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Experimental facilities : RHIC and LHC
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strong fields classical dynamics

gluons & quarks out of eq.
viscous hydro

gluons & quarks in eq.

hadrons kinetic theory

freeze out

Stages of a nucleus-nucleus collision

• Hydrodynamics successful at describing the bulk evolution

• In this talk : Pre-hydrodynamical evolution
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Evidence for hydrodynamical expansion (one out of many...)

Two-particle correlations
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Early origin of correlations in rapidity

detection (∼1 m/c)

freeze out (∼10 fm/c)

latest correlation

A
B

z 

t

• tcorrelation . tfreeze out × e−
1
2
|∆η|

• Correlations in azimuthal anle may be produced much later
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Interpretation in terms of flow

• Post-collision color fields organized in “flux tubes”
• Coherent production in a each tube, Isotropic on average

• No correlations between different tubes
• Radial collective expansion⇒ angular collimation
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Hydrodynamics : limit of kinetic theory when `mfp → 0

Equations of hydrodynamics (conservation laws)

∂µT
µν = 0 , ∂µJ

µ
B
= 0

Assumptions and inputs

i. Near equilibrium form of Tµν:

Tµν = (p+ ε) vµ vν − pgµν︸ ︷︷ ︸
ideal hydro

⊕ (η, ζ)∂v︸ ︷︷ ︸
viscous terms

⊕ · · ·

ii. Equation of State: p = f(ε)

iii. Transport coefficients: η, ζ, · · ·
iv. Initial condition
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Hydrodynamics : limit of kinetic theory when `mfp → 0

Equations of hydrodynamics (conservation laws)

∂µT
µν = 0 , ∂µJ

µ
B
= 0

Assumptions and inputs

i. Near equilibrium form of Tµν:

Tµν = (p+ ε) vµ vν − pgµν︸ ︷︷ ︸
ideal hydro

⊕ (η, ζ)∂v︸ ︷︷ ︸
viscous terms

⊕ · · ·

ii. Equation of State: p = f(ε)

iii. Transport coefficients: η, ζ, · · ·
iv. Initial condition

What makes it work so well?

• Pressure tensor not too far from isotropy
• System not too far from equilibrium
• Low viscosity (compared to entropy density)

Not easy to get in Quantum ChromoDynamics...
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Competition between expansion and interactions

• Very different from isotropization in a box
• Sustained interactions are needed for isotropy to persist
despite the expansion

z

t

τ1

τ2
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Shear viscosity at weak and strong coupling (in equilibrium)

Weak coupling result [Arnold, Moore, Yaffe (2000)]

η

s
≈ 5.1

g4 ln
(

2.4
g

)

g

η / s

1 / 4π

AdS/CFT duality

perturbation theory
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Pre-Hydro

Hydro

time

P
L / PT

τ0

-1

+1

GOAL : smooth matching to Hydrodynamics

• The pre-hydro model should bring the system to
a situation that hydrodynamics can handle

• Pre-hydro and hydro should agree over some
range of time ⇒ no τ0 dependence

• Description as close as possible to QCD
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QCD description
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Parton distributions in a nucleon: x ∼ p
T
/Ecoll

x ∼ p
T
/Ecoll � 1 : dense, multi-parton interactions
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Scale separation in the dense regime

S = −
1

4

∫
FµνF

µν︸ ︷︷ ︸
slow gluons

+

∫
(Jµ1 + Jµ2 )︸ ︷︷ ︸
fast sources

Aµ

In the dense regime: Jµ ∼ g−1, Aµ ∼ g−1, fk ∼ g−2

Tµν ∼
1

g2

[
c0 + c1 g

2 + c2 g
4 + · · ·

]
c0 ≡ tree level, c1 ≡ one loop, etc...
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Shear viscosity in the dense regime

From kinetic theory :

η

s
∼

mean free path
de Broglie wavelength

• (de Broglie wavelength)−1 ∼ Q

• (mean free path)−1 ∼ g4Q−2︸ ︷︷ ︸
cross section

×
∫
k

fk︸ ︷︷ ︸
density

(1+ fk)︸ ︷︷ ︸
Bose

enhancement

If g � 1 but fk ∼ g−2 (weakly coupled, but strongly interacting)

η

s
∼ g0
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Leading Order

• Leading Order = sum of all tree diagrams
Expressible in terms of classical solutions of Yang-Mills
equations : [

Dµ,F
µν

]
= Jν1 + Jν2

• Initial condition : lim
x0→−∞Aµ(x) = 0

Components of the energy-momentum tensor

T00
LO

=
1

2

[
E2 + B2︸ ︷︷ ︸
class. fields

]
T0i
LO

=
[
E× B

]i
T ij
LO

=
δij

2

[
E2 + B2

]
−
[
EiEj + BiBj

]
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PT / ε

PL / ε

LO : strong pressure anisotropy at all times

P
L
rises to positive values, but

remains much smaller than
P

T
(free streaming)

At τ = 0+

E ‖ B ‖ ẑ

P
T
= ε, P

L
= −ε
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LO : unsatisfactory matching to hydrodynamics

LO

QCD

Hydro

time

P
L / P

T

τ0

-1

+1
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Instabilities, Resummation

François Gelis, October 2018 16



Instability of classical solutions
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[Romatschke, Venugopalan (2005)]
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• LO = longitudinal chromo-E and chromo-B fields

E

• NLO = gluon loop embedded in this field

E

• instability ∼ imaginary part of the loop ∼ gluon pair production
• BUT : at NLO, no feedback of the produced gluons on the LO field!
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• LO = longitudinal chromo-E and chromo-B fields

E

• NLO = gluon loop embedded in this field

E

• instability ∼ imaginary part of the loop ∼ gluon pair production
• BUT : at NLO, no feedback of the produced gluons on the LO field!

LO

NLO

QCD

Hydro

time

P
L / P

T

τ0

-1

+1
Color flux tube model : [Ryblewski, Florkowski (2013)]

(pµ∂µ + gFµν pν︸ ︷︷ ︸
Lorentz force

∂µp)G =
dN

dΓ︸︷︷︸
Schwinger

+ Cp[G]︸ ︷︷ ︸
collisions

∂µF
µν = jν (feedback)

0 1 2 3 4 5
-1

0

1

2

3

Τ @fm�cD

P
to

ta
l

þ
�P

to
ta

l
¦

k = 5
4ΠΗ = 1
4ΠΗ = 3
4ΠΗ = 10
4ΠΗ = ¥

• Field converted into
particles by instability

• Nearly constant
P

L
/P

T

• Ratio depends on
η ≡ η/s
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QCD evolution at NLO + resummation of secular terms

Osecular ≡ O
LO

+ O
NLO

+ subset of higher orders︸ ︷︷ ︸
terms that have the fastest growth in time

=

∫ [
Dα(u)

]
exp

[
−

1

2 h̄

∫
u,v

α(u)σ−1(u, v)α(v)
]
O

LO

[
Aini + α

]

• In this resummation, the observable is as an average over
classical field evolutions with fluctuating initial conditions

• Roughly speaking:
• the secular resummation promotes a classical initial state to a
quantum coherent state

• fluctuations of Ain ∼ zero point fluctuations
• The precise form of the variance ( h̄σ) is obtained from an NLO
(analytical) calculation
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QCD evolution at NLO + resummation of secular terms

[Epelbaum, FG (2013)]
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How crucial was the initial condition ?

QCD: coherent initial state

A = ALO +

∫
p

cp αp

〈
cpcp ′

〉
∼ 1

2
δpp ′

Occupation number :〈
ÃÃ∗〉

τ=0+ = Ã
LO

Ã∗
LO︸ ︷︷ ︸

∼δ(pz)f(p⊥)

+1
2
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How crucial was the initial condition ?

QCD: coherent initial state

A = ALO +

∫
p

cp αp

〈
cpcp ′

〉
∼ 1

2
δpp ′

Occupation number :〈
ÃÃ∗〉

τ=0+ = Ã
LO

Ã∗
LO︸ ︷︷ ︸

∼δ(pz)f(p⊥)

+1
2

Incoherent initial state:

A =

∫
p

cp αp

〈
cpcp ′

〉
∼ δpp ′

[
1
2
+ f0(p)

]
1
2

⇐⇒ zero point fluctuations
f0(p) ⇐⇒ initial particle distribution (∼ g−2)

If f0(p) � 1, approximate 1
2
+ f0 → f0 ?
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How crucial was the initial condition ?

QCD: coherent initial state

A = ALO +

∫
p

cp αp

〈
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〉
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ÃÃ∗〉

τ=0+ = Ã
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〈
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〉
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+ f0(p)

]
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2

⇐⇒ zero point fluctuations
f0(p) ⇐⇒ initial particle distribution (∼ g−2)

If f0(p) � 1, approximate 1
2
+ f0 → f0 ?

Incoherent initial state:

 0.1

 1

 100  1000

Initial occupancy:
n0=1

Time: Qτ

B
u

lk
 A

n
is

o
tr

o
p

y:
   

P
L/

 P
T

ξ 0
=6

ξ0=4

ξ
0 =2

ξ
0 =3/2

ξ
0 =1

 100  1000

0.1

1

Time: Qτ
free stream

ing

Initial anisotropy:
ξ0=1 (isotropic)

n
0 =2

n
0 =1n

0 =1/√ 8n
0 =1/4

• No dependence on the coupling (can be scaled out)
• P

T
/P

L
∼ τ−2/3
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Classical approximation in Kinetic Theory

François Gelis, October 2018 21



From QFT to Kinetic Theory

Dyson-Schwinger
equations → Kadanoff-Baym

equations → Boltzmann :
pµ∂µf = Cp[f]

• Collision term:

Cp[f] =
i

2

[
Σ11(p) +

(
1
2
+ f(p)

)(
Σ21(p) − Σ12(p)

)]

=⇒ Cp[f] =
g4

4Ep

∫
k

∫
p ′

∫
k ′
(2π)4δ(P + K− P ′ − K ′)

×
[
f(p ′)f(k ′)

(
1+ f(p)

)(
1+ f(k)

)
−f(p)f(k)

(
1+ f(p ′)

)(
1+ f(k ′)

)]
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From QFT to Kinetic Theory

Dyson-Schwinger
equations → Kadanoff-Baym

equations → Boltzmann :
pµ∂µf = Cp[f]

• Collision term:

Cp[f] =
i

2

[
Σ11(p) +

(
1
2
+ f(p)

)(
Σ21(p) − Σ12(p)

)]

=⇒ Cp[f] =
g4

4Ep

∫
k

∫
p ′

∫
k ′
(2π)4δ(P + K− P ′ − K ′)

×
[
f(p ′)f(k ′)

(
1+ f(p)

)(
1+ f(k)

)
−f(p)f(k)

(
1+ f(p ′)

)(
1+ f(k ′)

)]

Weak classical approximation:

Cp[f] =
g4

4Ep

∫
k

∫
p ′

∫
k ′
(2π)4δ(P + K− P ′ − K ′)

×
[(

1
2
+ f(p ′)

)(
1
2
+ f(k ′)

)(
1
2
+ f(p) + 1

2
+ f(k)

)
−
(
1
2
+ f(p)

)(
1
2
+ f(k)

)(
1
2
+ f(p ′) + 1

2
+ f(k ′)

)]
(f3 and f2 correct, but spurious f1 terms)

Strong classical approximation: drop the 1
2
(f3 correct)
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Isotropization in a longitudinally expanding system

[Epelbaum, FG, Jeon, Moore, Wu (2015)]

0.01

0.1

1 2 3 4 5 6 7 8 10 20 30 40 50 102

P
L 

/ 
P

T

Q τ

(Qτ)-2/3

classical         

Classical attractor

• Initial conditions:

f0(k) = (n0/g
2︸ ︷︷ ︸

f0

) θ(Q −
√

k2
⊥ + ξ0 k2

z)

• Without 1/2 : universal classical
behaviour (g scales out)
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Isotropization in a longitudinally expanding system

[Epelbaum, FG, Jeon, Moore, Wu (2015)]
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Q τ
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classical         

full : g2 = 100

Classical attractor
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• With 1/2 : evolution depends on g2

• Rather different evolution of P
L
/P

T

François Gelis, October 2018 23



Isotropization in a longitudinally expanding system

[Epelbaum, FG, Jeon, Moore, Wu (2015)]
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• With 1/2 : evolution depends on g2

• Gives a different P
L
/P

T

• Agreement with classical result
improves when g2 decreases
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Isotropization in a longitudinally expanding system

[Epelbaum, FG, Jeon, Moore, Wu (2015)]
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Isotropization in a longitudinally expanding system

[Epelbaum, FG, Jeon, Moore, Wu (2015)]
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Why is the zero-point 1/2 important ?

• The 1/2’s ensure that the terms f3 and f2 are correct

• The quadratic terms are important in anisotropic systems

• No 1/2 =⇒ no f2 terms in Boltzmann eq. :

• When the distribution is very anisotropic,
trying to produce the particle 4 at large
angle results in f3 ≈ f4 ≈ 0 ⇒ nothing left

• Cubic terms⇔ stimulated emission :
ineffective to produce particles in empty
regions of phase-space

• Leading term: f1f2
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• No 1/2 =⇒ no f2 terms in Boltzmann eq. :
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· · ·
[
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• Cubic terms⇔ stimulated emission :
ineffective to produce particles in empty
regions of phase-space

• Leading term: f1f2

François Gelis, October 2018 24



More insights from kinetic theory
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Fixed points in kinetic theory [Blaizot, Yan (2017)]

Boltzmann in the relaxation time approximation(
∂τ −

pz

τ

)
f(τ,p) = −

f− feq

τ
R

τ
R
≡ relaxation time

feq ≡ local equilibrium dist

• τ
R
= ∞ : no collisions

• τ
R
∼ ε−1/4 : conformal; rate scales as inverse temperature
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• Define moments :

Ln ≡
∫
p

p2 P2n(pz/p) f(τ,p) , gn ≡ τ∂τ lnLn

L0 = ε = P
L
+ 2P

T
, L1 = P

L
− P

T

Boltzmann⇔ coupled equations for Ln

∂τL0 = −
aoL0 + c0L1

τ

∂τLn = −
anLn + cnLn+1 + bnLn−1

τ
−

Ln

τ
R

(n ≥ 1)

an, bn, cn = pure numbers, known explicitly (depend only on
the free streaming part of Boltzmann eq.)
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Free streaming fixed point (τ
R
= ∞)

• All the gn behave as τ−1, with fixed ratios
• L1/L0 → −1

2
, i.e. P

L
/P

T
→ 0

Interacting fixed point (τ
R
∼ ε−1/4)

• g0 → −4/3, g1 → −2

• Locally isotropic distribution
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Summary
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• Strong fields: short mean free path despite weak coupling
• LO: no pressure isotropization, NLO: secular instabilities

• Beyond NLO: Semi-classical approximation
• Weak classical approximation:
non-renormalizable, sensitive to UV cutoff

• Strong classical approximation:
underestimates large angle scatterings
poor unless η/s very large

• Kinetic theory: avoids all these difficulties (but does not
cope well with screening effects at long distance)

• Beyond semi-classical in QFT: Two-PI formalism
(Luttinger-Ward functional)
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Analogue in Quantum Mechanics

• Consider the Liouville–von Neumann equation :

i h̄
∂ρ̂τ

∂τ
=

[
Ĥ, ρ̂τ

]
• Introduce the Wigner transforms :

Wτ(x,p) ≡
∫
ds eip·s 〈

x+
s

2

∣∣ρ̂τ∣∣x−
s

2

〉
H(x,p) ≡

∫
ds eip·s 〈

x+
s

2

∣∣Ĥ∣∣x−
s

2

〉
• LvN equation is equivalent to Moyal-Groenewold equation

∂Wτ

∂τ
= H(x,p)

2

i h̄
sin

(
i h̄

2

( ←
∂p

→
∂x −

←
∂x

→
∂p

))
Wτ(x,p)

=
{
H,Wτ

}︸ ︷︷ ︸
Poisson bracket

+ O(h̄2)︸ ︷︷ ︸
deviation from

classical dynamics
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Kinetic theory for gluons [Kurkela, Zhu (2015)]

2 → 2

+

2 3

41

+

2 3

41

2 3

41

1 → 2, 2 → 1 + Landau-Pomeranchuk-Migdal resummation
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For λ = 0.5, the Strong CSA breaks down at Qτ ≈ 2, while simple estimates
suggested that it would be valid up to Qτ ≈ α−3/2

s ≈ 350
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Consistent with hydrodynamics before full isotropization
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Two-Particle irreducible formalism

Energy-momentum tensor

Tµν = ∇µϕ∇νϕ− gµνL+
[
∇µ

x∇ν
yGxy

]
x=y

+
1

2
gµν

{
V ′′(ϕx)Gxx −

[
∇x

α∇α
yGxy

]
x=y

}
−gµν δΦ

δ
√
−g
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Isotropization in a fixed box
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