Emergence of Flow in Relativistic Heavy Ion Collisions

François Gelis IPhT, October 2nd, 2018

Institut de Physique Théorique CEA/DRF Saclay

Heavy Ion Collisions

HEAVY ION COLLISIONS

Temperature

EXPERIMENTAL FACILITIES : RHIC AND LHC

2

STAGES OF A NUCLEUS-NUCLEUS COLLISION

- Hydrodynamics successful at describing the bulk evolution
- In this talk : Pre-hydrodynamical evolution

Evidence for hydrodynamical expansion (one out of many...)

EARLY ORIGIN OF CORRELATIONS IN RAPIDITY

- $t_{correlation} \lesssim t_{freeze out} \times e^{-rac{1}{2} |\Delta \eta|}$
- · Correlations in azimuthal anle may be produced much later

INTERPRETATION IN TERMS OF FLOW

- Post-collision color fields organized in "flux tubes"
- · Coherent production in a each tube, Isotropic on average

INTERPRETATION IN TERMS OF FLOW

- Post-collision color fields organized in "flux tubes"
- · Coherent production in a each tube, Isotropic on average
- No correlations between different tubes

INTERPRETATION IN TERMS OF FLOW

- Post-collision color fields organized in "flux tubes"
- · Coherent production in a each tube, Isotropic on average
- No correlations between different tubes
- Radial collective expansion \Rightarrow angular collimation

Hydrodynamics : limit of kinetic theory when $\ell_{\rm min} ightarrow 0$

Equations of hydrodynamics (conservation laws)

$$\partial_{\mu}T^{\mu\nu}=0 \qquad , \qquad \partial_{\mu}J^{\mu}_{_{\mathrm{B}}}=0$$

Assumptions and inputs

i. Near equilibrium form of $T^{\mu\nu}$:

- **ii.** Equation of State: $p = f(\epsilon)$
- iii. Transport coefficients: η , ζ , \cdots
- iv. Initial condition

Hydrodynamics : limit of kinetic theory when $\ell_{\rm min} ightarrow 0$

COMPETITION BETWEEN EXPANSION AND INTERACTIONS

- Very different from isotropization in a box
- Sustained interactions are needed for isotropy to persist despite the expansion

SHEAR VISCOSITY AT WEAK AND STRONG COUPLING (IN EQUILIBRIUM)

Weak coupling result [Arnold, Moore, Yaffe (2000)]

$$\frac{\eta}{s}\approx\frac{5.1}{g^{4}\ln\left(\frac{2.4}{g}\right)}$$

QCD description

PARTON DISTRIBUTIONS IN A NUCLEON: $x \sim p_{\tau}/E_{coll}$

Parton distributions in a nucleon: $x \sim p_{\tau}/E_{coll}$

SCALE SEPARATION IN THE DENSE REGIME

In the dense regime:
$$J^{\mu} \sim g^{-1}$$
, $A^{\mu} \sim g^{-1}$, $f_{k} \sim g^{-2}$
 $T^{\mu\nu} \sim \frac{1}{g^{2}} \left[c_{0} + c_{1} g^{2} + c_{2} g^{4} + \cdots \right]$
 $c_{0} \equiv$ tree level, $c_{1} \equiv$ one loop, etc...

SHEAR VISCOSITY IN THE DENSE REGIME

- (de Broglie wavelength)^{-1} \sim Q
- (mean free path)⁻¹ ~ $g^4 Q^{-2} \times \underbrace{\int_{\mathbf{k}} f_{\mathbf{k}}}_{\text{cross section}} \underbrace{f_{\mathbf{k}}}_{\text{density}} \underbrace{(1 + f_{\mathbf{k}})}_{\text{Bose}}$

If $g\ll 1$ but $f_k\sim g^{-2}$ (weakly coupled, but strongly interacting) $\frac{\eta}{s}\sim g^0$

LEADING ORDER

Leading Order = sum of all tree diagrams
 Expressible in terms of classical solutions of Yang-Mills
 equations :

$$\left[\mathcal{D}_{\mu},\mathcal{F}^{\mu\nu}\right]=J_{1}^{\nu}+J_{2}^{\nu}$$

- Initial condition : $\lim_{x^0 \to -\infty} \mathcal{A}^{\mu}(x) = 0$

Components of the energy-momentum tensor

$$\begin{split} T^{00}_{\scriptscriptstyle \mathrm{LO}} &= \frac{1}{2} \big[\underbrace{E^2 + B^2}_{class. \ fields} \big] \qquad T^{0i}_{\scriptscriptstyle \mathrm{LO}} &= \big[E \times B \big]^i \\ T^{ij}_{\scriptscriptstyle \mathrm{LO}} &= \frac{\delta^{ij}}{2} \big[E^2 + B^2 \big] - \big[E^i E^j + B^i B^j \big] \end{split}$$

LO : STRONG PRESSURE ANISOTROPY AT ALL TIMES

LO: UNSATISFACTORY MATCHING TO HYDRODYNAMICS

Instabilities, Resummation

INSTABILITY OF CLASSICAL SOLUTIONS

• LO = longitudinal chromo-E and chromo-B fields

• NLO = gluon loop embedded in this field

- instability $\,\sim\,$ imaginary part of the loop $\,\sim\,$ gluon pair production
- BUT : at NLO, no feedback of the produced gluons on the LO field!

QCD EVOLUTION AT NLO + RESUMMATION OF SECULAR TERMS

$$\begin{split} \mathfrak{O}_{\text{secular}} &\equiv \underbrace{\mathfrak{O}_{\text{LO}} + \mathfrak{O}_{\text{NLO}} + \text{subset of higher orders}}_{\text{terms that have the fastest growth in time}} \\ &= \int \left[D\alpha(u) \right] \; \exp \left[-\frac{1}{2 \hbar} \int_{u,v} \alpha(u) \sigma^{-1}(u,v) \alpha(v) \right] \, \mathfrak{O}_{\text{LO}} \left[\mathcal{A}_{\text{ini}} + \alpha \right] \end{split}$$

- In this resummation, the observable is as an average over classical field evolutions with fluctuating initial conditions
- Roughly speaking:
 - the secular resummation promotes a classical initial state to a quantum coherent state
 - fluctuations of $\mathcal{A}_{\mathrm{in}} \sim \textit{zero point fluctuations}$
- The precise form of the variance ($\hbar\,\sigma)$ is obtained from an NLO (analytical) calculation

QCD EVOLUTION AT NLO + RESUMMATION OF SECULAR TERMS

[Epelbaum, FG (2013)]

QCD: coherent initial state $A = \mathcal{A}_{LO} + \int_{p} c_{p} \alpha_{p} \qquad \langle c_{p}c_{p'} \rangle \sim \frac{1}{2} \delta_{pp'}$ Occupation number : $\langle \widetilde{A}\widetilde{A}^{*} \rangle_{\tau=0^{+}} = \underbrace{\widetilde{\mathcal{A}}_{LO}\widetilde{\mathcal{A}}^{*}_{LO}}_{\sim \delta(p_{z})f(p_{\perp})} + \frac{1}{2}$

How (Incoherent initial state:

Classical approximation in Kinetic Theory

• Collision term:

$$C_{p}[f] = \frac{i}{2} \left[\Sigma_{11}(p) + \left(\frac{1}{2} + f(p) \right) \left(\Sigma_{21}(p) - \Sigma_{12}(p) \right) \right]$$

$$\longrightarrow C_{\mathbf{p}}[f] = \frac{g^4}{4E_{\mathbf{p}}} \int_{\mathbf{k}} \int_{\mathbf{p}'} \int_{\mathbf{k}'} (2\pi)^4 \delta(\mathbf{P} + \mathbf{K} - \mathbf{P}' - \mathbf{K}') \\ \times \Big[f(\mathbf{p}') f(\mathbf{k}') (1 + f(\mathbf{p})) (1 + f(\mathbf{k})) \\ - f(\mathbf{p}) f(\mathbf{k}) (1 + f(\mathbf{p}')) (1 + f(\mathbf{k}')) \Big]$$

FROM QFT TO KINETIC THEORY

[Epelbaum, FG, Jeon, Moore, Wu (2015)]

WHY IS THE ZERO-POINT 1/2 IMPORTANT?

- The 1/2's ensure that the terms $f^3 \operatorname{and} f^2$ are correct
- The quadratic terms are important in anisotropic systems

Why is the zero-point 1/2 important ?

- The 1/2's ensure that the terms $f^3 \operatorname{and} f^2$ are correct
- The quadratic terms are important in anisotropic systems

• No 1/2 \implies no f² terms in Boltzmann eq.: $\partial_t f_4 \sim g^4 \int_{123} \cdots \left[f_1 f_2 (f_3 + f_4) - f_3 f_4 (f_1 + f_2) \right]$ $+ \cdots \left[f_1 f_2 - f_3 f_4 \right]$

Why is the zero-point 1/2 important ?

- The 1/2's ensure that the terms $f^3 \operatorname{\underline{and}} f^2$ are correct
- The quadratic terms are important in anisotropic systems

No
$$1/2 \implies$$
 no f² terms in Boltzmann eq. :

$$g_t f_4 \sim g^4 \int \cdots \left[\frac{f_1 f_2 (f_3 + f_4) - f_3 f_4 (f_1 + f_2)}{123} + \cdots \left[\frac{f_1 f_2 - f_3 f_4}{123} \right] \right]$$

- When the distribution is very anisotropic, trying to produce the particle 4 at large angle results in $f_3 \approx f_4 \approx 0 \Rightarrow$ nothing left
- Cubic terms ⇔ stimulated emission : ineffective to produce particles in empty regions of phase-space
- Leading term: f₁f₂

More insights from kinetic theory

Boltzmann in the relaxation time approximation

$$\left(\vartheta_{\tau} - \frac{p_z}{\tau} \right) f(\tau, \mathbf{p}) = -\frac{f - f_{\mathrm{eq}}}{\tau_{_{R}}}$$

 $\tau_{_R} \equiv \mbox{relaxation time}$

$$f_{\rm eq} \equiv$$
 local equilibrium dist

- * $\tau_{_{R}}=\infty:~$ no collisions
- + $\tau_{_{R}}\sim\varepsilon^{-1/4}$: conformal; rate scales as inverse temperature

• Define moments :

$$\begin{split} L_n &\equiv \int_p p^2 \; P_{2n}(p_z/p) \; f(\tau,p) \quad , \quad g_n &\equiv \tau \partial_\tau \ln L_n \\ L_0 &= \varepsilon = P_L + 2P_\tau, \quad L_1 = P_L - P_\tau \end{split}$$

Boltzmann \Leftrightarrow coupled equations for L_n

 $a_n, b_n, c_n =$ pure numbers, known explicitly (depend only on the free streaming part of Boltzmann eq.)

Free streaming fixed point (
$$\tau_{_{\rm R}}=\infty$$
)

- All the g_n behave as τ^{-1} , with fixed ratios
- $L_1/L_0 \rightarrow -\frac{1}{2}$, i.e. $P_{_L}/P_{_T} \rightarrow 0$

Interacting fixed point ($\tau_{_R}\sim\varepsilon^{-1/4}$)

•
$$g_0 \rightarrow -4/3$$
, $g_1 \rightarrow -2$

• Locally isotropic distribution

- Universal attractor
- + $\tau \lesssim \tau_{_{\rm R}}$: trajectories first approach free streaming fixed point
- + $\tau \gtrsim \tau_{_{\rm R}}$: trajectories go to the local equilibrium fixed point

Summary

- Strong fields: short mean free path despite weak coupling
- LO: no pressure isotropization, NLO: secular instabilities
- Beyond NLO: Semi-classical approximation
 - Weak classical approximation: non-renormalizable, sensitive to UV cutoff
 - Strong classical approximation: underestimates large angle scatterings poor unless η/s very large
- **Kinetic theory:** avoids all these difficulties (but does not cope well with screening effects at long distance)
- Beyond semi-classical in QFT: **Two-PI formalism** (Luttinger-Ward functional)

ANALOGUE IN QUANTUM MECHANICS

• Consider the Liouville-von Neumann equation :

$$i\,\hbar\,\frac{\partial\widehat{\rho}_{\tau}}{\partial\tau} = \big[\widehat{H},\widehat{\rho}_{\tau}\big]$$

• Introduce the Wigner transforms :

$$\begin{aligned} & \mathcal{W}_{\tau}(\mathbf{x},\mathbf{p}) & \equiv \int \mathrm{d}\mathbf{s} \; e^{\mathrm{i}\mathbf{p}\cdot\mathbf{s}} \; \left\langle \mathbf{x} + \frac{\mathbf{s}}{2} \middle| \widehat{\rho}_{\tau} \middle| \mathbf{x} - \frac{\mathbf{s}}{2} \right\rangle \\ & \mathcal{H}(\mathbf{x},\mathbf{p}) & \equiv \int \mathrm{d}\mathbf{s} \; e^{\mathrm{i}\mathbf{p}\cdot\mathbf{s}} \; \left\langle \mathbf{x} + \frac{\mathbf{s}}{2} \middle| \widehat{H} \middle| \mathbf{x} - \frac{\mathbf{s}}{2} \right\rangle \end{aligned}$$

• LvN equation is equivalent to Moyal-Groenewold equation

$$\frac{\partial W_{\tau}}{\partial \tau} = \mathcal{H}(\mathbf{x}, \mathbf{p}) \frac{2}{i\hbar} \sin\left(\frac{i\hbar}{2} \left(\overleftarrow{\partial}_{\mathbf{p}} \overrightarrow{\partial}_{\mathbf{x}} - \overleftarrow{\partial}_{\mathbf{x}} \overrightarrow{\partial}_{\mathbf{p}}\right)\right) W_{\tau}(\mathbf{x}, \mathbf{p})$$
$$= \underbrace{\{\mathcal{H}, W_{\tau}\}}_{\text{Poisson bracket}} + \underbrace{\mathcal{O}(\hbar^{2})}_{\substack{\text{deviation from}\\ \text{classical dynamics}}}$$

KINETIC THEORY FOR GLUONS [Kurkela, Zhu (2015)]

For $\lambda = 0.5$, the **Strong CSA** breaks down at $Q\tau \approx 2$, while simple estimates suggested that it would be valid up to $Q\tau \approx \alpha_s^{-3/2} \approx 350$

Energy-momentum tensor

$$\begin{split} T^{\mu\nu} &= \nabla^{\mu}\phi\nabla^{\nu}\phi - g^{\mu\nu}\mathcal{L} + \left[\nabla^{\mu}_{x}\nabla^{\nu}_{y}G_{xy}\right]_{x=y} \\ &+ \frac{1}{2}g^{\mu\nu}\Big\{V''(\phi_{x})G_{xx} - \left[\nabla^{x}_{\alpha}\nabla^{\alpha}_{y}G_{xy}\right]_{x=y}\Big\} \\ &- g^{\mu\nu}\frac{\delta\Phi}{\delta\sqrt{-g}} \end{split}$$

ISOTROPIZATION IN A FIXED BOX

