The Early Stages of Heavy Ion Collisions

François Gelis

Light-Cone 2019, Ecole Polytechnique

INSTITUT DE
Physique Théorique
CEA/DRF SACLAY

Heavy Ion Collisions

QUARK-ANTIQUARK POTENTIAL AT HIGH TEMPERATURE

Heavy ion collisions

Experimental facilities : RHIC and LHC

Heavy Ion Collisions

- Very high multiplicity (20000 produced particles)
- Most of them rather soft ($\mathrm{P} \lesssim 2 \mathrm{GeV}$)

Initial state and Parton distributions

- Factorization : (partonic cross-section) \otimes (parton distribution) Applicable to rare high momentum processes

InItial state and Parton distributions

- Factorization : (partonic cross-section) \otimes (parton distribution) Applicable to rare high momentum processes
- Underlying event : cannot be calculated in this framework

InItial state and Parton distributions

- Factorization : (partonic cross-section) \otimes (parton distribution) Applicable to rare high momentum processes
- Underlying event : cannot be calculated in this framework
- In a Heavy Ion Collision, this is the most interesting part...

Gluon Saturation

- Gluons recombine at large density

Saturation criterion [Gribov, Levin, Ryskin (1983)]

$$
\begin{gathered}
\underbrace{\alpha_{s} Q^{-2}}_{\sigma_{g g \rightarrow g}} \times \underbrace{A^{-2 / 3} x G\left(x, Q^{2}\right)}_{\text {surface density }} \geq 1 \\
Q^{2} \leq \underbrace{}_{\text {(saturation momentum) }} \underbrace{Q_{s}^{2} \equiv \frac{\alpha_{s} x G\left(x, Q_{s}^{2}\right)}{A^{2 / 3}}} \sim A^{1 / 3} x^{-\lambda} \quad(\lambda \approx 0.25)
\end{gathered}
$$

Saturation domain

Effective description: Color GLass Condensate

Snapshot of the constituents by color currents :

$$
\delta \equiv \int d^{4} x\left(-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+J^{\mu}(x) A_{\mu}(x)\right)
$$

- Time dilation: static current
- Many constituents: J^{μ} large
- Current conservation:

$$
\left[\mathcal{D}_{\mu}, J^{\mu}\right]=0
$$

Quantum Field Theories

with (Strong) Sources

Power counting

Order of magnitude of connected graphs

- $\mathrm{gJ} \gtrsim 1$: strong source regime
\Rightarrow Non-perturbative dependence on g J
-What happens when $\mathrm{g} \mathrm{J} \gtrsim 1$?
- Short mean free path
- Thermalization

ExCLUSIVE FINAL STATES: THERE BE DRAGONS...

Amplitude

Correlations among the produced particles

ExCLUSIVE FINAL STATES: THERE BE DRAGONS...

ExCLUSIVE FINAL STATES: THERE BE DRAGONS...

ExCLUSIVE FINAL STATES: THERE BE DRAGONS...

MORE MODEST GOAL : INCLUSIVE OBSERVABLES

Example: gluon multiplicity

$$
\begin{gathered}
\left.\frac{d \bar{N}}{d^{3} \mathbf{p}}\right|_{\text {Lo }} \sim|\tilde{\mathcal{A}}(\mathbf{p})|^{2} \\
\underbrace{\left[\mathcal{D}_{\mu}, \mathcal{F}^{\mu v}\right]=J^{v}}_{\text {Yang-Mills eq. }} \lim _{\mathrm{t} \rightarrow-\infty} \mathcal{A}=0
\end{gathered}
$$

- Sum of connected graphs (vacuum graphs cancel)
- Expressible in terms of the classical field with retarded boundary conditions

$$
\bar{N}_{\mathrm{LO}}=0-\boldsymbol{\otimes}-\mathrm{O}
$$

Energy-Momentum Tensor at Lo

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{LO}}^{00}=\frac{1}{2}[\underbrace{\mathbf{E}^{2}+\mathbf{B}^{2}}_{\text {class. fields }}] \quad \mathrm{T}_{\mathrm{LO}}^{\mathrm{oi}}=[\mathbf{E} \times \mathbf{B}]^{i} \\
& \mathrm{~T}_{\mathrm{LO}}^{i j}=\frac{\delta^{i j}}{2}\left[\mathbf{E}^{2}+\mathbf{B}^{2}\right]-\left[\mathbf{E}^{i} \mathbf{E}^{j}+\mathbf{B}^{i} \mathbf{B}^{\mathbf{j}}\right]
\end{aligned}
$$

INCLUSIVE OBSERVABLES: GENERIC FEATURES

- Inclusive measurement :
- Average of an observable over all final states
- No constraint on the final state
- No boundary condition for the fields at $t=+\infty$
- Retarded = Causal evolution
- Numerically straightforward

Leading Order

Inclusive observable at order \hbar^{0}

Leading Order

Inclusive observable at order \hbar^{0}

$\xrightarrow{\text { space }}$

How to calculate the Next to Leading Order ?

Inclusive observable at order \hbar^{1}

How to calculate the Next to Leading Order ?

Step 1: generalize to an arbitrary initial field at $t=-\infty$

How to calculate the Next to Leading Order ?

Step 2 : add one loop

How to calculate the Next to Leading Order?

Step 3: view the loop as an operator acting on $\mathcal{O}_{\text {LO }}$

Next to Leading Order

Remarks

- $\Gamma(x, y)$ is universal, and known analytically :

$$
\Gamma(x, y)=\int \frac{d^{3} p}{(2 \pi)^{3} 2 E_{p}} e^{i p \cdot(x-y)}
$$

- LO contains NLO (in a somewhat obfuscated way...)
- Applications:
- JIMWLK factorization of large logs of $p^{ \pm}$
- Study of isotropization/thermalization

What happens if the

classical dynamics is unstable?

INSTABILITIES

- The derivatives $\delta \mathcal{O}_{\mathrm{Lo}} / \delta \mathcal{A}_{\text {in }}$ are large if the classical solutions have instabilities (they measure the sensitivity to the initial condition)
- This behaviour is ubiquitous in field theory:
- Scalar field with a ϕ^{4} interaction : parametric resonance
- Yang-Mills theory : Weibel instability
- Consequence : $\mathcal{O}_{\text {NLO }}$ growths exponentially with time, and eventually becomes larger than $\mathcal{O}_{\text {Lo }}$
\Longrightarrow breakdown of the perturbative expansion

Improved power counting

- For an unstable mode:

$$
\alpha(x) \underset{x^{0} \rightarrow+\infty}{\sim} e^{\mu x^{0}} \quad(\mu=\text { Lyapunov exponent })
$$

IMPROVED POWER COUNTING

- For an unstable mode:

$$
\alpha(x) \underset{x^{0} \rightarrow+\infty}{\sim} e^{\mu x^{0}} \quad(\mu=\text { Lyapunov exponent })
$$

IMPROVED POWER COUNTING

- For an unstable mode:

$$
\boldsymbol{\alpha}(x) \underset{x^{0} \rightarrow+\infty}{\sim} e^{\mu x^{0}} \quad(\mu=\text { Lyapunov exponent })
$$

- $\mathcal{O}_{\text {NLO }} \sim e^{2 \mu t}$
- At order n, there are terms $\sim e^{2 n \mu t}$

Resummation of the leading terms

Resummation

$$
\mathcal{O}_{\text {RESUM }} \equiv \exp \left[\frac{\hbar}{2} \int \mathrm{~d}^{3} x \mathrm{~d}^{3} \boldsymbol{y} \Gamma(x, y) \frac{\delta}{\delta \mathcal{A}_{\text {in }}(\boldsymbol{x})} \frac{\delta}{\delta \mathcal{A}_{\text {in }}(\mathbf{y})}\right] \mathcal{O}_{\mathrm{LO}}
$$

$\mathcal{O}_{\text {RESUM }}=\mathcal{O}_{\mathrm{LO}}+\mathcal{O}_{\text {NLO }}+$ subset of all higher orders

Leading terms : CLassical Statistical Approximation

$$
\begin{aligned}
& \underbrace{\exp [\frac{\hbar}{2} \int_{\boldsymbol{x}, \mathbf{y}} \underbrace{\Gamma_{2}(x, y) \frac{\delta}{\delta \mathcal{A}_{\mathrm{in}}(\boldsymbol{x})} \frac{\delta}{\delta \mathcal{A}_{\mathrm{in}}(\mathbf{y})}}_{\text {"Laplacian" }}]}_{\text {Diffusion operator on the classical phase-space }} \mathcal{O}_{\mathrm{LO}}\left[\mathcal{A}_{\mathrm{in}}\right] \\
& =\int[\mathrm{Da}] \exp \left[-\frac{1}{2 \hbar} \int_{\boldsymbol{x}, \mathbf{y}} a(x) \Gamma_{2}^{-1}(x, y) a(y)\right] \mathcal{O}_{\mathrm{LO}}\left[\mathcal{A}_{\mathrm{in}}+\mathrm{a}\right]
\end{aligned}
$$

- In this resummation, the observable is obtained as an average over classical fields with fluctuating initial conditions
- The exponentiation of the 1-loop result promotes the classical vacuum $\mathcal{A}_{\text {in }} \equiv 0$ into the coherent quantum state $\left|0_{\text {in }}\right\rangle$

Numerical implementation

Hamiltonian lattice formalism

- Discrete space, continuous time
- Hamilton equations :

Space

$$
\Rightarrow \text { 3D cubic lattice }
$$

$$
\begin{aligned}
& \partial_{\mathrm{t}} \mathcal{A}=\mathcal{E} \\
& \partial_{\mathrm{t}} \mathcal{E}=\mathrm{F}(\mathcal{A})
\end{aligned}
$$

- Yang-Mills case :

Use link variables instead of \mathcal{A} to preserve residual gauge symmetry

DISCRETIZATION OF THE EXPANDING VOLUME

- Comoving coordinates: τ, η, x_{\perp}
- Only a small volume is simulated + periodic boundary conditions

THERMALIZATION

- Unstable modes grow very quickly
- Other modes are filled later
- Asymptotic distribution: classical equilibrium $T(\omega-\mu)^{-1}-\frac{1}{2}$

Pressure isotropization

- At early times, P_{L} drops much faster than P_{T} (redshifting of the longitudinal momenta due to the expansion)
- Drastic change of behavior when the expansion rate becomes smaller than the growth rate of the unstability
- Eventually, isotropic pressure tensor :

$$
P_{L} \approx P_{T}
$$

Pressure isotropization

ALTERNATIVES

$$
\begin{array}{ccc}
\begin{array}{cll}
\text { all-orders } \\
\text { QFT }
\end{array} & \rightarrow & \begin{array}{c}
\text { Kadanoff-Baym } \\
\text { equations }
\end{array}
\end{array} \rightarrow \begin{aligned}
& \text { Kinetic } \\
& \text { theory }
\end{aligned}
$$

	Semi-Classical	Kinetic theory	Kadanoff-Baym
Cont. limit	X	\checkmark	\checkmark
Screening	\checkmark	X	\checkmark

- BUT: Kadanoff-Baym equations are hard to implement and very heavy to solve numerically..

INSIGHTS FROM KINETIC THEORY

- Zero point fluctuations matter

INSIGHTS FROM KINETIC THEORY

- Isotropization is rather fast

INSIGHTS FROM KINETIC THEORY

- Hydrodynamical behavior in less than $1 \mathrm{fm} / \mathrm{c}$

INSIGHTS FROM KINETIC THEORY

- Only two attractors: free streaming and isotropic

Thank you !!

Backup

DEGREES OF FREEDOM

- $\mathrm{p}_{\perp}^{2} \sim \mathrm{Q}_{\mathrm{s}}^{2} \sim \Lambda_{\mathrm{QCD}} \mathrm{e}^{\lambda\left(y_{\mathrm{proj}}-y\right)} \quad, \quad \mathrm{p}_{z} \sim \mathrm{Q}_{\mathrm{s}} \mathrm{e}^{y-y_{\text {obs }}}$
- Fast partons : frozen dynamics, negligible $p_{\perp} \Rightarrow$ classical sources
- Slow partons : evolve with time \Rightarrow gauge fields

DEGREES OF FREEDOM

- $\mathrm{p}_{\perp}^{2} \sim \mathrm{Q}_{\mathrm{s}}^{2} \sim \Lambda_{\mathrm{QCD}} \mathrm{e}^{\lambda\left(y_{\mathrm{proj}}-y\right)} \quad, \quad \mathrm{p}_{z} \sim \mathrm{Q}_{\mathrm{s}} \mathrm{e}^{y-y_{\text {obs }}}$
- Fast partons : frozen dynamics, negligible $p_{\perp} \Rightarrow$ classical sources
- Slow partons : evolve with time \Rightarrow gauge fields

DEGREES OF FREEDOM

- $\mathrm{p}_{\perp}^{2} \sim \mathrm{Q}_{\mathrm{s}}^{2} \sim \Lambda_{\mathrm{QCD}} \mathrm{e}^{\lambda\left(y_{\mathrm{proj}}-y\right)} \quad, \quad \mathrm{p}_{z} \sim \mathrm{Q}_{\mathrm{s}} \mathrm{e}^{y-y_{\text {obs }}}$
- Fast partons : frozen dynamics, negligible $p_{\perp} \Rightarrow$ classical sources
- Slow partons : evolve with time \Rightarrow gauge fields

Cancellation of the cutoff dependence

- The cutoff $y_{\text {cut }}$ is arbitrary and should not affect physical results
- Loop corrections depend on the cutoff in a universal way
- W[p] must depend on $y_{\text {cut }}$ to cancel this dependence

B-JIMWLK EVOLUTION EQUATION

Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner

$$
\frac{\partial W_{Y}[\rho]}{\partial Y}=\underbrace{\frac{1}{2} \int_{\vec{x}_{\perp}, \vec{y}_{\perp}} \frac{\delta}{\delta \rho_{a}\left(\vec{x}_{\perp}\right)} \chi_{a b}\left(\vec{x}_{\perp}, \vec{y}_{\perp}\right) \frac{\delta}{\delta \rho_{\mathrm{b}}\left(\overrightarrow{\mathbf{y}}_{\perp}\right)}}_{\mathcal{H} \quad(\text { JIMWLK Hamiltonian })} W_{Y}[\rho]
$$

- Mean field approx. (BK equation) : [Kovchegov (1999)]
- Langevin form of B-JIMWLK : [Blaizot, Iancu, Weigert (2003)]
- First numerical solution : [Rummukainen, Weigert (2004)]
- Note: Y ~ logarithm of longitudinal momentum

B-JIMWLK EVOLUTION EQUATION

Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner

- Note: Y ~ logarithm of longitudinal momentum

B-JIMWLK EVOLUTION EQUATION

Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner

POWER COUNTING

$$
\mathcal{S}=\underbrace{-\frac{1}{4} \int F_{\mu \nu} F^{\mu \nu}}_{\text {slow }}+\int \underbrace{\left(J_{1}^{\mu}+J_{2}^{\mu}\right)}_{\text {fast }} A_{\mu}
$$

In the saturated regime: $J^{\mu} \sim g^{-1}, A^{\mu} \sim g^{-1}, f_{k} \sim g^{-2}$

$$
\begin{aligned}
\mathrm{T}^{\mu \nu} & \sim \frac{1}{\mathrm{~g}^{2}}\left[\mathrm{c}_{0}+\mathrm{c}_{1} \mathrm{~g}^{2}+\mathrm{c}_{2} \mathrm{~g}^{4}+\cdots\right] \\
\mathrm{c}_{0} & \equiv \text { tree level, } \mathrm{c}_{1} \equiv \text { one loop, etc... }
\end{aligned}
$$

Inclusive observables at NLO

[FG, Lappi, Venugopalan (2007-2008)]

- Observables at NLO can be obtained from the LO by differentiation with respect to the initial condition of the classical field :

$$
\mathcal{O}_{\mathrm{NLO}}=\frac{\hbar}{2} \int_{u, v} \sigma(\mathbf{u}, v) \frac{\partial}{\partial \mathcal{A}_{\text {init }}(u)} \frac{\partial}{\partial \mathcal{A}_{\text {init }}(v)} \mathcal{O}_{\mathrm{LO}}
$$

- NLO : the time evolution remains classical; \hbar only enters in the initial condition
- NNLO : \hbar starts appearing in the time evolution itself
- $\sigma(u, v)$ is universal; calculable analytically; depends on $y_{\text {cut }}$ Factorization: $y_{\text {cut }}$ can be absorbed in $W\left[\rho_{1,2}\right]$

Another take on LO contains NLO : Moyal equation

- Liouville-von Neumann equation : i $\hbar \frac{\partial \widehat{\rho}_{\tau}}{\partial \tau}=\left[\widehat{H}, \widehat{\rho}_{\tau}\right]$
- Wigner transform : $W_{\tau}(x, p) \equiv \int \mathrm{ds} \boldsymbol{e}^{\mathrm{ip} \cdot \mathbf{s}}\left\langle\boldsymbol{x}+\frac{\mathbf{s}}{2}\right| \widehat{\rho}_{\tau}\left|x-\frac{\mathbf{s}}{2}\right\rangle$
- LvN equation is equivalent to Moyal equation

$$
\begin{aligned}
\frac{\partial W_{\tau}}{\partial \tau} & =\mathcal{H}(x, p) \frac{2}{i \hbar} \sin \left(\frac{i \hbar}{2}\left(\overleftarrow{\partial}_{p} \vec{\partial}_{x}-\overleftarrow{\partial}_{x} \vec{\partial}_{p}\right)\right) W_{\tau}(x, p) \\
& =\underbrace{\left\{\mathcal{H}, W_{\tau}\right\}}_{\text {Poisson bracket }}+\mathcal{O}\left(\hbar^{2}\right)
\end{aligned}
$$

- At $\mathcal{O}(\hbar)$, the evolution is still classical (the \hbar^{1} corrections come from the quantum nature of the initial state)

Handwaving argument For factorization

- The duration of the collision is very short: $\tau_{\text {coll }} \sim E^{-1}$

Handwaving argument for factorization

- The duration of the collision is very short: $\tau_{\text {coll }} \sim E^{-1}$
- The logarithms we want to resum are due to the radiation of soft gluons, which takes a long time
\triangleright it must happen (long) before the collision

Handwaving argument for factorization

- The duration of the collision is very short: $\tau_{\text {coll }} \sim E^{-1}$
- The logarithms we want to resum are due to the radiation of soft gluons, which takes a long time \triangleright it must happen (long) before the collision
- The projectiles are not in causal contact before the impact \triangleright the logarithms are intrinsic properties of the projectiles, independent of the measured observable

Leading Log corrections in AA collisions

- The $y_{\text {cut }}$-dependent part of the NLO correction can be shown to be:

$$
\mathcal{O}_{\mathrm{NLO}}=y_{\mathrm{cut}}\left[\mathcal{H}_{1}-\mathcal{H}_{2}\right] \mathcal{O}_{\mathrm{LO}}+\cdots
$$

$\mathcal{H}_{1,2}$: JIMWLK Hamiltonians for the two nuclei

- Notes:
- does not mix the two nuclei \Rightarrow Factorization
- does not work for exclusive quantities

FACTORIZATION

- By integrating over $\rho_{1,2}$'s, one can transfer the $y_{\text {cut }}$ dependence into universal distributions $W_{1,2}\left[\rho_{1,2}\right]$

Resummation of $\left(\alpha_{s} y_{c u t}\right)^{n}$ to all orders

$$
\begin{aligned}
\mathcal{O}_{\text {leading log }} & =\int\left[D \rho_{1} D \rho_{2}\right] W_{1}\left[\rho_{1}\right] W_{2}\left[\rho_{2}\right] \underbrace{\mathcal{O}_{L \mathrm{O}}}_{\text {fixed } \rho_{1,2}} \\
\frac{\partial W}{\partial Y} & =\mathcal{H} W \quad \text { (JIMWLK equation) }
\end{aligned}
$$

Instability of classical solutions

- Consequence: NLO corrections grow exponentially with time
- LO = classical chromo-E and chromo-B fields

- NLO = gluon loop embedded in this field

- instability ~ imaginary part of the loop ~ gluon pair production
- BUT : at NLO, no feedback of the produced gluons on the LO field!

