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Quark-antiquark potential at high temperature

François Gelis, September 2019 1



Heavy ion collisions

Quark−Gluon

hadronic
phase Color superconductor

plasma

Temperature

Nuclei Neutron stars

Net Baryon
Density

Heavy Ion Collision

François Gelis, September 2019 2



Experimental facilities : RHIC and LHC
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Heavy Ion Collisions

• Very high multiplicity (∼ 20000 produced particles)
• Most of them rather soft (P . 2 GeV)
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Initial state and Parton distributions

• Factorization : (partonic cross-section) ⊗ (parton distribution)
Applicable to rare high momentum processes

• Underlying event : cannot be calculated in this framework

• In a Heavy Ion Collision, this is the most interesting part...
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Gluon Saturation
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• Gluons recombine at large density

Saturation criterion [Gribov, Levin, Ryskin (1983)]

αsQ
−2︸ ︷︷ ︸

σgg→g

× A−2/3xG(x,Q2)︸ ︷︷ ︸
surface density

≥ 1

Q2 ≤ Q2
s ≡ αsxG(x,Q2

s)

A2/3︸ ︷︷ ︸
(saturation momentum)2

∼ A1/3x−λ (λ ≈ 0.25)
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Saturation domain

• At LHC, x ∼ 10−3–10−4

(for bulk particle
production at
mid-rapidity)

• Q2
s(A ∼ 200) ≈ 2–4 GeV2
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Effective description: Color Glass Condensate

Snapshot of the constituents by color currents :

S ≡
∫
d4x

(
− 1

4
FµνFµν + Jµ(x)Aµ(x)

)

J
1

µ
J

2

µ

• Time dilation:
static current

• Many constituents:
Jµ large

• Current conservation:
[Dµ, J

µ] = 0
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Quantum Field Theories

with (Strong) Sources
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Power counting

Order of magnitude of connected graphs

∼ gn
E
−2︸ ︷︷ ︸

ext. lines

(h̄g2)nL︸ ︷︷ ︸
loops

(g J)nj︸ ︷︷ ︸
sources

• g J & 1 : strong source regime

⇒ Non-perturbative
dependence on g J

• What happens when g J & 1 ?

• Short mean free path
• Thermalization

François Gelis, September 2019 9



Exclusive final states : there be dragons...

Conjugate Amplitude Amplitude

• Correlations among the produced particles

• Many disconnected graphs

• Vacuum graphs do not cancel

• Pathological Taylor expansion : g−2(# connected components)
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More modest goal : inclusive observables

Example: gluon multiplicity

dN

d3p

∣∣∣∣
LO

∼
∣∣∣Ã(p)

∣∣∣2[
Dµ,F

µν
]
= Jν︸ ︷︷ ︸

Yang-Mills eq.

lim
t→−∞A = 0

• Sum of connected graphs
(vacuum graphs cancel)

• Expressible in terms of the
classical field with retarded
boundary conditions

N
LO

=

+ + + + + . . .=
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Energy-Momentum Tensor at LO

T00
LO

=
1

2

[
E2 + B2︸ ︷︷ ︸
class. fields

]
T0i
LO

=
[
E× B

]i
T ij
LO

=
δij

2

[
E2 + B2

]
−
[
EiEj + BiBj

]

-1

0

1/3

1/2

+1
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Qs τ
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Inclusive observables : generic features

Retarded propagation

space

time • Inclusive measurement :

• Average of an observable
over all final states

• No constraint on the final state
• No boundary condition for the
fields at t = +∞

• Retarded = Causal evolution
• Numerically straightforward
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Leading Order

Inclusive observable at order h̄0

OLO [J] =

J
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Leading Order

Inclusive observable at order h̄0

OLO [J] =

J

space

time
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How to calculate the Next to Leading Order ?

Inclusive observable at order h̄1

OLO [J] =
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How to calculate the Next to Leading Order ?

Step 1 : generalize to an arbitrary initial field at t = −∞

OLO [J,Ain] =

J

A
in

x0 = -∞

François Gelis, September 2019 15



How to calculate the Next to Leading Order ?

Step 2 : add one loop

ONLO [J,Ain] =

x0 = -∞
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How to calculate the Next to Leading Order ?

Step 3 : view the loop as an operator acting on O
LO

ONLO [J,Ain] =
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Next to Leading Order

c
la

s
s
ic

a
l

q
u

a
n

tu
m

ONLO [J,Ain] =

[
h̄

2

∫
d3xd3y Γ(x,y)

δ

δAin(x)

δ

δAin(y)

]
OLO [J,Ain]
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Remarks

• Γ(x,y) is universal, and known analytically :

Γ(x,y) =

∫
d3p

(2π)32Ep
eip·(x−y)

• LO contains NLO (in a somewhat obfuscated way...)

• Applications :

• JIMWLK factorization of large logs of p±

• Study of isotropization/thermalization
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What happens if the

classical dynamics is unstable ?
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Instabilities

• The derivatives δOLO/δAin are large if the classical solutions
have instabilities (they measure the sensitivity to the initial
condition)

• This behaviour is ubiquitous in field theory:

• Scalar field with a φ4 interaction : parametric resonance

• Yang-Mills theory : Weibel instability

• Consequence : ONLO growths exponentially with time, and
eventually becomes larger than O

LO

=⇒ breakdown of the perturbative expansion
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Improved power counting

• For an unstable mode:

α(x) ∼
x0→+∞ eµx0

(µ = Lyapunov exponent)

α
1
(x)

e µ1t

J

x 0 = -∞
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Improved power counting

• For an unstable mode:

α(x) ∼
x0→+∞ eµx0

(µ = Lyapunov exponent)

α
1
(x)α

2
(x)

e (µ1+µ2) t

J

x 0 = -∞

• O
NLO

∼ e2µt

• At order n, there are terms ∼ e2nµt
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Resummation of the leading terms

Resummation

O
RESUM

≡ exp

[
h̄

2

∫
d3xd3y Γ(x,y)

δ

δAin(x)

δ

δAin(y)

]
O

LO

O
RESUM

= O
LO

+ O
NLO

+ subset of all higher orders

François Gelis, September 2019 20



Leading terms : Classical Statistical Approximation

exp

[
h̄

2

∫
x,y

Γ2(x,y)
δ

δAin(x)

δ

δAin(y)︸ ︷︷ ︸
”Laplacian”

]

︸ ︷︷ ︸
Diffusion operator on the classical phase-space

O
LO

[Ain]

=

∫ [
Da

]
exp

[
−

1

2 h̄

∫
x,y

a(x)Γ−1
2 (x,y)a(y)

]
O

LO
[Ain + a]

• In this resummation, the observable is obtained as an average
over classical fields with fluctuating initial conditions

• The exponentiation of the 1-loop result promotes the classical
vacuum Ain ≡ 0 into the coherent quantum state

∣∣0in〉
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Numerical implementation
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Hamiltonian lattice formalism

Space⇒ 3D cubic lattice

• Discrete space, continuous time
• Hamilton equations :

∂tA = E

∂tE = F(A)

• Yang-Mills case :
Use link variables instead of A to
preserve residual gauge symmetry

x x+µ̂

Uµ(x)
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Discretization of the expanding volume

x

y

η

L

L
N

a⊥aη

• Comoving coordinates : τ, η, x⊥

• Only a small volume is simulated
+ periodic boundary conditions

η = const

τ = const
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Thermalization
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• Unstable modes grow
very quickly

• Other modes are
filled later

• Asymptotic
distribution: classical
equilibrium
T(ω − µ)−1 − 1

2
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Pressure isotropization

×10
-3

×10
-2

×10
-1

×10
0

×10
1

 0  50  100  150  200  250  300

 τ

2P
T
 + P

L

ε

P
T

P
L

• At early times, P
L
drops

much faster than P
T

(redshifting of the
longitudinal momenta
due to the expansion)

• Drastic change of
behavior when the
expansion rate becomes
smaller than the growth
rate of the unstability

• Eventually, isotropic
pressure tensor :
P

L
≈ P

T
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Pressure isotropization
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• At early times, P
L
drops

much faster than P
T

(redshifting of the
longitudinal momenta
due to the expansion)

• Drastic change of
behavior when the
expansion rate becomes
smaller than the growth
rate of the unstability

• Eventually, isotropic
pressure tensor :
P

L
≈ P

T

Pros :

• Straightforward implementation
• Manifest residual gauge symmetry

Caveats :

• Non renormalizable approximation
• Sensitive to the UV cutoff
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Alternatives

all-orders
QFT → Kadanoff-Baym

equations → Kinetic
theory

Semi-Classical Kinetic theory Kadanoff-Baym
Cont. limit 7 3 3
Screening 3 7 3

• BUT: Kadanoff-Baym equations are hard to implement and very
heavy to solve numerically..
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Insights from kinetic theory
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• Zero point fluctuations matter
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• Isotropization is rather fast

François Gelis, September 2019 27



0.01

0.1

1 2 3 4 5 6 7 8 10 20 30 40 50 102

P L
 /

 P
T

Q τ

(Qτ)-2/3

classical         

full : g2 = 100

45

7

1.4

0.35 Classical attractor

[η/s]eq=1.2

6.2

250

6000

105

f0=7

16

100

500

2000

0.01 0.1 1
Occupancy: <pλf>/<p>

1

10

100

1000

10000

A
n

is
o

tr
o

p
y

: 
P

T
/P

L

λ=0

λ=1.0

λ=5.0 λ=10

ξ=10

ξ=4

λ=0.5

Q t = 50
25

15

5

250

500

Insights from kinetic theory

1 10 100
Qτ

0.001

0.01

Kinetic thy.

1st order hydro

2nd order hydro

0.1 1 10
τ[fm/c]

0.001

0.01

C
o

m
p

o
n

en
ts

 o
f 

τ
4

/3
T

µ ν
/Q

8
/3

1/3 τ
4/3

ε

τ
4/3

P
L

τ
4/3

P
T

• Hydrodynamical behavior in less than 1 fm/c
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• Only two attractors: free streaming and isotropic
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Thank you !!
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Backup
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Degrees of freedom

y

+yprojyobs

• p2
⊥ ∼ Q2

s ∼ ΛQCD eλ(yproj−y) , pz ∼ Qs e
y−yobs

• Fast partons : frozen dynamics, negligible p⊥ ⇒ classical sources
• Slow partons : evolve with time ⇒ gauge fields
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Degrees of freedom

y

+yprojyobs

-
1

4
F

µν
Fµν + A µ J

µ

J
µ
 = ρ δ

µ+

W[ρ]

+ycut

sourcesfields

• p2
⊥ ∼ Q2

s ∼ ΛQCD eλ(yproj−y) , pz ∼ Qs e
y−yobs

• Fast partons : frozen dynamics, negligible p⊥ ⇒ classical sources
• Slow partons : evolve with time ⇒ gauge fields
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Cancellation of the cutoff dependence

y

+yprojyobs

ycut  from

the loops

J
µ
 = ρ δ

µ+

Wyproj - ycut
[ρ]

+ycut

sourcesfields

• The cutoff ycut is arbitrary and should not affect physical results
• Loop corrections depend on the cutoff in a universal way
• W[ρ] must depend on ycut to cancel this dependence
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B-JIMWLK evolution equation

Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner

∂W
Y
[ρ]

∂Y
=

1

2

∫
~x⊥,~y⊥

δ

δρa(~x⊥)
χab(~x⊥, ~y⊥)

δ

δρb(~y⊥)︸ ︷︷ ︸
H (JIMWLK Hamiltonian)

W
Y
[ρ]

• Mean field approx. (BK equation) : [Kovchegov (1999)]

• Langevin form of B-JIMWLK : [Blaizot, Iancu, Weigert (2003)]

• First numerical solution : [Rummukainen, Weigert (2004)]
• Note: Y ∼ logarithm of longitudinal momentum
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∂W
Y
[ρ]

∂Y
=

1

2

∫
~x⊥,~y⊥

δ

δρa(~x⊥)
χab(~x⊥, ~y⊥)

δ

δρb(~y⊥)︸ ︷︷ ︸
H (JIMWLK Hamiltonian)

W
Y
[ρ]

• Mean field approx. (BK equation) : [Kovchegov (1999)]

• Langevin form of B-JIMWLK : [Blaizot, Iancu, Weigert (2003)]

• First numerical solution : [Rummukainen, Weigert (2004)]
• Note: Y ∼ logarithm of longitudinal momentum

More recent developments :

Running coupling correction
[Lappi, Mäntysaari (2012)]

B-JIMWLK equation at Next to Leading Log
[Kovner, Lublinsky, Mulian (2013)]
[Caron-Huot (2013)] [Balitsky, Chirilli (2013)]
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B-JIMWLK evolution equation

Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner

∂W
Y
[ρ]

∂Y
=

1

2

∫
~x⊥,~y⊥

δ

δρa(~x⊥)
χab(~x⊥, ~y⊥)

δ

δρb(~y⊥)︸ ︷︷ ︸
H (JIMWLK Hamiltonian)

W
Y
[ρ]

• Mean field approx. (BK equation) : [Kovchegov (1999)]

• Langevin form of B-JIMWLK : [Blaizot, Iancu, Weigert (2003)]

• First numerical solution : [Rummukainen, Weigert (2004)]
• Note: Y ∼ logarithm of longitudinal momentum

More recent developments :

Running coupling correction
[Lappi, Mäntysaari (2012)]

B-JIMWLK equation at Next to Leading Log
[Kovner, Lublinsky, Mulian (2013)]
[Caron-Huot (2013)] [Balitsky, Chirilli (2013)]

Open questions for practical uses :

• Does the NLO evolution preserve the
positivity of W[ρ]? (non trivial if the JIMWLK
Hamiltonian contains higher derivatives at
NLO)

• Can the NLO B-JIMWLK equation still be
mapped into a Langevin equation?
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Power counting

S = −
1

4

∫
FµνF

µν︸ ︷︷ ︸
slow

+

∫
(Jµ1 + Jµ2 )︸ ︷︷ ︸

fast

Aµ

In the saturated regime: Jµ ∼ g−1, Aµ ∼ g−1, fk ∼ g−2

Tµν ∼
1

g2

[
c0 + c1 g

2 + c2 g
4 + · · ·

]
c0 ≡ tree level, c1 ≡ one loop, etc...
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Inclusive observables at NLO

[FG, Lappi, Venugopalan (2007–2008)]

• Observables at NLO can be obtained from the LO by
differentiation with respect to the initial condition of the
classical field :

O
NLO

=
h̄

2

∫
u,v

σ(u, v)
∂

∂Ainit(u)

∂

∂Ainit(v)
O

LO

• NLO : the time evolution remains classical;
h̄ only enters in the initial condition

• NNLO : h̄ starts appearing in the time evolution itself

• σ(u, v) is universal; calculable analytically; depends on ycut

Factorization: ycut can be absorbed inW[ρ1,2]
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Another take on LO contains NLO : Moyal equation

• Liouville-von Neumann equation : i h̄ ∂ρ̂τ

∂τ
=

[
Ĥ, ρ̂τ

]
• Wigner transform : Wτ(x,p) ≡

∫
ds eip·s 〈

x+
s

2

∣∣ρ̂τ∣∣x−
s

2

〉
• LvN equation is equivalent to Moyal equation

∂Wτ

∂τ
= H(x,p)

2

i h̄
sin

(
i h̄

2

( ←
∂p

→
∂x −

←
∂x

→
∂p

))
Wτ(x,p)

=
{
H,Wτ

}︸ ︷︷ ︸
Poisson bracket

+ O(h̄2)

• At O(h̄), the evolution is still classical (the h̄1 corrections
come from the quantum nature of the initial state)
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Handwaving argument for factorization

τcoll ∼ E
-1

• The duration of the collision is very short: τcoll ∼ E−1

• The logarithms we want to resum are due to the radiation of soft
gluons, which takes a long time
B it must happen (long) before the collision

• The projectiles are not in causal contact before the impact
B the logarithms are intrinsic properties of the projectiles,
independent of the measured observable
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Handwaving argument for factorization

τcoll ∼ E
-1

space-like interval

• The duration of the collision is very short: τcoll ∼ E−1

• The logarithms we want to resum are due to the radiation of soft
gluons, which takes a long time
B it must happen (long) before the collision

• The projectiles are not in causal contact before the impact
B the logarithms are intrinsic properties of the projectiles,
independent of the measured observable
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Leading Log corrections in AA collisions

• The ycut-dependent part of the NLO correction can be shown to
be:

O
NLO

= ycut

[
H1 −H2

]
O

LO
+ · · ·

H1,2 : JIMWLK Hamiltonians for the two nuclei

• Notes :
• does not mix the two nuclei ⇒ Factorization
• does not work for exclusive quantities
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Factorization

• By integrating over ρ1,2’s, one can transfer the ycut dependence
into universal distributionsW1,2[ρ1,2]

Resummation of (αsycut)
n to all orders

Oleading log =

∫ [
Dρ

1
Dρ

2

]
W1

[
ρ

1

]
W2

[
ρ

2

]
OLO︸︷︷︸

fixed ρ1,2

∂W

∂Y
= HW (JIMWLK equation)
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Instability of classical solutions
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[Romatschke, Venugopalan (2005)]

• Consequence: NLO corrections grow exponentially with time
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• LO = classical chromo-E and chromo-B fields

E

• NLO = gluon loop embedded in this field

E

• instability ∼ imaginary part of the loop ∼ gluon pair production
• BUT : at NLO, no feedback of the produced gluons on the LO field!
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