the instabilities are already fully developed, then our power counting would be
unable to pick up all the important contributions.

However, one should also be able to recover the left hand side of eq. (5.20) with any initial
surface, provided one modifies appropriately the distribution of initial fields. In particular, it
may be useful to start at a surface Στ located at a later proper time τ, i.e. we would like to
rewrite eq. (5.20) as

Tµνresummed(x) =

∫ [
DAτ

]
Fτ
[
Aτ; ρ̃1,2

]
Tµν

LO

[
Aτ; x

]
, (5.45)

For observables measured at the point x to be independent of this initial time, the distribution
F0 must be replaced by a distribution Fτ, in order to compensate the fact that the evolution
with the Yang-Mills equations is now shortened13. In order to derive the renormalization
group equation for Fτ that realizes this invariance, it is useful to view F0[A0; ρ̃1,2] as a
classical phase-space density for a statistical ensemble of systems. The evolution equation for
Fτ describes how this ensemble of systems flows under the classical Yang-Mills equations.
This equation is nothing but the Liouville equation:

∂Fτ

∂τ
+ {Fτ,HYM } = 0 , (5.46)

13If one knew the distribution Fτ at the time when the observable is measured, one could avoid entirely the step
that consists in solving the Yang-Mills equations.

133



where HYM is the Hamiltonian corresponding to the classical Yang-Mills equations14. The
symbol {·, ·} denotes the classical Poisson bracket, i.e.

{A,B} ≡
∫
d3x

(
δA

δA(x)

δB

δE(x)
−

δA

δE(x)

δB

δA(x)

)
, (5.47)

where E is the canonical momentum associated to A. It is indeed easy to check that if

Figure 5.4: Illustration of the Hamiltonian flow of the ensemble of initial conditions described
by the distribution F0[A0; ρ̃1,2].

F0

F

F

2

1

eq. (5.46) is satisfied, then any observable that depends solely on the value of the classi-
cal field at some later time is independent on the time at which one sets the initial conditions
if its expectation value is given by eq. (5.45).

Note that in the regime where the self-interactions of the gauge fields cannot be neglected,
especially at early times when the field amplitude is large, the Yang-Mills Hamiltonian has
large cubic and quartic terms in the fields and their conjugate momenta. In eq. (5.46), these
non quadratic terms of HYM generate non-gaussianities in the distribution of fields. In other
words, the distribution of fields Fτ remains Gaussian only if the Hamiltonian in the Liouville
equation is quadratic.

From eq. (5.46), one can prove that the phase-space density Fτ[A; ρ̃1,2] is conserved
along a given trajectory (Liouville theorem15). This result has another, particularly intuitive,
formulation: if one sees the evolution of Fτ as that of a fluid in phase-space (see the figure
5.4), then the Liouville theorem is equivalent to the incompressibility of this “fluid”. The
initial distribution F0 (droplet of fluid in this analogy) gets deformed under the time evolution,
but the volume it occupies in phase-space remains constant.

14If E is the canonical momentum associated to the field A, then the classical Yang-Mills equations read:

Ȧ = ∂HYM/∂E , Ė = −∂HYM/∂A .

15Liouville’s theorem can be proven as follows (see also the appendix F). Denote f(τ) = Fτ[A(τ); ρ̃1,2] where
A(τ) obeys the Yang-Mills equations and Fτ the Liouville equation. We have

ḟ(τ) =
∂Fτ

∂τ
+ Ȧ

δFτ

δA
+ Ė

δFτ

δE
= −{Fτ, HYM } + {Fτ, HYM } = 0 .
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5.4.2 Ergodicity and thermalization?

Numerical simulations of the classical Yang-Mills equations have shown that they have posi-
tive Lyapunov exponents [28, 29, 178], i.e. that phase-space trajectories that start very close
tend to diverge exponentially in time, making the dynamics chaotic. From numerical simu-
lations on small lattices, it has also been argued that the phase-space trajectories of classical
Yang-Mills equations are ergodic: most of the trajectories fill densely the manifold corre-
sponding to energy conservation, spending in a given area a time proportional to the measure
of that area.

At this time, the precise implications of this behavior on the thermalization of the system
of color fields are not known and one can only speculate. If the system was contained in a
fixed sized box, then it would be very plausible that a micro-canonical equilibrium ensemble
is reached in a time determined by the inverse of the largest Lyapunov exponent. To make
the argument a bit more precise, recall that for a classical configuration of color fields the
components of the energy-momentum tensor read:

T00 =
1

2

(
EiaE

i
a + BiaB

i
a

)
,

T0i = εijkEjaB
k
a ,

T ij = T00δij − EiaE
j
a − BiaB

j
a . (5.48)

If one assumes that the energy density T00 is conserved along a classical trajectory 16 and that
the ergodicity of a typical trajectory17 implies that all the configurations of the fields Eia, B

i
a

compatible with a given T00 are equally likely18, then one obtains trivially the following
results for the averages over the distribution F0[A0; ρ̃1,2]:〈

T0i
〉

= 0 ,〈
T ij
〉

=
δij

3

〈
T00
〉
. (5.49)

This form of 〈Tµν〉 would justify the applicability of ideal hydrodynamics to the system,
since we have now an energy momentum tensor that has the form expected for an ideal fluid.
Moreover, we see that the equation of state of the system would be ε = 3p, as expected
from its scale invariance. However, in the case of a rapidly expanding system, as is the case
for heavy ion collisions, the conclusion is far from clear since the expansion may hinder the
isotropization.

16Strictly speaking, only the total (i.e. integrated over space) energy is conserved. However, on short time-scales,
the energy cannot move very far because of causality and its local density should remain approximately constant.

17The average over fluctuating initial conditions implied by eq. (5.20) is crucial for this argument. Indeed, the
phase-space trajectory corresponding to the plain Glasma fields is not ergodic: it remains confined to the subspace of
fields that are independent of rapidity, which have a negative longitudinal pressure. By allowing fluctuations of the
initial field on the light-cone, one frees the phase-space trajectories from this constraint, and they can now explore
in full the manifold allowed by energy conservation.

18This is indeed what one expects of ergodicity: all the micro-states corresponding to the same energy are equally
likely.
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Chapter 6

Toy model study:
Scalar fields in a box

I
n the previous chapter, we have argued that in order to cure the problem posed by
secular divergences in higher order corrections, one should add Gaussian fluctu-
ations to the initial conditions on the light-cone for the classical Glasma fields.
Although it is easy to see that this cures the problem of secular divergences, the
consequences of this resummation on the energy-momentum tensor are at best

speculative at this point, because the implementation of this resummation in QCD is techni-
cally challenging. The hope is that this resummation includes all the physical processes that
are important for the equilibration of the system, but a complete proof of this statement is still
out of sight.

Here, we propose to apply the same ideas to a much simpler quantum field theory, in
which one can study these questions numerically in great detail. This model will serve as
a concrete realization of the resummation program we have proposed in the previous chap-
ter. This toy model shares many of the features of the CGC, in particular the evolution of
the system is driven by a strong external source, and it also has instabilities that call for a
resummation identical to the one advocated in the previous chapter.

In the first section of the chapter, we setup the model. We also compute its energy-
momentum tensor at LO and NLO, and observe explicitly the secular divergences in the
NLO correction. Then, we resum the secular terms, and obtain a formula with Gaussian
fluctuations for the initial conditions at t = 0 of the classical field.

In the section 6.2, we first look at the effect of the zero-mode –spatially uniform– fluc-
tuations. We show that they make the pressure relax towards the equilibrium pressure, and
that they lead to a micro-canonical phase-space density. Due to the great simplicity of the
model, it is possible to interpret these effects as a decoherence phenomenon due to the non-
linear couplings between the fields. We also show that the same relaxation occurs in a system
which is longitudinally expanding, as would be the case in a collision.

In the section 6.3, we describe the results of numerical simulations with the complete
spectrum of fluctuations, including spatially dependent fluctuations. We again observe that
the pressure relaxes towards the equilibrium pressure, in a time that decreases with increas-
ing coupling constant. We also compute the fluctuations of the energy density, and show a
qualitative change of shape as time increases.
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Then, we compute the spectral density of the system. This tells us that, after a brief tran-
sient regime, it is populated by massive quasi-particles. Next, we perform a direct computa-
tion of the occupation number in the system. After a rather short transient regime dominated
by resonance phenomena, we observe a scaling regime reminiscent of turbulence over some
range of k. At late times, the system appears to approach thermal equilibrium with a slowly
varying number of particles, and a Bose condensate forms at k = 0 due to a particle excess.

6.1 Model setup

6.1.1 CGC-like scalar model

Our aim is to set up a scalar field model that mimics the main features of the Color Glass
Condensate applied to the description of the early stages of heavy ion collisions. To achieve
this, we couple a scalar field to an external source J, via the following Lagrangian:

L ≡ 1
2
(∂µφ)(∂

µφ) −
g2

4!
φ4 + Jφ . (6.1)

In the CGC framework, the source J coupled to the gauge fields represents the color charge
current carried by the two colliding projectiles, and therefore this current is zero at positive
proper time (i.e. after the collision has taken place). In order to mimic this feature while
keeping a simple coordinate system, we assume here that the source J is nonzero only for
Cartesian time x0 < 0, and we parameterize it as1

J(x) ∼ θ(−x0)
Q3

g
. (6.2)

At x0 > 0, the external source J is zero, and the fields evolve solely via their self-interactions,
like the color fields radiated in the collision of two hadrons or nuclei in the CGC framework.

In eq. (6.2), we have incorporated two additional features that are also present in the CGC.
The external current J is strong in the sense that it contains a power of the inverse coupling
(that we assume to be small, in order to legitimate an expansion in powers of g2), and its
dimension is provided by the parameter Q (that plays in this model the role of the saturation
scale in the Color Glass Condensate).

Note that a scalar field theory with a φ4 coupling in four space-time dimensions is scale
invariant at the classical level (one can see this from the fact that the coupling constant g is
dimensionless for this theory). In our model, this scale invariance is broken solely by the
coupling to the external source J, that introduces the scaleQ. Thus, we should expect that all
physical quantities will simply be given by some power of Q times a prefactor that depends
on the coupling g.

6.1.2 Tµν at leading order

Like in the CGC, the leading order (tree level) contribution to the energy-momentum tensor
can be expressed solely in terms of a classical solution ϕ of the field equation of motion.
Namely, one has

Tµν
LO

(x) = ∂µϕ∂νϕ− gµν
[1
2
(∂αϕ)

2 −
g2

4!
ϕ4
]
, (6.3)

1In the actual numerical implementation of the model, the time dependent prefactor also contains a factor that
makes it vanish when x0 → −∞ in order to have a free theory in the remote past.
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where

�ϕ+
g2

3!
ϕ3 = J ,

lim
x0→−∞ϕ(x0, x) = 0 . (6.4)

Clearly, due to the non-linear term in the equation of motion, the solution ϕ (and hence the
coefficient c0) depends on gJ to all orders. This LO energy momentum tensor is conserved2,

∂µT
µν
LO

= 0 . (6.5)

Figure 6.1: Components of TµνLO for a spatially uniform external source. To perform this calcu-

lation, we have taken in eq. (6.4) a source J = g−1Q3θ(−x0)eaQx
0

(with g = 1, a = 0.1

and Q = 2.5), that disappears adiabatically in the remote past.
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If the source J is taken spatially homogeneous, then the energy-momentum tensor evalu-
ated at leading order takes the simple form:

Tµν
LO

(x) =


εLO 0 0 0
0 pLO 0 0
0 0 pLO 0
0 0 0 pLO

 , (6.6)

with the leading order energy density and pressure given by

εLO =
1

2
ϕ̇2 +

g2

4!
ϕ4

pLO =
1

2
ϕ̇2 −

g2

4!
ϕ4 . (6.7)

It is trivial to check that the energy density εLO is constant in time at x0 > 0 (after the
external source J has been switched off), while the pressure pLO is a periodic function of time
at x0 > 0, as illustrated in the figure 6.1. Clearly, at this order of the calculation of εLO and
pLO , one does not have a well defined (single-valued) relationship εLO = f(pLO): in other
words, there is no equation of state at leading order in g2.

2Strictly speaking, this is true only at x0 > 0. At negative times, some energy is injected into the system by the
external source J.
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6.1.3 Tµν at next to leading order

At next to leading order, the energy momentum tensor can be written as

Tµν
NLO

= ∂µϕ∂νβ+ ∂µβ∂νϕ− gµν
[
∂αβ∂

αϕ− βU′(ϕ)
]
+

+

∫
d3k

(2π)32k

[
∂µa−k∂

νa+k−
gµν

2

(
∂αa−k∂

αa+k −U′′(ϕ)a−ka+k

)]
,

(6.8)

where for brevity we use the notation U(ϕ) ≡ g2ϕ4/4! (and the prime denotes a derivative
with respect to ϕ). In this formula, β and a±k are small field perturbations, that are defined
by the following equations:[

�+U′′(ϕ)
]
a±k = 0

lim
x0→−∞a±k(x) = e±ik·x ,[
�+U′′(ϕ)

]
β = −

1

2
U′′′(ϕ)

∫
d3k

(2π)32k
a−ka+k

lim
x0→−∞β(x) = 0 . (6.9)

Note that since in our model the classical field ϕ is spatially homogeneous, the equation of
motion of a±k simplifies into

ä±k + (k2 +U′′(ϕ))a±k = 0 . (6.10)

Moreover, for the same reason, the field fluctuation β depends only on time.

After some algebra, it is easy to check that the energy-momentum tensor is also conserved
at NLO3 for x0 > 0,

∂µT
µν
NLO

= 0 . (6.11)

The 00 component of Tµν
NLO

gives us the energy density at NLO,

εNLO = β̇ϕ̇+ βU′(ϕ) +
1

2

∫
d3k

(2π)32k

[
ȧ−kȧ+k + (k2 +U′′(ϕ))a−ka+k

]
. (6.12)

Given eqs. (6.9), it is straightforward to verify that this correction is also constant in time,
ε̇NLO = 0, in agreement with eq. (6.11). The 11 component of eq. (6.8) –the NLO pressure in
the x direction– reads

pNLO = β̇ϕ̇−βU′(ϕ)+
1

2

∫
d3k

(2π)32k

[
ȧ−kȧ+k−(k2−2k2x+U

′′(ϕ))a−ka+k

]
. (6.13)

We have evaluated numerically εNLO and pNLO for a coupling constant g = 1, by first solving
eqs. (6.9) for β and for the ak’s (for a discretized set of k’s). The results of this calculation
are shown in the figure 6.2. From this evaluation, we see that the energy density at NLO is

3Naturally, this was obvious from the start. Indeed, since the conservation equation ∂µTµν = 0 is linear in the
components of Tµν, it does not mix the different g2 orders and therefore the conservation equation must be satisfied
by each order separately.
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Figure 6.2: Components of TµνNLO for a spatially uniform external source. This calculation has
been done for g = 1.
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constant at x0 > 0, as we expected4. We also notice that for g = 1, the NLO correction to
the energy density is very small, of the order of 1.4% of the LO result5. Thus, we conclude
from this that for such a value of the coupling, we have a well behaved perturbative expansion
for ε. However, the NLO pressure behaves quite differently: not only it is not constant (and
hence there is no equation of state at NLO), but it also has oscillations whose amplitude grows
exponentially at large x0. Therefore, the NLO correction to the pressure eventually becomes
larger than the LO contribution, and the perturbative expansion in powers of g2 breaks down.
Another noticeable fact is that at x0 = 0, pNLO is still is small correction to pLO ; it is only later
that it becomes large.

6.1.4 Interpretation of the NLO result

The divergence of the pressure at NLO can be understood as a consequence of the unstable
behavior of a±k(x) for some values of k. The stability properties of the small fluctuations in
φ4 field theory are well know:

i. There is a range in |k| where the ak’s diverge exponentially in time, due to parametric
resonance. On the figure 6.3, we have represented the Lyapunov exponent as a function
of the spatial momentum of the fluctuation6.

ii. The zero mode k = 0 fluctuation, a0, diverges linearly in time, a phenomenon closely
related to the fact that the oscillation frequency in a non-harmonic potential depends
on the amplitude of the oscillations.

In addition, one observes numerically that the fluctuation modes in the vicinity of k = 0,
although they are not mathematically unstable, can reach quite large values (they appear to

4This time independence can be seen as a test of the accuracy of the numerical calculation, because it results
from a cancellation between several terms that grow with time.

5Indeed, since there is a prefactor 1/4! in our definition of the interaction potential, g = 1 corresponds to fairly
weak interactions.

6For a discussion of parametric resonance in other approaches and contexts (in particular inflationary cosmology),
see [181–185].
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Figure 6.3: Lyapunov exponent for small fluctuations in a φ4 scalar theory.
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grow linearly for some time, before going down again). Because of the existence of these
modes that grow in time, integrals such as

I(x0) ≡
∫

d3k

(2π)32k
a−k(x)a+k(x) , (6.14)

that appear in the components of Tµν
NLO

or in the right hand side of the equation for β, have
secular divergences as illustrated in the figure 6.4. In this plot, one can check that the en-

Figure 6.4: Numerical evaluation of the integral defined in eq. (6.14). We also show an expo-
nential fit of the envelope.
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velope of the oscillations grows exponentially, with a growth rate λ ≈ 2 ∗ µmax where µmax
is the maximal Lyapunov exponent in the resonance band. Note that, if the same integral is
evaluated with an upper cutoff that excludes the resonance band from the integration domain,
then I(x0) grows only linearly, because now its behavior is dominated by the soft fluctuation
modes whose growth is only linear.

Secular divergences in integrals such as eq. (6.14) cancel in the calculation of εNLO because
the energy density is protected by the conservation of the energy momentum tensor. However,
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they do not cancel in pNLO , and this is why we have the divergent behavior displayed in the
figure 6.2.

6.1.5 Resummation of the NLO corrections

Like in the CGC framework, one can formally express the NLO correction to the energy-
momentum tensor as the action of a certain operator on the LO contribution,

Tµν
NLO

(x) =
[ ∫
d3u β·Tu+

1

2

∫
d3ud3v

∫
d3k

(2π)32k
[a+k ·Tu][a−k ·Tv]

]
Tµν

LO
(x) , (6.15)

where the operatorTu is the generator of shifts of the initial conditionsϕ0, ∂0ϕ0 (at x0 = 0)
of the classical field:

a ·Tu ≡ a(0,u)
δ

δϕ0(u)
+ ȧ(0,u)

δ

δ∂0ϕ0(u)
. (6.16)

As we have seen in the Yang-Mills case, a simple resummation that leads to an energy-
momentum tensor which is finite at all times consists in starting from eq. (6.15) and in expo-
nentiating the quadratic part7 of the operator inside the square brackets,

Tµνresummed(x) ≡ exp
[1
2

∫
d3ud3v

∫
d3k

(2π)32k
[a+k ·Tu][a−k ·Tv]

]
Tµν

LO
(x) . (6.17)

Here also, this formula can be recasted as a functional integral over fluctuations8 for the initial
condition of the classical field ϕ,

Tµνresummed =

∫
[Dα(x)Dα̇(x)] F[α, α̇] Tµν

LO
[ϕ0 + α] , (6.18)

where the distribution F[α, α̇] is Gaussian in α(x) and α̇(x), with 2-point correlations given
by:

〈
α(x)α(y)

〉
=

∫
d3k

(2π)32k
a+k(0, x)a−k(0,y) ,

〈
α̇(x)α̇(y)

〉
=

∫
d3k

(2π)32k
ȧ+k(0, x)ȧ−k(0,y) . (6.19)

When the background field is zero (i.e. in the vacuum), the a±k’s are equal to the ordinary
plane waves. In this case, it is easy to check that the expression in Fourier space of this
distribution reads

F[αk, α̇k] = exp

[
−

∫
d2k

(2π)3
|α̇k|

2 + k2|αk|
2

k

]
, (6.20)

where αk, α̇k are the spatial Fourier transforms of α(x), α̇(x) respectively. This expression
of the vacuum quantum fluctuations is identical to the one derived in [4] by using the path
integral formulation of the problem.

7One could also include the linear term β ·Tu in the resummation simply by shifting by an amount β(0, x) the
central value of the Gaussian ensemble of initial conditions. However, since this central value is of order O(g−1)
while β(0, x) ∼ O(g), such a shift can be safely neglected.

8This formula was first proposed in [181], and applied to the reheating problem in cosmology in [186]. In field
theories at finite temperature in equilibrium, similar classical approximations have been studied in [187, 188].
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6.2 Toy calculation with uniform fluctuations

6.2.1 Introduction

Before presenting the full results of an actual numerical evaluation of eq. (6.18), let us first
present the results of a calculation in which one includes only spatially homogeneous fluctu-
ations. Even tough this is not realistic, this much simpler calculation will be very instructive
regarding the possible effect of these fluctuations on the behavior of the energy-momentum
tensor.

When we consider spatially homogeneous fluctuations only, the main simplification is
that the functional integrations over the fields α and α̇ in eq. (6.18) become ordinary integrals
over a pair of real numbers, with a Gaussian weight :

Z(α, α̇) ≡ exp
[
−

(
α2

2σ1
+
α̇2

2σ2

)]
. (6.21)

The two parameters σ1,2 can be used in this toy calculation in order to control the magnitude
of the fluctuations: in the limit σ1,2 → 0, we recover the leading order case that has no
fluctuations at all.

The second important simplification in this toy calculation is that, since both the underly-
ing classical field and the fluctuations are spatially homogeneous, the field equation of motion
is not a true partial differential equation but an ordinary differential equation. Therefore, we
do not need to use a lattice in order to solve it numerically. The expressions for the energy
density and the pressure read

ε =

〈
1

2
ϕ̇2 +U(ϕ)

〉
α,α̇

,

p =

〈
1

2
ϕ̇2 −U(ϕ)

〉
α,α̇

, (6.22)

where ϕ is the solution of the classical equation of motion whose value at x0 = 0 is ϕ0 + α
(and ϕ̇0 + α̇ for its time derivative). The brackets

〈
· · ·
〉
α,α̇

denote an averaging over all
possible values of α, α̇ with the distribution of eq. (6.21).

6.2.2 Energy momentum tensor

In the figure 6.5, we display the result of this calculation in the limit where we do not have
fluctuations (sigma1,2 → 0), and naturally we get a result which is equivalent to the one
displayed in the figure 6.1 for the plain leading order calculation. Note that in this figure, for
reasons that will become obvious shortly, we have represented the energy density divided by
three. In the figure 6.6, we show the results of the same calculation performed with non-zero
widths σ1,2 for the Gaussian distribution of fluctuations. We observe a striking difference
compared to the previous (LO) figure: now, the oscillations of the pressure are damped and
the value of the pressure relaxes to ε/3. In other words, we now have a single-valued rela-
tionship between the pressure and the energy density, i.e. an equation of state. Moreover, this
equation of state, ε = 3p, is that of a scale invariant system in 1+ 3 dimensions.
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Figure 6.5: Components of Tµν when no fluctuations are included (i.e. at leading order).
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Figure 6.6: Components of Tµν with a Gaussian ensemble of spatially uniform initial conditions.
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Figure 6.7: Phase-space distribution of the ensemble of classical fields, at various stages of the
time evolution.
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6.2.3 Phase-space density

It is also instructive to look at the phase-space density Ft(ϕ, ϕ̇) of the points (ϕ, ϕ̇) as
the system evolves in time. This is shown in the figure 6.7. At t = 0, we start with a
Gaussian distribution of the initial conditions, with a small dispersion around the average
values (ϕ = 10 and ϕ̇ = 0 in our example).

Each initial condition then evolves independently according to the classical equation of
motion, and the corresponding trajectory in the (ϕ, ϕ̇) plane is a closed loop9 due to the
periodicity of classical solutions. One observes that the initially Gaussian-shaped cloud of
points starts spreading around a closed loop, to eventually fill it entirely in the limit of large
times. When this asymptotic regime is reached, the density Ft(ϕ, ϕ̇) depends only on the
energy (i.e. roughly speaking on the radial coordinate in the plot of figure 6.7) and no longer
on the angular coordinate.

A more formal way of phrasing the same result is to first note that the time evolution of
the phase-space density Ft obeys the Liouville equation,

∂Ft

∂t
+ {Ft, H} = 0 , (6.23)

({·, ·} is the classical Poisson bracket) and that if a stationary distribution is reached at late
times, it can only depend on ϕ and ϕ̇ via H(ϕ, ϕ̇).

The asymptotic behavior of the phase-space density in our toy model is reminiscent of a
micro-canonical equilibrium state, in which the phase-space density is uniform on a constant
energy manifold. In other words, all the micro-states that have the same energy are equally
likely.

6.2.4 Interpretation of the results

Of the previous numerical observations, the easiest to understand is the spreading of the
phase-space density around a closed orbit. Because the oscillations are non-harmonic10, the
various points rotate at different speeds: in a ϕ4 potential, the outer points rotate faster than
the inner ones. Therefore, as time increases, the cloud of points spreads more and more due
to this effect.

One can estimate the time necessary for the clouds of points to spread over a complete
orbit. This happens when the angular spread of the points reaches the value 2π. For one field
configuration, this angular variable is (up to a phase that depends on the initial condition,
small in our case if we start from a narrow Gaussian distribution) θ = ωt, and the angular
velocity ω depends only on the energy of that particular field configuration. If we consider
two field configurations, their angular variable difference ∆θ drifts apart linearly in time,
∆θ = ∆ωt, where ∆ω is the difference between their angular velocities. In the case of a
g2ϕ4/4! potential, it is easy to prove that

ω =
π

2
√
3

gϕmax∫+1
−1

dx√
1−x4

≈ 0.346 gϕmax , (6.24)

9These loops are constant energy curves 1
2
ϕ̇2 + U(ϕ) = H.

10The assumption of a scale invariant theory simplifies the expressions here, but is not crucial to the argument.
The only requirement for this phenomenon is that the frequency of the oscillations depends on their amplitude; thus
any non-harmonic potential will lead to similar results.
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where ϕmax is amplitude of the oscillations of ϕ. Thus, the angular shift between the pair of
field configurations is also ∆θ ≈ 0.346 g∆ϕmax t, and this shift reaches 2π in a time

t ≈ 18.2

g∆ϕmax
. (6.25)

After this time, the two fields have become completely incoherent. We see that this time is
inversely proportional to the coupling constant g, and to the difference of the field amplitudes.
Thus a narrow initial Gaussian distribution will need a longer time to spread around the orbit
than a broader initial distribution.

Once we know that the phase-space density spreads uniformly on constant energy curves,
it is easy to understand why the pressure relaxes towards ε/3 when we let the initial condi-
tions for the classical field fluctuate. The trace of the energy-momentum tensor (assuming 4
dimensions of space-time) is

Tµµ = ϕ

(
�ϕ+ 4

U(ϕ)

ϕ

)
− ∂α(ϕ∂

αϕ) . (6.26)

A scale invariant theory in four dimensions is a theory in which the interaction potential obeys
U′(ϕ) = 4U(ϕ)/ϕ. This is the case of a ϕ4 interaction. Therefore, the first term in the right
hand side of the previous equation vanishes thanks to the equation of motion of the classical
field ϕ. This results shows that the energy-momentum tensor of a single configuration of
classical field is not zero in our model, but is a total derivative. In our simplified toy model
where the fields are spatially homogeneous, the previous relation simplifies into

Tµµ = −
d(ϕϕ̇)

dt
. (6.27)

When integrated over one period, the trace of the energy-momentum of one classical field
configuration vanishes, because the classical field is a periodic function of time,

Tµµ ≡
1

T

∫t+T
t

dτ Tµµ(ϕ(τ), ϕ̇(τ)) = 0 . (6.28)

(The result of the integral is in fact independent of the starting time t used to compute the
average.) When we calculate the energy-momentum tensor averaged over fluctuations of the
initial conditions, we are in fact performing an ensemble average weighted by the phase-space
density Ft(ϕ, ϕ̇),

〈Tµµ〉α,α̇ =

∫
dϕdϕ̇ Ft(ϕ, ϕ̇) T

µ
µ(ϕ, ϕ̇) , (6.29)

and the time dependence of the left hand side comes from that of the density Ft. In order to
use the previous observation about the long time behavior of the density Ft, it is convenient
to trade the integration variables ϕ, ϕ̇ for energy/angle variables E, θ,

〈Tµµ〉α,α̇ =

∫
dEdθ F̃t(E, θ) T

µ
µ(E, θ) , (6.30)

where F̃t is the phase-space density in the new system of coordinates (it is equal to the
original Ft times the Jacobian of the change of variables). Our first result can be stated as the
fact that F̃t(E, θ) becomes a function of only E (let us denote it by F̃∞(E)) when the time is
large enough. When this happens, we can rewrite the previous equation as

〈Tµµ〉α,α̇ ≈
t→∞

∫
dE F̃∞(E)

∫
dθ Tµµ(E, θ) . (6.31)
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The crucial point here is that the integral over θ is nothing but the integral over one orbit for
a single classical field configuration,∫

dθ Tµµ(E, θ) =
2π

T

∫t+T
t

dτ Tµµ(ϕ(τ), ϕ̇(τ)) = 0 . (6.32)

Thus, we have proven that

ε− 3p = 〈Tµµ〉α,α̇ ≈
t→∞ 0 , (6.33)

in agreement with what we have observed numerically. Moreover, from the derivation of this
result, it is clear that the time necessary to reach this limit is the same as the time necessary for
the phase-space density to become independent of the angular variable θ (given in eq. (6.25)).

6.3 Equation of state

6.3.1 Implementation of the full spectrum of fluctuations

In the previous section, we have shown that averaging over an ensemble of initial conditions
for classical fields can lead the pressure to relax towards one third of the energy density.
However, this study was oversimplified since we used only fluctuations that are uniform
in space, and their Gaussian distribution was set by hand. However, quantum field theory
predicts what the spectrum of these fluctuations should be, in the form of eqs. (6.19) and
(6.18), and leaves no freedom to handpick what fluctuations we use. Indeed, from these
formulas, we can make an ab initio calculation of the behavior of the pressure. The only
tunable quantities in the calculation are the scale Q (or more generally the source J) that
controls the amount of energy injected into the system at t < 0, and the coupling constant g.

Note that this spectrum of fluctuations for the initial condition for the field ϕ can be
obtained by parameterizing the initial field as

ϕ(0, x) ≡ ϕ0(x) +
∫

d3k

(2π)32k

[
ck a+k(0, x) + c

∗
k a−k(0, x)

]
, (6.34)

where the ck are random Gaussian numbers with the following variance〈
ckcl

〉
= 0 ,

〈
ckc
∗
l

〉
= (2π)3|k|δ(k− l) . (6.35)

This is the representation we adopt for the initial fluctuating fields. In order to implement it,
we must follow the following steps:

i. solve the classical equation of motion (6.4) from t = −∞ (in practice some large and
negative time) to t = 0 in order to obtain ϕ0(x),

ii. solve the evolution equation (6.9) for the a±k’s from t = −∞ to t = 0,

iii. generate Gaussian random complex coefficients according to eq. (6.35) to construct an
initial field via eq. (6.34)

iv. evolve this field to the time of interest by using the classical equation of motion (6.4)
with J = 0,

v. repeat steps iii. and iv. in order to perform a Monte-Carlo average over the fluctuations
of the initial field.
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6.3.2 Relaxation of the pressure

Unless stated otherwise, the numerical results in this section have been obtained on a 123

lattice11. The functional integration in eq. (6.18) is approximated by a Monte-Carlo average
over 1000 configurations of the initial conditions, distributed according to eqs. (6.19).

In the figure 6.8, we show the result of the computation of the pressure averaged over
the Gaussian ensemble of initial conditions, for a value of the coupling12 g = 0.5. We also
show the energy density divided by three on the same plot. All the quantities in this plot

Figure 6.8: Time evolution of the pressure averaged over the initial fluctuations. All the resonant
modes are included in the simulation. The coupling constant is g = 0.5.
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are expressed in lattice units, which means that the horizontal axis is t/a (where a is the
lattice spacing) and the vertical axis should be understood as εa4 or pa4. Note that the
lattice cutoff in this simulation is chosen to be just above the upper limit of the parametric
resonance window – therefore, all the resonant modes take part in the dynamics of the system.

We observe that the ensemble averaged pressure relaxes towards ε/3. This plot, obtained
with the actual spectrum of fluctuations predicted by quantum field theory, is one of the
central results of this section. One can qualitatively identify two stages in this relaxation: (1)
in the range 0 ≤ t . 50, the amplitude of the pressure oscillations decreases very quickly to
a moderate value and, (2) from time 50 onwards, one has a slower approach of the pressure
to ε/3 that gets slowly rid of the residual oscillations. We will observe again this two-stage
time evolution when we look at the fluctuations of the energy density.

6.3.3 Influence of the resonant modes

In the section 6.3, we have seen that the pressure relaxes to ε/3 even if only the mode k = 0
is included in the simulation. This was understood as an effect of the phase decoherence
that exists in a non-harmonic potential between classical solutions that have slightly different

11In some instances, we have also performed simulations on 203, 323 and 643 lattices, and found only small
differences as long as the physical scales are below the lattice cutoff.

12Because of the prefactor g2/4! in the interaction potential, a value g = 0.5 corresponds to a very weak coupling
strength.
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Figure 6.9: Time evolution of the pressure averaged over the initial fluctuations. The lattice cutoff
is located below the resonance band in order to exclude them from the simulation. The
coupling constant is g = 0.5.
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amplitudes. When we include all the k-modes of the fluctuations, the situation becomes ar-
guably more complicated. In particular, the stability analysis of these fluctuations indicates
that in addition to a linear instability of the soft modes due to the above mentioned decoher-
ence phenomenon, there are also exponentially unstable modes in a narrow band of values k.

In order to assess the role played in the time evolution by the modes of the resonance
band, we have performed a second simulation with the same physical parameters, but where
the lattice cutoff is now placed just below the lower end of the resonance band. When one
does this, none of the modes that exist on this lattice has an exponential instability. Since the
resonance band is quite narrow, this is a small change of the cutoff in physical units (in the
first simulation, the cutoff was just above the upper end of the resonance band). However, one
can see in the figure 6.9 that excluding the resonant modes leads to some significant changes.

The final outcome, i.e. the relaxation towards ε/3, is not changed, but the details of the
time evolution of the pressure are modified. Firstly, one observes a rather long delay during
which the oscillations of the pressure remain almost constant in amplitude. Then, at a time
of order 75 in lattice units, these oscillations are damped very quickly to very small wiggles
around ε/3. Except for a brief relapse, the oscillations remain very small after this time. In
particular, the two-stage evolution that we observed with the full spectrum is now replaced
by the following two stages: (1) nothing happens and, (2) very rapid relaxation that leaves
almost no residual oscillations.

Therefore, it appears that the resonant modes, even if their presence or absence in the
resummation is not crucial for the final outcome, can alter significantly the time evolution of
the pressure. At this point, the precise role of the resonant modes is somewhat unclear, and
it appears that the dynamics of the complete system is much richer than what one can learn
by studying the linearized evolution of a single mode: the non-linear couplings between the
various modes (once the instabilities have made them large enough) seem to play an important
role in the evolution of the system.
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6.3.4 Dependence on the coupling constant

The simulation that led to the result of the figure 6.8 has been performed with a value g = 0.5
for the coupling constant – a very small value for our scalar field theory since there is also
a factor 1/4! in the interaction potential. We have studied the time evolution of the pressure

Figure 6.10: Time evolution of the pressure averaged over the initial fluctuations for various
values of the coupling constant: g = 0.5, 1, 2, 4, 8. All the resonant modes are included in
the simulation.
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for larger values of the coupling constant: g = 1, 2, 4, 8, and the results are shown in the
figure 6.10. Note that this fluctuation is done at fixed energy density. Indeed, since Q is the
only dimensionful parameter of our model and since there is a factor 1/g in the source J, the
energy density behaves at leading order as ε ∝ Q4/g2. Thus, if we increase g at constant
Q, the energy density decreases. Since our goal is to assess the time at which the pressure
obeys an equation of state in order to justify a hydrodynamical description of the system, the
comparison of the relaxation for various couplings should be done for systems that have the
same energy density. Therefore, in the comparison shown in the figure 6.10, the value of Q
has been adjusted in each simulation so that the energy density is always the same.

One can see in the figure 6.10 that the relaxation time decreases with increasing coupling
constants g. In the figure 6.11, we have represented the relaxation time –defined as the time
necessary to reduce the initial oscillations of the pressure by a factor 4– as a function of the
coupling constant g for our set of values of g. One can fit all the points except the last one
(g = 8) by a power low that suggest the following dependence

trelax =
const
g2/3

. (6.36)

The last point in this plot is an outlier that does not follow this power law, possibly because
this value of the coupling is too extreme for our approximations/resummations to make sense.

6.3.5 Energy density fluctuations

The results we have shown so far indicate that the pressure in the system relaxes towards
the equation of state p = ε/3, in time that decreases as the coupling constant increases.
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Figure 6.11: Points: relaxation time (see the text for the definition used here) as a function of the
coupling g. Line: fit by a power law.
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However, this study by itself does not tell much about the precise nature of the state reached
by the system. In particular, it is does not tell whether the system reaches a state of local
thermal equilibrium, although this is quite plausible given the behavior. Then comes the
question of how to characterize the internal state of the system: since we have strong fields,
it is likely that the system cannot be described in terms of quasi-particles with a momentum
distribution that would follow e.g. a Bose-Einstein law. In the section 6.3, we have seen
in a very simple case that the phase-space density reaches a stationary form reminiscent of
the micro-canonical equilibrium ensemble. Unfortunately, now that we are looking at a full
fledged quantum field theory, the phase-space is infinite dimensional and whether the same
happens is difficult to assess numerically.

There are however also signs of thermalization in the fluctuations of the energy distribu-
tion in the system. Of course, for the whole system the energy is constrained by conservations
laws and will not fluctuate, regardless of whether the system is in thermal equilibrium or not.
But by looking at the energy fluctuations in a small subsystem, one can learn something about
the energy exchanges between this subsystem and the rest of the system – that now acts as
a thermal bath. Indeed, the energy in the subsystem is not fixed, and its fluctuations do not
have the same form depending of whether the subsystem is in equilibrium or not with its
surroundings. In particular, if a subsystem is in thermal equilibrium with a thermal bath, its
fluctuations are those of the canonical ensemble, that has a density operator ρ ≡ exp(−βH).

We have computed these energy fluctuations for the smallest subsystem one can conceive
on a lattice, i.e. a single lattice site. In the figure 6.12, we display histograms of the values of
the energy on one site13, at various times in the evolution. These curves have been normalized
so that their integral is equal to one, hence they can be interpreted as probability distributions
for the value of the energy on one lattice site. At t = 0, this distribution is very close to a
Gaussian, centered on the mean energy density in the system. The width of this Gaussian is
entirely determined by the Gaussian spectrum of fluctuations in eq. (6.19). As early times,
the distribution first remains Gaussian-like, but tends to broaden with time. Then, around
t ≈ 30 in lattice units, we observe a rapid change of shape of this distribution: the peak of
the distribution shifts to lower values of the energy and the tail extends much further at large

13In lattice units, this is simply the value of T00 at one given site.
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Figure 6.12: Distribution of energy density on one lattice site, at various times of the evolution.
The coupling constant is g = 0.5.
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energy. Once this dramatic change of shape has taken place, the evolution of the distribution
is rather slow and a stationary distribution is reached at late times.

It is interesting to compare the evolution of the energy distribution on one lattice site
with the time evolution of the pressure in the figure 6.8. The initial rapid decrease of the
pressure oscillations is concomitant with the change of shape of the energy distribution. The
subsequent (slower) relaxation of the residual oscillations of the pressure occurs while the
energy has already reached an almost stationary distribution.

6.4 Spectral properties and thermalization

6.4.1 Introduction

In the previous section, we have seen that after a proper resummation of the leading secular
terms, the pressure converges towards its equilibrium value in a fairly short time –something
that would not happen with the unresummed expression of the energy-momentum tensor.
However, this study does not tell us much about the microscopic evolution of the system:
indeed, since the energy density and the pressure of the system are intensive quantities that
integrate over all the modes of the system, the existence of an equation of state identical
to the equilibrium one does not imply that the system is in full equilibrium. Equilibrium
requires a much more stringent microscopic arrangement of the system, in which the energy
is distributed among the various modes in a very specific way.

In this section, we pursue the study in order to elucidate the microscopic state of the
system. In particular, we would like to know whether the system is thermalized when its
pressure has relaxed to its equilibrium value, or whether on the contrary one could have
an equilibrium-like pressure tensor while the system is still far from equilibrium14. A natural
quantity to study in order to address this question is the occupation number in the system, and

14In the 2 Particle Irreducible approach [185, 189–193] to the relaxation of a linear sigma model, it has already
been observed that an equation of state can be obtained much earlier than the complete thermalization of the system
[194].
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its time evolution. However, even before computing the occupation number, it is interesting
to ask whether the system can be described in terms of quasi-particles (this is not trivial:
although the system is weakly coupled, it is also very dense, and strong collective effects
may render the quasi-particles completely unstable). We first compute the spectral density
of the system, after having justified that it can be resummed in the same way as the energy-
momentum tensor. Then, we continue our study with the occupation number. We compute
it as a function of momentum up to very large times, and identify several stages in its time
evolution. From the occupation number, we perform several tests of the quasi-particle picture
(e.g. compare the measured mass of the quasi-particles, with its value at 1-loop, including
medium effects) and compute how the entropy of the system evolves with time. We end the
section with a discussion of some aspects of the classical field theory to which the original
quantum field theory is equivalent in our resummation scheme.

6.4.2 Lattice setup for the study of thermalization

A crucial ingredient in this process is the parametric resonance that exists in the φ4 scalar
field theory, and therefore it is important that the ultraviolet lattice cutoff be large enough to
comprise the resonance band. If the source J is parametrically

J ∼
Q3

g
, (6.37)

then the resonance band is located at momenta of order k ∼ Q, and the UV cutoff Λ must
therefore obey Q . Λ. Setting up the lattice cutoff in this way is sufficient to study the
evolution of the system at short times, because on these time scales the occupation number
remains small above the resonance region, as we shall see later.

This is however not sufficient if we want to study the approach of the system to thermal
equilibrium. In order to see this, recall that the energy density in the system is parametrically

ε ∼
Q4

g2
. (6.38)

If thermal equilibrium is achieved, this energy density must also be given by the Stefan-
Boltzmann formula (at least for reasonably weak couplings),

ε ∼ T4 , (6.39)

which tells us that the system would equilibrate at a temperature

T ∼
Q
√
g
. (6.40)

For a numerical simulation to be able to approach the equilibrium state, the lattice ultraviolet
cutoff must be large enough to include modes of the order of the temperature, which is a
more stringent constraint than simply having the resonance band below the cutoff. At weak
coupling, this implies that the resonance band should be located towards the soft sector of the
lattice spectrum, i.e. in a region where the lattice mode density is rather low. In order to still
have a significant number of lattice modes inside the resonance band, we used a larger lattice
(of size 203), and we have chosen the value of the parameter Q so that the resonance band is
located near k ≈ 1 (in lattice units, where the ultraviolet cutoff is at Λ =

√
12).
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This choice ofQ is significantly lower than the value used in the previous section (where
we were only interested in the early stages of the time evolution, dominated by the resonant
modes). This means a lower energy density, and larger time scales. Indeed, since our system
is scale invariant, energy density scales likeQ4 and all the times scale like 1/Q. The resulting
time evolution of the pressure, for this choice of Q and a coupling constant g = 1, is shown
in the figure 6.13.

Figure 6.13: Relaxation of the pressure tensor towards the equilibrium value.
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6.4.3 Spectral function and quasi-particles

Definition and leading order

Before we study the time evolution of the occupation number in the system, it is interesting
to ask an even more elementary question: can the system be described in terms of quasi-
particles, or on the contrary does it interact so strongly that no identifiable quasi-particles
show up in its spectrum? To that effect, one can compute the spectral function, defined as the
imaginary part of the Fourier transform of the retarded propagator15:

ρ(ω,k;y0) ≡ 2 Im

+∞∫
0

dtd3x eiωte−ik·x G
R
(y0 + t, x, y0, 0) . (6.41)

In this formula, the retarded propagator is normalized so that[
�x +U

′′(ϕ(x))
]
G
R
(x, y) = δ(x− y) (6.42)

for a classical field configuration ϕ. A system in equilibrium is invariant under translations
in time, and therefore its spectral function defined in this way is in fact independent of the
time y0. However, for transient systems that are not yet in equilibrium, the spectral function
will evolve with time and the y0 dependence is important.

15We assume here that the system is spatially homogeneous. This is the case in our setup since the source J does
not depend on x.
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At leading order, we simply need to obtain the retarded propagator in a classical back-
ground field ϕ(x),

GLO
R
(x, y) =

∑
y

x

, (6.43)

where the grey blobs denote the retarded classical field ϕ(x) and the lines with an arrow
the bare retarded propagator (the sum is over the number of insertions of the classical field,
from 0 to +∞). In a numerical calculation, the simplest way to compute this propagator is to
consider a small field perturbation a(x) in that background, that obeys the following equation
of motion[

�x +U
′′(ϕ(x))

]
a(x) = 0 . (6.44)

The fluctuation a(x) can be related to its value at the time y0 by the following Green’s
formula

a(x) =

∫
d3y

[
GLO
R
(x, y)

(
∂0ya(y)

)
−
(
∂0yG

LO
R
(x, y)

)
a(y)

]
, (6.45)

that involves precisely the propagator we are looking for. Thus, by choosing the following
initial conditions at time y0,

a(y0,y) = 0 , ∂0ya(y
0,y) = δ(y) , (6.46)

the perturbation a(x) is precisely the propagator we need in eq. (6.41),

GLO
R
(x0, x, y0, 0) = a(x0, x) . (6.47)

Thanks to this observation, we reduce the problem of finding the retarded propagator at lead-
ing order to that of solving the equation (6.44) with the initial conditions of eq. (6.46), which
is easily doable numerically16.

Next to leading order and resummation

At next to leading order, three topologies must be evaluated17:

GNLO
R

(x, y) =

y

x

+

y

x

+

y

x

, (6.48)

where the both the propagators and the vertices are dressed by the classical field ϕ(x). The
first topology is the same as the retarded propagator at leading order, in which one of the ϕ

16On a lattice, the delta function that appears in the initial condition for ∂0ya(y
0,y) becomes a Kronecker symbol:

the derivative is zero at all points of the lattice except at the origin (0,0,0) where it is equal to one.
17Although these diagrams seem to involve cubic vertices, this is not the case. These vertices where three lines

merge are in fact proportional toU′′′(ϕ(x)), and are thus proportional to an extraϕ(x) that does not appear explicitly
in the diagrammatic representation.
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insertions has been replaced by a 1-loop tadpole β defined in eq. (6.9). Given that this tadpole
is given by (see the eq. (39) in [5])

β(x) =
[ ∫
d3u β ·Tu +

1

2

∫
d3ud3v

∫
d3k

(2π)32k
[a+k ·Tu][a−k ·Tv]

]
ϕ(x) , (6.49)

it is easy to check that this contribution is related to the leading order one by the following
functional identity

GNLO1
R

(x, y)=
[ ∫
d3u β·Tu+

1

2

∫
d3ud3v

∫
d3k

(2π)32k
[a+k ·Tu][a−k ·Tv]

]
=ϕ
GLO
R
(x, y) ,

(6.50)

where the subscript ‘=ϕ’ indicates that the two operators TuTv in the second term should
act on the same field ϕ, i.e.[

TuTv

]
same ϕ

ϕ(x1) · · ·ϕ(xn) ≡

≡
n∑
i=i

ϕ(x1) · · ·ϕ(xi−1)

[[
TuTv

]
ϕ(xi)

]
ϕ(xi+1) · · ·ϕ(xn) . (6.51)

By using the formula

GLO
+−(x, y) =

∫
d3k

(2π)32k
a+k(x)a−k(y) , (6.52)

the second topology can be written as follows,

GNLO2
R

(x, y) =
[1
2

∫
d3ud3v

∫
d3k

(2π)32k
[a+k ·Tu][a−k ·Tv]

]
same U′′(ϕ)

GLO
R
(x, y) , (6.53)

where the subscript ‘same U′′(ϕ)’ indicates that the two operators TuTv should act on the
same compound U′′(ϕ) –one operator on each field of U′′(ϕ). The third topology can first
be written as

GNLO3
R

(x, y) =

∫
d4wd4z GLO

R
(x,w)Σ1loop

R
(w, z)GLO

R
(z, y) , (6.54)

where Σ1loop
R

is the 1-loop retarded self-energy,

Σ1loop
R

(w, z) = Σ1loop
++ (w, z) − Σ1loop

+− (w, z) . (6.55)

Next, one can rewrite this self-energy as

Σ1loop
R

(w, z) =
1

2
U′′′(ϕ(w))U′′′(ϕ(z))GLO

R
(w, z)

[
GLO

+−(w, z) +G
LO
−+(w, z)

]
, (6.56)

where the prefactor 1/2 is the symmetry factor of the loop. By combining eqs. (6.54) and
(6.56) and by using (6.52), one can finally prove

GNLO2
R

(x, y) =
[1
2

∫
d3ud3v

∫
d3k

(2π)32k
[a+k ·Tu][a−k ·Tv]

]
distinct ϕ ′s

GLO
R
(x, y) , (6.57)
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where the qualifier ‘distinct ϕ’s’ indicates that the two operators TuTv must act on two
fields ϕ’s that are inserted at different points on the LO propagator GLO

R
. Adding eqs. (6.50),

(6.53) and (6.57) therefore simply lifts any restriction on the action of these operators, and
we obtain

GNLO
R

(x, y) =
[ ∫
d3u β ·Tu+

1

2

∫
d3ud3v

∫
d3k

(2π)32k
[a+k ·Tu][a−k ·Tv]

]
GLO
R
(x, y) .

(6.58)

This formula is formally identical to the formula we have obtained previously for the energy-
momentum tensor at NLO, and it leads to the same pathologies due to the presence of secular
divergences. Likewise, the problem can be cured here by performing the same resummation
as in the case of the energy-momentum tensor, that amounts to exponentiating the quadratic
part of the operator in the square brackets in eq. (6.58) (as in eq. (6.17)):

Gresummed
R

(x, y) ≡ exp
[1
2

∫
d3ud3v

∫
d3k

(2π)32k
[a+k ·Tu][a−k ·Tv]

]
GLO
R
(x, y) . (6.59)

This resummation amounts to a functional average over Gaussian fluctuations of the initial
condition of the classical field at x0 = 0,

Gresummed
R

=

∫ [
Dα(x)Dα̇(x)

]
F[α, α̇] GLO

R
[ϕ0 + α] (6.60)

where the Gaussian distribution F[α, α̇] is defined in eq. (6.19). Therefore, in order to com-
pute the resummed retarded propagator, we should repeat the procedure outlined in the sec-
tion 6.4.3 for every classical field ϕ obtained from an ensemble of initial conditions ϕ0 + α,
where α samples the Gaussian distribution F[α, α̇].

Numerical results

At the initial time (see the figure 6.14), the spectral function has a fairly complicated structure.
Although the large k modes have a single spectral peak at ω ≈ |k|, the situation is richer
in the soft sector. There, besides the main branch that continues to large k, the spectral
density exhibits additional branches. One of them corresponds to a higher mass excitation,
and another one has a mass comparable to the main branch but an anomalous dispersion such
that the frequency decreases while the momentum increases. Therefore, at early times, the
quasi-particle picture is not a good description of the degrees of freedom in the system.

As the time increases, these extra branches in the spectral function decrease in amplitude
and eventually disappear, starting with the higher mass excitation. Ultimately, only the main
excitation remains, as one can see in the plot on the right of the figure 6.15 at a time y0 =
3000. At intermediate times (such as y0 = 400, represented on the plot on the left of the
figure 6.15), one gets closer to the spectral function of a system made of quasi-particles,
with only small remnants of the structures that existed at early times. It is interesting to
note that the characteristic time for the disappearance of the extra branches in ρ(ω,k;y0) is
comparable to the relaxation time of the pressure, that we have found in the previous section
to start at a time of the order of y0 ∼ 100.

Quasi-particle mass

In order to further assess the existence of quasi-particles in the system, one can fit the main
branch of the spectral function by a function of the form ω =

√
k2 +m2. The result
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Figure 6.14: Spectral function ρ(ω,k;y0 = 0.0) at the initial time. The computation is done on
a 203 lattice, for a coupling constant g = 1. In this plot, k denotes the lattice momentum, i.e.√
2(3 − cos(2πl/L) − cos(2πm/L) − cos(2πn/L)) on a L3 lattice (l,m, n is the triplet of

integers in the range [0, L − 1] that labels a given momentum state).
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Figure 6.15: Spectral function ρ(ω,k;y0) at the times y0 = 400 (left) and y0 = 3000 (right).
The computation is done on a 203 lattice, for a coupling constant g = 1.
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of this fit is shown in the figure 6.16. One sees that the mass m resulting from this fit is
not stable until a time y0 ≈ 100, and becomes much more regular afterwards. This is in
agreement with the previous qualitative observation that only the main branch of the spectral
function survives after this time. Moreover, after y0 ≥ 1000, the mass of the quasi-particles
that populate the system decreases slowly with time, indicating that the system is not yet
completely equilibrated (the change in the mass of the quasi-particles reflects a change in the
occupation number of the various modes of the system, that we will study more directly in
the following section). If one takes as a crude estimate the Hard Thermal Loop [195, 196]

Figure 6.16: Green line: quasi-particle mass obtained by a fit of the main dispersion branch with
a function of the form ω =

√
k2 +m2. Blue line: 1-loop analytic calculation from the

occupation number. Red line: 1-loop gap equation that resums recursively all the daisy
diagrams. (See the text in section 6.4.5 for explanations regarding the curves labelledm2HTL

andm21−loop.)
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expression of the medium-generated mass (see for instance [197], pp 41–45),

m2
HTL

= g2
∫

d3k

(2π)32k
fk , (6.61)

as a function of the occupation number fk, we can interpret the decrease of the mass as a shift
of the occupation number from low k to higher k’s. In other words, while our system starts
with most of its energy contained in the soft modes, higher-k modes are progressively pop-
ulated by a top-down (in length scale) cascade process, which makes the medium-generated
mass decrease with time.

A word of caution should be added about the width of the quasi-particles. The width
of the spectral peak in the figures 6.14 and 6.15 is probably not the physical width: for
practical reasons the numerical computation of the Fourier transform in time in eq. (6.41)
cannot integrate up to very large times18. Thus the width we see in the resulting plots is
to a large extent contaminated by the fact that the time interval is finite in the numerical
calculation (for the physical width to be visible unambiguously in these plots, the length of
the time interval would have to be much larger than the lifetime of the quasi-particles).

18One can check in the free case that this is a very singular Fourier transform. At k = 0, it is of the form∫+∞
0

dt t exp(iωt) ∼ δ′(ω).
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6.4.4 Occupation number

Expression in terms of G+− and G−+

Now that we know that at times x0 ≥ 100, the spectral content of the system reduces to
simple quasi-particles, it makes sense to compute their occupation number. Recall that the
creation and annihilation operators a†k, ak are related to the field operator φ̂ via

ak = i

∫
d3x eik·x

↔
∂x0 φ̂(x)

a†k = −i

∫
d3x e−ik·x

↔
∂x0 φ̂(x) . (6.62)

From this, we get the following two reduction formulas〈
a†kak

〉
=

∫
d3xd3y eik·(x−y)

↔
∂x0

↔
∂y0 G+−(x, y)|x0=y0〈

aka
†
k

〉
=

∫
d3xd3y eik·(x−y)

↔
∂x0

↔
∂y0 G−+(x, y)|x0=y0 , (6.63)

with the understanding that the times x0 and y0 are set equal only after the derivatives have
been evaluated.

It turns out to be more straightforward to calculate the sum of these two expectation
values,〈

a†kak + aka
†
k

〉
=

∫
d3xd3y eik·(x−y)

↔
∂x0

↔
∂y0 Gs(x, y)|x0=y0 (6.64)

where Gs ≡ G+− +G−+, because in our framework the symmetric propagator Gs is easier
to compute than the separate G±∓. The occupation number fk is related to the left hand side
of eq. (6.64) by

2ωkV(1+ 2fk) =
〈
a†kak + aka

†
k

〉
, (6.65)

where V is the volume of the system andωk the dispersion relation of the quasi-particles.

Calculation of Gs

Let us now see how to compute the symmetric propagatorGs(x, y) at LO, NLO and in the re-
summation scheme we have developed to cure the pathologies related to secular divergences.
At leading order, it is simply given by the product of two classical fields at the points x and
y,

GLO
s (x, y) = 2ϕ(x)ϕ(y) . (6.66)

At next to leading order, Gs is made of two pieces:

i. a 1-loop correction β to one of the factors ϕ of the LO result,

ii. a connected tree contribution Gs ≡ G+− + G−+ that links the points x and y,
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GNLO
s (x, y) = 2

[
β(x)ϕ(y) +ϕ(x)β(y)

]
+ Gs(x, y) . (6.67)

The second term is given by

Gs(x, y) =

∫
d3k

(2π)32k

[
a+k(x)a−k(y) + a−k(x)a+k(y)

]
. (6.68)

The a±k’s can be formally related to the classical field ϕ(x) by (see eq. (2.98))

a±k(x) =

∫
d3u [a±k ·Tu] ϕ(x) , (6.69)

while for the tadpole β we can use eq. (6.49). Then, it is straightforward to combine the two
terms to obtain

GNLO
s (x, y) =

[ ∫
d3u β ·Tu+

1

2

∫
d3ud3v

∫
d3k

(2π)32k
[a+k ·Tu][a−k ·Tv]

]
GLO
s (x, y) .

(6.70)

From here, it is clear that one can perform the same resummation, where one exponentiates
the quadratic part of the operator in the square brackets. This amounts to an average over
Gaussian fluctuations of the initial classical field at x0 = 0,

Gresummed
s (x, y) = 2

∫ [
DαDα̇] F[α, α̇]

[
ϕ(x)ϕ(y)

]
ϕ0+α

, (6.71)

where the subscript ϕ0 + α indicates the initial condition used at x0 = 0 to start the evo-
lution of the classical field ϕ. F[α, α̇] is the Gaussian distribution of fluctuations defined in
eqs. (6.18) and (6.19).

Time evolution of fk

By combining the previous results, the occupation number obtained in this resummation
scheme can be written as

fk +
1

2
=

1

2ωkV

∫ [
DαDα̇] F[α, α̇]

∣∣∣∣∫ d3x eik·x (ϕ̇(x0, x) + iωkϕ(x
0, x))

∣∣∣∣2
ϕ0+α

.

(6.72)

In the evaluation of this formula, we use for the energy ωk =
√
k2 +m2 with the mass

fitted in the previous section (thus, we use a different mass at each time x0). The result of this
calculation is displayed in the figure 6.17, where we show the occupation number at various
stages of the time evolution, as well as three fits that we shall discuss shortly.

Let us first briefly describe the main stages of the time evolution. At the initial time t = 0,
only the zero mode is occupied and the higher modes have a negligible occupation number.
This is a direct consequence of our setup, where the classical field is initially driven by a spa-
tially homogeneous source. Then, shortly afterwards (this is already visible in the spectrum
at t = 20) one sees an increase of the occupation in the non-zero modes, concomitant with
a decrease of the occupation in the zero mode (barely visible in the figure, due to the loga-
rithmic vertical scale). The increase of the non-zero modes is most pronounced in a narrow
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Figure 6.17: Occupation number fk at various times in the evolution of the system. The grey
band represents a fit by a Bose-Einstein distribution. The dashed red band is a fit by a pure
power law k−5/3. The thin black line is a fit by a distribution of the form given in eq. (6.74).
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band of k, where it peaks more than an order of magnitude above the rest of the curve. One
can check19 that this band of k coincides with the band of parametric resonance that we have
discussed in detail in [11]. Thus, it appears that the dominant physics at early times is that of
resonance, which leads to a quick increase of the occupation number in a narrow region of k.
After t = 1000, the resonance peak has disappeared and the evolution becomes fairly slow.

Let us now discuss fits of the occupation number, that are represented in the figure 6.17.
The first two are a fit by a Bose-Einstein distribution,

fBE(k) =
1

eβ(ωk−µ) − 1
, (6.73)

and a fit by a classical distribution of the form

fclass(k) =
T

ωk − µ
−
1

2
. (6.74)

Interestingly, the best fit we could achieve with a Bose-Einstein distribution required a non-
zero chemical potential. Although the particle number has no reason to be conserved in this
theory (there is no symmetry protecting it), this suggests that changes of the particle number
are slow compared to the evolution of the distribution in momentum space: a chemical po-
tential at the latest times we have considered indicates that the particle number has not yet
reached its equilibrium value (and its positive sign means that we have a particle excess). At
weak coupling, this is rather natural: inelastic processes have a much smaller rate than the
elastic ones20, and therefore at intermediate time scales the number of particles is an approx-
imately conserved quantity. In order to check this hypothesis, we can evaluate the number
density it by summing the occupation number over all the modes k. This has been done in the
figure 6.18. One sees indeed that, after a period of somewhat erratic evolution (that roughly

19See the appendix B of [11].
20For the φ4 scalar theory that we consider here, σel ∼ g

4, while σinel ∼ g
8. The hierarchy between the elastic

and inelastic time-scales is certainly less pronounced in QCD (see [198]) and there it is unclear whether there is
enough time for the formation of a transient state that has a non-zero chemical potential.
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Figure 6.18: Time evolution of the quasi-particle density in the system. Gray band: fit of the tail
with a power law t−1/4.
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corresponds to the time necessary to have well defined quasi-particles in the system), the
number density decreases very slowly at late times, as a small negative power of time.

It is also obvious from the figure 6.17 that a Bose-Einstein distribution does not fit well
the occupation number in the tail at large k. In fact, the contrary would have been surprising,
since this computation is essentially semi-classical. Naively, one may expect to obtain a
classical distribution of the form T/(ωk − µ) (again, a non-zero µ is allowed if number
changing processes are very slow), but one can check that such a distribution does not produce
a better fit of the tail21. It turns out that this drop has a rather trivial explanation. Firstly, note
that a very good fit is obtained with the distribution given in eq. (6.74) (the thin black line
in the figure 6.17), that differs from the naive classical distribution by an extra −1/2 term.
This extra term, that makes the fit considerably better, has a trivial origin: it comes from the
−1/2 in the equation (6.72), which in the derivation of the formula for fk can be traced back
to the non-zero commutator between creation and annihilation operators. Keeping this −1/2
correction in the definition of the occupation number for a semi-classical calculation is to
a large extent an arbitrary choice. Indeed, such an approximation is expected to reproduce
correctly the underlying quantum theory only in the region where the occupation number is
sufficiently large. When this is the case, one has fk + 1/2 ≈ fk, and therefore this 1/2 is not
very significant. This also means that the drop of the occupation number at k ≥ 2 in the figure
6.17, although perfectly understandable in our semi-classical approximation, is obviously not
a physical feature of the underlying quantum theory22. In our setup, there is one advantage
in keeping the −1/2 in eq. (6.72) though: if one does the same computation with a vanishing
source J = 0, one gets identically fk = 0, which is of course the exact answer. Without this
−1/2, one would have obtained fk = 1/2.

21At first sight, one could be tempted to blame this drop in the tail on the rarefaction of the lattice modes at large
k. However, this hypothesis does not hold if one does the same simulation with lower physical scales: this leads to
a similar drop, but at a smaller value of k. If the drop was caused by lattice artifacts, one would expect it to occur at
a fixed value of k (in lattice units), no matter what the physical scales are.

22Interestingly however, the −1/2 term in eq. (6.74) is nothing but the second term in the expansion of the Bose-
Einstein distribution in powers of (ωk − µ)/T . Therefore, at a formal level, keeping this 1/2 correction in the
present semi-classical computation gives a better approximation of the full quantum theory. This point was already
discussed extensively in [199, 200] in the context of the Boltzmann equation.
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Kolmogorov turbulence

At t ≈ 200, the modes in the resonance band reach their maximal occupancy, and start to
subside afterwards, while the other non-zero modes continue to increase. While the resonance
peak progressively disappears, one sees in the figure 6.17 that the occupation curves tend to
accumulate in the intermediate k range on a fixed line that is well fitted by a power law
k−5/3. In this regime, the zero mode continues to decrease, while the occupation curve
extends slowly into the hard region.

Such a scaling with an exponent −5/3 in the power law is well know in the physics of
turbulence (see the first part of [201] for instance). Typically, in Kolmogorov’s turbulence,
the energy cascades to the hard modes from a source localized in the soft sector, with an
intermediate stationary distribution in between, that follows a power law k−5/3. In our case,
the zero mode plays the role of this source, since it was initially the only occupied mode.
In contrast to the usual setup in the study of Kolmogorov’s turbulence [201], our system is
closed and eventually the zero mode will run out of energy and will not be able to feed the
cascade anymore. However, in our simulation, we have not reached the time at which this
starts to happen.

Bose-Einstein condensation

In the figure 6.17, we saw that the occupation number at late times is best fitted by a distribu-
tion of the form of eq. (6.74). This fit however calls for two comments:

i. the occupation number of the zero mode is well above the curve provided by this fit,

ii. the best value of the chemical potential (µ = 0.54) is very close to the mass of the
quasi-particles at this time,m = 0.58.

These two seemingly unrelated facts have in fact a common interpretation. As we have seen
before, a chemical potential arises because the number of quasi-particles evolves very slowly
in this theory, and a positive µ is the reaction of the system to accommodate an excess of
particles. However, it is clear from eqs. (6.73) and (6.74) that µ cannot be larger than the
mass m – otherwise, the occupation number would become negative near k = 0. But having
an upper bound on the chemical potential implies an upper bound on the particle density that
these distributions can describe. What if the particle excess in the system is so large that the
density is larger than this upper bound? When this happens, the excess of particles condense
on the zero mode, a phenomenon known as Bose-Einstein condensation. Dynamically, the
collisions lead to a distribution that has two components23,

fk =
1

eβ(ωk−m) − 1
+ f0 δ(k) , (6.75)

i.e. the chemical potential settles to the maximal value µ = m, and the extra particles go into
the zero mode24 k = 0. As one can see from the fit of the figure 6.17, the occupation number
appears to be precisely of the form of eq. (6.75).

From the knowledge of the occupation number, it is easy to compute what fraction of
the number of particles and what fraction of the total energy are contained in the zero mode
at various times. This information is provided in the two plots of the figure 6.19. At early

23Here we have written the quantum version of the distribution, but it has an analogue in our semi-classical
approximation, where the first term is replaced by fclass(k). This is discussed in more detail in the appendix 6.4.7.

24By using the Boltzmann equation, it is easy to see that k = 0 is the only mode where the extra particles can go.
If the particles in excess occupy non-zero modes, then one does not have a fixed point of the Boltzmann equation.
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Figure 6.19: Left: fraction of particles contained in the modes |l| ≤ |k|, at various stages of the
time evolution. Right: fraction of energy contained in the modes |l| ≤ |k|.
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times (up to t ∼ 100), all the particles and all the energy is stored in the zero mode, as a
consequence of our initial condition. At intermediate times (e.g. at t = 200), a large fraction
of the energy is still in the zero mode, and the remainder is almost entirely in the resonance
band. At the latest time we have considered (x0 = 104 lattice units), the zero mode still
contains about 35% of the particles and 15% of the energy.

On could argue that our computation does not demonstrate Bose-Einstein condensation,
because we started from an initial condition in which all the energy is already stored in the
zero mode. What if we start from a situation where the zero mode is empty? We have done
that in the figure 6.20, in which the energy of the system is initially contained in the modes
(kx, ky, kz) = (1, 1, 0) and (−1,−1, 0) (the total energy being exactly the same as in the
figure 6.17). Thus, at the initial time, the occupation number has a delta peak at a single,

Figure 6.20: Occupation number fk at various times, for a system initialized in the modes
(kx, ky, kz) = (1, 1, 0) and (−1,−1, 0). Top right inset: behavior at short times.
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non-zero, energy. But then, one sees that a non-zero occupation number develops in the zero
mode (and in other modes as well), to reach very large values in a rather short time. After
this rapid transient regime, all trace of the original peak has been washed out. At late times,
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the distribution has become identical to the one encountered in the figure 6.17: all the modes
but the zero mode are described by a function of the form of eq. (6.74), and there is a particle
excess in the zero mode. This study strongly suggests that Bose-Einstein condensation indeed
occurs in this system25, when it is initially over-occupied.

6.4.5 Further tests of the quasi-particle description

Quasi-particle mass

From the occupation number, we can further test the quasi-particle description of the system.
A simple check is to compute the medium-induced mass of the quasi-particles, assuming that
perturbation theory applies. The Hard Thermal Loop contribution to this mass has already
been given in eq. (6.61), and we have represented this quantity in the figure 6.16 (blue curve),
along with the mass obtained by fitting the location of the peak in the spectral function. In the
region where quasi-particles are well defined (y0 ≥ 100), we see that the HTL value of the
mass is systematically lower than the observed one. We can improve this result by including
also the 1-loop vacuum contribution to the mass. At 1-loop in a φ4 theory, this is given by a
tadpole graph whose expression can be written as

m21−loop = g2
∫

d3k

(2π)32k

(1
2
+ fk

)
. (6.76)

Including the vacuum contribution to the mass improves significantly (see the red curve in
the figure 6.16) the agreement between the theoretical prediction and the fit, indicating that
higher-order corrections are presumably rather small for this value of the coupling (g = 1).
Thus, it appears that the quasi-particle description is quite consistent: indeed, the occupation
number computed from the fields themselves, when inserted into the 1-loop formula for the
effective mass, reproduces very well the mass measured by fitting the peak in the spectral
function.

Residual interaction energy

A quasi-particle description of a system is useful only if the residual interactions between the
quasi-particles are weak – in other words, if the main effect of the interactions is simply to
alter the properties of the particles (e.g. by generating an effective mass). This can be tested
by computing the energy density of the system by summing the energies of its quasi-particles,
i.e. by assuming that they have no residual interactions26,

εqp ≡
∫
d3k

(2π)3
fk

√
k2 +m2 . (6.77)

By comparing this quasi-particle energy to the actual energy density, ε ≡
〈
T00
〉
, we can

estimate the interaction energy of the quasi-particles and therefore the strength of their resid-
ual interactions. The result of this comparison is shown in the figure 6.21. We see that the

25Of course, since the study is performed on a lattice, that has by definition a discrete spectrum, it is impossible to
tell whether the distribution has a true δ(k) term at the origin or whether it is a strongly peaked but otherwise regular
function.

26In our framework, replacing the true energy density by εqp is equivalent to substituting the expectation value of
the interaction energy 〈U(ϕ)〉 by 1

2
m2

〈
ϕ2

〉
, i.e. to a mean-field approximation.
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Figure 6.21: Comparison between the actual energy density of the system (ε) and the energy
carried by the quasi-particles (εqp) if one neglects their interactions.
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true energy of the system is always below the energy of its quasi-particles, indicating that
the residual interactions are attractive – which is indeed a standard result of a φ4 field the-
ory. Moreover, as the time increases, the energy of the quasi-particles gets closer to the true
energy, meaning that the quasi-particle description is better at late times.

Entropy production

From the occupation number, it is also possible to compute the entropy density,

s ≡
∫
d3k

(2π)3

[
(1+ fk) ln(1+ fk) − fk ln fk

]
. (6.78)

The time evolution of this quantity is shown in the figure 6.22 (green curve). One sees that
the entropy density is multiplied roughly by a factor 20 during the evolution of the system
(the initial value is low in our setup because the occupancy is entirely localized in the zero
mode at t = 0). In the red curve, we have displayed the entropy that would have a gas of
free bosons of equal energy density at thermal equilibrium27. The true entropy of the system
gets close to the equilibrium entropy, but not exactly equal even at the largest times we have
considered (the discrepancy remains of the order of 10−20%). This difference is presumably
a combination of two factors: (i) the fact that the system is not yet fully equilibrated, and (ii)
the residual interactions of its quasi-particles.

The increase of the entropy defined by eq. (6.78) may seem paradoxical at first sight,
given the way it has been obtained in our framework. Indeed, at the microscopic level, our
system is described as an ensemble of classical field configurations that evolve according
to the Euler-Lagrange equation of motion. This equation of motion is invariant under time
reversal t → −t, yet the entropy s computed in this system is clearly not invariant under
this transformation – despite the fact that it is a functional of classical fields that have a time-
reversible evolution. Let us recall here that the ensemble of classical field configurations that

27Its small variations with time are due to the fact that the mass of the quasi-particles is not constant.
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Figure 6.22: Green curve (S): time evolution of the entropy density s defined in eq. (6.78). Red
curve (SBE): entropy of a non-interacting gas of bosons of equal energy density, in thermal
equilibrium.
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describe the system in our framework evolves according to the Liouville equation,

∂tFt + {Ft, H} = 0 . (6.79)

Instead of eq. (6.78), one could have defined an entropy based on the probability distribution
Ft[ϕ, ϕ̇] of the field configurations in phase-space,

S ≡ −

∫
[DϕDϕ̇] Ft[ϕ, ϕ̇] lnFt[ϕ, ϕ̇] ; (6.80)

and it is easy to see that it is constant in time thanks to Liouville’s theorem (see the appendix
F). This means that, if one were able to determine the field configuration of the system at a
given time, there would be no entropy increase because everything would be known about the
microscopic state of the system. In contrast, the definition (6.78) is the appropriate definition
when one knows only the single particle distribution in the system. Compared to eq. (6.80),
a lot of information about the microscopic state of the system has been discarded by doing
this. This coarse graining is the reason why the entropy given by (6.78) increases with time,
while at the microscopic level the field configurations evolve via time reversible equations.

6.4.6 Time evolution at a glance

Let us summarize the main results of this section in a synthetic way, by displaying in parallel
the time evolutions of the various quantities that we have considered separately so far. This is
shown in the figure 6.23. From these plots, it appears that one can divide the time evolution
in three stages that are qualitatively distinct28:

i. 0 ≤ t ≤ 100 : at these early times, the pressure of the system has not yet started
to relax towards its equilibrium value p = ε/3. Moreover, quasi-particles are not

28The numerical values of the times quoted here are not absolute, but depend on the energy density in the system.
Indeed, in a scale invariant theory, all the time-scales vary like ε−1/4. Moreover, these time-scales depend on the
coupling constant g2, and decrease as the coupling increases.
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Figure 6.23: (Panels numbered 1 to 5 from the bottom to the top.) Panel 1: time evolution of the
pressure. Panel 2: time evolution of the quasi-particle mass. Panel 3: time evolution of the
entropy, compared to the entropy of a gas of same energy density at thermal equilibrium.
Panel 4: time evolution of the quasi-particle density. Panel 5: occupation number at various
stages of the time evolution (the gray band is a fit at the latest time by a Bose-Einstein
distribution with a chemical potential).
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a good description of the system (their mass is not well defined, and there are extra
spurious branches in the spectral function). The entropy displays only a very moderate
growth during this era, the occupation number starts rising in the resonance band almost
immediately, but the energy is still almost entirely contained in the zero mode,

ii. 100 ≤ t ≤ 600 : this intermediate period starts when the occupancy in the resonance
band reaches its maximum and starts to subside, while the occupation number rises in
the other momentum modes. During this stage, the zero mode still contains the largest
share of the total energy, and the remainder is contained predominantly in the resonant
modes. The mains features of this era are the relaxation of the pressure towards its
equilibrium value, and an important growth of the entropy. In this era, there are well
defined quasi-particles, with a mass that is almost constant in time,

iii. 600 ≤ t : in the late stages of the time evolution, the pressure is the equilibrium one,
and the entropy displays only a marginal growth. However, the system is not yet fully
equilibrated: the mass of the quasi-particles shows a clear decrease, while the occupa-
tion number continues to slowly expand towards higher momenta. During this stage,
the occupation number shows some signs of Kolmogorov scaling, but perhaps even
more compelling is the fact that it seems to evolve as would a system dominated by
elastic collisions and which is overpopulated compared to equilibrium – i.e. by devel-
oping a chemical potential equal to the mass and a Bose condensate at zero momentum.
At the same time, the energy initially contained in the zero mode is progressively dis-
tributed among the higher modes.

A very interesting observation is the appearance of a chemical potential, that we inter-
preted as resulting from a particle excess (compared to the value the particle density should
have in equilibrium) combined to a fairly slow rate of inelastic processes. Eventually, the
inelastic processes will wipe out the initial particle excess. However, because they are slow,
there is an extended regime where the occupation number settles on a form that has a chemi-
cal potential. Moreover, for the bosonic quantum statistics, the chemical potential cannot be
larger than the mass of the quasi-particles. This implies that if the particle excess is too large,
it cannot be accommodated solely by a chemical potential and the system stabilizes itself
by the formation of a condensate at zero momentum. This is consistent with our numerical
results, where we observe a large occupancy in the zero mode, that persists until late times
while the chemical potential remains close to the mass of the quasi-particles. Interestingly,
the condition of overpopulation is also realized for the gluons produced initially in heavy ion
collisions. Indeed, at a timeQ−1

s (whereQs is the saturation momentum), the energy density
is ε ∼ Q4s/g

2 and the gluon number density is n ∼ Q3s/g
2. Thus one has the dimensionless

ratio nε−3/4 ∼ g−1/2 � 1, that should be of order 1 in chemical equilibrium. Depend-
ing on the strength of the number-changing processes, one may also expect the (transient)
appearance of a gluonic chemical potential and the formation of a gluon condensate at zero
momentum.

6.4.7 Evolution of the classical phase-space density

In the figure 6.17, we have obtained a very good fit of the occupation number at late times by
a function of the form

fk =
T

ωk − µ
−
1

2
. (6.81)
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This fit works except for the zero mode, that is over occupied with respect to this distribution.
We interpreted this distribution as the classical approximation of a Bose-Einstein distribution,
and the −1/2 term was simply due to our definition of the occupation number.

However, it is also interesting to forget the underlying quantum field theory we started
from, and to consider in its own right the classical problem by which it is approximated. This
reformulation is equivalent to solving the Liouville equation,

∂tFt + {Ft,H} = 0 , (6.82)

given some Gaussian initial distribution. Therefore, if we adopt this point of view, we just
have a (large) collection of coupled classical oscillators, and we follow their Hamiltonian
flow in phase-space. Let us now discuss some aspects of this classical dynamical system, that
are relevant to the topics discussed previously.

Effective Hamiltonian

Motivated by the observation of quasi-particles in the system, we may assume that there is a
transformation of the fields and their conjugate momenta such that the Hamiltonian becomes
a sum of quasi-free harmonic oscillators coupled only by some weak residual interactions. In
practice, this amounts to writing

H =

∫
d3x

1

2

(
ϕ̇2 + (∇ϕ)2

)
+
g2

4!
ϕ4

=

∫
d3x

1

2

(
ϕ̇2 + (∇ϕ)2 +m2ϕ2

)
︸ ︷︷ ︸

H0

+
g2

4!
ϕ4 −

1

2
m2ϕ2︸ ︷︷ ︸

H′int

. (6.83)

So far, we have just added and subtracted a mass term by hand, and the parameter m2 is
still arbitrary. In order to make the residual interactions small, one can choose the mean field
value form2,

m2 =
g2

2

〈
ϕ2(x)

〉
, (6.84)

where the angle brackets denote an ensemble average29. The first part of this Hamiltonian
can be rewritten as a sum of independent harmonic oscillators by going to Fourier space,

H0 =

∫
d3k

(2π)3
1

2

∣∣ϕ̇k

∣∣2 + 1

2
ω2k
∣∣ϕk

∣∣2︸ ︷︷ ︸
hk

, (6.85)

whereωk ≡ (k2 +m2)1/2 and where ϕk is the spatial Fourier transform of ϕ.

This decomposition of the classical Hamiltonian into elementary harmonic oscillators
plus residual interactions is a good starting point to make connections with the study of the
occupation number in the previous sections. Indeed, it is easy to check that eq. (6.72) is
equivalent to

1

2
+ fk =

〈
hk
〉

Vωk
. (6.86)

29One can check numerically that this mean field expression of the mass is in very good agreement with the
measured mass of the quasi-particles.
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In other words,
〈
hk
〉

is the occupancy of the mode k times ωk times the volume, plus a
constant vacuum contribution Vωk/2. This means that one should find a non-zero average
value for

〈
hk
〉

even in the vacuum – actual particles in the mode k correspond to an excess
of
〈
hk
〉

over Vωk/2.

Time evolution of the classical distribution

In order to start the discussion, we first plot in the figure 6.24 the distribution Ft[ϕ, ϕ̇] of the
classical field configurations at various stages of the evolution. Since we obviously cannot
plot a functional, we have represented several Fourier slices: a slice being defined as the
distribution of configurations in the plane30 (

√
ωk/V |ϕk|, |ϕ̇k|/

√
ωkV). In the figure 6.24,

we have represented this distribution for three values of k: the zero mode, a mode in the
resonance band, and a mode at some higher momentum. At the initial time, the zero mode
of the fields is highly coherent, and its distribution is concentrated around a single point. In
contrast, all the higher modes contain only fluctuations centered around the origin (0, 0), with
a width which is that of the vacuum fluctuations (i.e. the width that gives

〈
hk
〉
= ωk/2). At

the next time, t = 200, the zero mode has decohered and now fills almost uniformly a curve31

of constant energy. We also see that the distribution of the resonant modes has expanded
due to parametric resonance, while the harder modes still have the same distribution as the
t = 0 one. At later times, the expansion of the resonant modes reaches a maximum and then
subsides, while the distribution of the hard modes begins to expand as well. Simultaneously,
the zero mode distribution shrinks slowly, while remaining on a curve of constant energy (i.e.
this seemingly constant energy is in fact slowly decreasing, due to a transfer of energy from
the soft to the hard modes).

To summarize these observations, the Fourier modes that initially have a large amplitude
quickly decohere. If there are many such modes (instead of only one as in our numerical
example), what happens then depends on whether the classical dynamics is chaotic or on the
contrary integrable: in a chaotic system, all these modes mix and fill uniformly an energy
shell, while in the integrable case these modes would evolve independently and cover an
invariant torus of much smaller dimension (for N modes, an energy shell is a manifold of
dimension 2N − 1, while an invariant torus has dimension N only). On larger time scales,
the energy carried by these initially large modes decreases slowly, and is transferred to the
higher modes whose distribution expands as a consequence of this transfer.

Asymptotic behavior

What is then the asymptotic distribution F∞[ϕ, ϕ̇] of these classical fields? Let us assume
first that the only quantity that is invariant under the Hamiltonian flow is the energy itself32.
From the Liouville equation, it is clear that the asymptotic distribution must have a vanishing
Poisson bracket with the Hamiltonian. This property is satisfied by any distribution that
depends on ϕ, ϕ̇ only through the Hamiltonian H[ϕ, ϕ̇]. Such an asymptotic form for the
distribution F∞ has strong implications on the average value of 〈hk〉. Indeed, if we can

30We rescale the Fourier components in this way so that the vacuum fluctuations look the same for all k. A value
of

〈
hk

〉
proportional toωk corresponds to a circle of fixed radius (of order unity) in this plane.

31This is not exactly a curve of constant h0, as one can see from the fact that it is not a circle. This deviation from
a circle is due to the fact that there is a large correction g2ϕ40/4! coming from the interaction energy. Indeed, the
zero mode, because of its large amplitude, is strongly interacting with itself.

32The total spatial momentum of the system is also conserved, but it does not play any role here because we
analyze the problem in the rest frame of the system.
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Figure 6.24: Phase-space density in the (
√
ωk/V |ϕk|, |ϕ̇k|/

√
ωkV) plane. From left to right:

k = 0, 1.07 (resonant mode), and 2. From top to bottom: t = 0, 200, 103 and 104. Note
the vastly different scale used for the zero mode (left column). The black circle represents
the radius of the pure vacuum fluctuations.
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neglect the interaction energy (e.g. assuming that most of the interaction energy can be
absorbed into an effective mass), then a distribution that depends only on H implies the
equipartition of the energy among the modes,

〈hk〉 = const (independent of k) . (6.87)

Note that this conclusion holds no matter what is the precise form of the function of H that
F∞ is equal to. When equipartition is in the classical phase-space is reached, the occupation
number becomes of the form:

fk =
const
ωk

−
1

2
. (6.88)

Asymptotic behavior with constraints

Figure 6.25: Average value
〈
hk

〉
of the energy in the mode k. The brown band is a fit of the

form Tωk/(ωk−µ), and its width reflects the expected statistical error in our Monte-Carlo
simulation. The horizontal line shows the expected result if equipartition is reached. The
red line represents the zero point energy of the vacuum, i.e. ωk/2.
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When we try to fit the late time curves of the figure 6.17 by an expression of the form
(6.88), that lacks the chemical potential µ, the result is not good. This is best seen by plotting
〈hk〉 (see the figure 6.25), since eq. (6.88) would correspond to an horizontal line in this plot.
In contrast, the much better fit of the figure 6.17 could be explained if the average value of
hk at late times was of the form

〈hk〉 = const
ωk

ωk − µ
. (6.89)

This is obvious in the figure 6.25, where we obtain a good fit to
〈
hk
〉

by an expression of this
form.

It is possible to understand eq. (6.89) if one assumes that the Hamiltonian flow not only
conserves energy (exactly), but also (to a good degree of approximation) the following quan-
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tity33

N[ϕ, ϕ̇] ≡
∫
d3k

(2π)3
hk

ωk
. (6.90)

It is obvious that this quantity has a vanishing Poisson bracket with the free quasi-particle part
of the Hamiltonian H0, and that only the residual quasi-particle interactions H′int can possibly
make this quantity change. If both H and N are invariants, then the most general asymptotic
solution of the Liouville equation must depend on ϕ, ϕ̇ only through some combination of
the form H − µN. For any distribution of this form, equipartition is replaced by〈

hk − µ
hk

ωk

〉
= const (independent of k) , (6.91)

which leads to eq. (6.89). Therefore, in the classical system of fields, it seems that the very
slow variation of N is what explains that we observed an energy distribution that differs
considerably from the naive equipartition.

Note that when k is large, eq. (6.91) is equivalent to 〈hk〉 = const. This implies that
the constant in the right hand side must be positive. Considering now k = 0, this imposes
µ ≤ m. Inserting now eq. (6.91) in the definition of N,

〈N〉 =
∫
d3k

(2π)3
const
ωk − µ

, (6.92)

we see that it increases with µ, and reaches a finite (because the singularity at k = 0 is in-
tegrable) maximum when µ = m. However, it may happen that the initial value of

〈
N
〉

is
larger than this maximum. In this situation, the

〈
hk
〉
’s must be altered in order to accommo-

date this excess, but in such a way that eq. (6.91) remains valid. Any modification of
〈
hk
〉

for k 6= 0 will violate eq. (6.91), so the only possibility is to modify
〈
h0
〉
. Then, we see that

the only way to change
〈
h0
〉

without violating eq. (6.91) is to add to have µ = m. Thus,
when there is an excess of

〈
N
〉
, the equilibrium value of 〈hk〉 takes the form

〈hk〉 = Aδ(k) + B
ωk

ωk −m
. (6.93)

This explains why we found a chemical potential whose value is very close to the mass of
the quasi-particles (within statistical errors). This phenomenon can be seen as an analogue in
classical Hamiltonian dynamics of Bose condensation in quantum mechanics.

Do vacuum fluctuations thermalize?

The fact that the Liouville evolution makes the distribution Ft evolve towards a classical
thermal equilibrium leads to an interesting question: does the same happen if there is no
source coupled to the quantum fields, i.e. for pure vacuum fluctuations? In this case, the
initial distribution is

F0[ϕ, ϕ̇] = exp

[
−

∫
d2k

(2π)3
|ϕ̇k|

2 + k2|ϕk|
2

k

]
, (6.94)

corresponding to 〈hk〉 = k/2. The consistency of our approach requires that the vacuum
does not change over time. However, since eq. (6.94) is not a function of H, our previous
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Figure 6.26: Average value of the energy hk in the mode k for pure vacuum fluctuations. The
center of the brown band isωk/2, and its width reflects the expected statistical error in our
Monte-Carlo simulation). The horizontal line corresponds to equipartition.
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considerations suggest that equipartition may also occur if we start from the pure vacuum
fluctuations given by eq. (6.94). We have computed 〈hk〉 numerically for the pure vacuum
case, by starting from the distribution of eq. (6.94) and by evolving the corresponding clas-
sical field configurations also to a large time t = 104. As shown in the figure 6.26, this
computation shows no sign of equipartition of the vacuum energy, indicating that the vacuum
is stable in our framework.

This is at first sight an intriguing result. Indeed, how does the purely classical Liouville
equation know that the distribution of eq. (6.94) represents the ground state of the corre-
sponding quantum theory? In a sense, the Liouville equation seems to know more than what
its “classical” qualifier might suggest. This result can be qualitatively explained by recall-
ing the formal connection that exists between quantum mechanics and the classical Liouville
equation. In quantum mechanics, a system can be described by a density operator ρ̂, whose
evolution is driven by the Von Neumann equation,

i∂tρ̂+ [ρ̂, H] = 0 . (6.95)

It was noted by Wigner and Moyal that this quantum mechanical problem can be formulated
equivalently as an evolution in the classical phase-space (see [202] for a recent review). To
do this, one should first introduce the Wigner distribution associated to the density operator
ρ̂. For a single degree of freedom, this is defined as

W(q, p) ≡
∫
dx eipx

〈
q+ x/2

∣∣ρ̂∣∣q− x/2
〉
. (6.96)

The Von Neumann equation can then be shown to be equivalent to the Moyal equation forW,

∂tW + {{W,H}} = 0 , (6.97)

33The average 〈N〉 in the classical field theory is the counterpart of the number of quasi-particles in the quantum
theory.

177



where {{·, ·}} is the Moyal bracket, obtained as the Wigner transform of the commutator. At
this stage, one has a formulation of quantum mechanics that involves only quantities defined
on the classical phase-space (the quantum mechanical aspects are hidden in the fact that the
Moyal bracket depends on h̄). The connection to the classical Liouville equation follows
from the following two properties,

i. the Moyal bracket {{·,H}} is equal to the Poisson bracket {·,H} if the Hamiltonian H

is quadratic in the coordinates and momenta,

ii. for any quantities A and B defined on the classical phase-space, one has

{{A,B}} = {A,B}+ O(h̄2) . (6.98)

If the quantum system is in its ground state
∣∣0〉, its density operator ρ̂0 ≡

∣∣0〉〈0∣∣ is invariant
under the Von Neumann equation. Equivalently, the corresponding Wigner distributionW0 is
invariant under the Moyal equation. Since F0 is the Wigner distribution of the same vacuum
state, it is thus natural that it is left invariant by the Liouville evolution, since it is the h̄ → 0
limit of the invariant Moyal evolution.
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Conclusions and Perspectives
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T
he central result of this manuscript is the proof that, for inclusive observables
in heavy ion collisions, the logarithms of the collision energy are universal and
can be factorized into the JIMWLK evolution of distributions that describe the
content of the two projectiles. This universality establishes a rigorous connec-
tion between Deep Inelastic Scattering off nuclei and heavy ion collisions: these

distributions can be constrained in DIS experiments, and then used to compute observables
in nucleus-nucleus collisions.

A consequence of this factorization theorem is that –at leading logarithmic accuracy– all
the dependence on energy and rapidity in inclusive observables is inherited from the evolution
of the color charge distributions of the projectiles prior to the collision. This is also true of
the rapidity correlations in multigluon spectra: all the leading correlations pre-exist in the
wavefunctions of the projectiles. The correlations that are produced during the collision itself
are a subleading effect.

Thus, from the JIMWLK equation for the projectile evolution, one can make predictions
(at leading logarithmic accuracy) for the energy and rapidity dependence of observables in
heavy ion collisions, that can be tested in experiments. A key observation is the existence of
correlations between pairs of particles separated by a large rapidity interval. From causality,
one can trace this effect back to the state of the system at a very short time after the impact,
i.e. when its dynamics was still dominated by the physics of gluon saturation. This long range
correlation has a natural explanation in the framework we have presented in this manuscript,
related to the fact that the strong color fields produced in the collision have a very weak
rapidity dependence. In fact, the JIMWLK equation predicts how this correlation should
decrease when the rapidity separation increases, a prediction that will be testable at the LHC
thanks to the large rapidity acceptance available in detectors such as CMS and ATLAS. The
Color Glass Condensate also predicts that the multiplicity distribution should be close to a
negative binomial distribution, a fact compatible with experimental observations.

The results on factorization presented in this manuscript can be extended in several di-
rections. Firstly, it would be interesting to study whether it also applies to the production
of other particles, such as light quarks (for heavy quarks –with a large mass compared to
the saturation momentum–, the multiple scattering corrections that make factorization non-
trivial are suppressed, and this case should fall back to the much simpler k

T
–factorization). A

second extension, technically more complicated, is to study the next-to-leading logarithmic
contributions in order to assess whether they also factorize via a NLO–improved JIMWLK
equation.

Our proof of factorization highlights the special status of inclusive observables, such as
inclusive spectra or the energy-momentum tensor. It is easy to see that our proof fails for
exclusive observables, because constraints imposed on the content of the final state modify
the boundary conditions of the fields. At the moment, it seems clear that the CGC formalism
must be altered if one wants to describe exclusive reactions –such as diffraction–, but the pre-
cise nature and extent of these modifications is so far unknown. In phenomenological models
of diffraction in hadronic collisions, one introduces the so-called survival probability – the
probability that no inelastic process happens besides the hard process of interest– in order
to account for the breakdown of factorization in diffractive processes when going from DIS
to hadronic collisions. However, a QCD-based justification of these models is still missing.
Because of its ability to cope with situations where multiparton processes matter, the CGC
seems to be a promising framework for studying these questions. This is definitely an inter-
esting theoretical problem, that has also a phenomenological interest in other areas such as
the central diffractive production of the Higgs boson in proton-proton collisions at the LHC.
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The main outstanding problem in the study of the early stages of heavy ion collisions is
that of thermalization. The comparison between experimental results and hydrodynamical
models tends to favor a fast thermalization, a result which is notoriously hard to justify on the
theory side. In the Color Glass Condensate framework, our best hope towards the resolution
of this issue is the resummation that we have developed in the last part of this manuscript
in order to cure the secular divergences that appear in higher loop orders. This resummation
amounts to a classical Yang-Mills evolution with a Gaussian ensemble of initial conditions.
Combined with the known fact that the Yang-Mills equations have positive Lyapunov expo-
nents, this suggests that thermalization in heavy ion collisions may be related to the chaotic
behavior of classical QCD.

In order to explore these ideas in a simpler setting, we have studied in detail a scalar
field theory by using the same techniques. In this context, we were able to conclude that this
resummation indeed leads to the expected equilibrium equation of state. In fact, the initial
condition is a coherent state and the equation of state is obtained as soon as the initial coher-
ence is destroyed. In addition, we have shown that, although the system is made of strong
fields configurations, quasi-particles emerge once decoherence is achieved. Later on, the oc-
cupation number of these quasi-particles evolve to an equilibrium distribution. If the initial
condition is made of large enough fields, this distribution has a positive chemical potential
and even a Bose-Einstein condensate (BEC) in the zero mode. In the Color Glass Conden-
sate framework, the initial condition immediately after the collision of two heavy ions is also
characterized by large fields that could possibly lead to the formation of a condensate, but
whether a BEC forms or not depends crucially on the rate of inelastic processes.

Moreover, these results raise further questions regarding the precise state of the matter
formed in heavy ion collisions, and in particular whether it reaches complete local thermal
equilibrium or not. At the most fundamental level, the full thermalization of the system
requires that the correlation functions obey the Kubo-Martin-Schwinger relations [203, 204],
and it would be interesting to assess to what extent they are satisfied (or violated) by the fields
produced in the early stages of heavy ion collisions. Given the possible formation of a BEC,
it would also be very instructive to compute the transport coefficients –especially the shear
viscosity– of the matter produced in these collisions.

Another interesting, more formal, direction would be to investigate possible connections
between the resummation presented in the final part of this work and older ideas in the field
of quantum chaos, such as Berry’s conjecture [205–207] and Srednicki’s hypothesis of eigen-
state thermalization [208, 209]. These works consider quantum mechanical systems whose
classical limit is chaotic, and try to uncover the relationships that exist between the chaoticity
of the classical system and the mechanisms by which the quantum system reaches thermal
equilibrium. To some extent, similar questions arise when one tries to understand the ther-
malization of the matter produced in heavy ion collisions.
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Appendix A

Schwinger-Keldysh formalism

A
s is well known, Feynman perturbation theory in quantum field theory is the
tool of choice for computing transition amplitudes such as

〈
p′q′out

∣∣pqin
〉
. The

calculation of these matrix elements is amenable via the Lehmann–Symanzik–
Zimmermann reduction formulas to the expectation value of time-ordered prod-
ucts of field operators, between the in- and out- vacuum states, for instance〈

0out
∣∣Tφ(x1)φ(x2)φ(x3)φ(x4)∣∣0in

〉
, the calculation of which can be performed with the

usual Feynman rules that we shall review in the first section of this appendix.

However, there is a class of more general problems that cannot be addressed by this
standard perturbation theory. One of the simplest problems of that kind is the evaluation
of the expectation value of the number operator

〈
0in
∣∣a†out(p)aout(p)

∣∣0in
〉
, which counts the

particles of momentum p in the final state, given that the initial state was the in- vacuum.
To evaluate this matrix element, one needs to calculate the amplitude

〈
0in
∣∣φ(x)φ(y)∣∣0in

〉
,

that has no time ordering, and where one has the in- vacuum state on both sides. More
generally, one often needs the amplitudes

〈
0in
∣∣Tφ(x1) · · ·φ(xn) Tφ(y1) · · ·φ(yp)

∣∣0in
〉
,

where T denotes the anti-time ordering. This is what the Schwinger-Keldysh formalism is
designed for. We will derive the rules for the perturbative expansion of this kind of matrix
elements in section A.2.

A.1 Standard perturbation theory

Let φ(x) be the field operator in Heisenberg’s representation. It can be formally related to
the field operator in the interaction representation, φin(x), by the relation

φ(x) = U(−∞, x0)φin(x)U(x
0,−∞) , (A.1)

where U(x2, x1) is an evolution operator defined as

U(x2, x1) ≡ T exp i
∫x02
x0
1

d4x Lint(φin(x)) . (A.2)

(In this definition, Lint is the part of the Lagrangian containing the interaction terms, i.e. the
terms of degree three or higher in the field operator.) The evolution operatorU(x2, x1) obeys
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the following properties :

U(x, y) is unitary ,
U(x, x) = 1 ,

U(x, y)U(y, x) = 1 ,

U(x, y)U(y, z) = U(x, z) . (A.3)

Note that in the definition of the field in the interaction picture, we have decided to makeφ(x)
and φin(x) coincide at x0 = −∞. This choice is conventional, and by no means a necessity.
A crucial advantage of φin(x) over φ(x) is that it behaves like a free field. This can be seen
from the following relation :

�xφ(x) −
∂Lint(φ(x))

∂φ(x)
= U(−∞, x0)[�xφin(x)

]
U(x0,−∞) . (A.4)

In other words, if φ(x) obeys the equation of motion that includes the interactions of Lint,
then φin(x) obeys the free Klein-Gordon equation.

Let us now consider a matrix element
〈
0out
∣∣Tφ(x1) · · ·φ(xn)∣∣0in

〉
. Let us first substi-

tute every Heisenberg field by the corresponding field in the interaction picture, by using
repeatedly eq. (A.1). This leads to〈

0out
∣∣Tφ(x1) · · ·φ(xn)∣∣0in

〉
=

〈
0out
∣∣U(−∞,+∞) Tφin(x1) · · ·φin(xn)

× exp i
∫+∞
−∞ d

4x Lint(φin(x))
∣∣0in
〉
, (A.5)

where we have used the properties of the evolution operators in order to rearrange them1. The
next step is to notice thatU(−∞,+∞) is precisely the evolution operator that transforms the
in- vacuum into the out- vacuum, so that we have〈

0out
∣∣U(−∞,+∞) =

〈
0in
∣∣ . (A.6)

Therefore, the matrix element of interest can be rewritten as〈
0out
∣∣Tφ(x1) · · ·φ(xn)∣∣0in

〉
=

〈
0in
∣∣Tφin(x1) · · ·φin(xn)

× exp i
∫+∞
−∞ d

4x Lint(φin(x))
∣∣0in
〉
. (A.7)

Now, everything in the right hand side is expressed in terms of the in- fields, which are free
fields, and of the in- vacuum state. Moreover, all the interaction terms have been collected
in the exponential that appears in the second line. Therefore, the perturbative expansion is
obtained as a Taylor expansion of this exponential.

It is customary to collect the values of these correlators into a unique generating func-
tional,

Z[η] ≡
〈
0out
∣∣T exp i

∫+∞
−∞ d

4x η(x)φ(x)
∣∣0in
〉
, (A.8)

1We have used the fact that the ordering of the operators inside a T-product is irrelevant: TA(x)B(y) =
TB(y)A(x).
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such that

〈
0out
∣∣Tφ(x1) · · ·φ(xn)∣∣0in

〉
=

δ

iδη(x1)
· · · δ

iδη(xn)
Z[η]

∣∣∣∣
η=0

. (A.9)

From eq. (A.7), this generating functional can be rewritten as

Z[η] =
〈
0in
∣∣T exp i

∫+∞
−∞d

4x [Lint(φin(x)) + η(x)φin(x)]
∣∣0in
〉

= exp i
∫+∞
−∞d

4xLint

(
δ

iδη(x)

) 〈
0in
∣∣T exp i

∫+∞
−∞d

4x η(x)φin(x)
∣∣0in
〉

︸ ︷︷ ︸
Z0[η]

.

(A.10)

In the second line, the interactions have been completely factorized: evaluating their effect at
a given order merely amounts to taking enough functional derivatives of the free generating
functional Z0[η]. The evaluation of Z0[η] is a standard calculation in free field theory, that
we shall not repeat here. The result is a Gaussian functional of the current η(x):

Z0[η] = exp−
1

2

∫+∞
−∞ d

4xd4y η(x)G0
F
(x, y)η(y) , (A.11)

where G0
F
(x, y) is the free Feynman propagator,

G0
F
(x, y) ≡

〈
0in
∣∣Tφin(x)φin(y)

∣∣0in
〉
= i

∫
d4p

(2π)4
e−ip·(x−y)

p2 + iε
. (A.12)

From the above results, it is clear that the perturbative expansion for correlators such as
eq. (A.5) is obtained as a diagrammatic expansion, where the links between the vertices are
Feynman propagators.

Let us close this section by mentioning the vacuum-vacuum diagrams. These are dia-
grams without any external legs, that appear quite naturally in the expansion of eq. (A.10) as
disconnected factors. Their sum is nothing but the vacuum to vacuum transition amplitude

Z[0] =
〈
0out
∣∣0in
〉
, (A.13)

hence their name. The vacuum-vacuum diagrams are not zero. However, in a stable theory,
their sum is a pure phase that appears in front of every transition amplitude. Thanks to this
property, the vacuum-vacuum diagrams have no effect on transition probabilities, and it is
therefore common to simply disregard them.

A.2 Schwinger-Keldysh perturbation theory

Consider now correlators of the type
〈
0in
∣∣Tφ(x1) · · ·φ(xn) Tφ(y1) · · ·φ(yp)

∣∣0in
〉
. One

must again replace each Heisenberg field operator by its counterpart in the interaction repre-
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sentation, using eq. (A.1). After some rearrangement of the evolution operators, we get :〈
0in
∣∣Tφ(x1) · · ·φ(xn) Tφ(y1) · · ·φ(yp)

∣∣0in
〉
=

=
〈
0in
∣∣T [φin(x1) · · ·φin(xn) exp i

∫+∞
−∞ d

4x Lint(φin(x))
]

×T
[
φin(y1) · · ·φin(yp) exp i

∫+∞
−∞ d

4x Lint(φin(x))
]∣∣0in

〉
.

(A.14)

Here, we have exploited the fact that the factor U(−∞,+∞) that appears in these manipula-
tions is the anti-time ordered exponential of the interaction term, in order to write this formula
in a more symmetric way. To go further, it is useful to imagine that the time axis is in fact a
contour C made of two branches labelled + and − running parallel to the real axis, as illus-
trated in figure A.1. This contour is oriented, with the + branch running in the direction of

Figure A.1: Time contour in the Schwinger-Keldysh formalism.

C
x0

−

+

increasing time, followed by the − branch running in the direction of decreasing time. Then,
it is convenient to introduce a path ordering, denoted by P and defined as a standard ordering
along the contour C. In more detail, one has

PA(x)B(y) =


TA(x)B(y) if x0, y0 ∈ C+ ,

TA(x)B(y) if x0, y0 ∈ C− ,

A(x)B(y) if x0 ∈ C− , y
0 ∈ C+ ,

B(y)A(x) if x0 ∈ C+ , y
0 ∈ C− .

(A.15)

One can use this contour ordering to write the previous equations in a much more compact
way. In particular, eq. (A.14) can be generalized into :〈

0in
∣∣Pφ−(x1) · · ·φ−(xn)φ

+(y1) · · ·φ+(yp)
∣∣0in
〉
=

=
〈
0in
∣∣Pφ−

in (x1) · · ·φ
−
in (xn)φ

+
in (y1) · · ·φ

+
in (yp) exp i

∫
C

d4x Lint(φin(x))
∣∣0in
〉
.

(A.16)

The differences compared to eq. (A.14) are threefold :

i. A single overall path ordering takes care automatically of both the time ordering and
the anti-time ordering contained in the original formula,

ii. For this trick to work, one must (temporarily) assume that the fields on the upper and
lower branch of the contour C are distinct: φ+ and φ− respectively,
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iii. The time integration in the exponential is now running over both branches of the con-
tour C.

The advantage of having introduced this more complicated time contour is that it leads to a
formula which is formally identical to eq. (A.7), provided one replaces the time ordering by
the path ordering and provided one extends the time integration from R to C. In particular,
all the subsequent manipulations can be generalized straightforwardly. One can first define a
generating functional,

ZSK [η] ≡
〈
0in
∣∣T exp i

∫
C

d4x η(x)φ(x)
∣∣0in
〉
, (A.17)

that encodes all the correlators considered in this section, provided the external source η has
distinct values η+ and η− on the two branches of the contour (the superscript SK is used to
distinguish this generating functional from the standard one). As in the standard case, one
can write this generating functional as:

ZSK [η] = exp i
∫
C

d4xLint

(
δ

iδη(x)

) 〈
0in
∣∣T exp i

∫
C

d4x η(x)φin(x)
∣∣0in
〉

︸ ︷︷ ︸
ZSK
0 [η]

, (A.18)

with

ZSK
0 [η] = exp−

1

2

∫
C

d4xd4y η(x)G0
C
(x, y)η(y)

G0
C
(x, y) ≡

〈
0in
∣∣Pφin(x)φin(y)

∣∣0in
〉
. (A.19)

The free propagator G0
C

, defined on the contour C, is a natural extension of the Feynman
propagator (in particular, it coincides with the Feynman propagator if the two time arguments
are on the + branch of the contour). Besides the propagator, the other change to the perturba-
tive expansion in the Schwinger-Keldysh formalism is that the time integration at the vertices
of a diagram must run over the contour C instead of the real axis.

It is common to break down the propagator into 4 components G0±±(x, y), depending
on whether the times x0, y0 are on the upper or lower branch of the contour. An explicit
calculation of these free propagators leads to

G0++(x, y) = i

∫
d4p

(2π)4
e−ip·(x−y)

p2 + iε
,

G0−−(x, y) = −i

∫
d4p

(2π)4
e−ip·(x−y)

p2 − iε
,

G0+−(x, y) =

∫
d4p

(2π)4
e−ip·(x−y) 2πθ(−p0)δ(p2) ,

G0−+(x, y) =

∫
d4p

(2π)4
e−ip·(x−y) 2πθ(+p0)δ(p2) . (A.20)

This formulation of the Schwinger-Keldysh formalism leads to the following diagrammatic
rules :
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i. Draw all the diagrams that contribute to the correlator of interest at a given order (the
power counting is identical to that of standard perturbation theory),

ii. For each diagram, assign an index + or − to all the vertices in all the possible combi-
nations; a + vertex is given a coupling −ig and a − vertex has the coupling +ig,

iii. Connect the vertices by the appropriate propagators G0±±,

iv. Integrate the time at each vertex on the real axis (one should not integrate over C here,
since the fact that there are two branches has been explicitly taken into account by dou-
bling the vertices); if working in momentum space, integrate over the four momentum
running in each independent loop.

In the Schwinger-Keldysh formalism, the discussion of the vacuum-vacuum diagrams is even
simpler than in conventional perturbation theory. Here, one has

ZSK [0] =
〈
0in
∣∣0in
〉
= 1 , (A.21)

which means that all the connected vacuum-vacuum diagrams are zero. This is due to the
fact that in this formalism one is calculating correlators that have the in- vacuum on both
sides. This cancellation works individually for each diagram topology, and results from a
cancellation between the various ways of assigning the + and − indices to the vertices of a
diagram (a vacuum-vacuum diagram with a fixed assignment of + and − vertices is not zero
in general).

A.3 Relation between the functionals Z[η] and ZSK[η]

There is a useful functional relation between the generating functionals of conventional per-
turbation theory, and that of the Schwinger-Keldysh formalism. Let us first state this relation,
and we will then prove it in the rest of the section :

ZSK [η+, η−] = exp
[∫
d4xd4y G0+−(x, y)�x�y

δ2

δη+(x)δη−(y)

]
Z[η+]Z

∗[η−] . (A.22)

(Here, in order to avoid any confusion, we write explicitly the two components + and − of the
source η in the Schwinger-Keldysh generating functional.) Thanks to this formula, one can
construct diagrams in the Schwinger-Keldysh formalism by stitching an ordinary Feynman
diagram and the complex conjugate of another Feynman diagram.

In order to prove this relation, first notice that it is sufficient to establish it for a free
theory, since the interactions are always trivially factorizable (see eqs. (A.10) and (A.18)).
Therefore, we need to compute the functional

W[η+, η−] ≡ exp
(∫
d4xd4y G0+−(x, y)�x�y

δ2

δη+(x)δη−(y)

)
× exp

(
−
1

2

∫
d4xd4y η+(x)G

0
++(x, y)η+(y)

)
× exp

(
−
1

2

∫
d4xd4y η−(x)G

0
−−(x, y)η−(y)

)
. (A.23)
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Our goal is to show that this functional is equal to ZSK
0 [η+, η−]. In this formula, we have

used the fact that the Feynman propagator is the ++ component of the Schwinger-Keldysh
propagator, and that its complex conjugate is the −− component. In order to simplify the
notations, let us rewrite this formula in the following compact way

W[η+, η−] = e
δ
δη+
⊗A+−⊗ δ

δη− e−
1
2
(η+⊗G0++⊗η++η−⊗G0−−⊗η−) , (A.24)

where all the convolutions over space-time have been replaced by the symbol ⊗, and where
we denote A+−(x, y) ≡

←
�x G0+−(x, y)

→
�y (the arrows are important because the �x should

not act on the x-dependence of G0+−). In order to compute this functional, it is convenient to
write the last two Gaussian factors as Fourier integrals :

W[η+, η−] = e
δ
δη+
⊗A+−⊗ δ

δη−

∫
[Dπ+Dπ−] e

i(π+⊗η++π−⊗η−)

× e− 12 (π+⊗G0,−1++ ⊗π++π−⊗G0,−1−− ⊗π−)

=

∫
[Dπ+Dπ−] e

iπ+⊗
[
η++A+−⊗ δ

δη−

]
eiπ−⊗η−

× e− 12 (π+⊗G0,−1++ ⊗π++π−⊗G0,−1−− ⊗π−)

=

∫
[Dπ+Dπ−] e

i(π+⊗η++π−⊗η−)

× e− 12 (π+⊗G0,−1++ ⊗π++π−⊗G0,−1−− ⊗π−−2η+⊗A+−⊗η−) .

(A.25)

In order to obtain the second and third equalities, we have exploited the fact that the expo-
nential of a derivative is a translation operator. At this point, we simply need to perform the
Fourier transform in reverse, which is straightforward because it is a Gaussian integral. The
result reads

W[η+, η−] = e
− 1
2
(η+⊗G0++⊗η++η−⊗G0−−⊗η−−η+⊗G0+−⊗η−−η−⊗G0−+⊗η+) , (A.26)

which is nothing but eq. (A.18), where the argument of the exponential has been broken down
into all the possible combinations of + and − indices. This ends the proof of eq. (A.22).

A.4 Propagators in a background field

A recurrent problem encountered in this manuscript is to compute the Schwinger-Keldysh
propagators in the presence of a background field ϕ. In section 2.6.2, this problem is solved
by writing the equations of motion obeyed by the various propagators, as well as their bound-
ary conditions, and by exhibiting an expression that fulfills both. In this appendix, we present
an alternate derivation of this result, that does not require to guess what the solution is. The
method proposed here simply amounts to performing explicitly the resummation of the back-
ground field insertions. As one will see, this approach is arguably more tedious, but is in a
sense much more elementary.

The equation that performs this resummation is

Gεε′(x, y) = G
0
εε′(x, y) − i

∑
η=±

η

∫
d4z G0εη(x, z)U

′′(ϕ(z))Gηε′(z, y) . (A.27)
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In this form, the equation is fairly complicated to solve because the four components of the
Schwinger-Keldysh propagator get mixed already after the first insertion of the background
field. However, there is a simple way to simplify these equations. It is based on the observa-
tion that the four propagators are not independent, but satisfy a linear relation,

G0++ +G0−− = G0+− +G0−+ ,

G++ + G−− = G+− + G−+ , (A.28)

which follows immediately from their definition as path-ordered products of two fields, and
from the identity θ(x) + θ(−x) = 1. It is possible to exploit this relation as follows: perform
a rotation on the matrix made of the four propagators so that one component of the rotated
matrix becomes zero2. Having a zero in the matrix of propagators makes the resummation of
the background field considerably simpler. Therefore, let us define

Gαβ ≡
∑

ε,ε′=±
ΩαεΩβε′Gεε′ . (A.29)

(The same rotation is applied to the free propagators.) There is not a unique choice of the
matrixΩαε that gives a zero component inGαβ, but the following choice is convenient:

Ωαε ≡
1√
2

(
1 −1
1 1

)
. (A.30)

The rotated propagators read

G
0
αβ =

(
0 G0

A

G0
R

G0
S

)
, Gαβ =

(
0 G

A

G
R

G
S

)
, (A.31)

where we have introduced

G0
R
= G0++ −G0+− , G

R
= G++ − G0+− ,

G0
A
= G0++ −G0−+ , G

A
= G++ − G0−+ ,

G0
S
= G0++ +G0−− , G

S
= G++ + G0−− . (A.32)

(The subscripts R, A and S stand respectively for retarded, advanced and symmetric.) After
having performed this rotation, eq. (A.27) is transformed into

Gαβ(x, y) = G
0
αβ(x, y) − i

∑
δ,γ

∫
d4z G0αδ(x, z) U

′′(ϕ(z))σδγ Gγβ(z, y) , (A.33)

where we denote

σ ≡
(
0 1
1 0

)
. (A.34)

In order to make the notations more compact, let us introduce the following shorthand,[
A ◦B

]
αβ

(x, y) ≡ −i
∑
δ,γ

∫
d4z Aαδ(x, z) U

′′(ϕ(z))σδγ Bγβ(z, y) . (A.35)

2This trick was invented in the context of Quantum Field Theory at finite temperature [210–213].
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With this notation, eq. (A.33) takes a very compact form,

G = G0 +G0 ◦G , (A.36)

and its solution is

G =

∞∑
n=0

[
G
0
]◦n

, withA◦n ≡ A ◦ · · · ◦A︸ ︷︷ ︸
n times

. (A.37)

What makes the calculation of this infinite sum easy after the rotation we have performed is
the fact that the elementary objectG0σ is the sum of a diagonal and a nilpotent matrix:

G
0σ = D+N , D ≡

(
G0
A

0

0 G0
R

)
, N ≡

(
0 0

G0
S

0

)
. (A.38)

One hasN2 = 0, which simplifies a lot the calculation of the n-th power ofG0σ. From this
observation, it is easy to obtain[

G
0
]◦(n+1)

=

(
0

[
G0
A

]?(n+1)[
G0
R

]?(n+1) ∑n
i=0

[
G0
R

]?i
?G0

S
?
[
G0
A

]?(n−i)
)
, (A.39)

with the notation[
A ? B

]
(x, y) ≡ −i

∫
d4z A(x, z)U′′(ϕ(z))B(z, y) , (A.40)

(and an obvious definition for the ?-exponentiation.) By looking at the off-diagonal com-
ponents of eq. (A.39), one sees that their resummation is trivial because they do not mix.
Moreover, the resummed G

S
propagator has a simple expression in terms of the resummed

retarded and advanced propagators. These results can be summarized by

G
R

=

∞∑
n=0

[
G0
R

]?n
,

G
A

=

∞∑
n=0

[
G0
A

]?n
,

G
S

= G
R
(G0

R
)−1G0

S
(G0

A
)−1 G

A
. (A.41)

At this stage, we know all the components of the resummed propagator in the rotated basis.
In order to obtain them in the original basis, we just have to invert the rotation of eq. (A.29).
We obtain:

G−+ = G
R
(G0

R
)−1G0−+ (G0

A
)−1 G

A
,

G+− = G
R
(G0

R
)−1G0+− (G0

A
)−1 G

A
,

G++ =
1

2

[
G
R
(G0

R
)−1G0

S
(G0

A
)−1 G

A
+ G

R
+ G

A

]
,

G−− =
1

2

[
G
R
(G0

R
)−1G0

S
(G0

A
)−1 G

A
− G

R
− G

A

]
. (A.42)

After some more massaging, it is easy to check that the first two of these equations are
equivalent to eqs. (2.96), and that third and fourth equations are equivalent to eqs. (2.93).
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Appendix B

Green’s formulas

B
ecause of causality, retarded solutions of partial differential equations are fully
determined from the value of the unknown function and some of its derivatives
on an initial surface chosen to set the initial conditions. It is often useful to have
formulas that express, even formally, the solution as a functional of this initial
data. This can be achieved by means of Green’s formulas. In this appendix,

we present the derivation of a Green’s formula first in the simple case of the Klein-Gordon
equation with some arbitrary interaction potential, and initial conditions set on a surface of
constant time. This Green’s formula is then generalized to an arbitrary initial Cauchy surface.
Finally, we derive some useful Green’s formulas that will help us in summing tree diagrams
in the Schwinger-Keldysh formalism.

B.1 Green’s formula for a retarded classical scalar field

Consider the following partial differential equation1,

�xφ(x) +U
′(φ(x)) = j(x) , (B.1)

where U(φ) is some interaction potential and j(x) a source that drives the evolution of the
function φ(x).

Since this equation contains time derivatives up to second order, it is necessary to specify
the initial value of φ itself as well as that of its first time derivative. Let us assume that
we know these values on the surface t = 0. We wish to obtain a formula for φ(x) at a time
x0 > 0 in terms of this initial data. In order to do this, we must introduce the retarded Green’s
function of the operator �x, defined by2 :

�xG
0
R
(x, y) = −iδ(x− y) ,

G0
R
(x, y) = 0 if x0 < y0 . (B.2)

1This equation is the classical equation of motion in the scalar field theory of Lagrangian

L ≡
1

2
(∂µφ)(∂

µφ) − U(φ) + jφ .

2The normalization of the first equation is consistent with our general convention for propagators, that have an i
in the numerator. For instance, the free retarded propagator in Fourier space reads: G0

R
(p) ≡ i/(p2 + ip0ε).
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(The superscript 0 is a reminder of the fact that this is a free Green’s function, that does not
depend on the interaction potential U(φ).) Note that G0

R
(x, y) obeys the same equation if

acted upon with �y instead.

Now, from the equations obeyed by φ and by G0
R

, we can write the following equations,

G0
R
(x, y)

→
�y φ(y) = G

0
R
(x, y)

[
j(y) −U′(φ(y))

]
,

G0
R
(x, y)

←
�y φ(y) = −iδ(x− y)φ(y) , (B.3)

where the arrows on the d’Alembertian operators indicate on which side they act. By inte-
grating these equations over y above the initial surface t = 0, and by subtracting them, we
get the following relation

φ(x) = i

∫
y0>0

d4y G0
R
(x, y)

[
(
←
�y −

→
�y)φ(y) + j(y) −U

′(φ(y))
]
. (B.4)

The last step is to show that the term that involves the difference between the two d’Alem-
bertian operators is in fact a boundary term that depends only on the initial conditions. Note
first the following identity,

A(
←
� −

→
�)B = ∂µA(

←
∂µ −

→
∂µ)B , (B.5)

where the leftmost ∂µ acts on everything on its right. In other words, the left hand side is
a total derivative, and its integral over d4y can be rewritten as a surface integral thanks to
Stokes’ theorem. The integration domain defined by y0 > 0 has three boundaries:

i. y0 = +∞ : this boundary at infinite time does not contribute, by virtue of the definition
of the retarded Green’s function G0

R
. Indeed, G0

R
(x, y) = 0 if y0 > x0.

ii. y0 = 0 : this boundary gives a non zero contribution, that depends only on the initial
conditions for the field φ.

iii. Boundary at spatial infinity : this boundary does not contribute if we assume that the
field vanishes when |x|→∞, or if we adopt periodic boundary conditions in the spatial
directions.

Therefore, we obtain

φ(x) = i

∫
y0>0

d4y G0
R
(x, y)

[
j(y) −U′(φ(y))

]

+i

∫
y0=0

d3y G0
R
(x, y)(

→
∂y0 −

←
∂y0)φ(y) . (B.6)

This is the Green’s formula we were looking for. The second term in the right hand side tells
us how φ(x) depends on the initial values of φ(x) and of its first time derivative. We see that
it is not necessary to know anything else on the initial surface in order to uniquely determine
the solution. The first term in the right hand side provides the dependence on the source j,
and on the interactions.

196



Figure B.1: Typical contribution to φ(x) in the diagrammatic representation of eq. (B.6), in the
case of cubic interactions. The solid dots represent the sources j, the open circles represent
the initial value of the field or field derivatives on the surface y0 = 0. The lines are retarded
propagators G0

R
.

x

y0 = 0

Except in the trivial case where the potential U(φ) is zero, eq. (B.6) does not provide
an explicit result for φ(x), since the right hand side depends on φ(y) at points above the
initial surface. Despite this limitation, this is a very useful tool in order to perform formal
manipulations involving retarded solutions of eq. (B.1). To end this section, let us mention
a diagrammatic interpretation of eq. (B.6), illustrated in figure B.1. One can expand the
right hand side of eq. (B.6) in powers of the interactions. The starting point is the zeroth
order approximation, obtained by setting the potential to U = 0, and then by proceeding
recursively in order to keep higher orders in U. The outcome of this expansion is an infinite
series of terms that have a tree structure. The root of this tree is the point x where the field is
evaluated, and its leaves are either sources j (if there are any above the surface y0 = 0) or the
initial data on the surface y0 = 0. In particular, if the source j(x) vanishes at y0 > 0, then
all the j dependence of the classical field is implicitly hidden in the φ(y) that appears in the
boundary term.

B.2 Extension to a generic initial surface

In the previous section, the initial conditions for the field φ have been set on the surface of
constant time y0 = 0. However, there are many situations in which this initial data is known
on a different initial surface3. Let us consider a generic surface Σ, on which the field φ and
its derivatives are known. As before, we wish to obtain a formula that expressesφ(x) at some
point x above Σ in terms of these initial conditions on Σ.

Most of the derivation is identical to the case of a constant time initial surface, with all
the integrals over the domain y0 > 0 replaced by integrals over the domain Ω located above
Σ. The only significant change occurs when we apply Stokes’ theorem in order to transform
the 4-dimensional integral of a total derivative into an integral over the boundary of Ω. Like
in the previous case, the boundaries at infinite time, and at infinity in the spatial directions do
not contribute, and we have only a contribution from the surface Σ. Stokes’ theorem can then
be written as∫

Ω

d4y ∂µF
µ(y) = −

∫
Σ

d3Sy nµF
µ(y) , (B.7)

3Many applications of Green’s formulas in this manuscript require that we take the light-cone as the initial
surface.
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where d3Sy is the measure on the surface Σ, and nµ is a 4-vector normal to the surface Σ
at the point y, pointing above the surface Σ. In the important case where the initial surface
is invariant by translation in the transverse directions, the proper normalization for nµ and
d3Sy can be obtained as follows. Parameterize an arbitrary displacement dyµ on the surface
Σ about the point y as dyµ = (βdy3, dy1, dy2, dy3), where β is the local slope of the
surface Σ in the (y3, y0) plane. Then, we have:

nµdy
µ = 0 ,

nµn
µ = 1 , n0 > 0 ,

d3Sy =
√
1− β2 dy1dy2dy3 . (B.8)

The second and third conditions require to have β < 1 in order to make sense. This implies
that the surface Σ must be locally space-like. Physically, this means that a signal emitted
from a point of the surface Σ cannot reach the surface again in the future. The relations (B.8)

Figure B.2: Illustration of eqs. (B.8).

Ω

Σ
dyµ

y

nµ

are illustrated in figure B.2. Note that the orthogonality defined by nµdyµ = 0 does not
correspond to the Euclidean concept of orthogonality.

The limiting case of a surface Σ parallel to the light-cone can be handled as the limit
β → 1− in the above equations. In this limit, the vectors nµ and dyµ are both parallel to
the light-cone (and therefore tangential to the surface Σ in the Euclidean sense), as illustrated
in figure B.3. Moreover, this limit is a bit pathological since the vector nµ would need to

Figure B.3: Illustration of eqs. (B.8) in the limiting case of a surface Σ parallel to the light-cone.

y

nµ

dyµ

Σ

Ω

have infinite components in order to fulfill nµnµ = 1. This problem is easily circumvented,
because the vanishing prefactor

√
1− β2 from the measure d3Sy can be absorbed into the

definition of the vector nµ, which makes its components finite. For this particular case of
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surface Σ, Stokes’ theorem can be rewritten more simply in terms of light-cone coordinates
as: ∫

Ω

d4y ∂µF
µ(y) = −

∫
Σ

dy+dy1dy2 F−(y) . (B.9)

Thanks to eq. (B.7), it is possible to write the Green’s formula for an arbitrary initial
surface Σ as

φ(x) = i

∫
Ω

d4y G0
R
(x, y)

[
j(y) −U′(φ(y))

]
+i

∫
Σ

d3Sy G
0
R
(x, y)(n·

→
∂y −n·

←
∂y)φ(y) . (B.10)

For an arbitrary surface Σ, the second term in the right hand side of this formula tells us ex-
plicitly what information about φ we must provide on the initial surface in order to determine
it uniquely above the surface: at every point y ∈ Σ, one must specify the values of the field
φ(y) and of its normal derivative n · ∂yφ(y).

B.3 Green’s formula for small field fluctuations

Consider now a small perturbation a(x) to the classical field, and assume that a(x)� φ(x).
Therefore, one can linearize the equation of motion of a(x), and we get[

�x +U
′′(φ(x))

]
a(x) = 0 . (B.11)

Treating the term U′′(φ(x))a(x) as an interaction, we can easily derive a Green’s formula
that expresses the field fluctuation a(x) in terms of its initial conditions on a surface Σ,

a(x) = i

∫
Ω

d4y G0
R
(x, y)

[
−U′′(φ(y))a(y)

]
+i

∫
Σ

d3Sy G
0
R
(x, y)(n·

→
∂y −n·

←
∂y)a(y) . (B.12)

Eq. (B.12) is illustrated in the figure B.4. Every diagram contributing to a(x) has exactly
one instance of the initial value of a(y) (represented by an open square in the figure) on the
initial surface. Indeed, it is easy to see from eq. (B.12) that a(x) depends linearly on its value
a(y) on the initial surface. This is a consequence of the fact that equation of motion for a
small fluctuation is a linear equation.

By comparing the figures B.1 and B.4, one sees that they differ only by the fact that
one instance of the field φ(y) has been replaced by the small fluctuation a(y) on the initial
surface. Therefore, we expect a linear relationship between a(x) and φ(x), of the form

a(x) = T φ(x) , (B.13)
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Figure B.4: Typical contribution to a(x) in the diagrammatic representation of eq. (B.12), in the
case of cubic interactions. The solid dots represent the sources j, the open circles represent
the initial data for φ(y) on the surface y0 = 0, and the open square the initial data for a(y).
The lines are retarded propagators G0

R
. The red dashed line is the retarded propagator of the

fluctuation in the background φ, i.e. an inverse of the operator � +U′′(φ).

x

y0 = 0

where T is a linear operator that substitutes one power of φ(y) by a(y) on Σ (i.e. an operator
that involves first derivatives with respect to the initial conditions on Σ). It is easy to prove
this relation by using eqs. (B.10) and (B.12). In order to do so and at the same time determine
what the operator T is, let us apply T to the Green’s formula that gives φ(x). We get4

Tφ(x) = i

∫
Ω

d4y G0
R
(x, y)

[
−U′′(φ(y)) Tφ(y)

]
+iT

∫
Σ

d3Sy G
0
R
(x, y)(n·

→
∂y −n·

←
∂y)φ(y) . (B.14)

If the boundary term in this formula can be made identical to the boundary term in the Green’s
formula for a(x), then we will have proven the announced relationship between a(x) and
φ(x). This is the case if the operator T is chosen as

T ≡
∫
Σ

d3Sy

[
a(y)

δ

δφ(y)
+ (n · ∂a(y)) δ

δ(n · ∂φ(y))

]
︸ ︷︷ ︸

a ·Ty

, (B.15)

which is nothing but the operator that substitutes a(y) to φ(y) on the initial surface Σ, as
announced. We will use frequently the notation a ·Ty, in which Ty is the generator of the
translations of the initial field5 at the point y ∈ Σ. Thus, we will write:

a(x) =

∫
Σ

d3Sy

[
a ·Ty

]
φ(x) . (B.16)

This formula is useful in situations where the classical field φ(x) is not known analytically
(usually because the non-linear interactions prevent one from finding explicit solutions). Not

4Since T acts only on the initial fields on Σ, we have T j = 0.
5In particular, if we denote by φ[φ0] the classical field whose initial value on Σ is φ0, then we have

exp
{ ∫
Σ

d3Sy
[
a0 ·Ty

]}
φ[φ0] = φ[φ0 + a0] .
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knowing φ(x) explicitly means that one cannot solve explicitly the equation of motion of
the fluctuation a(x) either. However, many manipulations involving the fluctuations can be
performed thanks to eq. (B.16), without knowing explicit solutions.

Let us also mention another useful representation of the small fluctuation a(x), in terms
of the retarded propagator G

R
over the background φ. This dressed propagator is defined by[

�x +U
′′(φ(x))

]
G
R
(x, y) = −iδ(x− y) ,

G
R
(x, y) = 0 if x0 < y0 . (B.17)

In terms of this propagator, the Green’s formula for a(x) is a pure boundary term,

a(x) = i

∫
Σ

d3Sy G
R
(x, y)(n·

→
∂y −n·

←
∂y)a(y) . (B.18)

In other words, the interactions with the background field φ –that appear in the first term
of eq. (B.12)– are now entirely resummed in the dressed propagator G

R
. Note also that this

relation implies

i

∫
Σ

d3Sy G
R
(x, y)(n·

→
∂y −n·

←
∂y)a(y) =

∫
Σ

d3Sy

[
a ·Ty

]
φ(x) . (B.19)

In particular, this identity implies:

G
R
(x, y) = −i

δφ(x)

δ(n · ∂φ(y))
,

(n · ∂y)GR(x, y) = i
δφ(x)

δφ(y)
. (B.20)

B.4 Schwinger-Keldysh formalism

In some problems related to heavy ion collisions at high energy, one needs to compute sums
of tree diagrams in the Schwinger-Keldysh formalism. As we shall explain in the next sec-
tion, these sums can be expressed in terms of solutions of the classical equations of motion
with boundary conditions that depend on the details of the tree diagrams being summed.
The determination of the boundary conditions is done by comparison with some appropriate
Green’s formulas.

In the case of the Schwinger-Keldysh formalism, one is considering a pair of fieldsφ±(x),
that are both solutions of the classical equation of motion

�xφ±(x) +U
′(φ±(x)) = j(x) . (B.21)

(For simplicity we take the same source j(x) for the two fields, but this limitation is easily
circumvented if necessary.) Since the Schwinger-Keldysh propagator G0++ is also a Green’s
function of the operator �x, we can reproduce the previous derivation of Green’s formula,
which leads to6

φ+(x) = i

∫
d4y G0++(x, y)

[
j(y) −U′(φ+(y))

]
+i

∫
d3y

[
G0++(x, y)(

←
∂y0 −

→
∂y0)φ+(y)

]y0=+∞
y0=−∞ , (B.22)

6Here also, the prefactors i follow from our convention for the propagators of the Schwinger-Keldysh formalism
(see eqs. (A.20)).

201



where we used the notation [f(y0)]y
0=b
y0=a

≡ f(b)−f(a). The only difference with the Green’s
formula derived with retarded propagators is the boundary term: since G0++(x, y) does not
vanish when y0 > x0, there is also a non-zero contribution from the boundary at y0 = +∞.

Then, by using the fact that �yG0+−(x, y) = 0, we obtain in a similar way :

0 = i

∫
d4y G0+−(x, y)

[
j(y) −U′(φ−(y))

]
+i

∫
d3y

[
G0+−(x, y)(

←
∂y0 −

→
∂y0)φ−(y)

]y0=+∞
y0=−∞ . (B.23)

Subtracting this equation from eq. (B.22), we obtain

φ+(x) = i

∫
d4yG0++(x, y)

[
j(y)−U′(φ+(y))

]
−G0+−(x, y)

[
j(y)−U′(φ−(y))

]
−i

∫
d3y

[
G0++(x, y)

↔
∂y0 φ+(y) −G

0
+−(x, y)

↔
∂y0 φ−(y)

]y0=+∞
y0=−∞ ,

(B.24)

where A
↔
∂y0 B ≡ A(

→
∂y0 −

←
∂y0)B. Similarly, we obtain for φ−(x) :

φ−(x) = i

∫
d4yG0−+(x, y)

[
j(y)−U′(φ+(y))

]
−G0−−(x, y)

[
j(y)−U′(φ−(y))

]
−i

∫
d3y

[
G0−+(x, y)

↔
∂y0 φ+(y) −G

0
−−(x, y)

↔
∂y0 φ−(y)

]y0=+∞
y0=−∞ .

(B.25)

At this point, these formulas are rather formal, and it is not clear why we have gone through
the trouble of subtracting the quantity given by eq. (B.23), since it is identically zero. This
will become transparent in the next section, where we show that these formulas enable one to
sum series of tree diagrams encountered in the Schwinger-Keldysh formalism.

Note also that the only property of the propagators G0−+ and G0+− that we have used
in this derivation is the fact that they are annihilated by the operator �y. Therefore, the
equations (B.24) and (B.25) remain valid if we replace these propagators by any other pair of
propagators sharing the same property. For instance, one can replace the propagators G0+−

and G0−+ of eqs. (A.20) by the following objects

G
0

+−(x, y) =

∫
d4p

(2π)4
e−ip·(x−y) u(p) 2πθ(−p0)δ(p2) ,

G
0

−+(x, y) =

∫
d4p

(2π)4
e−ip·(x−y) v(p) 2πθ(+p0)δ(p2) , (B.26)

where u(p) and v(p) are some arbitrary functions of the momentum p, without altering any
of the formulas in this section. We will make use of this freedom in the next section.
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B.5 Summing tree diagrams using Green’s formulas

In heavy ion collisions at high energy, observables at leading order involve sums of tree
diagrams. These sums of diagrams can in general be expressed in terms of solutions of the
classical equations of motion. However, in order to determine them uniquely, one must know
the boundary conditions obeyed by these classical solutions. The strategy in order to obtain
them is to write the sum of tree diagrams as a recursive integral equation. Then, by comparing
this integral equation with a Green’s formula such as eq. (B.6), one can read off the boundary
conditions easily.

B.5.1 Sum of retarded trees

Let us illustrate this first in the simplest case, where one must sum all the tree diagrams built
with retarded propagators, and whose leaves are a source j(x). Let us call φ(x) the sum of all
such tree diagrams. Given the recursive structure of such trees, one can write immediately :

φ(x) = i

∫
d4y G0

R
(x, y)

[
j(y) −U′(φ(y))

]
, (B.27)

where the integration over d4y is extended to the entire7 space-time. Therefore, we see that
this formula is identical to a Green’s formula like (B.6), where the initial surface would be at
y0 = −∞ instead of y0 = 0, and where the boundary term would be identically zero. This
means that the sum of these tree diagrams is a retarded solution of the classical equation of
motion with a null boundary condition in the remote past

�xφ(x) +U
′(φ(x)) = j(x) ,

lim
y0→−∞φ(y0,y) = 0 . (B.28)

B.5.2 Sum of trees in the Schwinger-Keldysh formalism

Consider now a more complicated example, in which one must sum tree diagrams in the
Schwinger-Keldysh formalism. Now, each vertex in a diagram is carrying an index ε = ±.
For simplicity, we assume that the + and − sources are identical, so that we still have a
single source j(x). Because this is necessary in certain applications, we are going to use
the modified propagators G

0

+− and G
0

−+ defined in eqs. (B.26), instead of the propagators
G0+− and G0−+ defined in eqs. (A.20) (the propagators G0++ and G0−− are kept unchanged).
In addition to summing over all the possible trees, we sum over all the combinations of ±
indices at every internal vertex. Again, it is easy to write the sum of these trees as two coupled
integral equations (there are now two fields φ±(x) depending on the index carried by the root
of the tree) :

φ+(x) = i

∫
d4y G0++(x, y)

[
j(y) −U′(φ+(y))

]
−i

∫
d4y G

0

+−(x, y)
[
j(y) −U′(φ−(y))

]
,

φ−(x) = i

∫
d4y G

0

−+(x, y)
[
j(y) −U′(φ+(y))

]
−i

∫
d4y G0−−(x, y)

[
j(y) −U′(φ−(y))

]
. (B.29)

7This is because in the Feynman rules the integration at each vertex is extended to the full space-timeR4.
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At this point, we recognize that the right hand side of these equations is identical to the first
term in the right hand side of eqs. (B.24) and (B.25). From this observation, we conclude that
φ+(x) and φ−(x) are solutions of the classical equation of motion,

�xφ±(x) +U
′(φ±(x)) = j(x) , (B.30)

and that they obey the following boundary conditions

∫
d3y

[
G0++(x, y)

↔
∂y0 φ+(y) −G

0

+−(x, y)
↔
∂y0 φ−(y)

]y0=+∞
y0=−∞ = 0 ,∫

d3y
[
G
0

−+(x, y)
↔
∂y0 φ+(y) −G

0
−−(x, y)

↔
∂y0 φ−(y)

]y0=+∞
y0=−∞ = 0 .

(B.31)

As one can see, we have now coupled boundary conditions for the fields φ+ and φ−. More
importantly, the boundary conditions involve the value of the fields both at y0 = −∞ and at
y0 = +∞.

These boundary conditions are non-local in coordinate space, since they involve integrals
over d3y on the surfaces y0 = ±∞. However, they can be simplified considerably if one
uses the following Fourier representations for the propagators

G0++(x, y) =

∫
d3p

(2π)32p

[
θ(x0 − y0)e−ip·(x−y) + θ(y0 − x0)e+ip·(x−y)

]
,

G0−−(x, y) =

∫
d3p

(2π)32p

[
θ(x0 − y0)e+ip·(x−y) + θ(y0 − x0)e−ip·(x−y)

]
,

G
0

+−(x, y) =

∫
d3p

(2π)32p
u(p) e+ip·(x−y) ,

G
0

−+(x, y) =

∫
d3p

(2π)32p
v(p) e−ip·(x−y) . (B.32)

Compared to the expressions of these propagators in eqs. (A.20) and (B.26), we have per-
formed explicitly the integration over p0 in order to obtain these formulas. Thus, whenever
p0 appears in these expressions, it should be replaced by the positive on-shell value p0 = |p|.
The other ingredient we need in order to simplify the boundary conditions is a Fourier repre-
sentation for the fields φ±(y),

φε(y) ≡
∫

d3p

(2π)32p

[
f(+)
ε (y0,p) e−ip·y + f(−)

ε (y0,p) e+ip·y
]
. (B.33)

The superscripts (±) on the Fourier coefficients serve to distinguish the positive and negative
energy modes. Note that because the fields φ±(y) are not free fields, these Fourier coeffi-
cients are time dependent. In practice, one may assume that the interactions are switched off
at y0 = ±∞, so that the coefficients f(±)ε (y0,p) tend to constants when y0 → ±∞. How-
ever, these limiting values are different at y0 = +∞ and at y0 = −∞, and we must keep the
y0 argument to distinguish them. To proceed further, one needs the following result,∫

d3y eiεp·(x−y)
↔
∂y0 e

iε′p′·y = iδεε′ e
iεp·x (2π)32pδ(p− p′) , (B.34)
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valid for ε, ε′ = ±. It is then straightforward to rewrite the boundary conditions as∫
d3p

(2π)32p

[
e+ip·x

(
f
(−)
+ (+∞,p) − u(p)[f(−)

− (+∞,p) − f(−)
− (−∞,p)])

−e−ip·xf
(+)
+ (−∞,p)] = 0 ,∫

d3p

(2π)32p

[
e−ip·x

(
f
(+)
− (+∞,p) − v(p)[f(+)

+ (+∞,p) − f(+)
+ (−∞,p)])

−e+ip·xf
(−)
− (−∞,p)] = 0 . (B.35)

These relations must be satisfied at any point x inR4. Therefore, one can exploit the fact that
the plane waves exp(±ip · x) are linearly independent in order to get separate conditions for
each mode p:

f
(+)
+ (−∞,p) = f(−)

− (−∞,p) = 0 ,
f
(−)
+ (+∞,p) = u(p) f(−)

− (+∞,p) ,
f
(+)
− (+∞,p) = v(p) f(+)

+ (+∞,p) . (B.36)

One sees that the boundary conditions have a very compact expression in terms of the Fourier
coefficients of the fields φ±. At y0 = −∞, φ+(y) has no positive energy modes and φ−(y)
has no negative energy modes. At y0 = +∞, the negative energy modes of φ+(y) and
φ−(y) are proportional (with a proportionality relation that involves the function u(p)). A
similar relation, that involves the function v(p), holds between their positive energy modes
at y0 = +∞. Eqs. (B.36), together with the equations of motion (B.30), determine uniquely
the fields φ±(x) and therefore provide the solution to our original problem of summing tree
diagrams in the Schwinger-Keldysh formalism. One should however keep in mind that this
solution is somewhat formal, because it is extremely difficult to solve a non-linear field equa-
tion of motion8 with boundary conditions specified both at y0 = −∞ and y0 = +∞.

Let us also mention that these boundary conditions become considerably simpler in the
case where u(p) = v(p) ≡ 1, i.e. when one is summing tree diagrams in the unmodified
Schwinger-Keldysh formalism. Indeed, from the second and third of eqs. (B.36), we see that
the fields φ±(y) have identical Fourier coefficients at y0 = +∞. Therefore, the two fields
must be equal in the limit y0 → +∞. Then, by solving their equation of motion backwards
in time, one sees trivially that they are equal at all times (since they obey identical equations
of motion),

if u(p) = v(p) ≡ 1 , φ+(x) = φ−(x) , ∀x ∈ R4 . (B.37)

Finally, the first of eqs. (B.36) tells us that

if u(p) = v(p) ≡ 1 , lim
x0→−∞φ±(x) = 0 . (B.38)

To summarize, when u(p) = v(p) ≡ 1, the two fields φ±(x) are equal to the retarded field
that vanishes when x0 → −∞. This result could in fact have been obtained by a much more

8If one were dealing with an ordinary differential equation (i.e. with zero spatial dimensions), this problem can be
solved by an iterative point and shoot technique. This method is difficult to generalize with guaranteed convergence
in the case of field equations.
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elementary argument. Indeed, in the unmodified Schwinger-Keldysh formalism, one sees
easily that the summation over the ± indices at the vertices of tree diagrams always leads to
the following combinations of propagators,

G0++ −G0+− = G0−+ −G0−− = G0
R
. (B.39)

In other words, summing over these indices amounts to replacing all the propagators in a
given tree by retarded propagators, and one is thus led to the problem discussed in section
B.5.1.
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Appendix C

Small fluctuations
in a background field

C
alculating next-to-leading-order corrections in the Color Glass Condensate fra-
mework involves small field fluctuations propagating over a classical field. In
this appendix, we derive some useful properties of these small fluctuations. In
order to keep the notations simple, the derivation is illustrated for the case of
scalar fields, but the generalization to gauge fields is immediate.

C.1 Basis of retarded small fluctuations

Fluctuations occur in the problems discussed in this manuscript as variations around some
classical field configuration. It may happen that these fluctuations obey non retarded bound-
ary conditions (see the section 2.6.4 for instance), which makes them rather complicated to
handle. However, because the equation of motion of small fluctuations is linear, it is al-
ways possible to write them as a linear superposition of small fluctuations that obey retarded
boundary conditions. Let us introduce ak(x), defined by the equation of motion[

�x +U
′′(φ(x))

]
ak(x) = 0 , (C.1)

and the retarded boundary condition

lim
x0→−∞ak(x) = e−ik·x . (C.2)

We must also introduce their complex conjugate a∗k(x), which obeys the same equation of
motion (because the potential U(φ) is real), and the following retarded boundary condition,

lim
x0→−∞a∗k(x) = e+ik·x . (C.3)

The ak(x), combined to their complex conjugates a∗k(x), form a basis of the space of small
field fluctuations. Therefore, any solution of the equation of motion for small fluctuations can
be written as

a(x) =

∫
d3k

(2π)32k

[
αk
+ ak(x) + α

k
− a
∗
k(x)

]
, (C.4)

where the αk
± are constant coefficients that must be determined from the boundary conditions

(the boundary conditions in general lead to a set of linear equations for the coefficients).
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C.2 Completeness relations

The set of small fluctuations {ak(x), a
∗
k(x)} obey some useful relations, that are a conse-

quence of unitarity. Consider first two generic solutions a1(x) and a2(x) of the equation of
small fluctuations. In order to make the notations more compact in the rest of this appendix,
it is useful to introduce the following notations

∣∣a) ≡ (a(x)
ȧ(x)

)
,
(
a
∣∣ ≡ (a∗(x) ȧ∗(x)

)
σ2 , (C.5)

where the dot denotes a time derivative and σ2 is the second Pauli matrix. Thanks to the fact
that the background potential U′′(φ(x)) is real, one can construct from a1 and a2 an inner
product which is an invariant of the time evolution of the two fluctuations. This quantity
is reminiscent of the Wronskian for two solutions of a second order ordinary differential
equation, and it is defined as follows

(
a1
∣∣a2) ≡ i ∫ d3x [ȧ∗1(x)a2(x) − a∗1(x) ȧ2(x)] . (C.6)

Although
(
a1
∣∣a2) could possibly depend on time (since one integrates only over space in its

definition), it is immediate to verify that

∂

∂x0

(
a1
∣∣a2) = 0 . (C.7)

Since it is a constant in time, one can compute this inner product from the value of the
field fluctuations in the remote past. This is particularly handy when the fluctuations under
consideration are specified by retarded boundary conditions, as is the case for ak(x) and
a∗k(x). One finds(

ak

∣∣al

)
= (2π)32k δ(k− l) ,(

a∗k
∣∣a∗l) = −(2π)32k δ(k− l) ,(

a∗k
∣∣al

)
=

(
ak

∣∣a∗l) = 0 . (C.8)

Consider now a generic solution a(x) of eq. (C.1). Since the ak and a∗k provide a basis
of the linear space of solutions, one can write a(x) as a linear superposition of ak and a∗k,

∣∣a) = ∫ d3k

(2π)32k

[
αk
+

∣∣ak

)
+ αk

−

∣∣a∗k)] , (C.9)

where the coefficients αk
± do not depend on time or space. By using the orthogonality rela-

tions obeyed by the vectors
∣∣ak

)
and

∣∣a∗k), one gets easily

αk
+ =

(
ak

∣∣a) , αk
− = −

(
a∗k
∣∣a) . (C.10)

By inserting these relations back into eq. (C.9), and by using the fact that it is valid for any
small fluctuation a(x) solution of eq. (C.1), we obtain the following identity∫

d3k

(2π)32k

[∣∣ak

)(
ak

∣∣− ∣∣a∗k)(a∗k∣∣] = 1 . (C.11)
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This identity is valid at all times over the space of solutions of eq. (C.1). It is a manifes-
tation of the fact that, when the background field is real, the time evolution preserves the
completeness of the set of states

∣∣ak

)
,
∣∣a∗k).

Eq. (C.11) can also be written in a more explicit form in terms of the Fourier coefficients
of the field fluctuations ak, a∗k. Let us decompose these fluctuations as

ak(x) =

∫
d3p

(2π)32p

[
a
(+)
k (x0,p) e−ip·x + a

(−)
k (x0,p) e+ip·x

]
,

a∗k(x) =

∫
d3p

(2π)32p

[
a
∗(+)
k (x0,p) e−ip·x + a

∗(−)
k (x0,p) e+ip·x

]
. (C.12)

(Note that we obviously have a∗(±)k (x0,p) = [a
(∓)
k (x0,p)]∗ .) The Fourier coefficients at

x0 = +∞ can be obtained as scalar products between the states
∣∣ak

)
,
∣∣a∗k) and free states,

a
(+)
k (+∞,p) = −

(
a∗0k

∣∣ak

)
, a

(−)
k (+∞,p) = (a0k∣∣ak

)
,

a
∗(+)
k (+∞,p) = −

(
a∗0k

∣∣a∗k) , a
∗(−)
k (+∞,p) = (a0k∣∣a∗k) , (C.13)

where a0k and a∗0k are defined in a similar way to ak and a∗k, except that they obey the
in-vacuum equation of motion (i.e. with U′′(φ) = 0). In the previous formulas, all the scalar
products must be evaluated at x0 = +∞. By multiplying eq. (C.11) by

(
a0p

∣∣ or
(
a∗0p

∣∣ on
the left and by

∣∣a0q) or
∣∣a∗0q) on the right, we obtain the following relations among the

Fourier coefficients at x0 = +∞ of the fluctuations ak, a∗k,∫
d3k

(2π)32k

[
a
∗(+ε)
k (+∞,p)a(−ε′)k (+∞,q) − a(+ε)k (+∞,p)a∗(−ε′)k (+∞,q)]

= εδεε′ (2π)
32p δ(p− q) . (C.14)

A similar relation holds for the Fourier coefficients at x0 = −∞, but there it is somewhat
trivial because the fluctuations ak, a∗k are simple plane waves. The interest of this relation is
that it remains true after the time evolution of the fluctuations over a non trivial background.

C.3 G+−(x, y) = G−+(x, y) for (x− y)2 < 0

In the section 2.6, we need to evaluate the propagators G+− and G−+ of the Schwinger-
Keldysh formalism in the presence of a background field. These propagators were conve-
niently expressed in terms of the fluctuations ak and a∗k, via the relations:

G+−(x, y) =

∫
d3k

(2π)32k
a∗k(x)ak(y) ,

G−+(x, y) =

∫
d3k

(2π)22k
ak(x)a

∗
k(y) . (C.15)

From their definition as expectation values of field operators,

G+−(x, y) ≡
〈
φ(y)φ(x)

〉
, G−+(x, y) ≡

〈
φ(x)φ(y)

〉
, (C.16)

it seems that these two propagators should be equal when evaluated for a space-like interval,
i.e. for (x − y)2 < 0. However, this property is not obvious in eq. (C.15). The goal of this
section is to show in more detail how this property comes about.
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C.3.1 Elementary proof for equal times

For the particular case of equal times, x0 = y0, and different locations, x 6= y, this property
of the dressed G±∓ propagators can be proven by a very elementary method.

First of all, it is easy to check that the corresponding free propagators obey this property:

G0+−(x, y) = G
0
−+(x, y) if x0 = y0 and x 6= y . (C.17)

(This can be checked by an explicit calculation of these free propagators in coordinate space.)
Note that as x = y, these two propagators are not equal. In fact, their difference at equal times
is proportional to δ(x− y).

Let us now construct the dressed propagators G+− and G−+ iteratively, order by order
in the background field. Here, it is important to assume that the two Schwinger-Keldysh
components of the background field are equal (A+ = A− ≡ A). Consider the order 1 for
G±∓(x, y):

G
(1)
+−(x, y) = i

∫
d4z A(z)

[
G0++(x, z)G

0
+−(z, y) −G

0
+−(x, z)G

0
−−(z, y)

]
G
(1)
−+(x, y) = i

∫
d4z A(z)

[
G0−+(x, z)G

0
++(z, y) −G

0
−−(x, z)G

0
−+(z, y)

]
.

(C.18)

The next step is to decompose the free propagatorsG0++ andG0−− in terms of the off-diagonal
components:

G0++(x, y) = θ(x0 − y0)G0−+(x, y) + θ(y
0 − x0)G0+−(x, y)

G0−−(x, y) = θ(x0 − y0)G0+−(x, y) + θ(y
0 − x0)G0−+(x, y) . (C.19)

If we assume that x0 = y0, the integration over z0 in eqs. (C.18) can be split into the ranges
z0 < x0 and z0 > x0, and in each of these ranges one can replace the ++ or −− propagators
by either the +− or −+ propagator. This substitution leads to

G
(1)
+−(x, y) = i

∫
z0<x0

d4z A(z)
[
G0−+(x, z)G

0
+−(z, y) −G

0
+−(x, z)G

0
−+(z, y)

]
,

G
(1)
−+(x, y) = i

∫
z0<x0

d4z A(z)
[
G0−+(x, z)G

0
+−(z, y) −G

0
+−(x, z)G

0
−+(z, y)

]
.

(C.20)

Thus, we see explicitly that G(1)
+−(x, y) = G

(1)
−+(x, y) if x0 = y0. Note also that the contribu-

tion coming from the range z0 > x0 has identically cancelled out in the integrals. This is a
consequence of our assumption that A+ = A−.

In order to generalize these results to any order in the background field, it is sufficient to
notice that the decomposition of eqs. (C.19) is also valid for the propagators at order n in the
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background field. Then, by writing the order n + 1 as the convolution of the order n and a
free propagator, one arrives easily at

G
(n+1)
+− (x, y) = i

∫
z0<x0

d4z A(z)
[
G
(n)
−+(x, z)G

0
+−(z, y) − G

(n)
+−(x, z)G

0
−+(z, y)

]
,

G
(n+1)
−+ (x, y) = i

∫
z0<x0

d4z A(z)
[
G
(n)
−+(x, z)G

0
+−(z, y) − G

(n)
+−(x, z)G

0
−+(z, y)

]
.

(C.21)

This proves the identity G
(n+1)
+− (x, y) = G

(n+1)
−+ (x, y) at equal time, and by induction com-

pletes the proof of this identity for the dressed propagator.

One can also note an additional property, valid if the background field A(z) is real. In
this case, the propagators G+−(x, y) and G−+(x, y) are mutually complex conjugate for any
points x and y (this is obvious either from eqs. (C.15) or iteratively1 from eqs. (C.21) after
checking that the property holds for the free propagators). Therefore, since they are equal at
equal times, they must also be purely real at x0 = y0.

C.3.2 Extension to generic space-like intervals

Figure C.1: Backward light-cones of summits x and y for a space-like interval (x − y)2 < 0.
The darker green and red segments on Σ represent the support of Tuϕ(x) and Tuϕ(y)
respectively. Since they have no point in common, the integral in eq. (C.25) is zero.

Σ
x

y

The case of a generic space-like interval between the points x and y is not so elementary,
but it can be derived from our previous result for equal times. To do so, we must go back to
the representation of eqs. (C.15) for the G±∓ propagators, and recall eq. (2.98),

ak(x) =

∫
Σ

d3Su

[
ak ·Tu

]
ϕ(x) . (C.22)

For the integration surface Σ, we will chose a constant time surface, so that the measure d3Su

1The i in front of the integral is crucial (i.e. the insertion of the background field should be iA(z) with a real
A(z)).
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is simply the usual 3-volume element d3u. Thanks to this formula, we can write

G+−(x, y) =

∫
d3k

(2π)32k

∫
Σ

d3ud3v
[[
a∗k ·Tu

]
ϕ(x)

][[
ak ·Tv

]
ϕ(y)

]
G−+(x, y) =

∫
d3k

(2π)32k

∫
Σ

d3ud3v
[[
ak ·Tu

]
ϕ(x)

][[
a∗k ·Tv

]
ϕ(y)

]
.

(C.23)

The result of the previous subsection tells us that since the points u and v both lie on the same
equal-time surface Σ, we have∫

d3k

(2π)32k

[
a∗k(u)ak(v) − ak(u)a

∗
k(v)

]
∝ δ(u− v) , (C.24)

from which we get

G+−(x, y) − G−+(x, y) ∝
∫
Σ

d3u
[
Tuϕ(x)

][
Tuϕ(y)

]
. (C.25)

From causality,Tuϕ(x) is non-zero only if the point u is located inside the backward light-
cone of summit x. Likewise for Tuϕ(y). Thus, the above integral is zero if we can find a
constant time surface Σ such that the intersections of the light-cones of summits x and y with
Σ have no point in common. This is the case if the interval x − y is space-like, as illustrated
in the figure C.1.
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Appendix D

Light-cone coordinates,
Light-cone gauge

D
ynamical aspects of high energy scattering simplify when expressed in the so-
called light-cone coordinates. Indeed, they make some of the kinematical prop-
erties of such collisions more manifest – in particular, the invariance under
Lorentz boosts in the longitudinal direction. Similarly, the light-cone gauge is
the gauge that makes the parton interpretation of the structure of a fast hadron

manifest. In this appendix, we first define light-cone coordinates. Then, we define the light-
cone gauge, and compute the gluon propagator in the gauge A+ = 0. Finally, we derive the
Green’s formula for a retarded classical field in the gauge A+ = 0, in order to obtain the LC
gauge expression of the operator Tu introduced in the section 2.6 of this manuscript.

D.1 Light-cone coordinates

The light-cone coordinates v+, v− are defined from the standard Cartesian coordinates by
choosing a reference axis. If one takes the z axis as the reference, their definition reads:

v+ ≡ v
0 + v3√
2

, v− ≡ v
0 − v3√
2

, (D.1)

where vµ is an arbitrary 4-vector. The transverse coordinates v⊥ are left unchanged.

The main advantage of light-cone coordinates is that they simplify the kinematics in situ-
ations that involve fast moving objects in the z direction. For instance, light-cone coordinates
lead to a particularly simple form for Lorentz boosts in the z direction:

v+ → √
1+ β

1− β
v+ ,

v− → √
1− β

1+ β
v− ,

v⊥ → v⊥ , (D.2)
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where β is the velocity of the boost. Thus, a longitudinal boost just amounts to a rescaling of
the components v±, with no mixing. For a boost in the +z direction, with a velocity close to
the speed of light, the + components become large while the − component shrinks to zero.

Another place where a simplification due to light-cone coordinates is manifest is in the
expression of the d’Alembertian operator:

� = 2∂+∂− −∇2
⊥ , (D.3)

where we denote1 ∂+ ≡ ∂/∂x− and ∂− ≡ ∂/∂x+. One sees that this operator becomes
first order in derivatives with respect to either of the longitudinal coordinates, contrary to its
expression in Cartesian coordinates.

Finally, in light-cone coordinates, the covariant product of two vectors uµ and vµ takes
the form:

u · v = u+v− + u−v+ − u⊥ · v⊥ , (D.4)

and the 4-volume element is

d4v = dv+ dv− d2~v⊥ . (D.5)

D.2 Gluon propagator in LC gauge

The light-cone gauge is a particular case of axial gauge ñ · A = 0 in which the vector ñµ

is light-like. Typically, this gauge is used in problems involving a fast moving color charge,
with a vector ñµ aligned with the velocity of the projectile. The importance of this gauge is
due to the fact that it makes manifest the parton model of hadrons.

Consider the QCD Lagrangian to which we add a gauge fixing term proportional to (ñ ·
A)2,

L ≡ −
1

4
FaµνF

µν
a +

1

2α
(ñ ·A)2 . (D.6)

We are mostly interested in the case where ñ ·A = A+, but in fact most of the discussion is
valid for any vector ñµ. In order to determine the free propagator in this gauge, we need first
to isolate the quadratic part of the Lagrangian,

Lquad =
1

2
Aaµ

[
�gµν − ∂µ∂ν +

1

α
ñµñν

]
Aaν . (D.7)

The free propagator we are looking for is a Green’s function of the operator in the square
brackets. Its calculation is best performed in momentum space, where we need to invert

−gµνk2 + kµkν +
1

α
ñµñν . (D.8)

Because this tensor is symmetric in (µ, ν), its inverse must be a linear combination of gµν,
kµkν, ñµñν and kµñν + kνñµ. Writing the most general linear combination of these ele-
mentary tensors, and multiplying it with eq. (D.8), we finally obtain the following expression
for the propagator in momentum space :

Dµν0 (k) = i

[
−
gµν

k2
+

kµkν

(ñ · k)2

(
α−

ñ2

k2

)
+
kµñν + kνñµ

k2(ñ · k)

]
. (D.9)

1These notations have been chosen because ∂+ (resp. ∂−) transforms like the + (resp. −) component of a
4-vector under a Lorentz boost in the z direction.
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Note that this expression is still incomplete, because we need to add iε’s to the denominators
in order to make the propagator regular on the real energy axis. Doing so amounts to choosing
certain boundary conditions for the fields that evolve according to this propagator. The central
object in the studies presented in this manuscript is the retarded propagator, which has all its
poles below the real energy axis. This amounts to writing:

Dµν0,R(k) = i

[
−

gµν

k2+ik0ε
+

kµkν

(ñ · k+iε)2

(
α−

ñ2

k2+ik0ε

)
+

kµñν + kνñµ

(k2+ik0ε)(ñ · k+iε)

]
.

(D.10)

(This choice for the iε prescription of the ñ · k denominators is indeed retarded if n0 > 0.
We will assume that this is the case.)

In the case of the light-cone gauge A+ = 0, this amounts to choosing a vector ñµ that
has ñ− = 1 and all its other components zero. Moreover, we work in the strict light cone
gauge, that corresponds to the limit α → 0 for the gauge fixing parameter. The propagator
simplifies somewhat in this limit :

Dµν0,R(k) = −
i

k2 + ik0ε

[
gµν −

kµñν + kνñµ

ñ · k+ iε

]
. (D.11)

Note that this propagator is zero if any of its Lorentz indices is equal to +.

D.3 Green’s formulas in LC gauge

An essential ingredient in our discussion is the Green’s formula that expresses a field fluctu-
ation in terms of its value on some initial surface. In this appendix, this initial surface will
be the light-like plane defined by x− = 0, but our derivation is more general than that and
applies to any (locally space-like or light-like) initial surface.

D.3.1 Green’s formula for a small fluctuation in the vacuum

Consider first a small field fluctuation aµ propagating in the vacuum. In the strict light-cone
gauge, it obeys

a+(y) = 0 ,[
�yg

µν − ∂µy∂
ν
y

]
aν(y) = 0 . (D.12)

It is easy to check that the free propagator Dρµ0,R(x, y) obeys

Dρµ 0,R(x, y)
[ ←
�y g

µν−
←
∂µy∂

ν
y

]
= i
[
gρν −

∂ρñν

ñ · ∂

]
δ(x− y) , (D.13)

where the arrows indicate that the derivatives act on the left. Now, multiply eq. (D.12) by
Dρµ0,R(x, y) on the left, eq. (D.13) by aν(y) on the right2, integrate y over all the domain
defined by y− > 0, and subtract the two equations. One obtains

aρ(x) = −i

∫
y−>0

d4y Dρµ 0,R(x, y)
[ ↔
∂µy∂

ν
y −

↔
�y g

µν
]
aν(y) , (D.14)

2When we multiply eq. (D.13) by aν on the right, the second term vanishes thanks to the gauge condition
ñ · a = 0 obeyed by the gauge field fluctuation.
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where
↔
A≡
→
A −

←
A. Using the relations

A
↔
� B = ∂µ

[
A
↔
∂µ B

]
,

A
↔
∂µ∂ν B =

1

2
∂µ
[
A
↔
∂
νB
]
+
1

2
∂ν
[
A
↔
∂
µB
]
, (D.15)

we see that the integrand in eq. (D.14) is a total derivative. Therefore, we can rewrite this
integral as an integral on the boundary of the integration domain. If the derivative we integrate
by parts is a ∂i or ∂−, then the corresponding boundary is located at infinity in the direction
yi or y+ respectively. We assume here that the field fluctuation under consideration has a
compact enough support so that these contributions vanish. We are thus left with the terms
coming from the derivative ∂+. The contribution from the boundary at y− = +∞ is zero,
because of our choice of the retarded prescription for the propagator. Therefore, the only
contribution is from the boundary at y− = 0,

aρ(x) = −i

∫
y−=0

dy+d2y⊥ D
ρ
µ 0,R(x, y)

[
gµν(n·

↔
∂y)−

1

2

(
nµ
↔
∂
ν
y+n

ν
↔
∂
µ
y

)]
aν(y) ,

(D.16)

where nµ is a vector such that n · dy = 0 for any infinitesimal displacement dyµ on the
surface y− = 0 (it is the unit vector normal to the surface y− = 0, in the sense of the
Minkowsky scalar product). This formula indicates how the value of the fluctuation at the
point x is related to its value on an initial surface located at y− = 0 (Note that this dependence
is linear since small fluctuations obey a linear equation of motion). A priori, it involves
the values of all the components of the fluctuation on this surface, as well as that of its
first derivatives. However, some of this information is not necessary because the propagator
vanishes when µ = + and because of the gauge condition a+(y) = 0. If one eliminates from
the previous formula all the terms that are obviously zero and integrate some terms by parts3,
we get aρ(x) ≡ B

ρ
0 [a](x), where B

ρ
0 [a](x) is an integral that depends only on the value of

the field and of some of its derivatives on the initial surface,

B
ρ
0 [a](x) = −i

∫
y−=0

dy+d2y⊥

{[
∂yµD

ρµ
0,R

(x, y)
]
a−(y)

−Dρ−0,R(x, y)
[
∂µyaµ(y)

]
−Dρi0,R(x, y) 2∂

−
y a

i(y)
}
. (D.17)

Therefore, it appears that in the light-cone gauge A+ = 0, and for an initial surface y− = 0,
we need to know the initial value of a−, ∂−ai and ∂µaµ in order to fully determine the value
of the fluctuation at the point x. This fact is the reason why there are only three terms in the
definition of the operator Tu in eq. (3.39) (but we postpone until the end of this section the
explanation of why one needs to include the Wilson lineΩ in this definition).

Moreover, the first term in the right hand side of eq. (D.17) can be simplified by using the
explicit expression of the free propagators in light cone gauge :

∂yµD
ρµ
0,R

(x, y) = δρ− θ(x− − y−) δ(x+ − y+)δ(x⊥ − y⊥) . (D.18)

3The antisymmetric derivatives
↔
∂ −
y and

↔
∂ iy can be eliminated by integration by parts. This is not possible for↔

∂ +
y since the boundary term does not contain an integral with respect to y−. This is why we have a term involving

the derivative ∂+yD
ρ−
0,R

.
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D.3.2 Green’s formula for classical solutions

There is also a similar Green’s formula for retarded classical solutions of the Yang-Mills
equations. Contrary to the case of small fluctuations, we do not assume that the gauge field
is small, and we keep all the self-interactions as well as the interactions with some external
source. Formally, we can write the Lagrangian as

L = Lquad −U(A) , (D.19)

whereU(A) is a local polynomial of the gauge field. It contains the 3- and 4-gluon couplings
and the coupling to the external source. In the A+ = 0 gauge, the corresponding classical
equation of motion is

[
�yg

µν − ∂µy∂
ν
y

]
Aν(y) =

∂U(A)

∂Aµ(y)
. (D.20)

Then one can follow the same procedure as in the case of small fluctuations, to obtain

Aρ(x) = −i

∫
y−>0

d4y Dρµ0,R(x, y)
∂U(A)

∂Aµ(y)
+B

ρ
0 [A](x) , (D.21)

where the boundary term is the same as in eq. (D.17) with Aµ instead of aµ. Of course, the
dependence of the classical field on its initial conditions is no longer linear because of the
first term in the right hand side; the self interactions of the gauge fields lead to an involved
dependence on the initial conditions.

D.3.3 Green’s formula for aµ in a background field

Finally, the Green’s formula of eq. (D.17) can be extended to the situation where the fluc-
tuation aµ(x) propagates on top of a classical background field Aµ rather than the vacuum.
The only change is the addition of a bulk term that takes into account the interactions of the
fluctuation aµ(x) with the background field Aµ above the initial surface,

aρ(x) = −i

∫
y−>0

d4y Dρν0,R(x, y)
∂2U(A)

∂Aν(y)∂Aσ(y)
aσ(y) +B

ρ
0 [a](x) . (D.22)

The derivation of this formula is very similar to that for the classical field Aµ.

In the derivation of the JIMWLK equation, the fluctuations aµ(x) one considers are fluc-
tuations whose initial condition at x0 → −∞ are plane waves of momentum k. One can
calculate explicitly their value on the initial surface, which means that we know analytically
the quantities a−, ∂−ai and ∂µaµ in the r.h.s. of eq. (D.17). A crucial property is that the
initial values of a− and ∂−ai are suppressed by an extra factor k− ∼ 1/k+, and thus any
term containing them cannot have a divergence when k+ → +∞.

Our goal is to calculate the logarithms that occur when k+ → +∞ solely by inspecting
the boundary term in eq. (D.17). For this to work, no logarithms should be produced by the
interactions of the fluctuation with the background field above the initial surface. The simplest
way to achieve this is to be in a gauge where the background field is zero above the initial
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surface. It is very simple to achieve this in the specific situation encountered in the derivation
of the JIMWLK equation, because this background field is a pure gauge: Aµ ≡ ig−1Ω†∂µΩ.
In this special case, the Green’s formula that gives the fluctuation at the point x takes a very
simple form,

aρ(x) = −iΩ†(x)

∫
y−=0

dy+d2y⊥

{[
∂yµD

ρµ
0,R

(x, y)
]
Ω(y)a−(y)

−Dρ−0,R(x, y)
[
∂µyΩ(y)aµ(y)

]
−Dρi0,R(x, y) 2∂

−
y Ω(y)ai(y)

}
,

(D.23)

in which there is no bulk term. All the interactions of the fluctuation with the pure gauge
background field are taken into account by the Wilson linesΩ andΩ†. To obtain this expres-
sion, one should apply a gauge transformation Ω that eliminates the background field above
the initial surface (this is possible because it is a pure gauge), and perform the inverse trans-
formation at the endpoint x. This is why the most convenient definition of Tu in eq. (3.45)
involves functional derivatives with respect to the background field transformed by Ω rather
than the background field itself4.

D.4 Propagation through a shockwave background

A common problem involving small fluctuations in the context of high energy collisions in
QCD is to study the propagation of the fluctuation on top of the classical field created by a
fast moving charge. Let us assume a color charge distribution ρ(x−, x⊥), corresponding to a
projectile moving in the +z direction. At high energy, this distribution of charge is localized
near x− = 0, for instance in the strip 0 ≤ x− ≤ ε with ε infinitesimal. It is well known that
in the Lorenz gauge (∂µAµ = 0), the classical solution of Yang-Mills equations that vanishes
in the remote past is:

Ã−(x) = 0 ,

Ãi(x) = 0 ,

Ã+(x) = −
1

∇2
⊥
ρ̃(x−, x⊥) . (D.24)

(The tilde indicate objects expressed in the Lorenz gauge, to distinguish them form the LC
gauge ones.)

We are now going to solve the equation of motion for a small fluctuation propagating
on top of this classical field. The source ρ̃ being almost a delta function at x− = 0, this is
also the case for the only non-zero component of the classical field, i.e. Ã+. Obviously, the
propagation of the fluctuation is trivial in the regions where all the components of the classical
field are zero since the equation of motion there is the Klein-Gordon equation. Therefore, we
need only to determine the change of the fluctuation when it crosses the strip 0 ≤ x− ≤ ε.
Since the background field behaves as a delta function in this strip, we expect a discontinuity
for the fluctuation.

4Of course, the two ways of defining Tu –with and without the Ω– are exactly equivalent. But if we did not
include theΩ in the definition, the logarithmic divergences would come from a combination of the second and third
terms of eq. (3.39), instead of being limited to the third term if we include theΩ in the definition ofTu.
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The difficulty in solving the equation of motion of the fluctuation in this strip varies
widely depending on the choice of the gauge for the fluctuation. It turns out to be very
complicated in the Lorenz gauge5. However, there is a trick that consists in noticing that
eqs. (D.24) can also be interpreted as the classical solution in the A− = 0 gauge. The great
advantage of this gauge, compared to any other gauge, is that the incoming fluctuation does
not alter the color charge distribution on the +z axis. Indeed, from the covariant conservation
of the current,

[
Dµ, J

µ
]
= 0, we see that only a non-zero minus component of the fluctuation

can have an influence on the current whose only non-zero component is the + component.
Therefore, in this gauge the color current J+ is fixed once for all, and does not receive any
correction due to the incoming fluctuation.

By writing the Yang-Mills equations for the field Ãµ + ãµ in the A− = 0 gauge and
expanding to order one in the fluctuation ãµ, one obtains the following equations of motion
for the fluctuation:

∂−ã+ − ∂iãi = 0 ,

�ãi − 2ig
[
Ã+, ∂−ãi

]
= 0 ,

�ã+ − 2ig
[
Ã+, ∂−ã+

]
= 2ig

[
∂iÃ+, ãi

]
. (D.25)

The first of these equations does not contain any derivative with respect to x−. Therefore, it
can be seen as a constraint that relates ã+ and ãi at each x−. The second equation contains
only the transverse components of the fluctuation, and should be solved first. In the strip
0 ≤ x− ≤ ε, one can check that its solution is6

ãi(x+, x−, x⊥) = U(x
−, x⊥) ã

i(x+, 0, x⊥) , (D.26)

where U is a Wilson line defined by

U(x−, x⊥) = T− exp
[
ig

∫x−
0

dz− Ã+(z−, x⊥)
]
. (D.27)

(T− denotes an ordering of the formula in z−.) Eq. (D.26) tells us the value of the discon-
tinuity of the fluctuation ãi when it goes from x− = 0 to x− = ε. In order to obtain the
same information for the component ã+, we can either solve the constraint (first equation),
or solve the third equation. Both calculations give the same result:

ã+(x+, x−, x⊥) = U(x
−, x⊥) ã

+(x+, 0, x⊥)+
[
∂iU(x−, x⊥)

] 1

∂−
ãi(x+, 0, x⊥) . (D.28)

We see that the components + and i mix while they are propagating through the strip where
the background field is non-zero.

5See the appendix of [1].
6Note that one relies here on the fact that ε is infinitesimal. This is not an exact solution for a finite ε.
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Appendix E

Laplacian Green’s function
in two dimensions

E
qualities involving the Green’s function of the Laplacian operator in two di-
mensions (or its derivatives) are very useful in the derivation of the JIMWLK
equation. The formulas we present in this appendix are scattered in the origi-
nal works discussing the JIMWLK equation. We compile them here, with their
derivation, as a convenience for the reader.

E.1 Definition

Let us denote G(x⊥ − y⊥) a Green’s function of the 2-dimensional Laplacian operator,

∂2⊥G(x⊥ − y⊥) = δ(x⊥ − y⊥) . (E.1)

It admits a simple Fourier representation,

G(x⊥ − y⊥) = −

∫
d2k⊥
(2π)2

eik⊥·(x⊥−y⊥)
1

k2⊥
. (E.2)

Note that this object suffers from an infrared problem, which is obvious for dimensional
reasons: this propagator is a dimensionless object in coordinate space, invariant under trans-
lations and rotations, and therefore it must be a function of µ

∣∣x⊥ − y⊥
∣∣ where µ is some

mass scale that was not present in the previous equation.

E.2 Derivatives of the Green’s function

Derivatives of this propagator do not suffer from this infrared ambiguity. Consider for in-
stance1

∂ixG(x⊥ − y⊥) = i

∫
d2k⊥
(2π)2

eik⊥·(x⊥−y⊥)
ki

k2⊥
. (E.3)

1Let us recall that ∂ix = ∂
∂xi

= − ∂
∂xi

.
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From its symmetries and dimension, it is obvious that this derivative can be written as

∂ixG(x⊥ − y⊥) = C
xi⊥ − yi⊥

(x⊥ − y⊥)
2
, (E.4)

where the prefactor C is dimensionless. Because the derivative of the propagator is not in-
frared singular, the cutoff µ cannot appear in its expression and C must be a pure number
(otherwise it would have to be a function of µ

∣∣x⊥ − y⊥
∣∣ to have the correct dimension). In

order to determine the constant, take another derivative ∂ix and integrate over x⊥ the resulting
equation over some domainΩ of the plane that contains the point y⊥. On the left hand side,
we get the integral of δ(x⊥ − y⊥) since G is a Green’s function of ∂2⊥. We then get

1 = C

∫
Ω

d2x⊥ ∂
i
x

xi⊥ − yi⊥
(x⊥ − y⊥)

2
. (E.5)

The right hand side can be transformed by using the 2-dimensional Stokes theorem, leading
to an integral on the boundary ofΩ (oriented counter-clockwise)

1 = −C

∫
∂Ω

εij (xi⊥ − yi⊥)dx
j

(x⊥ − y⊥)
2

, (E.6)

where εij is completely antisymmetric (with ε12 = 1). The contour integral in this equation
is a topological invariant, that depends only on the winding number of the contour ∂Ω around
the point y⊥. It is best calculated by deforming ∂Ω into the unit circle around the point y⊥.
We get easily

1 = −2πC . (E.7)

Thus we have

∂ixG(x⊥ − y⊥) = −
1

2π

xi⊥ − yi⊥
(x⊥ − y⊥)

2
. (E.8)

The second derivative of the propagator is also useful in the derivation of the JIMWLK
equation. By applying ∂jx to the previous equation, one obtains

∂ix∂
j
xG(x⊥ − y⊥) = −

1

2π
∂jx

xi⊥ − yi⊥
(x⊥ − y⊥)

2

=
1

2π(x⊥ − y⊥)
2

[
δij − 2

(xi⊥ − yi⊥)(x
j
⊥ − yj⊥)

(x⊥ − y⊥)
2

]
.

(E.9)

This formula, although perfectly correct for x⊥ 6= y⊥, is incorrect at the point x⊥ = y⊥.
In order to see this, take the trace over the indices i and j. In the left hand side, we have the
Laplacian of the propagator, i.e. δ(x⊥−y⊥), while the right hand side would give zero. The
full formula for the second derivative is

∂ix∂
j
xG(x⊥−y⊥) =

δij

2
δ(x⊥−y⊥) +

1

2π
∆ij(x⊥ − y⊥) , (E.10)

with

∆ij(x⊥ − y⊥) ≡
1

(x⊥−y⊥)
2

[
δij−2

(xi⊥−y
i
⊥)(x

j
⊥−y

j
⊥)

(x⊥−y⊥)
2

]
. (E.11)
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E.3 Useful identities

This function ∆ij obeys an interesting identity. By integration by parts, one can check that

∫
d2u⊥
(2π)2

d2v⊥
(2π)2

(xi⊥ − ui⊥)(y
j
⊥ − vj⊥)

(x⊥ − u⊥)2(y⊥ − v⊥)2
∂iu∂

j
vG(u⊥ − v⊥) =

=
1

(2π)2

∫
d2u⊥
(2π)2

(xi⊥ − ui⊥)(y
i
⊥ − ui⊥)

(x⊥ − u⊥)2(y⊥ − u⊥)2

=

∫
d2u⊥
(2π)2

d2v⊥

(2π)2
(xi⊥ − ui⊥)(y

j
⊥ − vj⊥)

(x⊥ − u⊥)2(y⊥ − v⊥)2
δijδ(u⊥ − v⊥) . (E.12)

Using now eq. (E.10), we obtain the following identity,∫
d2u⊥
(2π)2

d2v⊥
(2π)2

(xi⊥ − ui⊥)(y
j
⊥ − vj⊥)

(x⊥ − u⊥)2(y⊥ − v⊥)2

[δij
2
δ(u⊥−v⊥)−

1

2π
∆ij(u⊥−v⊥)

]
= 0 . (E.13)

Let us also provide an alternate representation of the 2-dimensional propagator that is
sometimes helpful. Start with the integral∫
d2u⊥
(2π)2

ui⊥ − xi⊥
(u⊥ − x⊥)2

ui⊥ − yi⊥
(u⊥ − y⊥)

2
=

∫
d2u⊥

[
∂iuG(u⊥−x⊥)

][
∂iuG(u⊥−y⊥)

]
. (E.14)

The integral in the right hand side can be performed by parts, since it leads to the Laplacian
of a propagator, which is a delta function. Thus, we obtain the identity

G(x⊥ − y⊥) = −

∫
d2u⊥
(2π)2

ui⊥ − xi⊥
(u⊥ − x⊥)2

ui⊥ − yi⊥
(u⊥ − y⊥)

2
. (E.15)

Note that the integral over u⊥ suffers from the same infrared problem (when |u⊥| → ∞ in
this representation) that we have already mentioned at the beginning of this appendix.

223



224



Appendix F

Liouville equation

F
luctuations on top of a classical field configuration may be instable and lead to
secular terms in observables, making them divergent a late times. Such fluctu-
ations arise via loop corrections, and need to be resummed in order to obtain
expressions that remain finite at all times. In the last part of this manuscript,
we have shown that the resummation of the most divergent loop corrections is

equivalent to a Gaussian average over the initial conditions for the classical field encountered
at leading order. Equivalently, this resummation can be performed by solving the classical
Liouville equation with a Gaussian initial condition. In this appendix, we recall some well
known properties of the Liouville equation.

F.1 Hamilton’s equations

In this appendix, we denote generically the canonical coordinates by Q, the corresponding
canonical momenta by P, and the Hamiltonian by H. Hamilton’s equations read

Q̇ =
∂H

∂P
, Ṗ = −

∂H

∂Q
. (F.1)

Let us introduce a few useful notations :

X ≡
(
Q
P

)
, ∇ ≡

(
∂/∂Q
∂/∂P

)
, V ≡

(
∂H/∂P

−∂H/∂Q

)
. (F.2)

Hamilton’s equations can now be rewritten in the following compact form

Ẋ = V . (F.3)

This notation is suggestive of the fact that V is the velocity field induced on phase-space by
the Hamiltonian. A crucial property of Hamiltonian flows is that they are incompressible,

∇ ·V = 0 . (F.4)

This identity is the essence of Liouville’s equation.
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F.2 Liouville’s equation

Consider an ensemble of such dynamical systems, all described by the same Hamiltonian H.
At the time t, their distribution in phase-space is described by a density Ft[Q,P], and we
wish to derive an equation that describes the time evolution of this distribution. Naturally,
the number of systems in the ensemble is not changing since each system evolves indepen-
dently of the others. Thus, Ft is the density for a locally conserved quantity. We have seen
before that each point in phase-space moves with the velocity V. Therefore, we can write a
continuity equation that expresses this conservation,

∂tFt +∇ · (FtV) = 0 . (F.5)

By using eq. (F.4), we can rewrite this equation as1[
∂t +V ·∇︸ ︷︷ ︸

Dt

]
Ft = 0 . (F.6)

Note that the termV ·∇Ft is nothing but the Poisson bracket {Ft,H}. Thus, we see that both
eqs (F.5) and (F.6) are equivalent to the usual form of the Liouville equation,

∂tFt + {Ft,H} = 0 . (F.7)

The forms (F.5) and (F.6) of the Liouville equation are a useful reminder of its origin as the
continuity equation for the density of systems in phase-space, and they make some proper-
ties of Hamiltonian flows more transparent – in particular thanks to the flow derivative Dt
introduced in eq. (F.6).

F.3 Basic properties

In this section, we derive some elementary properties of Liouville’s equation. To state some
of these properties, it will be useful to denote [dΓ] the measure on phase-space.

The most elementary property,∫
[dΓ] Ft = const , (F.8)

is in fact just the integral version of Liouville’s equation itself. It is simply another way of
stating that the number of systems in the ensemble does not change over time. A similar
statement can be made about the energy if we note that2

DtH = 0 . (F.9)

(which means that the Hamiltonian does not vary if we follow the flow). Then, by multiplying
eq. (F.6) by H, and by integrating over phase-space, we get∫

[dΓ] FtH = const . (F.10)

This equation simply says that the total energy of our ensemble of systems is conserved.
1In the formDtFt = 0, the Liouville equation leads easily to the Liouville theorem, that states that Ft is constant

along flow lines.
2This is due to ∂tH = 0 and V ·∇H = {H,H} = 0.

226



Bibliography

[1] F. Gelis, Y. Mehtar-Tani, Phys. Rev. D 73, 034019 (2006).

[2] F. Gelis, R. Venugopalan, Nucl. Phys. A 776, 135 (2006).

[3] F. Gelis, R. Venugopalan, Nucl. Phys. A 779, 177 (2006).

[4] K. Fukushima, F. Gelis, L. McLerran, Nucl. Phys. A 786, 107 (2007).

[5] F. Gelis, T. Lappi, R. Venugopalan, Phys. Rev. D 78, 054019 (2008).

[6] F. Gelis, T. Lappi, R. Venugopalan, Phys. Rev. D 78, 054020 (2008).

[7] F. Gelis, T. Lappi, R. Venugopalan, Phys. Rev. D 79, 094017 (2009).

[8] A. Dumitru, F. Gelis, L. McLerran, R. Venugopalan, Nucl. Phys. A 810, 91 (2008).

[9] K. Dusling, F. Gelis, T. Lappi, R. Venugopalan, Nucl. Phys. A 836, 159 (2010).

[10] F. Gelis, T. Lappi, L. McLerran, Nucl. Phys. A 828, 149 (2009).

[11] K. Dusling, T. Epelbaum, F. Gelis, R. Venugopalan, Nucl. Phys. A 850, 69 (2011).

[12] K. Fukushima, F. Gelis, arXiv:1106.1396, to appear in Nucl. Phys. A.

[13] K. Dusling, F. Gelis, R. Venugopalan, Nucl. Phys. A 872, 161 (2011).

[14] T. Epelbaum, F. Gelis, Nucl. Phys. A 872, 210 (2011).

[15] A.J. Baltz, L.D. McLerran, Phys. Rev. C 58, 1679 (1998).

[16] A.J. Baltz, F. Gelis, L.D. McLerran, A. Peshier, Nucl. Phys. A 695, 395 (2001).

[17] F. Gelis, R. Venugopalan, Phys. Rev. D 69, 014019 (2004).

[18] J.P. Blaizot, F. Gelis, R. Venugopalan, Nucl. Phys. A 743, 13 (2004).

[19] J.P. Blaizot, F. Gelis, R. Venugopalan, Nucl. Phys. A 743, 57 (2004).

[20] A. Krasnitz, R. Venugopalan, Nucl. Phys. B 557, 237 (1999).

[21] A. Krasnitz, R. Venugopalan, Phys. Rev. Lett. 84, 4309 (2000).

[22] A. Krasnitz, R. Venugopalan, Phys. Rev. Lett. 86, 1717 (2001).

[23] A. Krasnitz, Y. Nara, R. Venugopalan, Phys. Rev. Lett. 87, 192302 (2001).

227



[24] A. Krasnitz, Y. Nara, R. Venugopalan, Nucl. Phys. A 717, 268 (2003).

[25] A. Krasnitz, Y. Nara, R. Venugopalan, Nucl. Phys. A 727, 427 (2003).

[26] T. Lappi, Phys. Rev. C 67, 054903 (2003).

[27] A. Dumitru, K. Dusling, F. Gelis, J. Jalilian-Marian, T. Lappi, R. Venugopalan, Phys.
Lett. B 697, 21 (2011).

[28] T.S. Biro, C. Gong, B. Muller, A. Trayanov, Int. J. Mod. Phys. C 5, 113 (1994).

[29] U.W. Heinz, C.R. Hu, S. Leupold, S.G. Matinyan, B. Muller, Phys. Rev. D 55, 2464
(1997).

[30] T. Kunihiro, B. Muller, A. Ohnishi, A. Schafer, T.T. Takahashi, A Yamamoto, Phys.
Rev. D 82, 114015 (2010).

[31] P. Romatschke, R. Venugopalan, Phys. Rev. D 74, 045011 (2006).

[32] S. Mrowczynski, M.H. Thoma, Phys. Rev.D 62, 036011 (2000).

[33] S. Mrowczynski, Phys. Lett. B 314, 118 (1993).

[34] S. Mrowczynski, Phys. Lett. B 393, 26 (1997).

[35] S. Mrowczynski, Acta Phys. Polon. B 37, 427 (2006).

[36] S. Mrowczynski, Acta Phys. Polon. B 39, 1665 (2008).

[37] P. Arnold, J. Lenaghan, G.D. Moore, JHEP 0308, 002 (2003).

[38] P. Arnold, J. Lenaghan, G.D. Moore, L.G. Yaffe, Phys. Rev. Lett. 94, 072302 (2005).

[39] P. Arnold, G.D. Moore, L.G. Yaffe, Phys. Rev. D 72, 054003 (2005).

[40] P. Romatschke, M. Strickland, Phys. Rev. D 68, 036004 (2003).

[41] P. Romatschke, M. Strickland, Phys. Rev. D 70, 116006 (2004).

[42] A.K. Rebhan, P. Romatschke, M. Strickland, Phys. Rev. Lett. 94, 102303 (2005).

[43] A.K. Rebhan, P. Romatschke, M. Strickland, JHEP 0509, 041 (2005).

[44] P. Arnold, G.D. Moore, Phys. Rev. D 73, 025006 (2006).

[45] P. Arnold, G.D. Moore, Phys. Rev. D 73, 025013 (2006).

[46] P. Arnold, G.D. Moore, Phys. Rev. D 76, 045009 (2007).

[47] A.H. Mueller, A.I. Shoshi, S.M.H. Wong, Nucl. Phys. B 760, 145 (2007).

[48] P. Romatschke, A. Rebhan, Phys. Rev. Lett. 97, 252301 (2006).

[49] D. Bodeker, K. Rummukainen, JHEP 0707, 022 (2007).

[50] J. Berges, S. Scheffler, D. Sexty, Phys. Lett. B 681, 362 (2009).

[51] A.K. Rebhan, M. Strickland, M. Attems, Phys. Rev. D 78, 045023 (2008).

[52] A.K. Rebhan, D. Steineder, Phys. Rev. D 81, 085044 (2010).

228



[53] F. Karsch, et al. [RBC and HotQCD Collaboration], J. Phys. G35, 104096 (2008).

[54] P. Huovinen, P.V. Ruuskanen, Ann. Rev. Nucl. Part. Sci. 56, 163 (2006).

[55] P. Romatschke, Int. J. Mod. Phys. E 19, 1 (2010).

[56] D. Teaney, Prog. Part. Nucl. Phys. 62, 451 (2009).

[57] P. Romatschke, U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007).

[58] J.P. Blaizot, E. Iancu, A. Rebhan, Phys. Lett. B 470, 181 (1999).

[59] J.P. Blaizot, E. Iancu, A. Rebhan, Phys. Rev. Lett. 83, 2906 (1999).

[60] F.D. Aaron, et al, [H1 and ZEUS Collaborations] JHEP 1001, 109 (2010).

[61] E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Sov. Phys. JETP 45, 199 (1977).

[62] I. Balitsky, L.N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978).

[63] M. Froissart, Phys. Rev. 123, 1053 (1961).

[64] L.V. Gribov, E.M. Levin, M.G. Ryskin, Phys. Rept. 100, 1 (1983).

[65] A.M. Stasto, K. Golec-Biernat, J. Kwiecinski, Phys. Rev. Lett. 86, 596 (2001).

[66] F. Gelis, R. Peschanski, L. Schoeffel, G. Soyez, Phys. Lett. B.647, 376 (2007).

[67] H. Kowalski, T. Lappi, R. Venugopalan, Phys. Rev. Lett. 100, 022303 (2008).

[68] H. Kowalski, D. Teaney, Phys. Rev. D 68, 114005 (2003).

[69] A. Deshpande, R. Ent, R. Milner, CERN Courier, October 2009.

[70] L.D. McLerran, R. Venugopalan, Phys. Rev. D 49, 2233 (1994).

[71] L.D. McLerran, R. Venugopalan, Phys. Rev. D 49, 3352 (1994).

[72] L.D. McLerran, R. Venugopalan, Phys. Rev. D 50, 2225 (1994).

[73] L.D. McLerran, R. Venugopalan, Phys. Rev. D 59, 094002 (1999).

[74] L.D. McLerran, R. Venugopalan, Phys. Lett. B 424, 15 (1998).

[75] A. Ayala, J. Jalilian-Marian, L.D. McLerran, R. Venugopalan, Phys. Rev. D 53, 458
(1996).

[76] J. Jalilian-Marian, A. Kovner, L.D. McLerran, H. Weigert, Phys. Rev. D 55, 5414
(1997).

[77] J. Jalilian-Marian, A. Kovner, A. Leonidov, H. Weigert, Nucl. Phys. B 504, 415 (1997).

[78] J. Jalilian-Marian, A. Kovner, A. Leonidov, H. Weigert, Phys. Rev. D 59, 014014
(1999).

[79] J. Jalilian-Marian, A. Kovner, A. Leonidov, H. Weigert, Phys. Rev. D 59, 034007
(1999).

[80] J. Jalilian-Marian, A. Kovner, A. Leonidov, H. Weigert, Phys. Rev. D 59, 099903
(1999).

229



[81] E. Iancu, A. Leonidov, L.D. McLerran, Nucl. Phys. A 692, 583 (2001).

[82] E. Iancu, A. Leonidov, L.D. McLerran, Phys. Lett. B 510, 133 (2001).

[83] E. Ferreiro, E. Iancu, A. Leonidov, L.D. McLerran, Nucl. Phys. A 703, 489 (2002).

[84] I. Balitsky, Nucl. Phys. B 463, 99 (1996).

[85] Yu.V. Kovchegov, Phys. Rev. D 60, 034008 (1999).

[86] Yu.V. Kovchegov, Phys. Rev. D 61, 074018 (2000).

[87] J.P. Blaizot, E. Iancu, H. Weigert, Nucl. Phys. A 713, 441 (2003).

[88] K. Rummukainen, H. Weigert, Nucl. Phys. A 739, 183 (2004).

[89] T. Lappi, Phys. Lett. B 703, (325 (2011).

[90] A. Dumitru, J. Jalilian-Marian, T. Lappi, B. Schenke, R. Venugopalan,
arXiv:1108.4764.

[91] E. Iancu, R. Venugopalan, Quark Gluon Plasma 3, Eds. R.C. Hwa and X.N. Wang,
World Scientific, hep-ph/0303204.

[92] F. Gelis, E. Iancu, J. Jalilian-Marian, R. Venugopalan, Ann. Rev. Part. Nucl. Sci. 60,
463 (2010).

[93] T. Lappi, Int. J. Mod. Phys. E20, 1 (2011).

[94] R.E. Cutkosky, J. Math. Phys. 1, 429 (1960).

[95] G. t’Hooft, M.J.G. Veltman, CERN report 73-9.

[96] J. Schwinger, J. Math. Phys. 2, 407 (1961).

[97] L.V. Keldysh, Sov. Phys. JETP 20, 1018 (1964).

[98] M.J.G. Veltman, Physica 29, 186 (1963).

[99] S.K. Kauffmann, M. Gyulassy, J. Phys. A 11, 1715 (1978).

[100] E.A. De Wolf, I.M. Dremin, W. Kittel, Phys. Rept. 270, 1 (1996).

[101] C. Itzykson, J.B. Zuber, Quantum field theory, McGraw-Hill (1980).

[102] K. Fukushima, F. Gelis, T. Lappi, Nucl. Phys. A 831, 184 (2009).

[103] A. Kovner, L.D. McLerran, H. Weigert, Phys. Rev. D 52, 3809 (1995).

[104] A. Kovner, L.D. McLerran, H. Weigert, Phys. Rev. D 52, 6231 (1995).

[105] Yu.V. Kovchegov, D.H. Rischke, Phys. Rev. C 56, 1084 (1997).

[106] Yu.V. Kovchegov, Nucl. Phys. A 692, 557 (2001).

[107] I. Balitsky, Phys. Rev. D 70, 114030 (2004).

[108] R.J. Fries, J.I. Kapusta, Y. Li, nucl-th/0604054.

[109] J.P. Blaizot, Y. Mehtar-Tani, Nucl. Phys. A 818, 97 (2009).

230



[110] Yu.V. Kovchegov, Phys. Rev. D 54, 5463 (1996).

[111] T. Lappi, Phys. Lett. B 643, 11 (2006).

[112] A. Krasnitz, Y. Nara, R. Venugopalan, Phys. Lett. B 554, 21 (2003).

[113] T. Lappi, R. Venugopalan, Phys. Rev. C 74, 054905 (2006).

[114] T. Lappi, Eur. Phys. J. C 55, 285 (2008).

[115] M. Hentschinski, H. Weigert, A. Schafer, Phys. Rev. D 73, 051501 (2006).

[116] A. Makhlin, hep-ph/9608259.

[117] A. Makhlin, hep-ph/9608261.

[118] A.H. Mueller, Lectures given at the International Summer School on Particle Produc-
tion Spanning MeV and TeV Energies (Nijmegen 99), Nijmegen, Netherlands, 8-20,
Aug 1999, hep-ph/9911289.

[119] A. Dumitru, L.D. McLerran, Nucl. Phys. A 700, 492 (2002).

[120] F. Gelis, S. Jeon, R. Venugopalan, Nucl. Phys. A 817, 61 (2009).

[121] E. Iancu, D.T. Triantafyllopoulos, Nucl. Phys. A 756, 419 (2005).

[122] E. Iancu, D.T. Triantafyllopoulos, Phys. Lett. B 610, 253 (2005).

[123] A.H. Mueller, A.I. Shoshi, S.M.H. Wong, Nucl. Phys. B 715, 440 (2005).

[124] A. Kovner, M. Lublinsky, Phys. Rev. D 71, 085004 (2005).

[125] A. Kovner, M. Lublinsky, Phys. Rev. Lett. 94, 181603 (2005).

[126] Y. Hatta, E. Iancu, L. McLerran, A. Stasto, D.N. Triantafyllopoulos, Nucl.Phys. A 764,
423 (2006).

[127] I. Balitsky, Phys. Rev. D 72, 074027 (2005).

[128] H. Weigert, Prog. Part. Nucl. Phys. 55, 461 (2005).

[129] T. Lappi, L.D. McLerran, Nucl. Phys. A 772, 200 (2006).

[130] E. Iancu, K. Itakura, L.D. McLerran, Nucl. Phys. A 724, 181 (2003).

[131] B. Andersson, G. Gustafson, G. Ingelman, T. Sjostrand, Phys. Rept. 97, 31 (1983).

[132] T.S. Biro, H.B. Nielsen, J. Knoll, Nucl. Phys. B 245, 449 (1984).

[133] H. Ehtamo, J. Lindfors, L.D. McLerran, Z. Phys. C 18, 341 (1983).

[134] G. Gatoff, A.K. Kerman, T. Matsui, Phys. Rev. D 36, 114 (1987).

[135] B.I. Abelev, et al., [STAR Collaboration] Phys. Rev. C 80, 064912 (2009).

[136] J. Adams, et al., [STAR Collaboration] Phys. Rev. Lett. 95, 152301 (2005).

[137] J. Adams, et al., [STAR Collaboration] Phys. Rev. C 73, 064907 (2006).

231



[138] F. Wang, [STAR Collaboration] talk at Quark Matter 2004, J. Phys. G 30, S1299
(2004).

[139] A. Adare, et al., [PHENIX Collaboration] Phys. Rev. C 78, 014901 (2008).

[140] B. Wosiek, [PHOBOS Collaboration], Quark Matter 2008, J. Phys. G35, 104005
(2008).

[141] [CMS Collaboration], JHEP 1009, 091 (2010).

[142] T. Lappi, S. Srednyak, R. Venugopalan, JHEP 1001, 066 (2010).

[143] K. Fukushima, Phys. Rev. D 77, 074005 (2008).

[144] J.F. Gunion, G. Bertsch, Phys. Rev. D 25, 746 (1982).

[145] M. Gyulassy, L.D. McLerran, Phys. Rev. C 56, 2219 (1997).

[146] M. Daugherity, [STAR Collaboration] PoS C FRNC2006, 005 (2006).

[147] A. Kiyomichi, [PHENIX collaboration] Lake Louise Winter Institute: Fundamental
Interactions, Lake Louise, Alberta, Canada, Feb 2005.

[148] D. Kharzeev, M. Nardi, Phys. Lett. B 507, 121 (2001).

[149] D. Kharzeev, E. Levin, Phys. Lett. B 523, 79 (2001).

[150] H.J. Drescher, A. Dumitru, A. Hayashigaki, Y. Nara, Phys. Rev. C 74, 044905 (2006).

[151] H.J. Drescher, Y. Nara, Phys. Rev. C 75, 034905 (2007).

[152] E.V. Shuryak, Phys. Rev. C 76, 047901 (2007).

[153] S. Gavin, L. McLerran, G. Moschelli, Phys. Rev. C 79, 051902 (2009).

[154] Yu.V. Kovchegov, H. Weigert, Nucl. Phys. A 784, 188 (2007).

[155] E. Gardi, J. Kuokkanen, K. Rummukainen, H. Weigert, Nucl. Phys. A 784, 282 (2007).

[156] J.L. Albacete, N. Armesto, J.G. Milhano, C.A. Salgado, U.A. Wiedemann, Phys. Rev.
D 71, 014003 (2005).

[157] J.L. Albacete, Y. Kovchegov, Phys. Rev. D 75, 125021 (2007).

[158] J.L. Albacete, N. Armesto, J.G. Milhano, C.A. Salgado, Phys. Rev. D 80, 034031
(2009).

[159] J.L. Albacete, N. Armesto, J.G. Milhano, C.A. Salgado, arXiv:0906.2721.

[160] I. Balitsky, Phys. Rev. D 75, 014001 (2007).

[161] I. Balitsky, G.A. Chirilli, Phys. Rev. D 77, 014019 (2008).

[162] B. Alver, et al., [PHOBOS Collaboration] arXiv:0903.2811.

[163] G. Arnison, et al., [UA1 Collaboration] Phys. Lett. B 123, 108 (1983).

[164] G.J. Alner, et al., [UA5 Collaboration] Phys. Lett. B 160, 193 (1985).

232



[165] G.J. Alner, et al., [UA5 Collaboration] Phys. Lett. B 160, 199 (1985).

[166] R.E. Ansorge, et al., [UA5 Collaboration] Z. Phys. C 37, 191 (1988).

[167] S.S. Adler, et al., [PHENIX Collaboration] Phys. Rev. C 76, 034903 (2007).

[168] A. Adare, et al., [PHENIX Collaboration] Phys. Rev. C 78, 044902 (2008).

[169] D. Kharzeev, Yu. Kovchegov, K. Tuchin, Phys. Rev. D 68, 094013 (2003).

[170] A. Giovannini, L. Van Hove, Z. Phys.C 30, 391 (1986).

[171] C.S. Lindsey, et al., [E735 Collaboration] Nucl. Phys. A 544, 343 (1992).

[172] M.A. Braun, C. Pajares, V.V. Vechernin, Phys. Lett. B 493, 54 (2000).

[173] J. Dias de Deus, E.G. Ferreiro, C. Pajares, R. Ugoccioni, Phys. Lett. B 581, 156 (2004).

[174] I.M. Dremin, J.W. Gary, Phys. Rep. 349, 301, (2001).

[175] I.M. Dremin, V.A. Nechitailo, Phys. Rev. D 70, 034005 (2004).

[176] P. Romatschke, R. Venugopalan, Phys. Rev. Lett. 96, 062302 (2006).

[177] P. Romatschke, R. Venugopalan, Eur. Phys. J. A 29, 71 (2006).

[178] J. Bolte, B. Müller, A. Schäfer, Phys. Rev. D 61, 054506.
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[190] J. Berges, S. Borsányi, J. Serreau, Nucl. Phys. B 660, 51 (2003).

[191] G. Aarts, J. Berges, Phys. Rev. Lett. 88, 041603 (2002).

[192] G. Aarts, J. Berges, Phys. Rev. D 64, 105010 (2001).

[193] G. Aarts, N. Laurie, A. Tranberg, Phys. Rev. D 78 125028 (2008).

[194] J. Berges, S. Borsanyi, C. Wetterich, Phys. Rev. Lett. 93, 142002 (2004).

233



[195] R.D. Pisarski, Phys. Rev. Let. 63, 1129 (1989).

[196] E. Braaten, R.D. Pisarski, Nucl. Phys. B 337, 569 (1990).

[197] J. Kapusta, C. Gale, Finite temperature field theory; Principles and applications (2nd
Edition), Cambridge University Press (2006).

[198] P. Arnold, C. Dogan, G.D. Moore, Phys. Rev. D 74, 085021 (2006).

[199] A.H. Mueller, D.T. Son, Phys. Lett. B 582, 279 (2004).

[200] S. Jeon, Phys. Rev. C 72, 014907 (2005).

[201] D. Bernard, cond-mat/0007106, Lectures given at IPhT, Saclay, France (2000).

[202] A. Polkovnikov, Annals Phys. 325, 1790 (2010).

[203] R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).

[204] P.C. Martin, J. Schwinger, Phys. Rev. 115, 1342 (1959).

[205] M.V. Berry, J. Phys. A: Math. Gen. 1012, 2083 (1977).

[206] C. Jarzynski, Phys. Rev. E 56, 2254 (1997).

[207] J.M. Deutsch, Phys. Rev. A 43, 2046 (1991).

[208] M. Srednicki, Phys. Rev. E 50, 888 (1994).

[209] M. Rigol, V. Dunjko, M. Olshanii, Nature 452, 854 (2008).

[210] P. Aurenche, T. Becherrawy, Nucl. Phys. B 379, 259 (1992).

[211] P. Aurenche, T. Becherrawy, E. Petitgirard, hep-ph/9403320.

[212] M.A. van Eijck, R. Kobes, Ch.G. van Weert, Phys. Rev. D 50, 4097 (1994).

[213] M.A. van Eijck, Ch.G. van Weert, Phys. Lett. B 278, 305 (1992).

234



Index

Balitsky-Kovchegov equation, 16, 112
Berry’s conjecture, 182
BFKL equation, v, 10, 112
Blast wave model, 102
Bose condensation, 176
Bose Einstein condensation, 165, 166, 171, 182
Boundary conditions, see Classical field

generator of translations, 39, 45, 62, 64, 69, 83, 156, 199, 218
Bremsstrahlung, 13

Chemical potential, 165, 171, 176
Chiral symmetry restoration, 5
Classical field, 34, 119

boundary conditions, 34, 44, 54, 57, 203, 204
instabilities, 121
retarded, 34, 52, 54, 83, 196, 203, 205

Classical source, 3, 13, 17, 18, 21, 52, 77
covariant conservation, 53

Color Glass Condensate, 3, 7, 10, 15, 51, 63, 68, 76, 77, 87
Confinement, 6, 12, 14

ΛQCD , 6
transition, 5

Connected graph, 18, 22, 26
Contour ordering, 188
Critical energy density, 5
Cutkosky, see Cutting rules
Cutting rules, 23

Decoherence, 147
Deep Inelastic Scattering, 9, 15

E735 experiment, 114
Eigenstate thermalization, 182
Eikonal coupling, 13
Energy

center of mass, 8
Energy-momentum tensor, 6, 81, 82, 87, 119
Entropy, 168
Equation of state, 6, 135, 139, 144, 148

235



Equilibrium, 121, 146
canonical, 152

Ergodicity, 135
Evolution operator, 185
Exclusive observables, 36, 60
External source, see Classical source

Factorization, 3, 59, 78, 84, 86
in time, 46
role of causality, 59

Fluctuations, 9, 43, 65, 67, 107, 127, 143, 148, 176, 207
basis, 39, 44, 207–209
classical field variation, 39
energy, 152
lifetime, 9
propagator, 38, 66, 191

Flux tube, 91, 96, 101, 109, 113, 119
Fock-Schwinger gauge, 54, 56, 61, 63
Fragmentation function, 51
Froissart bound, 10

Gauge condition, see Fock-Schwinger gauge, Light-cone gauge, Lorenz gauge
Gauge invariance, 14, 128
Generating functional

Feynman amplitudes, 31, 186, 190
multiplicity, see Particle spectrum
Schwinger-Keldysh, 31, 189, 190

Glasma, 91, 96, 101, 109, 113, 119, 122
Gluon

cascade, 10
density, v, 8, 10, 17
propagator, 217
recombination, v, 11
saturation, v, 7, 10, 12, 16
spectrum, see Particle spectrum

Green’s formula, 39, 40, 195, 196
for small fluctuations, 74, 199, 200
light-cone gauge, 215
on a generic Cauchy surface, 197
on the light-cone, 198, 216
Schwinger-Keldysh formalism, 201, 203

Hamilton equations, 225
Hanbury-Brown-Twiss interferometry, 6
Heavy ion collisions, v, 5, 7, 15, 49, 81, 87
Hydrodynamics, 6

initial conditions, 6, 51, 81, 87

Inclusive observable, see Particle spectrum; Energy momentum tensor
Interaction representation, 185

236



JIMWLK
equation, 15, 59, 68, 69, 76, 78, 217
Hamiltonian, 76–79, 83, 86
Langevin formulation, 16

Laplacian Green’s function, 70, 71, 221
Large Hadron Collider, 12
Lattice QCD, 5, 6
Leading Order, 33, 34, 52, 82, 84, 138
Light-cone

coordinates, 213
gauge, 53, 64, 69, 214

Liouville
equation, 133, 169, 225, 226
theorem, 134, 226

Logarithms, 15, 63, 65, 66, 68, 69, 72, 73, 76, 84, 86
Loop correction, see Next to Leading Order
Lorentz

contraction, 11, 13, 54
time dilation, 9, 13

Lorenz gauge, 55
LSZ, see Reduction formulas
Lyapunov exponent, 122, 135, 141

McLerran-Venugopalan model, 3, 10, 12, 15, 58, 98, 112
Momentum fraction, 7, 8, 10
Moyal equation, 177
Multiplicity, 7, 107

Bose-Einstein distribution, 114
clustering, 26, 28, 87
generating function, 27, 108
moments, 27, 109, 113
negative binomial distribution, 107, 114
Poisson distribution, 28, 29, 87, 107
probability distribution, 21, 25, 26, 30, 36

Next to Leading Order, 37–43, 46, 61, 62, 68–74, 76, 83–85, 123, 140

Occupation number, 161

Parametric resonance, 141, 150, 162, 171
Particle correlations, 26, 84, 87, 94–97, 107
Particle spectrum

generating functional, 29, 32, 43, 45, 52, 87
multiple inclusive, 30, 35, 42, 43, 46, 84–86
single inclusive, 21, 30, 33, 34, 37–39, 42, 51, 52, 58, 61, 62, 76, 77

Parton
model, v, 9
valence, 9, 10, 12

Perfect fluid, 6
Phase diagram, 5

237



PHENIX experiment, 102, 114
Poisson distribution, see Multiplicity
Polarization vector, 52
Power counting, 14, 18, 20, 22, 124, 125
Pressure, see Equation of state
Pure gauge field, 56

Quantum Chromo-Dynamics, 3, 5, 49
Quark Gluon Plasma, 6
Quasiparticles, 158, 167

Radial flow, 101
Reduction formulas, 31, 161, 185
Relativistic Heavy Ion Collider, 7, 12
Renormalization, 129
Retarded propagator, 40, 192, 195, 201, 214, 217

Saturation scale, 6, 11
Scalar field theory, 3, 17
Schwinger mechanism, 37, 93
Schwinger-Keldysh

formalism, 17, 23, 32, 38, 83, 185, 187
propagators, 24, 38, 189, 191
retarded basis, 192

Secular divergences, 121, 123, 142
Small x, see Momentum fraction
Spectral density, 155
STAR experiment, 7, 102

Thermal equilibrium, see Equilibrium
Turbulence, 165, 171

UA5 experiment, 114
Unitarity, 10, 21, 27, 30, 44
Universality, 16, 59, 60, 78, 84, 86

Vacuum fluctuations, see Fluctuations
Vacuum-vacuum diagrams, 21, 25, 30, 187, 190
Valence partons, see Parton
Viscosity, 6
Von Neumann equation, 177

Wigner distribution, 177
Wilson line, 15, 56, 64, 66, 78, 86

Yang-Mills equation, 14, 52, 55, 58, 82, 85, 121, 122

238


	Abstract
	Relevant works
	Prologue
	Acknowledgements
	I Quantum Field Theory with Strong External Sources
	Quantum Chromo-Dynamics in heavy ion collisions
	Kinematics
	Nucleon structure at high energy
	Gluon saturation
	McLerran-Venugopalan model
	Color Glass Condensate

	Particle production from strong classical sources
	Power counting
	Generic features of the particle distribution
	Generating functional
	Inclusive moments at leading order
	Exclusive quantities at leading order
	Next-to-Leading Order corrections


	II Initial State Factorization in Heavy Ion Collisions
	Inclusive gluon spectra at Leading Log accuracy
	Gluon spectrum at Leading Order
	Leading logarithms in the single gluon spectrum
	Logarithms in the energy-momentum tensor
	Multigluon correlations at Leading Log accuracy

	RHIC phenomenology
	Glasma and color flux tubes
	Long range rapidity correlations
	Multiplicity fluctuations


	III Final State Evolution, Thermalization?
	Unstable modes; Secular Terms Resummation
	Unstable modes in Yang-Mills equations
	Resummation of the secular divergences
	Initial spectrum of fluctuations
	Time evolution of the distribution of initial conditions

	Toy model study: Scalar fields in a box
	Model setup
	Toy calculation with uniform fluctuations
	Equation of state
	Spectral properties and thermalization

	Conclusions and Perspectives

	IV Appendices
	Schwinger-Keldysh formalism
	Standard perturbation theory
	Schwinger-Keldysh perturbation theory
	Relation between the functionals Z and Zsk
	Propagators in a background field

	Green's formulas
	Green's formula for a retarded classical scalar field
	Extension to a generic initial surface
	Green's formula for small field fluctuations
	Schwinger-Keldysh formalism
	Summing tree diagrams using Green's formulas

	Small fluctuations in a background field
	Basis of retarded small fluctuations
	Completeness relations
	G+-=G-+ for space-like intervals

	Light-cone coordinates, Light-cone gauge
	Light-cone coordinates
	Gluon propagator in LC gauge
	Green's formulas in LC gauge
	Propagation through a shockwave background

	Laplacian Green's function in two dimensions
	Definition
	Derivatives of the Green's function
	Useful identities

	Liouville equation
	Hamilton's equations
	Liouville's equation
	Basic properties

	Bibliography
	Index


