Some Theoretical Aspects of the Schwinger Mechanism

François Gelis

Schwinger Effect and Strong-Field Physics, Jan. 2021

Institut de
Physique Théorique CEA/DRF SACLAY

Outline

QED IN EXTERNAL FIELDS

$$
\mathcal{L}=\bar{\psi}\left(i \nsupseteq-m+\mathcal{X}+\mathcal{X}_{\text {ext }}\right) \psi
$$

- A^{μ} : dynamical photon field (responsible for radiation, arises in loops)
- $A_{\text {ext }}^{\mu}$: external photon field (controlled by experimental setup, not quantized)

MOMENTUM CONSERVATION

- The Fourier components of a time independent external field all have zero frequency
- By momentum conservation, it seems that this field cannot produce anything that has an energy >0 (e.g., an $e^{-} e^{+}$pair has a minimal energy 2 m)
- This is definitely correct in perturbation theory, i.e., for contributions that one may obtain from an expansion in powers of the external field
- There are also contributions in $\exp \left(-m^{2} / e E_{\text {ext }}\right)$, non-analytic in the external field (at least for a constant $E_{\text {ext }}$), for which perturbation theory has nothing to say \rightarrow Schwinger effect [Schwinger, 1953]

SCHWINGER EFFECT ~ TUNNELING

Generalities

$$
\mathcal{P}_{\text {pair prod }} \sim \exp \left(-\pi m^{2} / e E\right)
$$

- All Taylor coefficients about $e=0$ are zero (when E is not constant but has only Fourier modes of very low frequency, the dominant Taylor coefficients are at a very large order)
- Critical field: $E_{c} \equiv m^{2} / e$ (extremely large even for the lightest known charged particle, the electron)
- Numerically more important in QCD, since the strong coupling is much larger

OUtLINE

- Part I:
- Quantum Fields coupled to (strong) external sources
- Correlations in the Schwinger effect
- Bogoliubov transformation
- Part II:
- Numerical evaluation on the lattice
- Worldline formalism
- Dynamically assisted Schwinger effect

Quantum Fields coupled to external sources

[FG, Lappi, Venugopalan, 2006-2008]

TOY MODEL: SCALAR FIELDS WITH AN EXTERNAL SOURCE

$$
\mathcal{L} \equiv \frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} m^{2} \phi^{2}-\frac{g^{2}}{4!} \phi^{4}+j \phi
$$

g is dimensionless in 4 dimensions, like the QCD coupling

Power counting

$$
\text { Order }(\text { graph })=\mathrm{g}^{-2} \mathrm{~g}^{N_{\text {final particles }}} \mathrm{g}^{2 N_{\text {loops }}}(\mathrm{gj})^{N_{\text {sources }}}
$$

- Independent of $\mathrm{N}_{\text {sources }}$ if $\mathrm{gj} \sim 1 \rightarrow$ strong source regime
- Still perturbative in g^{2}, but not in j
- Vacuum graphs $\left(\mathrm{N}_{\text {final particles }}=0\right) \sim \mathrm{g}^{-2}$ with strong sources

VACUUM DIAGRAMS

- When $\mathrm{j} \equiv 0:\left|0_{\text {out }}\right\rangle=\mathrm{U}(+\infty,-\infty)\left|\mathrm{o}_{\text {in }}\right\rangle$ with U unitary, The vacuum evolves into the vacuum with probability one, $\left\langle 0_{\text {out }} \mid O_{\text {in }}\right\rangle=e^{i V}$ with $V \in \mathbb{R}$,
Vacuum graphs are purely real; their sum is a pure phase.
- When $j \neq 0$, unitarity tells this is no longer true,

$$
1=\sum_{\alpha} P(\alpha)=P(\text { vacuum })+\sum_{\alpha \neq \text { vacuum }} P(\alpha),
$$

If $\mathrm{P}(\alpha) \neq 0$ for some non-empty final state, then $\mathrm{P}($ vacuum $)<1$, $P($ vacuum $)=e^{-2 \operatorname{Im} V}$, therefore vacuum graphs are complex, Their sum is not a phase, and one cannot disregard them.

EXAMPLE: CONTRIBUTION TO P(11 PARTICLES)

- Right: amplitude; Left: conjugate amplitude (dots: source j)
- Vacuum graph $\sim \mathrm{g}^{-2}$ in the strong source regime \rightarrow hopeless?

Exclusive vs Inclusive

- Probability to reach a specific final state:

$$
\frac{d P_{n}}{d^{3} p_{1} \cdots d^{3} \boldsymbol{p}_{n}}=\frac{1}{n!} \frac{1}{(2 \pi)^{3} 2 E_{p_{1}}} \cdots \frac{1}{(2 \pi)^{3} 2 E_{p_{n}}}\left|\left\langle\mathbf{p}_{1} \cdots \boldsymbol{p}_{\text {nout }} \mid 0_{\text {in }}\right\rangle\right|^{2}
$$

- Vacuum graphs do not cancel
- Each of them is exponentially suppressed (tiny probability to reach a given final state)
- Inclusive particle spectrum:

$$
\frac{d N_{1}}{d^{3} p} \equiv \sum_{n=0}^{\infty}(n+1) \int d^{3} p_{1} \cdots d^{3} p_{n} \frac{d P_{n+1}}{d^{3} p d^{3} p_{1} \cdots d^{3} p_{n}}
$$

- Vacuum graphs DO cancel
- The moments have a well defined series expansion in g
- At LO in g, can be expressed in terms of retarded classical fields

COMBINATORICS OF MULTIPARTICLE PRODUCTION

The probability of producing n particles can always be parameterized as

$$
P_{n}=e^{-a} \sum_{p=1}^{n} \frac{1}{p!} \sum_{r_{1}+\cdots+r_{p}=n} b_{r_{1}} \cdots b_{r_{p}}
$$

- $p=$ number of clusters (sets of correlated particles)
- $a=$ mean number of clusters
- $b_{r}=$ mean number of clusters with r particles
- Unitarity: $a=b_{1}+b_{2}+\cdots$
- Vacuum persistence probability: $P_{0}=e^{-a}$
- Moments: $\langle n\rangle=\sum_{r} r b_{r},\left\langle n^{2}\right\rangle-\langle n\rangle^{2}=\sum_{r} r^{2} b_{r}$, etc...
- In general, $P_{0} \neq e^{-\langle n\rangle}$ (only equal if all particles are produced uncorrelated, i.e., if there are no clusters of size > 1)
- $a, b_{r} \sim g^{-2}$ in the strong source regime

SCHWINGER-KELDYSH FORMALISM

$$
\begin{aligned}
& \left\langle 0_{\text {in }}\right| \mathcal{O}\left|0_{\text {in }}\right\rangle=\underbrace{\sum_{\text {states } \alpha}\left\langle\boldsymbol{\alpha}_{\text {out }}\right| \mathcal{O}\left|\boldsymbol{\alpha}_{\text {out }}\right\rangle}_{\text {mixed }-+} \underbrace{\left\langle 0_{\text {in }} \mid \boldsymbol{\alpha}_{\text {out }}\right\rangle}_{\begin{array}{c}
- \text { sector } \\
\text { (conjugate rules) }
\end{array}} \underbrace{\left\langle\boldsymbol{\alpha}_{\text {out }} \mid 0_{\text {in }}\right\rangle}_{\begin{array}{c}
+ \text { sector } \\
\text { (normal rules) }
\end{array}} \\
& G_{++}^{0}(p)=\frac{i}{p^{2}-m^{2}+i \epsilon}, \\
& G_{--}^{0}(p)=\frac{-i}{p^{2}-m^{2}-i \epsilon} \\
& G_{+-}^{0}(p)=2 \pi \theta\left(-p^{0}\right) \delta\left(p^{2}-m^{2}\right), \quad G_{-+}^{0}(p)=2 \pi \theta\left(+p^{0}\right) \delta\left(p^{2}-m^{2}\right)
\end{aligned}
$$

CONNECTION TO FEynman GRapHS

$$
\left\langle 0_{\text {out }} \mid 0_{\text {in }}\right\rangle=e^{i V}
$$

= sum of connected vacuum diagrams in SK formalism

Note: vacuum graphs are all zero in SK formalism without external sources, but non-zero if $j \neq 0$

CONnection to Feynman graphs (cont.)

$$
\begin{aligned}
& \mathrm{b}_{1}=\quad \frac{1}{2} \bullet \underset{+}{\bullet} \quad \frac{1}{2} \bullet \rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& +\cdots \\
& b_{2}=\underbrace{\infty}_{0}+\frac{1}{6} \bullet+\frac{1}{6} \\
& +\cdots \\
& \mathrm{b}_{3}=\frac{1}{8} \underbrace{9}_{-+\infty}+\frac{1}{8} \underbrace{9}_{-}+\frac{1}{8} \underbrace{+\infty}_{-+\infty} \\
& +\cdots
\end{aligned}
$$

Inclusive spectrum

- The gray blobs are the SK 1-point $\left(\varphi_{ \pm}(x)\right)$ and 2-point ($\mathcal{G}_{-+}(x, y)$) connected correlation functions
- This formula is exact (to all orders in g and j)
- Strong source regime: $\varphi_{ \pm} \sim g^{-1}, \mathcal{G}_{-+}(x, y) \sim 1$,
\rightarrow The first term dominates.

Inclusive spectrum at Leading Order

At tree level:

$$
\begin{aligned}
& \left(\square+\mathrm{m}^{2}\right) \varphi_{ \pm}+\frac{\mathrm{g}^{2}}{6} \varphi_{ \pm}^{3}=\mathfrak{j} \\
& \lim _{x^{0} \rightarrow-\infty} \varphi_{ \pm}(x)=0
\end{aligned}
$$

- Classical EOM with retarded boundary conditions
\rightarrow numerically straightforward
- $\varphi_{ \pm}$are equal, and real valued
- Given the Fourier decomposition of these classical fields

$$
\varphi(y) \equiv \int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3} 2 E_{p}}\left[f\left(y^{0}, \boldsymbol{p}\right) e^{-i p \cdot y}+\text { c.c. }\right],
$$

the LO spectrum reads

$$
\left.\frac{\mathrm{dN}_{1}}{\mathrm{~d}^{3} \mathbf{p}}\right|_{\mathrm{LO}}=\frac{1}{(2 \pi)^{3} 2 \mathrm{E}_{\mathrm{p}}}|\mathrm{f}(+\infty, \mathfrak{p})|^{2}
$$

- Note: at this order, only particles that couple directly to the sources can be produced (e.g., gluons in QCD)

LO + NLO

$$
\frac{\mathrm{dN}_{1}}{\mathrm{~d}^{3} \mathrm{p}}=\underbrace{\text { NA }}_{\mathrm{LO}}
$$

LO + NLO (ADDItIONAL REMARKS)

- LO: can only produce particles that couple directly to the sources
- Static sources: the LO gives zero (same for the first of the NLO terms)
- NLO: a different particle may run in the loop \rightarrow can produce particles that do not couple directly to the source (e.g., electrons, quarks)
- Second NLO graph: contains a non-analytic contribution when the source is static

NOTE: EXCLUSIVE QUANTITIES ARE (MUCH!) harder!

Simplest example:

$$
\frac{d P_{1}}{d^{3} p}=e^{-a} b_{1}(p)
$$

- At LO: $a, b_{1}(p)$ given by classical fields with non retarded boundary conditions
- Although not impossible in principle, very hard in practice

Correlations in the Schwinger effect

[Fukushima, FG, Lappi, 2009]

Setup

- Consider scalar QED for simplicity:

$$
\mathcal{L} \equiv\left(D_{\mu} \phi\right)\left(D^{\mu} \phi\right)^{*}-m^{2} \phi \phi^{*},
$$

- Generating functional:

$$
\begin{aligned}
& \mathcal{F}[z, \bar{z}] \equiv \sum_{m, n=0}^{\infty} \frac{1}{m!n!} \int \prod_{i=1}^{m} \frac{d^{3} \boldsymbol{p}_{i}}{(2 \pi)^{3} 2 E_{\boldsymbol{p}_{i}}} z\left(\boldsymbol{p}_{i}\right) \prod_{j=1}^{n} \frac{d^{3} \boldsymbol{q}_{j}}{(2 \pi)^{3} 2 E_{\mathbf{q}_{j}}} \bar{z}\left(\mathbf{q}_{\mathfrak{j}}\right) \\
& \times \mid\left.\langle\underbrace{\mathbf{p}_{1} \cdots \mathbf{p}_{m}}_{\text {particles }} \underbrace{\boldsymbol{q}_{1} \cdots \mathbf{q}_{n}}_{\text {antiparticles }} \text { out } \mid 0_{\text {in }}\rangle\right|^{2}
\end{aligned}
$$

INCLUSIVE SPECTRA

$$
\begin{gathered}
\frac{\mathrm{dN}_{1}^{+}}{\mathrm{d}^{3} \mathbf{p}}=\left.\frac{\delta \mathcal{F}[z, \bar{z}]}{\delta z(\mathbf{p})}\right|_{z=\bar{z}=1}, \quad \frac{\mathrm{~d} N_{1}^{-}}{\mathrm{d}^{3} \mathbf{q}}=\left.\frac{\delta \mathcal{F}[z, \bar{z}]}{\delta \bar{z}(\mathbf{q})}\right|_{z=\bar{z}=1} \\
\frac{\mathrm{dN}_{1}^{++}}{\mathrm{d}^{3} \mathbf{p}_{1} \mathrm{~d}^{3} \mathbf{p}_{2}}=\left.\frac{\delta^{2} \mathcal{F}[z, \bar{z}]}{\left.\delta z\left(\mathbf{p}_{1}\right) \delta z\left(\mathbf{p}_{2}\right)\right)}\right|_{z=\bar{z}=1} \\
\frac{\mathrm{dN}_{1}^{--}}{\mathrm{d}^{3} \mathbf{q}_{1} \mathrm{~d}^{3} \mathbf{q}_{2}}=\left.\frac{\delta^{2} \mathcal{F}[z, \bar{z}]}{\left.\delta \bar{z}\left(\mathbf{q}_{1}\right) \delta \bar{z}\left(\mathbf{q}_{2}\right)\right)}\right|_{z=\bar{z}=1} \\
\frac{\mathrm{dN}_{1}^{+-}}{\mathrm{d}^{3} \mathbf{p} \mathrm{~d}^{3} \mathbf{q}}=\left.\frac{\delta^{2} \mathcal{F}[z, \bar{z}]}{\delta z(\mathbf{p}) \delta \bar{z}(\mathbf{q}))}\right|_{z=\bar{z}=1}
\end{gathered}
$$

ONE-LOOP GENERATING FUNCTIONAL

$$
\begin{aligned}
& \ln \mathcal{F}[z, \bar{z}]=\text { constant }+\cdots+\cdots+\cdots+\cdots \\
& =\text { constant }-\operatorname{tr} \ln \left(1-\mathcal{T}_{+}\left(z G_{+-}^{0}\right) \mathcal{T}_{-}\left(\bar{z} G_{-+}^{0}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \underline{O}=\underline{\{ }+\underline{\text { \{\}\} }}
\end{aligned}
$$

AFTER SOME MASSAGING...

- For a real external field, the time-ordered scattering matrices $\mathcal{T}_{ \pm}$can be related to the retarded one, \mathcal{T}_{R}
- For a spatially homogeneous external field:

$$
\begin{gathered}
\ln \mathcal{F}[z, \bar{z}]=\text { constant }-\mathrm{V} \int \frac{\mathrm{~d}^{3} \mathbf{p}}{(2 \pi)^{3}} \ln \left[1-(z(\mathbf{p}) \bar{z}(-\mathbf{p})-1) \mathrm{f}_{\mathbf{p}}\right] \\
i \mathcal{T}_{\mathrm{R}}(\mathbf{p},-\mathrm{k})=2 \mathrm{E}_{\mathbf{p}}(2 \pi)^{3} \delta(\mathbf{p}+\mathbf{k}) \beta_{\mathbf{p}}, \quad \mathrm{f}_{\mathbf{p}} \equiv\left|\beta_{\mathbf{p}}\right|^{2}
\end{gathered}
$$

- In practice: $\mathcal{T}_{\mathrm{R}}(\mathrm{p},-\mathrm{k})$ is obtained by solving the classical EOM for ϕ, starting in the past with a negative frequency plane wave of momentum $-k$ and projecting it in the future on a positive frequency plane wave of momentum p

Spectra

$$
\begin{aligned}
& \frac{d N_{1}^{+}}{d^{3} \mathbf{p}}=\frac{d N_{1}^{-}}{d^{3} \mathbf{p}}=\underbrace{\frac{V}{(2 \pi)^{3}} f_{p}}_{\equiv n_{p}} \\
& \frac{d N_{2}^{++}}{d^{3} p d^{3} \mathbf{p}^{\prime}}-\frac{d N_{1}^{+}}{d^{3} p} \frac{d N_{1}^{+}}{d^{3} p^{\prime}}=\delta\left(\mathbf{p}-\mathbf{p}^{\prime}\right) n_{p} f_{p} \\
& \frac{d N_{2}^{+-}}{d^{3} p d^{3} q}-\frac{d N_{1}^{+}}{d^{3} p} \frac{d N_{1}^{-}}{d^{3} q}=\delta(\mathbf{p}+\mathbf{q}) n_{p}\left(1+f_{p}\right)
\end{aligned}
$$

- No correlations at different momenta for particles
- Particles and antiparticles of opposite momenta are correlated
- Consistent with Poisson distribution if $f_{p} \ll 1$
- In general: Bose enhancement

Probability distribution

- For m particles and n antiparticles of momentum k :

$$
P_{k}(m, n)=\delta_{m, n} \frac{1}{1+f_{k}}\left(\frac{f_{k}}{1+f_{k}}\right)^{n}
$$

Note: longer tails than Poisson (Bose enhancement)

- Vacuum persistence probability:

$$
P_{0}=\exp \{-V \underbrace{\int \frac{d^{3} k}{(2 \pi)^{3}} \ln \left(1+f_{k}\right)}_{\neq \int_{k} f_{k}}\}
$$

Bogoliubov Transformation

Mode functions ($A^{0}=0$ gauce)

$$
\begin{aligned}
\phi(x) & =\int \frac{d^{3} k}{(2 \pi)^{3}}\left[\frac{a_{k, \text { in }}}{\sqrt{2 E_{k}^{\text {in }}}} \phi_{k, \text { in }}^{+}(x)+\frac{b_{k, \text { in }}^{\dagger}}{\sqrt{2 E_{-k}^{\text {in }}}} \phi_{-k, \text { in }}^{-}(x)\right] \\
& =\int \frac{d^{3} k}{(2 \pi)^{3}}\left[\frac{a_{k, \text { out }}}{\sqrt{2 E_{k}^{\text {out }}}} \phi_{k, \text { out }}^{+}(x)+\frac{b_{k, \text { out }}^{\dagger}}{\left.\sqrt{2 E_{-k}^{\text {out }}} \phi_{-k, \text { out }}^{-}(x)\right]}\right. \\
E_{k}^{\text {in,out }} & =\sqrt{m^{2}+\left(k+e A^{\text {in,out }}\right)^{2}} \\
\phi_{k, \text { in }}^{+}(x)=e^{-i E_{k}^{\text {in }} x^{0}+i k \cdot x} & \text { for } x^{0} \rightarrow-\infty \\
\phi_{k, \text { in }}^{-}(x)=e^{i E_{k}^{\text {in }} x^{0}+i k \cdot x} & \text { for } x^{0} \rightarrow-\infty \\
\phi_{k, \text { out }}^{+}(x)=e^{-i E_{k}^{\text {out }} x^{0}+i k \cdot x} & \text { for } x^{0} \rightarrow+\infty \\
\phi_{k, \text { out }}^{-}(x)=e^{i E_{k}^{\text {out }} x^{0}+i k \cdot x} & \text { for } x^{0} \rightarrow+\infty
\end{aligned}
$$

BOGOLIUBOV TRANSFORMATION

- EOM linear: there is a linear mapping between the coefficients in the in and out representations
- Spatially homogeneous background: no mixing between the modes k

$$
a_{k, \text { out }}=\alpha_{k} a_{k, \text { in }}+\beta_{k} b_{-k, \text { in }}^{\dagger}, \quad b_{k, \text { out }}^{\dagger}=\alpha_{-k}^{*} b_{k, \text { in }}^{\dagger}+\beta_{-k}^{*} a_{-k, \text { in }}
$$

- Consistency with canonical commutation relations:

$$
\left|\alpha_{k}\right|^{2}-\left|\beta_{k}\right|^{2}=1
$$

- Inverse mapping:

$$
a_{k, \text { in }}=\alpha_{k}^{*} a_{k, \text { out }}-\beta_{k} b_{-k, \text { out }}^{\dagger}, \quad b_{k, \text { in }}=\alpha_{-k}^{*} b_{k, \text { out }}-\beta_{-k} a_{-k, \text { out }}^{\dagger}
$$

IN AND OUt VACUA

- In and Out vacua are related by:

$$
\left|0_{\text {in }}\right\rangle=e^{-\frac{v}{2} \int \frac{d^{3} p}{(2 \pi)^{3}} \ln \left(1+\left|\beta_{\mathfrak{p}}\right|^{2}\right)} e^{\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{\beta_{p}}{\alpha_{\mathfrak{p}}^{*}} a_{\mathfrak{p}, \text { out }}^{\dagger} b_{-p, \text { out }}^{\dagger}}\left|0_{\text {out }}\right\rangle
$$

- This formula contains all the information about final state particle content when the initial state is empty
- Example:

$$
\frac{\mathrm{dN}_{1}^{+}}{\mathrm{d}^{3} \mathbf{p}}=\frac{1}{(2 \pi)^{3}}\left\langle 0_{\text {in }}\right| a_{\mathfrak{p}, \text { out }}^{\dagger} a_{\mathfrak{p}, \text { out }}\left|0_{\text {in }}\right\rangle=\frac{\mathrm{V}}{(2 \pi)^{3}}\left|\beta_{\mathfrak{p}}\right|^{2}
$$

ExAMPLE: SAUTER POTENTIAL

$$
E_{z}(t)=\frac{E}{\cosh ^{2}(t / \tau)} \quad(\tau \sim \text { pulse duration })
$$

SAUTER POTENTIAL: INCLUSIVE SPECTRUM AT $t=+\infty$

$$
\begin{gathered}
\frac{d N_{1}}{d^{3} p}=\frac{V}{(2 \pi)^{3}}\left(\frac{\sinh [\pi(\lambda+\mu-v)] \sinh [\pi(\lambda-\mu+v)]}{\sinh (2 \pi \mu) \sinh (2 \pi v)}\right) \\
\mu \equiv \frac{\tau}{2} \sqrt{m^{2}+p_{\perp}^{2}+\left(p_{z}-2 e E \tau\right)^{2}} \\
v \equiv \frac{\tau}{2} \sqrt{m^{2}+p_{\perp}^{2}+p_{z}^{2}} \\
\lambda \equiv e E \tau^{2}
\end{gathered}
$$

Note: analytic in $e \mathrm{E}$ as long as $\tau<\infty$

SAUTER POTENTIAL: p_{z} SPECTRUM AT FIXED p_{\perp}

Thin horizontal dotted line: $\exp \left(-\pi\left(\mathrm{p}_{\perp}^{2}+\mathrm{m}^{2}\right) /(e \mathrm{E})\right)$

SAUTER POTENTIAL: p_{z} SPECTRUM AT VARIOUS $p_{\perp}($ fixED $\sqrt{e E} \tau=4)$

Thin horizontal dotted line: $\exp \left(-\pi\left(p_{\perp}^{2}+m^{2}\right) /(e E)\right)$

Numerical evaluation on the lattice

Spectrum for a general external field

$$
\frac{d N_{1}}{d^{3} \mathbf{p}}=\frac{1}{(2 \pi)^{3} 2 E_{\mathfrak{p}}} \int \frac{d^{3} k}{(2 \pi)^{3} 2 E_{k}}\left|\int d^{3} x \phi_{\mathbf{p}, \text { out }}^{+\dagger}(x)\left(\partial_{t}-i E_{\mathfrak{p}}\right) \phi_{\mathbf{k}, \text { in }}^{-}(x)\right|_{x_{0}=+\infty}^{2}
$$

- Note: in general, time evolution non-diagonal in p
- This observable belongs to a generic class of objects that can be written as

$$
\left\langle\phi^{\dagger} \boldsymbol{M} \phi\right\rangle \equiv \int \frac{d^{3} \mathrm{k}}{(2 \pi)^{3} 2 \mathrm{E}_{\mathrm{k}}}\left[\phi_{\mathrm{k}, \text { in }}^{-\dagger} \boldsymbol{M} \phi_{\mathrm{k}, \mathrm{in}}^{-}\right]_{x^{0}=y^{0}=+\infty}
$$

($\boldsymbol{M}_{x y}=$ Hermitean operator)

- Discretize space as a $\mathrm{N} \times \mathrm{N} \times \mathrm{N}$ lattice
- Use link variables instead of A^{i} to ensure gauge invariance
- N^{3} conjugate momenta
- Solve the EOM for N^{3} incoming mode functions
- Numerical cost $\sim N_{t} \times N^{3} \times N^{3} \quad\left(N_{t}=\right.$ number of time steps) \rightarrow quite unfavorable scaling
- Note: if the field is independent of some of the coordinates, this cost can be reduced since the evolution conserves the corresponding momentum

STATISTICAL SAMPLING

- Goal: avoid summing over all the mode functions to reduce cost
- Strategy: exploit the linearity of the EOM and solve it for a random linear superposition of all the mode functions

$$
\phi_{\mathrm{c}}^{-}(x) \equiv \frac{1}{\sqrt{V}} \sum_{\mathrm{k}} \frac{1}{\sqrt{2 \mathrm{E}_{\mathrm{k}}}} c_{\mathrm{k}} \phi_{\mathrm{k}, \mathrm{in}}^{-}(x)
$$

$c_{k}=$ Gaussian random numbers with $\left\langle c_{k}\right\rangle=0$ and $\left\langle\mathrm{c}_{\mathrm{k}} \mathrm{c}_{\mathrm{k}^{\prime}}^{*}\right\rangle_{\mathrm{c}}=\delta_{\mathrm{kk}^{\prime}}$

$$
\left\langle\phi^{\dagger} \boldsymbol{M} \phi\right\rangle=\left\langle\left[\phi_{\mathrm{c}}^{-\dagger} \mathbf{M} \phi_{\mathrm{c}}^{-}\right]_{x^{0}=y^{0}=+\infty}\right\rangle_{\mathrm{c}}
$$

- Numerical cost: $N_{t} \times N^{3} \times N_{c}$ (plus $N_{c} \times N^{6}$ for preparing the initial conditions) \rightarrow favorable if $N_{c} \ll N^{3}, N_{t}$
- Statistical error $\sim N_{c}^{-1 / 2}$
- Related to low cost fermions [Borsanyi, Hindmarsh; Saffin, Tranberg; Berges, Gelfand, Sexty, Kasper, Hebenstreit, 2009-2014]

EXAMPLE: SAUTER FIELD

- $\mathrm{N}_{\mathrm{x}}=\mathrm{N}_{\mathrm{y}}=48, \mathrm{~N}_{z}=128$
- $\sqrt{e E} a_{x}=\sqrt{e E} a_{y}=0.42, \sqrt{e E} a_{z}=0.16$,
- $\mathrm{N}_{\mathrm{c}}=256\left(\ll 48^{2} \times 128=294912\right)$

WORKS ALSO FOR WEAK FIELDS

- $e E=0.25 \mathrm{~m}^{2}, \sqrt{e \mathrm{E}} \tau=25.5$
- $\mathrm{N}_{\mathrm{x}}=\mathrm{N}_{\mathrm{y}}=48, \mathrm{~N}_{z}=256, \mathrm{ma}_{z}=0.048$
- $\mathrm{N}_{\mathrm{c}}=48$

BACK REACTION

- So far, assume that the external field is unmodified by produced charged particles
- Energy is not conserved in this approximation (roughly ok if the field energy dominates)
- The produced charges screen the external field, and weaken it
- Feedback can be included by simultaneously solving Maxwell's equation:

$$
\partial_{\mu} F^{\mu \nu}(x)=\left\langle\hat{T}^{\nu}(x)\right\rangle
$$

$\left\langle\hat{J}^{\vee}(x)\right\rangle=$ quantum expectation value of the current operator

EXAMPLE: INITIALLY CONSTANT E

- $e=0.3, m / \sqrt{e E_{0}}=0.1$
- $\mathrm{N}_{\mathrm{x}}=\mathrm{N}_{\mathrm{y}}=48, \mathrm{~N}_{z}=512$
- $\sqrt{e E_{0}} a_{x}=\sqrt{e E_{0}} a_{y}=0.62, \sqrt{e E_{0}} a_{z}=0.029$

Energy conservation

- Energy carried by the field and particles, normalized by $\mathcal{E}_{0} \equiv \frac{1}{2} E_{0}^{2}$

p_{z} SPECTRUM (EARLY TIMES)

- Very similar to the Sauter potential (charges produced with $p_{z} \approx 0$ and accelerated in the $+z$ direction)

p_{z} SPECTRUM (LATER TIMES)

- The field direction oscillates, and the acceleration changes sign
- Existing particles encounter newly created ones, and Pauli blocking leads to interferences

Worldline Formalism

[Bern, Kosower, 1988; Strasster, 1992] [Schubert, 1996, 2001] [Schmidt, Schubert, 1993] [Dunne, Schubert, 2005]

SETUP

- Total particle production probability (at one loop):

$$
\begin{aligned}
& \left\langle 0_{\text {out }} \mid O_{\text {in }}\right\rangle=e^{i V}, \quad \sum_{n=1}^{\infty} P_{n}=1-P_{0}=1-e^{-2 \operatorname{Im} V} \\
& i V=\sum(\text { connected vacuum diagrams }) \\
& \text { Scalar QED }: \quad V_{1 \text { loop }}=\ln \operatorname{det}\left(g_{\mu v} D^{\mu} D^{v}+m^{2}\right)
\end{aligned}
$$

- Worldline formalism is Euclidean, so consider instead:

$$
V_{E, 1 \text { loop }} \equiv \ln \operatorname{det}\left(-D^{i} D^{i}+m^{2}\right)=\operatorname{tr} \ln \left(-D^{i} D^{i}+m^{2}\right)
$$

- Schwinger proper time representation:

$$
\begin{aligned}
& \left(-D^{i} D^{i}+m^{2}\right)^{-1}=\int_{0}^{\infty} d T \exp \left(-T\left(-D^{i} D^{i}+m^{2}\right)\right) \\
& \ln \left(-D^{i} D^{i}+m^{2}\right)=-\int_{0}^{\infty} \frac{d T}{T} \exp \left(-T\left(-D^{i} D^{i}+m^{2}\right)\right)
\end{aligned}
$$

WORLDLINE REPRESENTATION OF $\mathrm{V}_{\mathrm{E}, 1 \text { loop }}$

$$
\begin{aligned}
V_{E, 1 \text { loop }}= & -\int_{0}^{\infty} \frac{d T}{T} e^{-m^{2} T} \\
& \times \int_{x^{i}(0)=x^{i}(T)}\left[D x^{i}(\tau)\right] \exp \left(-\int_{0}^{T} d \tau\left(\frac{\dot{x}^{i} \dot{x}^{i}}{4}+i e \dot{x}^{i} A^{i}(x)\right)\right)
\end{aligned}
$$

- $x^{i}(\tau)=$ trajectory of length T in Euclidean spacetime of a fictitious point-like particle
- Closed paths because of the trace: $\chi^{i}(0)=\chi^{i}(T)$
- The mass suppresses the long paths (longer than the Compton wavelength). $\mathrm{T} \approx 0$ controls the UV
- Euclidean metric ensures convergence
- In vacuum, one has

$$
\int_{x^{i}(0)=x^{i}(T)}\left[D x^{i}(\tau)\right] \exp \left(-\int_{0}^{T} d \tau \frac{\dot{x}^{i} \dot{x}^{i}}{4}\right)=\frac{1}{(4 \pi T)^{d / 2}} \underset{d=4}{=} \frac{1}{(4 \pi T)^{2}}
$$

SCALES

- Path length = T
- Size of explored region $\sim \sqrt{T}$
- Area ~ T

BARYCENTRIC COORDINATES

- Split χ^{i} into barycenter of the loop and deviation:

$$
x^{i}(\tau) \equiv X^{i}+r^{i}(\tau), \quad \int_{0}^{T} d \tau r^{i}(\tau)=0
$$

- Background field \rightarrow Wilson loop centered at X^{i}, averaged over all paths of length T:

$$
\begin{aligned}
& W_{x}[r] \equiv \exp \left(-i e \int_{0}^{T} d \tau \dot{r}^{i}(\tau) A^{i}(X+r(\tau))\right) \\
& \left\langle W_{x}\right\rangle_{T} \equiv(4 \pi T)^{2} \int_{r^{i}(0)=r^{i}(T)}\left[\operatorname{Dr}^{i}(\tau)\right] W_{x}[r] \exp \left(-\int_{0}^{T} d \tau \frac{\dot{r}^{i} \dot{r}^{i}}{4}\right)
\end{aligned}
$$

- Average is dominated by an ensemble of loops localized around the barycenter X^{i} (up to a distance of order $T^{1 / 2}$)
- $\left\langle W_{x}\right\rangle_{\tau}$ encapsulates the local properties of the quantum field theory in the vicinity of X^{i}
- One-loop Euclidean vacuum diagrams:

$$
\mathcal{V}_{E, 1 \text { loop }}=-\frac{1}{(4 \pi)^{2}} \int d^{4} X \int_{0}^{\infty} \frac{d T}{T^{3}} e^{-m^{2} T}\left\langle W_{x}\right\rangle_{T}
$$

- For a constant E, choose a gauge where A^{i} is linear in coordinates $\rightarrow\left\langle W_{x}\right\rangle_{T}$ given by a Gaussian integral:

$$
\left\langle W_{x}\right\rangle_{\mathrm{T}}=\frac{\mathrm{eET}}{\sin (e \mathrm{ET})}
$$

- The imaginary part of $\mathcal{V}_{\mathrm{E}, 1 \text { loop }}$ comes from poles located at $\mathrm{T}_{\mathrm{n}}=\mathrm{n} \pi /(\mathrm{eE}):$

$$
\operatorname{Im}\left(\mathcal{V}_{E, 1 \text { loop }}\right)=\frac{V_{4}}{16 \pi^{3}}(e E)^{2} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}} e^{-n \pi m^{2} /(e E)}
$$

- Note: the terms $n>1$ encode Bose-Einstein correlations

NUMERICAL WORLDLINE APPROACH

- $E \| z \rightarrow A^{i}=\left(0,0,0,-i E x^{3}\right)$

$$
W_{x}[r]=e^{-e E \mathcal{A}}, \quad \text { with } \mathcal{A} \equiv \int_{0}^{T} d \tau \dot{\mathrm{r}}_{4}(\tau) r_{3}(\tau)
$$

($\mathcal{A}=$ projected area of the loop on the plane 34)

- Note: probability distribution for \mathcal{A} :

$$
\mathcal{P}_{\mathrm{T}}(\mathcal{A})=\frac{\pi}{4 \mathrm{~T}} \frac{1}{\cosh ^{2}\left(\frac{\pi \mathcal{A}}{2 \mathrm{~T}}\right)} \rightarrow \text { typical worldlines: } \mathcal{A} \lesssim \mathrm{T}
$$

- After a rescaling $\mathcal{J} \equiv \tau \mathcal{A}, s \equiv-i \tau / e E:$

$$
V_{E, 1 \text { loop }}=\left(\frac{e E}{4 \pi}\right)^{2} \int d^{4} X \int_{0}^{\infty} \frac{d s}{s^{3}} e^{-i\left(m^{2} /(e E)\right) s}\left\langle e^{-i s \mathcal{J}}\right\rangle
$$

- Evaluate $\left\langle e^{-i s J}\right\rangle$ once for all (from an ensemble of loops)
- Difficulty: small $\mathrm{eE} / \mathrm{m}^{2} \rightarrow$ small $s \rightarrow$ large areas needed

CONSTANT FIELD [GIES, KLINGMULLER, 2005]

ALGORITHM FOR NON-CONSTANT FIELDS

- External field and ensemble of loops are entangled
- Other difficulty: integral over areas converges only for $|\mathrm{T}| \leq \pi /(e \mathrm{E})$ (location of the first pole, T_{1})
- Analytical ansatz for the distribution of areas:

$$
\begin{gathered}
W_{X}[r]=e^{-e E(X) T \mathcal{J}}, \quad \mathcal{J} \equiv \frac{i}{\tau E(X)} \int_{0}^{T} d \tau \dot{r}^{i}(\tau) A^{i}(X+r(\tau)) \\
\text { Ansatz: } \quad \mathcal{P}_{X}(\mathcal{J})=N \frac{1}{\cosh ^{2 v}\left(\frac{\pi \alpha \mathcal{J}}{2}\right)}
\end{gathered}
$$

Fit α and v from an ensemble of loops generated by Monte-Carlo. Then, do the \mathcal{J} integral analytically

$$
\int_{-\infty}^{+\infty} d \mathcal{J} \mathcal{P}_{X}(\mathcal{J}) e^{-e E(X) \tau \mathcal{J}}=N \frac{4^{v}}{\pi \alpha} \frac{\Gamma\left(v+\frac{e E(X) \tau}{\pi \alpha}\right) \Gamma\left(v-\frac{e E(X) \tau}{\pi \alpha}\right)}{\Gamma(2 v)}
$$

- Integrate over T and X^{i} numerically

LATTICE WORLDLINE FORMALISM

- When the background field results of a lattice computation (and is given in terms of link variables on the lattice), we may write

$$
\operatorname{tr} \ln \left(-D^{i} D^{i}+m^{2}\right)=-\sum_{n=0}^{\infty} \frac{1}{n} \frac{1}{(2 \tilde{d})^{n}} \sum_{x \in \text { lattice }} \sum_{\gamma \in \Gamma_{n}(x, x)} \prod_{\ell \in \gamma} u_{\ell}
$$

- n plays the role of the fictitious time T
- $\mathrm{U}_{\ell}=$ link variable on the edge ℓ
- $\Gamma_{n}(x, x)=$ set of loops (from x to x) of length n (in lattice units)
- $\tilde{d}=d+\frac{1}{2} m^{2} a^{2}(\tilde{d}>d$ suppresses the long loops)

WORLDLINE INSTANTON APPROXIMATION

- Define $\tau \equiv T u$ and $m^{2} T=s$. Then:

$$
V_{E, 1 \text { loop }}=-\int_{0}^{\infty} \frac{d s}{s} e^{-s} \int_{x^{i}(0)=x^{i}(1)}\left[D x^{i}(u)\right] \exp \left(-\int_{0}^{1} d u\left(\frac{m^{2}}{4 s} \frac{\dot{x}^{2}}{4}+i e \dot{x}^{i} A^{i}(x)\right)\right)
$$

- The integral over s gives a Bessel function:

$$
V_{E, 1 \text { loop }}=-2 \int_{x^{i}(0)=x^{i}(1)}\left[D x^{i}(u)\right] K_{0}\left(\left(m \int_{0}^{1} d u \dot{x}^{2}\right)^{\frac{1}{2}}\right) \exp \left(-i e \int_{0}^{1} d u \dot{x}^{i} A^{i}(x)\right)
$$

- In the regime where $\mathrm{m}^{2} \int_{0}^{1} \mathrm{~d} u \dot{x}^{2} \gg 1$, approximate $\mathrm{K}_{0}(z) \approx \sqrt{\pi / 2} e^{-z} / \sqrt{z}$ and perform a stationary phase approximation. We need extrema of

$$
\mathcal{S} \equiv m\left(\int_{0}^{1} d u \dot{x}^{2}\right)^{1 / 2}+i e \int_{0}^{1} d u \dot{x}^{i} A^{i}(x)
$$

- They are the closed paths $x^{i}(u)$ that obey

$$
m \frac{\ddot{x}^{i}}{\sqrt{\int_{0}^{1} d u \dot{x}^{2}}}=i e F^{i j} \dot{x}^{j}
$$

Note: $\dot{\chi}^{i} \dot{x}^{i}=$ const

- For each extremum

$$
\operatorname{Im} \mathcal{V}_{\mathrm{E}, 1 \text { loop }} \sim e^{-\delta_{\text {extremum }}}
$$

- The prefactor is obtained by integrating Gaussian deviations about the extremal path

Example: SAuter field $E\left(\chi^{3}\right)=E / \cosh ^{2}\left(k x^{3}\right)$

- Use the gauge potential

$$
A^{4}=-i \frac{E}{k} \tanh \left(k x^{3}\right)
$$

- Equations of motion for the stationary solutions

$$
\dot{x}^{3}=v \sqrt{1-\gamma^{-2} \tanh ^{2}\left(k x^{3}\right)}, \quad \dot{x}^{4}=-\gamma^{-1} v \tanh \left(k x^{3}\right)
$$

($\gamma \equiv \mathrm{mk} /(\mathrm{eE})$)

- Countable infinity of periodic solutions:

$$
\begin{aligned}
x^{3}(u) & =\frac{m}{e E} \frac{1}{\gamma} \operatorname{arcsinh}\left(\frac{\gamma}{\sqrt{1-\gamma^{2}}} \sin (2 \pi n u)\right) \\
x^{4}(u) & =\frac{m}{e E} \frac{1}{\gamma \sqrt{1-\gamma^{2}}} \arcsin (\gamma \cos (2 \pi n u))
\end{aligned}
$$

($n=$ winding index of the solution)

- Extended field $(\gamma \rightarrow 0)$: circular solutions
- $\gamma \rightarrow$ 1: very elongated orbits, action becomes infinite
\rightarrow no pair production (field coherence length too small)

Dynamically assisted Schwinger effect

$$
\begin{gathered}
\text { [Schutzhold, Gies, Dunne, 2008] } \\
\text { [Di Piazza, Lotstedt, Milstiein, Keitel, 2009] } \\
\text { [0rthaber, Hebenstreit, Alkofer, 2011] } \\
\text { [Monin, Voloshin, 2012] } \\
\text { [Taya, Fufi, Itakura, 2014] } \\
\text { + many others }
\end{gathered}
$$

COMPARISON BETWEEN EXACT AND PERTURBATIVE RESULTS

- Consider the Sauter temporal pulse: $A^{3}(t)=E \tau \tanh (t / \tau)$
- Exact spectrum:

$$
\begin{gathered}
\frac{d N_{1}}{d^{3} \mathfrak{p}}=\frac{V}{(2 \pi)^{3}}\left(\frac{\sinh [\pi(\lambda+\mu-v)] \sinh [\pi(\lambda-\mu+v)]}{\sinh (2 \pi \mu) \sinh (2 \pi v)}\right) \\
\mu \equiv \frac{\tau}{2} \sqrt{m^{2}+p_{\perp}^{2}+\left(p_{z}-2 e E \tau\right)^{2}} \\
v \equiv \frac{\tau E_{p}}{2}, \quad \lambda \equiv e E \tau^{2}
\end{gathered}
$$

- One-photon spectrum:

NUMERICAL COMPARISON FOR SUBCRITICAL FIELDS

- Solid lines: exact result. Dashed lines: one-photon result
- Black dotted line: constant field result $\left(\exp \left(-\pi m^{2} /(e E)\right)\right)$
- Note: considerably enhanced spectrum in the regime $m \tau \sim 1$

SUPERPOSITION OF FIELDS

- Consider the sum of two Sauter fields, with $E_{1} \gg E_{2}$ and $\tau_{1} \gg \tau_{2}$:

$$
E_{z}(t)=\frac{E_{1}}{\cosh ^{2}\left(\frac{t}{\tau_{1}}\right)}+\frac{E_{2}}{\cosh ^{2}\left(\frac{t}{\tau_{2}}\right)}
$$

- E_{1} : strong and slow (one-photon process forbidden)
- E_{2} : weak and fast (one-photon process possible)
- Non-trivial effects since the spectrum is non-linear in the field

- $e E_{1}=0.25 m_{e}^{2}, \tau_{1}=10^{-4} \mathrm{eV}^{-1}$
- $e E_{2}=0.025 \mathrm{~m}_{e}^{2}, \tau_{2}=7 \times 10^{-6} \mathrm{eV}^{-1}$.

QUALITATIVE INTERPRETATION

- Slope due to the strong and slow field E_{1} (no appreciable slope from the weak field)
- A single photon from the weak and fast field E_{2} raises a hole excitation (the more, the better)
- Tunneling distance is reduced, which affects exponentially the resulting spectrum

- $e E_{1}=0.25 m_{e}^{2}, m_{e} \tau_{1}=510$
- $e E_{2}=0.025 m_{e}^{2}$, variable $m_{e} \tau_{2}$
- Black dashed line: E_{1} alone
- Maximal enhancement when $m_{e} \tau_{2} \approx 0.6$ (roughly, $\tau_{2} \sim\left(2 m_{e}\right)^{-1}$)

Summary

- Very interesting playground for studying QFT in a non-perturbative regime and testing novel methods (with a few exact results to compare with)
- A number of approaches have been applied to this problem:
- Mode functions on the lattice
- Worldline formalism
- Quantum kinetic equations
- Wigner formalism
- Holography, AdS/CFT
- For high enough frequency, perturbative (one-photon) result dominates over constant field result
- Dynamical enhancement can achieved by superimposing slow and fast fields

