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Elementary forces in Nature

• Gravitation
• Electromagnetism
• Weak nuclear force
• Strong nuclear force

• Well tested microscopic quantum description for all but gravity
• Matter ∼ spin-1/2
• Force carriers ∼ spin-1 (spin-2 for gravity)
• Higgs ∼ spin-0 (non-zero vacuum expectation value)
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Strong nuclear force

• Fundamental theory: Quantum ChromoDynamics
• Matter fields: 6 families of 3 quarks and antiquarks
• Force carriers: 8 gluons
• Asymptotic freedom: interactions weaken at short distance

Lagrangian

L = −
1

4
F2 +

∑
f

ψf(i /D−mf)ψf

• Free parameters : quark massesmf, scale ΛQCD

• Deceptively simple...

François Gelis, April 2022 3



QCD αs(Mz) = 0.1181 ± 0.0013

pp –> jets
e.w. precision fits (NNLO)  
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• Responsible for quark confinement
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• Responsible for quark confinement

• When nucleons are tightly packed, the
mean inter-quark distance is short,
and their coupling becomes weak
=⇒ deconfinement
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Phase diagram (sketch) of QCD matter

• Control parameters :
• Temperature
• Chemical potentials
• External fieldsFrançois Gelis, April 2022 5



Confinement-Deconfinement (lattice QCD)

• QCD is not tractable analytically in the region of the
confinement-deconfinement transition

• Lattice QCD is a numerically tractable approximation of QCD,
that becomes exact in the limit of an infinitesimal spacing

• Moreover, lattice QCD allows to vary some parameters (e.g.,
quark masses) that are fixed in Nature, to explore their role in
controlling the transition
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Limitations to know about

• At non-zero µ
B
, lattice QCD involves requires integrating a

complex-valued and oscillating quantity, preventing
importance sampling (“sign problem”, exponentially hard)

• Lattice QCD partly usable at small µ
B
/T

• Perturbation theory applicable at large µ
B
and small T

• No firm theoretical control outside these regions!
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Confinement transion in the early Universe
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Confinement transion in the early Universe

No visible imprint on present day
astronomical observations...
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Heavy ion collisions

• Recreate the conditions of the deconfinement transition in the
laboratory by colliding large nuclei at ultra-relativistic energies

LHC

RHIC

FAIR

NICA

chemical potential

te
m

p
e
ra

tu
re Quark-Gluon

Plasma

Hadron
Gas

freeze out

• Experimental handles :
• beam energy
• ion species
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Timeline of Heavy Ion facilities

Bevatron (Billions of eV Synchrotron) :
From 1954 to 1993 at Lawrence Berkeley National Laboratory, U.S

AGS (Alternating Gradient Synchrotron) :
Since 1960 at Brookhaven National Laboratory, U.S

SPS (Super Proton Synchrotron) :
Since 1976 at CERN

SIS-18 (Schwer-Ionen-Synchrotron) :
Since 2001 at GSI

RHIC (Relativistic Heavy Ion Collider) :
Since 2000 at Brookhaven National Laboratory, U.S

LHC (Large Hadron Collider) :
Since 2009 at CERN
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Heavy Ion Collision at the LHC
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Theory

QCD
L = −

1

4
F2 + ψ(i/D −m)ψ
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Theory

Lattice QCD

QCD
L = −

1

4
F2 + ψ(i/D −m)ψ

gg
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Theory

Lattice QCD Perturbative QCD

QCD
L = −

1

4
F2 + ψ(i/D −m)ψ

gg OO
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Theory

Lattice QCD Perturbative QCD CGC

QCD
L = −

1

4
F2 + ψ(i/D −m)ψ

gg

&&

88

//

OO

NRQCD

χPT
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Theory

Lattice QCD Perturbative QCD CGC

QCD
L = −

1

4
F2 + ψ(i/D −m)ψ

gg

&&

88

//

OO

��

NRQCD

AdS/CFT χPT
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Theory

Lattice QCD Perturbative QCD CGC

Hydrodynamics
QCD

L = −
1

4
F2 + ψ(i/D −m)ψ

ww

gg

&&

88

//

OO

oo

��

NRQCD

Kin. Theory AdS/CFT χPT
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Theory

Lattice QCD Perturbative QCD CGC

Hydrodynamics
QCD

L = −
1

4
F2 + ψ(i/D −m)ψ

ww

gg

&&

88

//

OO

oo

��

NRQCD

Kin. Theory AdS/CFT χPT

• Thermodynamics :
• Equation of state
• Susceptibilities
• Transport coefficients

• Dynamical evolution :
• Thermalization / Isotropization
• Expansion and cooling
• Hadronization

• Investigation of medium properties with
perturbative probes

• Jets
• Photons
• Heavy quarkonia
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Stages of a Heavy-Ion Collision

z 

t

strong fields

gluons & quarks out of eq.

gluons & quarks in eq.

hadrons

freeze out

• Note: this is mostly a theorist’s view, suggesting to use different
effective descriptions for the various stages
Experimentally, only particles emitted from the freeze-out
surface are accessible

• Approximate boost invariance at high energy: use proper time
τ ≡

√
t2 − z2 and rapidity η ≡ 1

2
ln((t+ z)/(t− z))
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Besides QCD, there are also a number of mundane details...

i. Nuclei are approximately spherical

ii. Their diameter is about 12 fermis

iii. They contain A ≈ 200 nucleons

iv. The positions of these nucleons fluctuate event-by-event

• These properties have all an incidence on some observables

• None of them is interesting from the point of view of QCD

• We need observables that are independent of these trivial
aspects of nuclear physics, or we need good models for them
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Initial State, Color Glass Condensate
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Growth of the gluon distribution at small x
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• Gluons dominate at any x ≤ 10−1
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Dilute versus Dense

• Parton densities in hadrons/nuclei depend on parton
momentum (i.e., on Q and x)

• When parton densities are large, scattering probabilities are no
longer linear in the densities:

• The nonlinear regime is called “saturation”
• Saturation criterion: Q . Qs(x) (Qs ≡ “saturation momentum”)
• For a nucleus of atomic number A: Q2

s ∼ A1/3x−0.25
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Saturation momentum

• x ∼ p⊥/
√
s

• p⊥ of typical particle ∼ 1 GeV,
√
s = 5.5 TeV at LHC

=⇒ the bulk of particle production affected by saturation
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Color Glass Condensate (CGC)

• CGC = approximation of QCD valid in the saturation regime
• Incoming nucleus ≡ stream of color charges (“sources”)
• Lorentz time dilation: static charges
• Lorentz contraction: 2-dimensional charge distribution

Jµa(x) = δ
µ+δ(x−)ρa(x⊥)

• At rapidities close to the observer: normal gluon fields

y

+yprojectileyobserver

-
1

4
F

µν
Fµν + A µ J

µ

J
µ
 = ρ δ

µ+

W[ρ]

+y
*

sourcesfields
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Color Source distribution

• The source distribution ρa(x⊥) reflects the position in
transverse plane of the color charges at the time of the collision
=⇒ it is a random quantity that cannot be predicted

• Its probability distributionW[ρ] is approximately Gaussian for a
very large nucleus (central limit theorem,
McLerran-Venugopalan model)

• W[ρ] depends on the rapidity y∗ chosen as separation between
the currents and the fields. This effect (due to loop corrections)
ensures that physics does not depend on the separation scale:

∂W[ρ]

∂y∗
=

δ

δρa
χab

δ

δρb
W[ρ]

• can be solved numerically (but expensive)
• can be approximated by the simpler Balitsky-Kovchegov equation
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Pre-equilibrium evolution (CGC at leading order)

• CGC at leading order⇐⇒ classical color fields:

T00
LO

=
1

2

[
E2 + B2︸ ︷︷ ︸
class. fields

]
, T0i

LO
=

[
E× B

]i
,

T ij
LO

=
δij

2

[
E2 + B2

]
−
[
EiEj + BiBj

]
,

• E and B aligned with collision axis (at τ = 0):

T0i
LO

= 0, P
T
= ε, P

L
= −ε
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Pre-equilibrium evolution (CGC at leading order)

• CGC at leading order⇐⇒ classical color fields:

T00
LO

=
1

2

[
E2 + B2︸ ︷︷ ︸
class. fields
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, T0i

LO
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E× B
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,

T ij
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=
δij
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[
E2 + B2

]
−
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EiEj + BiBj

]
,

• E and B aligned with collision axis (at τ = 0):

T0i
LO

= 0, P
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= ε, P
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No isotropization at leading order :
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Pre-equilibrium evolution (CGC beyond leading order)

• Next to leading order:
• tends to increase longitudinal pressure
• but suffers from instabilities that limit its applicability

• Classical Statistical Approximation:
• resummation beyond LO+NLO
• exists in two flavors: one that lacks continuum limit, and one that
lacks contributions essential for isotropization...

• Better approach: 2PI resummation (doable, but challenging
within the expanding geometry of heavy ion collisions)

• Cheaper approach: kinetic theory description
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Pre-equilibrium evolution (kinetic theory)

(
∂t + v1 ·∇) f1 =

∫
p2,3,4

|M(12→ 34)|2 δ(p1 + p2 − p3 − p4)

×
{
f3f4(f1 + f2) − f1f2(f3 + f4)︸ ︷︷ ︸

seemingly dominant at large f

+ f3f4 −f1f2︸︷︷︸
dominates if f anisotropic

}
.
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Kinetic Theory matches Hydrodynamics
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Kinetic Theory attractors
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• gn = exponents that characterize the degree of anisotropy of
the system (gn = −1 : free streaming, dotted line: isotropic)
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Hydrodynamical Evolution, Late Stages
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Hydrodynamics in a nutshell

• Hydrodynamics ≡ long distance description, where the
dynamics depends almost exclusively on conservation laws

∂µT
µν = 0, ∂µJ

µ
B
= 0, · · ·

• Perfect fluid:

Tµν =
perfect

(ε+ p)uµuν − pgµν

= εuµuν + p∆µν (∆µν = projector to local fluid frame),

In the fluid rest frame:
Dε = −(ε+ p)∇µu

µ, Duµ = −(ε+ p)−1 ∇µp

Equation of state: p = f(ε) (sufficient to close the equations)

• Boost invariant flow of a perfect fluid:
dε

dτ
= −

ε+ p

τ
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Viscous corrections (1st order)

• Allow deviation of Tµν from perfect fluid:

Tµν = Tµν
perfect + π

µν + Π∆µν

• Relate deviations to gradients:

πµν = −ησµν with σµν ≡ ∇µuν +∇νuµ −
2

3
∆µν (∇ρu

ρ),

Π = −ζ (∇ρu
ρ)

(η, ζ = viscosity coefficients, calculable from underlying
microscopic theory)

• Close to perfect fluid if
η

s
� τT ⇐⇒ mean free path � τ
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Causality, Second order hydrodynamics

• Correction to the stress tensor follows instantaneously any
modification to the velocity field =⇒ acausal

• Simple fix: replace these relationships by relaxation equations
(requires a microscopic time τπ)

• More fundamental approach: start from expansion to second
order in gradients (introduces many more transport coefficients,
in principle calculable from underlying microscopic theory)
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Viscosity in various limiting cases

• Kinetic theory wisdom:

η

s
∼

mean free path

quantum wavelength

• Weak coupling, perturbative QCD:

η

s
∼

1

α2
s ln(α

−1
s )

� 1

• Strong coupling, AdS/CFT (for a cousin theory of QCD):

η

s
=
1

4π

• Weak coupling, large gluon occupation (∼ α−1
s ):

η

s
∼ α0

s
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Transport coefficients

• J ≡ current that couples to the quantity to be transported
• Green-Kubo formula:

σ ∝ lim
ω→0

ρ(ω,k = 0)

ω
(ρ = 〈[J, J]〉)

• Lattice QCD: one has direct access only to imaginary time
correlators =⇒ indirect and delicate determination of the
spectral function ρ

• Alternate approach:
• loop expansion of 〈[J, J]〉 in terms of the exact propagator
• non-perturbative propagator obtained from functional
renormalization group
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Transport coefficients

• J ≡ current that couples to the quantity to be transported
• Green-Kubo formula:

σ ∝ lim
ω→0

ρ(ω,k = 0)

ω
(ρ = 〈[J, J]〉)

• Lattice QCD: one has direct access only to imaginary time
correlators =⇒ indirect and delicate determination of the
spectral function ρ

• Alternate approach:
• loop expansion of 〈[J, J]〉 in terms of the exact propagator
• non-perturbative propagator obtained from functional
renormalization group

QCD result
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Freeze-out from abundance ratios
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Freeze-out from Cooper-Fry formula

Ep
dN

d3p
=

1

(2π)3

∫
Σ

d3Sµ P
µ f(P · u),

• f(p) = feq(p) + δf(p)
The form of δf is related to viscous corrections and transport
coefficients

• Note: in this approach, the freeze-out T and µ
B
are free

parameters (common to all particle species)
• Alternative: convert to a kinetic description earlier, and let each
particle species decouple according to its interaction rates
(encoded in cross-sections) with the other particles
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Flow observables
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Flow observables

z

y
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p

p
p
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Goals :
• Assess the transport properties of the QGP
(viscosity, etc..)

• Provide constraints on its equation of state
• Validate models of bulk evolution that are used in
the computation of other observables

• Constrain the initial state
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Flow observables
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Goals :
• Assess the transport properties of the QGP
(viscosity, etc..)

• Provide constraints on its equation of state
• Validate models of bulk evolution that are used in
the computation of other observables

• Constrain the initial state

Observables :
• Azimuthal distribution of the produced particles
• Fourier coefficients v1, v2, v3,...
• Orientations of the principal axes Ψ1, Ψ2, Ψ3,...

Note :
• Initial geometrical fluctuations play a crucial role
in these studies
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Example : pT -dependence of v2 of identified hadrons
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Example : pT -dependence of v2 of identified hadrons

Extracted η/s and ζ/s
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Example : pT -dependence of v2 of identified hadrons

Extracted η/s and ζ/s

• The QGP is a nearly perfect fluid

• Shear viscosity : η/s ∈ [1, 2.5]× h̄

4πk
B

(the lowest of all known substances...)
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Flow in small systems

• AA collisions : this is flow !

• pA collisions : maybe flow ?

• pp collisions : could it still be flow ?!
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Flow in small systems

• AA collisions : this is flow !

• pA collisions : maybe flow ?

• pp collisions : could it still be flow ?!

Hot Question :
• How small is the smallest droplet of fluid ?
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Tomography and Hard Probes
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Energy loss, Jet quenching

• The QGP enhances the radiative energy losses of hard partons
=⇒ use these observables as a “tomographic” tool
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Basics of QCD radiation

(
Radiation

Probability

)
∝ αs

d2k⊥

k2⊥

dz

z

• Soft (z = 0) and Collinear (k⊥ = 0) divergences
• Jet cross-sections are immune to these singularities (unlike
more exclusive hadron spectra)
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Basics of QCD radiation

(
Radiation

Probability

)
∝ αs

d2k⊥

k2⊥

dz

z

• Soft (z = 0) and Collinear (k⊥ = 0) divergences
• Jet cross-sections are immune to these singularities (unlike
more exclusive hadron spectra)

In-medium modifications:
• Production of hard probes is unmodified (saturation
effects not important for p⊥ � Qs); but we need also
parton distributions of the neutron (accessible via DIS
on deuterium)

• Gluon formation time: tf ∼ E/k2⊥
• k2⊥ increased by random kicks that occur within one
formation time: k2⊥ = q̂tf =⇒ tf =

√
E/q̂

• Effect important when tf larger than mean free path λ,
i.e., E > q̂ λ2
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• Nuclear modification ratios :
ratio of inclusive hadron yields
in AA collisions and a reference.
Measured as a function of:

• transverse momentum
• rapidity
• centrality
• hadron species
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• Nuclear modification ratios :
ratio of inclusive hadron yields
in AA collisions and a reference.
Measured as a function of:

• transverse momentum
• rapidity
• centrality
• hadron species

• Large suppression in central collisions for all
“light” partons (including charmed quarks)

• Smaller suppression for bottom quarks
=⇒ in agreement with theoretical expectations

(dead cone effect)
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Jet modifications

• The (rather hard) emissions responsible for R
AA
< 1 are quite

collinear and tend to remain inside the jet cone
• Softer emissions are affected by the medium in two ways:

• tend to be emitted at larger angles due to rescatterings
• scatterings of the emitters randomize their colors, which
suppresses the interferences that would normally prevent
radiation outside of the jet cone (happens when the separation
r⊥ between two emitters is larger than the coherence length of
the medium color field =⇒ jets with a large opening angle are
more affected)

• Jets are quenched by increased soft emissions outside of the
jet cone (lost energy can be recovered outside of the jet cone in
the form of soft particles)
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• Now feasible : direct observation of reconstructed jets
• Provides a handle on the energy of the jet before quenching
• New handles to characterize energy loss (jet opening angle)
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• Now feasible : direct observation of reconstructed jets
• Provides a handle on the energy of the jet before quenching
• New handles to characterize energy loss (jet opening angle)

What improvements to expect?
• Better understanding of the energy loss mechanism(s)
• Path length dependence
• New tool : jet + {γ,Z}
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Thermometric Probes
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• Thermometric probes ≡ observables that are sensitive to the
local temperature of the medium

• Photon/dilepton yields (hotter =⇒ more photons)
• Heavy quarkonia (hotter =⇒ more dissociation)

• Note: real life is more complicated because the temperature is
not spatially homogeneous and evolves in time
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Thermal photons in data

• Many sources of photons:
• Decay photons (mostly from π0)
• Hard partonic interactions at the impact of the two nuclei
• Pre-equilibrium photons
• Thermal photons from QGP
• Thermal photons from hadron gas
• (hard non thermalized quark,gluon)+ QGP interaction

• Strategy:
• remove decay photons (requires a good handle on their sources)
• compare remaining “direct” photons with known non-thermal
sources
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Thermal photons and dileptons (from QGP)

• Fireball smaller than photon mean free path =⇒ photons do
not thermalize with the quarks and gluons; escape without
further interactions

• Main processes for production by the QGP:

Q

• Landau-Pomeranchuk-Migdal effect (yield reduced if tf > λ):

λ

t
F

• Formation time: t−1
f = Eγ(k

2
⊥ +m2)/E2quark

• Affects soft photons or hard photons emitted collinearly
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Thermal photons and dileptons (from hadron gas)

• Also obtained from a 〈JµJν〉 correlator
• But: not directly calculable from the QCD Lagrangian that has
quarks and gluons degrees of freedom

• One may use: chiral effective theory, functional RG, ...
• Particularly important are the modifications (shift, broadening)
of the spectral function of the ρ
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From local photon rates to photon yields...

• One may (in principle) calculate the photon/dilepton
production rate given the local temperature and chemical
potential

• This must be folded within the bulk evolution of the system:
• at each point, boost by the local fluid velocity
• integrate over space and time

• Note: even if a thermal photon excess admits a fit
∼ exp(−Eγ/Teff), the fit parameter Teff does not have a direct
interpretation as the temperature of the plasma (among other
effects, this temperature is blue-shifted by the radial flow)

• This blue-shift is avoided with dileptons if one measures the
yield as a function of their invariant mass (but the extracted
temperature still reflects a spacetime average)
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Quarkonia suppression

Debye screening

V(r) = 
exp( - mdebye r)

r
r

• Debye screening weakens
the binding of QQ pairs

• Sequential suppression
pattern depending on the
binding energies
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Quarkonia suppression

Debye screening

V(r) = 
exp( - mdebye r)

r
r

• Debye screening weakens
the binding of QQ pairs

• Sequential suppression
pattern depending on the
binding energies

• Differential suppression of the
1S, 2S and 3S states of Υ
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In-medium quarkonia states

• Ab-initio approach: extract the QQ spectral function

G(τ,p) =

∫
dω ρ(ω,p)

cosh(ω(τ− 1/2T))

sinh(ω/2T)

• G(τ,p) computable in lattice QCD, but only at a finite set of τ’s
• Possible approaches:

• Maximal Entropy Method: Bayesian method for finding the most
likely spectral function consistent with the computed values of G
and some additional constraints (e.g., positivity)

• Theory-inspired modeling of the spectral function, and standard
parameter fit

• Other interesting object: singlet QQ potential, Vsinglet(r)

• at high T , disappearance of the linear rise at large distance
• appearance of an imaginary part (due to transitions from singlet
to octet)
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Quarkonia regeneration

• Most common outcome: after a QQ bound state is dissociated,
the Q and Q evolve independently, and eventually bind with
one of the (more abundant) light quarks around to form
heavy-light mesons (e.g., D, B)

• At LHC : copious production of c, c ⇒ large density⇒ formation of J/ψ by recombination of unrelated c and c
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• Most common outcome: after a QQ bound state is dissociated,
the Q and Q evolve independently, and eventually bind with
one of the (more abundant) light quarks around to form
heavy-light mesons (e.g., D, B)

• At LHC : copious production of c, c ⇒ large density⇒ formation of J/ψ by recombination of unrelated c and c

J/ψ suppression at RHIC and LHC
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Summary and Outlook
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Lattice QCD Perturbative QCD CGC

Hydrodynamics
QCD

L = −
1

4
F2 +ψ(i/D−m)ψ

ww
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&&

88

//
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��

NRQCD

Kin. Theory AdS/CFT χPT

• Although the underlying theory (QCD) is well known, it is often
too difficult to perform ab initio computations

• One uses a variety of alternate approaches to simplify the
problem
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What have we learned so far? (1/2)

• The QGP is a nearly perfect fluid,

• Its shear viscosity to entropy ratio is in the range [1, 2.5] (in units of
h̄/4π), making it the substance with the smallest ratio so far,

• Its equation of state is consistent with lattice QCD expectations, and
with the deconfinement of the color degrees of freedom,

• The yield of “light” partons, including charm quarks, is significantly
suppressed compared to rescaled proton-proton collisions,

• The suppression of bottom quarks is less pronounced, in agreement
with theoretical expectations (dead-cone effect due to the mass of the
emitter),
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What have we learned so far? (2/2)

• The studies of energy loss can now be supplemented by direct
observations of reconstructed jets. This has allowed to determine that
a large amount of energy is radiated by soft emissions at large angle,

• A sequential pattern has been observed in the disappearance of bb
bound states, consistent with the theoretical understanding of the
dissociation phenomenon,

• At the highest energies, the production of charm quarks is copious
enough to lead to the formation of J/ψ bound states by recombination
of uncorrelated quarks and antiquarks.
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What progress may we expect?

• Determine the temperature dependence of the shear viscosity,
• Obtain a better determination of the bulk viscosity,
• Better disentangle the mechanisms of energy loss, especially in
the case of jets,

• Characterize when heavy quark bound states are formed,
• Estimate the initial temperature from thermal photons and the
melting of quarkonia,

• Clarify to what extent the concept of flow applies to the system
formed in proton-proton collisions (for this, need to
disentangle initial flow from the subsequent hydrodynamically
generated flow)
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Thank You !
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