
Some Theoretical Aspects of
the Schwinger Mechanism

François Gelis
Schwinger Effect and Strong-Field Physics, Jan. 2021

Institut de
Physique Théorique
CEA/DRF Saclay



Outline

François Gelis, January 2021 0



QED in external fields

L = ψ
(
i/∂−m+ /A+ /Aext

)
ψ

• Aµ: dynamical photon field (responsible for radiation, arises in
loops)

• Aµ
ext: external photon field (controlled by experimental setup,

not quantized)
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Momentum conservation

• The Fourier components of a time independent external field
all have zero frequency

• By momentum conservation, it seems that this field cannot
produce anything that has an energy > 0 (e.g., an e−e+ pair has
a minimal energy 2m)

• This is definitely correct in perturbation theory, i.e., for
contributions that one may obtain from an expansion in powers
of the external field

• There are also contributions in exp(−m2/eEext), non-analytic in
the external field (at least for a constant Eext), for which
perturbation theory has nothing to say→ Schwinger effect
[Schwinger, 1953]
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Schwinger effect ∼ tunneling

-m

+m
x

ε
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Generalities

Ppair prod ∼ exp(−πm2/eE)

• All Taylor coefficients about e = 0 are zero (when E is not
constant but has only Fourier modes of very low frequency, the
dominant Taylor coefficients are at a very large order)

• Critical field: Ec ≡ m2/e (extremely large even for the lightest
known charged particle, the electron)

• Numerically more important in QCD, since the strong coupling
is much larger
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Outline

• Part I:
• Quantum Fields coupled to (strong) external sources
• Correlations in the Schwinger effect
• Bogoliubov transformation

• Part II:
• Numerical evaluation on the lattice
• Worldline formalism
• Dynamically assisted Schwinger effect
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Quantum Fields coupled to external sources

[FG, Lappi, Venugopalan, 2006-2008]
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Toy model: scalar fields with an external source

L ≡ 1

2
(∂µφ)(∂

µφ) −
1

2
m2φ2 −

g2

4!
φ4 + jφ

g is dimensionless in 4 dimensions, like the QCD coupling
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Power counting

Order(graph) = g−2gNfinal particlesg2Nloops(gj)Nsources

• Independent of Nsources if gj ∼ 1 → strong source regime
• Still perturbative in g2, but not in j
• Vacuum graphs (Nfinal particles = 0) ∼ g−2 with strong sources
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Vacuum diagrams

• When j ≡ 0:
∣∣0out〉 = U(+∞,−∞)

∣∣0in〉 with U unitary,
The vacuum evolves into the vacuum with probability one,〈
0out

∣∣0in〉 = eiV with V ∈ R,
Vacuum graphs are purely real; their sum is a pure phase.

• When j 6= 0, unitarity tells this is no longer true,

1 =
∑
α

P(α) = P(vacuum) +
∑

α6=vacuum
P(α),

If P(α) 6= 0 for some non-empty final state, then P(vacuum) < 1,
P(vacuum) = e−2 ImV , therefore vacuum graphs are complex,
Their sum is not a phase, and one cannot disregard them.
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Example: contribution to P(11 particles)

• Right: amplitude; Left: conjugate amplitude (dots: source j)
• Vacuum graph ∼ g−2 in the strong source regime → hopeless?
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Exclusive vs Inclusive

• Probability to reach a specific final state:

dPn

d3p1 · · ·d3pn

=
1

n!

1

(2π)32Ep1

· · · 1

(2π)32Epn

∣∣〈p1 · · ·pnout

∣∣0in〉∣∣2
• Vacuum graphs do not cancel
• Each of them is exponentially suppressed (tiny probability to
reach a given final state)

• Inclusive particle spectrum:

dN1

d3p
≡

∞∑
n=0

(n+ 1)

∫
d3p1 · · ·d3pn

dPn+1

d3pd3p1 · · ·d3pn

• Vacuum graphs DO cancel
• The moments have a well defined series expansion in g
• At LO in g, can be expressed in terms of retarded classical fields
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Combinatorics of multiparticle production

The probability of producing n particles can always be
parameterized as

Pn = e−a
n∑

p=1

1

p!

∑
r1+···+rp=n

br1 · · ·brp

• p = number of clusters (sets of correlated particles)
• a = mean number of clusters
• br = mean number of clusters with r particles
• Unitarity: a = b1 + b2 + · · ·
• Vacuum persistence probability: P0 = e−a

• Moments:
〈
n
〉
=

∑
r

rbr,
〈
n2
〉
−
〈
n
〉2

=
∑
r

r2br, etc...

• In general, P0 6= e−〈n〉 (only equal if all particles are produced
uncorrelated, i.e., if there are no clusters of size > 1)

• a, br ∼ g−2 in the strong source regime
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Schwinger-Keldysh formalism

〈
0in
∣∣O∣∣0in〉 = ∑

states α

〈
αout

∣∣O∣∣αout

〉
︸ ︷︷ ︸

mixed −+

〈
0in
∣∣αout

〉︸ ︷︷ ︸
− sector

(conjugate rules)

〈
αout

∣∣0in〉︸ ︷︷ ︸
+ sector

(normal rules)

G0
++(p) =

i

p2 −m2 + iε
, G0

−−(p) =
−i

p2 −m2 − iε

G0
+−(p) = 2πθ(−p

0)δ(p2 −m2), G0
−+(p) = 2πθ(+p

0)δ(p2 −m2)
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Connection to Feynman graphs

〈
0out

∣∣0in〉 = ei V
i V ≡ + + + + . . .1

6

1

8

1

8

a = 2 Im (V) =
∑
cuts

(
+ + + + . . .1

6

1

8

1

8

)
= sum of connected vacuum diagrams in SK formalism

Note: vacuum graphs are all zero in SK formalism without external
sources, but non-zero if j 6= 0
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Connection to Feynman graphs (cont.)
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-
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Inclusive spectrum

dN1

d3p
∝

+

-

p
- +

p
+

• The gray blobs are the SK 1-point (ϕ±(x)) and 2-point (G−+(x, y))
connected correlation functions

• This formula is exact (to all orders in g and j)
• Strong source regime: ϕ± ∼ g−1, G−+(x, y) ∼ 1,→ The first term dominates.

François Gelis, January 2021 15



Inclusive spectrum at Leading Order

At tree level:

(�+m2)ϕ± +
g2

6
ϕ3

± = j,

lim
x0→−∞ϕ±(x) = 0

• Classical EOM with retarded boundary conditions→ numerically straightforward
• ϕ± are equal, and real valued
• Given the Fourier decomposition of these classical fields

ϕ(y) ≡
∫

d3p

(2π)32Ep

[
f(y0,p) e−ip·y + c.c.

]
,

the LO spectrum reads
dN1

d3p

∣∣∣∣
LO

=
1

(2π)32Ep
|f(+∞,p)|2

• Note: at this order, only particles that couple directly to the
sources can be produced (e.g., gluons in QCD)

François Gelis, January 2021 16



LO + NLO

dN1

d3p
=

p

︸ ︷︷ ︸
LO

+
p

+ p + · · ·

︸ ︷︷ ︸
NLO
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LO + NLO (additional remarks)

• LO: can only produce particles that couple directly to the
sources

• Static sources: the LO gives zero
(same for the first of the NLO terms)

• NLO: a different particle may run in the loop → can produce
particles that do not couple directly to the source
(e.g., electrons, quarks)

• Second NLO graph: contains a non-analytic contribution when
the source is static
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NOTE: exclusive quantities are (much!) harder!

Simplest example:

dP1

d3p
= e−a b1(p)

• At LO: a, b1(p) given by classical fields with non retarded
boundary conditions

• Although not impossible in principle, very hard in practice
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Correlations in the Schwinger effect

[Fukushima, FG, Lappi, 2009]
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Setup

• Consider scalar QED for simplicity:

L ≡ (Dµφ)(D
µφ)∗ −m2φφ∗ ,

• Generating functional:

F[z, z] ≡
∞∑

m,n=0

1

m!n!

∫ m∏
i=1

d3pi

(2π)32Epi

z(pi)

n∏
j=1

d3qj

(2π)32Eqj

z(qj)

×
∣∣∣〈p1 · · ·pm︸ ︷︷ ︸

particles

q1 · · ·qn︸ ︷︷ ︸
antiparticles

out

∣∣0in〉∣∣∣2
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Inclusive spectra

dN+
1

d3p
=
δF[z, z]

δz(p)

∣∣∣∣
z=z=1

,
dN−

1

d3q
=
δF[z, z]

δz(q)

∣∣∣∣
z=z=1

dN++
1

d3p1d
3p2

=
δ2F[z, z]

δz(p1)δz(p2))

∣∣∣∣
z=z=1

dN−−
1

d3q1d
3q2

=
δ2F[z, z]

δz(q1)δz(q2))

∣∣∣∣
z=z=1

dN+−
1

d3pd3q
=

δ2F[z, z]

δz(p)δz(q))

∣∣∣∣
z=z=1
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One-Loop generating functional

lnF[z, z] = constant+ + - + +

-

+

-

+ +

- +

-

+-

+ ...

= constant− tr ln
(
1− T+ (zG0

+−)T− (zG0
−+)

)

T+ ≡
+

=
+

+
+ +

+
+ + +

+ ...

T− ≡
-

=
-

+
- -

+
- - -

+ ...

= +
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After some massaging...

• For a real external field, the time-ordered scattering matrices
T± can be related to the retarded one, T

R

• For a spatially homogeneous external field:

lnF[z, z] = constant− V
∫
d3p

(2π)3
ln
[
1− (z(p)z(−p) − 1) fp

]
iT

R
(p,−k) = 2Ep (2π)3δ(p+ k) βp, fp ≡

∣∣βp

∣∣2
• In practice: T

R
(p,−k) is obtained by solving the classical EOM

for φ, starting in the past with a negative frequency plane wave
of momentum −k and projecting it in the future on a positive
frequency plane wave of momentum p
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Spectra

dN+
1

d3p
=
dN−

1

d3p
=

V

(2π)3
fp︸ ︷︷ ︸

≡ np

dN++
2

d3pd3p ′ −
dN+

1

d3p

dN+
1

d3p ′ = δ(p− p ′) np fp

dN+−
2

d3pd3q
−
dN+

1

d3p

dN−
1

d3q
= δ(p+ q) np (1+ fp)

• No correlations at different momenta for particles
• Particles and antiparticles of opposite momenta are correlated
• Consistent with Poisson distribution if fp � 1

• In general: Bose enhancement
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Probability distribution

• Form particles and n antiparticles of momentum k:

Pk(m,n) = δm,n
1

1+ fk

(
fk

1+ fk

)n

Note: longer tails than Poisson (Bose enhancement)
• Vacuum persistence probability:

P0 = exp
{
− V

∫
d3k

(2π)3
ln(1+ fk)︸ ︷︷ ︸

6=
∫
k
fk

}
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Bogoliubov Transformation

François Gelis, January 2021 25



Mode functions (A0 = 0 gauge)

φ(x) =

∫
d3k

(2π)3

[
ak,in√
2Eink

φ+
k,in(x) +

b†k,in√
2Ein−k

φ−
−k,in(x)

]

=

∫
d3k

(2π)3

[
ak,out√
2Eoutk

φ+
k,out(x) +

b†k,out√
2Eout−k

φ−
−k,out(x)

]

Ein,outk =
√
m2 + (k+ eAin,out)2

φ+
k,in(x) = e

−iEin
kx0+ik·x for x0 → −∞

φ−
k,in(x) = e

iEin
kx0+ik·x for x0 → −∞

φ+
k,out(x) = e

−iEout
k x0+ik·x for x0 → +∞

φ−
k,out(x) = e

iEout
k x0+ik·x for x0 → +∞
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Bogoliubov transformation

• EOM linear: there is a linear mapping between the coefficients
in the in and out representations

• Spatially homogeneous background: no mixing between the
modes k

ak,out = αk ak,in + βk b
†
−k,in, b†k,out = α

∗
−k b

†
k,in + β∗

−k a−k,in

• Consistency with canonical commutation relations:
|αk|

2 − |βk|
2 = 1

• Inverse mapping:

ak,in = α∗
k ak,out − βk b

†
−k,out, bk,in = α∗

−k bk,out − β−k a
†
−k,out

François Gelis, January 2021 27



In and Out vacua

• In and Out vacua are related by:

∣∣0in〉 = e−V
2

∫ d3p
(2π)3

ln(1+|βp|2)
e

∫ d3p
(2π)3

βp

α∗
p

a
†
p,outb

†
−p,out

∣∣0out〉
• This formula contains all the information about final state
particle content when the initial state is empty

• Example:

dN+
1

d3p
=

1

(2π)3
〈
0in
∣∣a†p,outap,out

∣∣0in〉 = V

(2π)3
|βp|

2

François Gelis, January 2021 28



Example: Sauter potential

t

2τ

Ez(t) =
E

cosh2(t/τ)
(τ ∼ pulse duration)
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Sauter potential: inclusive spectrum at t = +∞

dN1

d3p
=

V

(2π)3

(
sinh [π(λ+ µ− ν)] sinh [π(λ− µ+ ν)]

sinh (2πµ) sinh (2πν)

)

µ ≡ τ

2

√
m2 + p2⊥ + (pz − 2eEτ)2

ν ≡ τ

2

√
m2 + p2⊥ + p2z

λ ≡ eEτ2

Note: analytic in eE as long as τ <∞
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Sauter potential: pz spectrum at fixed p⊥
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Sauter potential: pz spectrum at various p⊥ (fixed
√
eEτ = 4)
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Numerical evaluation on the lattice
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Spectrum for a general external field

dN1

d3p
=

1

(2π)32Ep

∫
d3k

(2π)32Ek

∣∣∣∣∫ d3x φ+†
p,out(x) (∂t − iEp)φ

−
k,in(x)

∣∣∣∣2
x0=+∞

• Note: in general, time evolution non-diagonal in p

• This observable belongs to a generic class of objects that can be
written as〈

φ†Mφ
〉
≡

∫
d3k

(2π)32Ek

[
φ−†

k,inMφ−
k,in

]
x0=y0=+∞

(Mxy =Hermitean operator)
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“Brute force” lattice approach

• Discretize space as a N×N×N lattice
• Use link variables instead of Ai to ensure gauge invariance
• N3 conjugate momenta
• Solve the EOM for N3 incoming mode functions
• Numerical cost ∼ Nt ×N3 ×N3 (Nt = number of time steps)→ quite unfavorable scaling

• Note: if the field is independent of some of the coordinates,
this cost can be reduced since the evolution conserves the
corresponding momentum
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Statistical sampling [FG, Tanji, 2013]

• Goal: avoid summing over all the mode functions to reduce cost
• Strategy: exploit the linearity of the EOM and solve it for a
random linear superposition of all the mode functions

φ−
c (x) ≡

1√
V

∑
k

1√
2Ek

ck φ
−
k,in(x)

ck = Gaussian random numbers with 〈ck〉 = 0 and
〈ckc∗k′〉c = δkk′〈

φ†Mφ
〉
=
〈[
φ−†

c Mφ−
c

]
x0=y0=+∞

〉
c

• Numerical cost: Nt ×N3 ×Nc (plus Nc ×N6 for preparing the
initial conditions) → favorable if Nc � N3,Nt

• Statistical error ∼ N−1/2
c

• Related to low cost fermions [Borsanyi, Hindmarsh; Saffin,
Tranberg; Berges, Gelfand, Sexty, Kasper, Hebenstreit,
2009-2014]
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Example: Sauter field
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• Nx = Ny = 48, Nz = 128

•
√
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√
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√
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• Nc = 256 (� 482 × 128 = 294912)

François Gelis, January 2021 36



Works also for weak fields

0
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• eE = 0.25m2,
√
eE τ = 25.5

• Nx = Ny = 48, Nz = 256,maz = 0.048

• Nc = 48
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Back Reaction

• So far, assume that the external field is unmodified by
produced charged particles

• Energy is not conserved in this approximation (roughly ok if the
field energy dominates)

• The produced charges screen the external field, and weaken it
• Feedback can be included by simultaneously solving Maxwell’s
equation:

∂µF
µν(x) = 〈 Ĵν(x)〉

〈 Ĵν(x)〉 = quantum expectation value of the current operator
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Example: initially constant E0
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• e = 0.3,m/
√
eE0 = 0.1

• Nx = Ny = 48, Nz = 512

•
√
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√
eE0 ay = 0.62,

√
eE0 az = 0.029
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Energy conservation
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field particles total

• Energy carried by the field and particles, normalized by E0 ≡ 1
2
E20
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pz spectrum (early times)
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• Very similar to the Sauter potential (charges produced with pz ≈ 0

and accelerated in the +z direction)
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pz spectrum (later times)
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• The field direction oscillates, and the acceleration changes sign
• Existing particles encounter newly created ones, and Pauli
blocking leads to interferences
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Worldline Formalism

[Bern, Kosower, 1988; Strassler, 1992]
[Schubert, 1996, 2001]

[Schmidt, Schubert, 1993]
[Dunne, Schubert, 2005]
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Setup

• Total particle production probability (at one loop):〈
0out

∣∣0in〉 = ei V , ∞∑
n=1

Pn = 1− P0 = 1− e−2 ImV

i V =
∑(

connected vacuum diagrams
)

Scalar QED : V1 loop = ln det
(
gµνD

µDν +m2
)

• Worldline formalism is Euclidean, so consider instead:

V
E,1 loop ≡ ln det

(
−DiDi +m2

)
= tr ln

(
−DiDi +m2

)
• Schwinger proper time representation:(

−DiDi +m2
)−1

=

∫∞
0

dT exp
(
−T
(
−DiDi +m2

))
ln
(
−DiDi +m2

)
= −

∫∞
0

dT

T
exp

(
−T
(
−DiDi +m2

))
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Worldline representation of V
E,1 loop

V
E,1 loop = −

∫∞
0

dT

T
e−m2T

×
∫

xi(0)=xi(T)

[
Dxi(τ)

]
exp

(
−

∫T
0

dτ
( ẋiẋi
4

+ ie ẋiAi(x)
))

• xi(τ) = trajectory of length T in Euclidean spacetime of a
fictitious point-like particle

• Closed paths because of the trace: xi(0) = xi(T)
• The mass suppresses the long paths (longer than the Compton
wavelength). T ≈ 0 controls the UV

• Euclidean metric ensures convergence
• In vacuum, one has∫

xi(0)=xi(T)

[
Dxi(τ)

]
exp

(
−

∫T

0

dτ
ẋiẋi

4

)
=

1

(4πT)d/2
=

d=4

1

(4πT)2
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Scales

T
1/2

• Path length = T

• Size of explored region ∼
√
T

• Area ∼ T
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Barycentric coordinates

• Split xi into barycenter of the loop and deviation:

xi(τ) ≡ Xi + ri(τ),

∫T
0

dτ ri(τ) = 0

• Background field → Wilson loop centered at Xi, averaged
over all paths of length T :

W
X

[
r
]
≡ exp

(
− ie

∫T
0

dτ ṙi(τ)Ai(X+ r(τ))
)

〈W
X
〉T ≡ (4πT)2

∫
ri(0)=ri(T)

[
Dri(τ)

]
W

X

[
r
]
exp

(
−

∫T
0

dτ
ṙiṙi

4

)

• Average is dominated by an ensemble of loops localized around
the barycenter Xi (up to a distance of order T1/2)

• 〈W
X
〉
τ
encapsulates the local properties of the quantum field

theory in the vicinity of Xi
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• One-loop Euclidean vacuum diagrams:

V
E,1 loop = −

1

(4π)2

∫
d4X

∫∞
0

dT

T3
e−m2T 〈W

X
〉T

• For a constant E, choose a gauge where Ai is linear in
coordinates → 〈W

X
〉T given by a Gaussian integral:

〈W
X
〉T =

eET

sin(eET)

• The imaginary part of V
E,1 loop comes from poles located at

Tn = nπ/(eE):

Im (V
E,1 loop) =

V4

16π3
(eE)2

∞∑
n=1

(−1)n−1

n2
e−nπm2/(eE)

• Note: the terms n > 1 encode Bose-Einstein correlations

François Gelis, January 2021 47



Numerical worldline approach [Gies, Langfeld, 2001]

• E ‖ z → Ai = (0, 0, 0,−iEx3)

W
X
[r] = e−eEA, with A ≡

∫T
0

dτ ṙ4(τ)r3(τ)

(A = projected area of the loop on the plane 34)
• Note: probability distribution for A:

PT (A) =
π

4T

1

cosh2
(
πA
2T

) → typical worldlines: A . T

• After a rescaling I ≡ τA, s ≡ −iτ/eE:

V
E,1 loop =

(
eE

4π

)2 ∫
d4X

∫∞
0

ds

s3
e−i(m2/(eE))s

〈
e−isI

〉
• Evaluate

〈
e−isI

〉
once for all (from an ensemble of loops)

• Difficulty: small eE/m2 → small s→ large areas needed
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Constant field [Gies, Klingmuller, 2005]

exact result
numerical values

eE/m2

|I
m

Γ
|/

m
4

101

1

0.1

0.01

0.001

1e-04

1e-05

1e-06

1e-07
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Algorithm for non-constant fields

• External field and ensemble of loops are entangled
• Other difficulty: integral over areas converges only for
|T | ≤ π/(eE) (location of the first pole, T1)

• Analytical ansatz for the distribution of areas:

W
X
[r] = e−eE(X)TI, I ≡ i

τE(X)

∫T

0

dτ ṙi(τ)Ai(X + r(τ))

Ansatz: P
X
(I) = N

1

cosh2ν
(
παI
2

)
Fit α and ν from an ensemble of loops generated by Monte-Carlo.
Then, do the J integral analytically∫+∞

−∞ dI P
X
(I) e−eE(X)τI = N

4ν

πα

Γ(ν + eE(X)τ
πα

)Γ(ν − eE(X)τ
πα

)

Γ(2ν)

• Integrate over T and Xi numerically
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Sauter field E1 = E/cosh2(kx1) [Gies, Klingmuller, 2005]

Nikishov
numerical values

k/m

I
m

Γ
/I

m
Γ

lc

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0
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Lattice worldline formalism [Schmidt, Stamatescu, 2002]

• When the background field results of a lattice computation (and
is given in terms of link variables on the lattice), we may write

tr ln
(
−DiDi +m2

)
= −

∞∑
n=0

1

n

1

(2d̃)n

∑
x∈ lattice

∑
γ∈Γn(x,x)

∏
`∈γ

U`

• n plays the role of the fictitious time T
• U` = link variable on the edge `
• Γn(x, x) = set of loops (from x to x) of length n (in lattice units)
• d̃ = d + 1

2
m2a2 (d̃ > d suppresses the long loops)
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Worldline instanton approximation [Dunne, Schubert, 2005]

• Define τ ≡ Tu andm2T = s. Then:

V
E,1 loop = −

∞∫
0

ds

s
e−s

∫
xi(0)=xi(1)

[
Dxi(u)

]
exp

(
−

∫1

0

du
(

m2

4s
ẋ2

4
+ieẋiAi(x)

))

• The integral over s gives a Bessel function:

V
E,1 loop = −2

∫
xi(0)=xi(1)

[
Dxi(u)

]
K0

((
m

∫1

0

du ẋ2
) 1

2
)
exp

(
−ie

∫1

0

du ẋiAi(x)
)

• In the regime wherem2

∫1

0

du ẋ2 � 1, approximate

K0(z) ≈
√
π/2 e−z/

√
z and perform a stationary phase

approximation. We need extrema of

S ≡ m
(∫1

0

du ẋ2
)1/2

+ ie

∫1

0

du ẋiAi(x)
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• They are the closed paths xi(u) that obey

m
ẍi√∫1

0
du ẋ2

= ieFijẋj

Note: ẋiẋi = const
• For each extremum

ImV
E,1 loop ∼ e−Sextremum

• The prefactor is obtained by integrating Gaussian deviations
about the extremal path
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Example: Sauter field E(x3) = E/cosh2(kx3)

• Use the gauge potential

A4 = −i
E

k
tanh(kx3)

• Equations of motion for the stationary solutions

ẋ3 = v

√
1 − γ−2 tanh2(kx3) , ẋ4 = −γ−1v tanh(kx3)

(γ ≡ mk/(eE))
• Countable infinity of periodic solutions:

x3(u) =
m

eE

1

γ
arcsinh

(
γ√
1 − γ2

sin(2πnu)

)

x4(u) =
m

eE

1

γ
√
1 − γ2

arcsin (γ cos(2πnu))

(n = winding index of the solution)
• Extended field (γ→ 0): circular solutions
• γ→ 1: very elongated orbits, action becomes infinite→ no pair production (field coherence length too small)
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Dynamically assisted Schwinger effect

[Schutzhold, Gies, Dunne, 2008]
[Di Piazza, Lotstedt, Milstein, Keitel, 2009]
[Orthaber, Hebenstreit, Alkofer, 2011]

[Monin, Voloshin, 2012]
[Taya, Fujii, Itakura, 2014]

+ many others
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Comparison between exact and perturbative results

• Consider the Sauter temporal pulse: A3(t) = Eτ tanh(t/τ)

• Exact spectrum:

dN1

d3p
=

V

(2π)3

(
sinh [π(λ+ µ− ν)] sinh [π(λ− µ+ ν)]

sinh (2πµ) sinh (2πν)

)

µ ≡ τ

2

√
m2 + p2⊥ + (pz − 2eEτ)2

ν ≡ τEp

2
, λ ≡ eEτ2

• One-photon spectrum:

p+p’

p

p’

→ dN
(1γ)
1

d3p
=
Ve2E2

(2π)3

[
1−

(
pz

Ep

)2
]

π2τ4

sinh2(πEpτ)
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Numerical comparison for subcritical fields

10−6
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m
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d
3
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mτ

eE/m2 = 0.5

0.25

• Solid lines: exact result. Dashed lines: one-photon result
• Black dotted line: constant field result (exp(−πm2/(eE)))
• Note: considerably enhanced spectrum in the regimemτ ∼ 1
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Superposition of fields

• Consider the sum of two Sauter fields,
with E1 � E2 and τ1 � τ2:

Ez(t) =
E1

cosh2
(

t
τ1

) + E2

cosh2
(

t
τ2

)
• E1: strong and slow (one-photon process forbidden)
• E2: weak and fast (one-photon process possible)

• Non-trivial effects since the spectrum is non-linear in the field
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• eE1 = 0.25m2
e, τ1 = 10−4 eV−1

• eE2 = 0.025m2
e, τ2 = 7× 10−6 eV−1.
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Qualitative interpretation

-m

+m

ω

x

ε

• Slope due to the strong and slow field E1 (no appreciable slope
from the weak field)

• A single photon from the weak and fast field E2 raises a hole
excitation (the more, the better)

• Tunneling distance is reduced, which affects exponentially the
resulting spectrum
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• eE1 = 0.25m2
e,meτ1 = 510

• eE2 = 0.025m2
e, variablemeτ2

• Black dashed line: E1 alone
• Maximal enhancement whenmeτ2 ≈ 0.6 (roughly, τ2 ∼ (2me)

−1)
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Summary
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• Very interesting playground for studying QFT in a
non-perturbative regime and testing novel methods
(with a few exact results to compare with)

• A number of approaches have been applied to this problem:
• Mode functions on the lattice
• Worldline formalism
• Quantum kinetic equations
• Wigner formalism
• Holography, AdS/CFT

• For high enough frequency, perturbative (one-photon) result
dominates over constant field result

• Dynamical enhancement can achieved by superimposing slow
and fast fields

François Gelis, January 2021 64


