Tree-level correlations in the strong field regime

François Gelis

St. John's College, Oxford University
July 10-14, 2017

Institut de
Physique Théorique
CEA/DRF SACLAY

Generic problem

- System of fields evolving from some known initial state (pure or mixed state)
- Evolution possibly coupled to a (large) external source
- Perform n local measurements, with no direct causal relation between them (so that the outcome of a measurement does not influence the others)
- Correlation between these measurements?
- In the strong field regime, can it be expressed in terms of a classical field? Which one? How?

- Even if there is no causal contact at the time of the measurements, correlations exist due to the fact that a common evolution leads to these measurements
- For the correlation to be non-zero, the past light-cones of the measurement events should overlap (at least pairwise)

Introduction

MEASUREMENTS

- Given a local observable $\mathcal{O}(x)$ (e.g., polynomial in the field operator), we wish to calculate :

$$
\left.\langle\text { in }| \mathcal{O}\left(x_{1}\right) \cdots \mathcal{O}\left(x_{n}\right) \mid \text { in }\right\rangle_{\text {connected }}
$$

- For all pairs of measurements, $\left(x_{i}-x_{j}\right)^{2}<0$
- For simplicity, assume all times are equal : $x_{1}^{0}=\cdots=x_{n}^{0}=t_{f}$ (but this can easily be relaxed)

INITIAL STATE

- The final result applies to various types of initial states:
- Vacuum: \mid in $\rangle \equiv\left|0_{\text {in }}\right\rangle \quad$ (the simplest)
- Coherent state :

$$
\mid \text { in }\rangle \equiv \mathcal{N}_{\chi} \exp \left\{\int_{k} \chi(\mathbf{k}) a_{\mathrm{in}}^{\dagger}(\mathbf{k})\right\}\left|o_{\mathrm{in}}\right\rangle
$$

- Gaussian mixed state :

$$
\rho_{\mathrm{in}} \equiv \exp \left\{-\int_{\mathrm{k}} \beta_{\mathrm{k}} \mathrm{E}_{\mathrm{k}} \mathrm{a}_{\mathrm{in}}^{\dagger}(\mathbf{k}) \mathrm{a}_{\mathrm{in}}(\mathbf{k})\right\}
$$

DYNAMICS

$$
\mathcal{L} \equiv \frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} m^{2} \phi^{2} \underbrace{-\mathrm{V}(\phi)+\mathrm{J} \phi}_{\mathcal{L}_{\mathrm{int}}(\phi)},
$$

- $\mathrm{V}(\phi)$: self-interactions, e.g. $\frac{\mathrm{g}^{2}}{4!} \phi^{4}$
- $\mathrm{J}(\mathrm{x})$: external source

Strong field regime

- Kinetic energy ~ interactions :

$$
\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right) \sim V(\phi)
$$

- For a ϕ^{4} theory, occurs when $\phi \sim g^{-1} Q$
- Can be achieved in two ways :
- Fields are already large in the initial state
- Large external source $\mathrm{J} \sim \mathrm{g}^{-1} \mathrm{Q}^{3}$

Power counting

Order of a connected graph :

$$
\mathcal{G} \sim g^{-2} g^{n_{E}} g^{2 n_{L}} \underbrace{(g J)^{n_{J}}}_{g^{0}}
$$

- Usual ordering with the number of loops n_{L}
- Result non-perturbative in the strong source J
- Likewise, non-perturbative in the initial field if strong $\left(\Phi_{\mathrm{ini}} \sim \mathrm{g}^{-1} \mathrm{Q}\right)$

Power counting

Example: $\mathcal{O}(x) \equiv g^{2} \phi^{2}(x)$

$$
\begin{aligned}
& \langle O(x)\rangle \sim 1 \oplus g^{2} \oplus \cdots \\
& \langle\mathcal{O}(x) \mathcal{O}(y)\rangle=\underbrace{\langle\mathcal{O}(x)\rangle\langle\mathcal{O}(y)\rangle}_{\sim 1 \oplus \cdots}+\underbrace{\langle\mathcal{O}(x) \mathcal{O}(y)\rangle_{c}}_{\sim g^{2} \oplus \cdots} \\
& \langle\mathcal{O}(x) \mathcal{O}(\mathrm{y}) \mathcal{O}(\mathrm{z})\rangle=\underbrace{\langle\mathcal{O}(\mathrm{x})\rangle\langle\mathcal{O}(\mathrm{y})\rangle\langle\mathcal{O}(\mathrm{z})\rangle}_{\sim 1 \oplus \cdots}+\underbrace{\langle\mathcal{O}(\mathrm{x})\rangle\langle\mathcal{O}(\mathrm{y}) \mathcal{O}(\mathrm{z})\rangle_{\mathrm{c}}+\cdots}_{\sim \mathfrak{g}^{2} \oplus \ldots} \\
& +\underbrace{\langle\mathcal{O}(x) \mathcal{O}(y) \mathcal{O}(z)\rangle_{c}+\cdots}_{\sim g^{4} \oplus \cdots}
\end{aligned}
$$

- Higher-n correlations are increasingly suppressed Expect more complicated expressions

ALREADY KNOWN : 1 AND 2-POINT FUNCTIONS [0807.1306]

$$
\begin{aligned}
& \left\langle\mathcal{O}\left(x_{1}\right)\right\rangle_{\text {tree }}=\mathcal{O}(\Phi(x)) \\
& \left(\square+\mathrm{m}^{2}\right) \Phi=\mathcal{L}_{\text {int }}^{\prime}(\Phi), \quad \Phi_{\mathrm{ini}} \equiv 0
\end{aligned}
$$

$$
\begin{aligned}
\left\langle\mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right)\right\rangle_{\substack{\text { connected } \\
\text { tree }}}=\int_{\mathrm{t}_{\mathrm{i}}} & d^{3} u d^{3} v \int_{\mathrm{k}} \frac{1}{2}\left(e^{i k \cdot(u-v)}+c . c .\right) \\
& \times\left.\frac{\delta \mathcal{O}\left(\Phi\left(x_{1}\right)\right)}{\delta \Phi_{\mathrm{ini}}(\mathbf{u})} \frac{\delta \mathcal{O}\left(\Phi\left(\mathrm{x}_{2}\right)\right)}{\delta \Phi_{\mathrm{ini}}(v)}\right|_{\Phi_{\mathrm{ini}}=0}
\end{aligned}
$$

- Expressible in terms of the retarded classical field Φ and its derivatives with respect to the initial condition. Is this true for all n-point functions? If yes, explicit formula?

Diagrammatic rules

GENERATING FUNCTIONAL

Encapsulate the expectation values in a generating functional :

$$
\left.\mathcal{F}[z(x)] \equiv\langle\operatorname{in}| \exp \int_{\mathbf{t}_{f}} \mathrm{~d}^{3} \boldsymbol{x} z(x) \mathcal{O}(x) \mid \text { in }\right\rangle
$$

- Correlations are obtained by differentiation of $\ln \mathcal{F}$:

$$
\left\langle\mathcal{O}\left(x_{1}\right) \cdots \mathcal{O}\left(x_{n}\right)\right\rangle=\left.\frac{\delta^{n} \ln \mathcal{F}}{\delta z\left(x_{1}\right) \cdots \delta z\left(x_{n}\right)}\right|_{z \equiv 0}
$$

- Note : $\mathcal{F}[z]$ contains disconnected graphs

FEyNMAN RULES

- $\langle i n| \cdots \mid$ in \rangle expectation value \Rightarrow usual Schwinger-Keldysh rules

- Addition vertex representing $\mathcal{O}\left(\mathrm{t}_{\mathrm{f}}, \mathrm{x}\right)$
- Localized on the surface $x^{0}=t_{f}$
- As many legs as fields in \mathcal{O}
- Coupling "constant" : z(x)
- No need to specify if fields are on the + or - branch

First derivative of $\ln \mathcal{F}[z]$

To all orders (diagram for $\mathcal{O} \sim \phi^{4}$) :

$$
\begin{aligned}
\frac{\delta \ln \mathcal{F}}{\delta z(x)} & =\sum\binom{\text { all connected vacuum graphs }}{\text { with a } \mathcal{O} \text {-vertex pulled out at } x} \\
& =x \text {) }
\end{aligned}
$$

Retarded-advanced representation

- Introduce half-sum and difference of the fields:

$$
\phi_{2} \equiv \frac{1}{2}\left(\phi_{+}+\phi_{-}\right), \quad \phi_{1} \equiv \phi_{+}-\phi_{-}
$$

- Propagators :

$$
\begin{aligned}
& \mathrm{G}_{21}^{0}=\mathrm{G}_{++}^{0}-\mathrm{G}_{+-}^{0} \quad \text { (retarded) } \\
& \mathrm{G}_{12}^{0}=\mathrm{G}_{++}^{0}-\mathrm{G}_{-+}^{0} \quad \text { (advanced) } \\
& \mathrm{G}_{22}^{0}=\frac{1}{2}\left[\mathrm{G}_{+-}^{0}+\mathrm{G}_{-+}^{0}\right] \\
& \mathrm{G}_{11}^{0}=0
\end{aligned}
$$

- Vertices :

$$
[1222]=-i g^{2}, \quad[1112]=-i g^{2} / 4, \quad \text { all others zero }
$$

- Observables depend only on ϕ_{2}

Tree level

First derivative of $\ln \mathcal{F}[z]$

Tree level :

$$
\left.\frac{\delta \ln \mathcal{F}}{\delta z(x)}\right|_{\text {tree }}=\mathcal{O}\left(\phi_{2}(x)\right)=x
$$

Representation by coupled integral equations

$$
\begin{aligned}
\phi_{1}(x)= & i \int d^{4} y G_{12}^{0}(x, y) \frac{\partial \mathbf{L}_{\text {int }}\left(\phi_{1}, \phi_{2}\right)}{\partial \phi_{2}(y)} \\
& +\int_{\mathbf{t}_{f}} d^{3} y G_{12}^{0}(x, y) z(\mathbf{y}) \mathcal{O}^{\prime}\left(\phi_{2}(y)\right) \\
\phi_{2}(x)= & i \int d^{4} y\left\{G_{21}^{0}(x, y) \frac{\partial \mathbf{L}_{\text {int }}\left(\phi_{1}, \phi_{2}\right)}{\partial \phi_{1}(y)}\right. \\
& \left.\quad+G_{22}^{0}(x, y) \frac{\partial \mathbf{L}_{\text {int }}\left(\phi_{1}, \phi_{2}\right)}{\partial \phi_{2}(y)}\right\} \\
& +\int_{\mathbf{t}_{f}} d^{3} y G_{22}^{0}(x, y) z(\mathbf{y}) \mathcal{O}^{\prime}\left(\phi_{2}(y)\right)
\end{aligned}
$$

- $\mathrm{L}_{\text {int }}\left(\phi_{1}, \phi_{2}\right) \equiv \mathcal{L}_{\text {int }}\left(\phi_{2}+\frac{1}{2} \phi_{1}\right)-\mathcal{L}_{\text {int }}\left(\phi_{2}-\frac{1}{2} \phi_{1}\right)$
- Contains z to all orders due to non-linearities

REPRESENTATION BY EOM + BOUNDARY CONDITIONS

Equations of motion (for ϕ^{4} interaction + source) :

$$
\begin{aligned}
& {\left[\square_{x}+m^{2}+\frac{g^{2}}{2} \phi_{2}^{2}\right] \phi_{1}+\frac{g^{2}}{4!} \phi_{1}^{3}=0} \\
& \left(\square_{x}+m^{2}\right) \phi_{2}+\frac{g^{2}}{6} \phi_{2}^{3}+\frac{g^{2}}{8} \phi_{1}^{2} \phi_{2}=\mathrm{J}
\end{aligned}
$$

$z(x)$ enters only in the boundary conditions:

- At $\mathrm{t}_{\mathrm{f}}: \phi_{1}\left(\mathrm{t}_{\mathrm{f}}, \mathrm{x}\right)=0, \quad \partial_{0} \phi_{1}\left(\mathrm{t}_{\mathrm{f}}, \mathrm{x}\right)=\mathrm{iz}(\mathrm{x}) \mathcal{O}^{\prime}\left(\phi_{2}\left(\mathrm{t}_{\mathrm{f}}, \mathrm{x}\right)\right)$
- At t_{i}, relation between the Fourier modes :

$$
\widetilde{\Phi}_{2}^{(+)}(k)=-\frac{1}{2} \tilde{\phi}_{1}^{(+)}(k), \quad \tilde{\phi}_{2}^{(-)}(k)=\frac{1}{2} \tilde{\phi}_{1}^{(-)}(k)
$$

(here, written for an empty initial state)

Expansion in z

Setup

Write $\phi_{1,2}$ as formal series in z :

$$
\begin{aligned}
\phi_{1}(x) \equiv \phi_{1}^{(0)}(x) & +\int d^{3} x_{1} z\left(x_{1}\right) \phi_{1}^{(1)}\left(x ; x_{1}\right) \\
& +\frac{1}{2!} \int d^{3} x_{1} d^{3} x_{2} z\left(x_{1}\right) z\left(x_{2}\right) \phi_{1}^{(2)}\left(x ; x_{1}, x_{2}\right) \\
& +\cdots \\
\phi_{2}(x) \equiv \phi_{2}^{(0)}(x) & +\int d^{3} x_{1} z\left(x_{1}\right) \phi_{2}^{(1)}\left(x ; x_{1}\right) \\
& +\frac{1}{2!} \int d^{3} x_{1} d^{3} x_{2} z\left(x_{1}\right) z\left(x_{2}\right) \phi_{2}^{(2)}\left(x ; x_{1}, x_{2}\right) \\
& +\cdots
\end{aligned}
$$

ORDER O (1-POINT FUNCTION)

Simply set $z \equiv 0$ in the boundary conditions:

$$
\begin{aligned}
& \phi_{1}^{(0)}\left(\mathrm{t}_{\mathrm{f}}, \mathrm{x}\right)=0, \quad \partial_{0} \phi_{1}^{(0)}\left(\mathrm{t}_{\mathrm{f}}, x\right)=0 \quad \Rightarrow \quad \forall x, \phi_{1}^{(0)}(\mathrm{x})=0 \\
& \phi_{2}^{(0)}=\Phi \\
& \left(\square+\mathrm{m}^{2}\right) \Phi=\mathcal{L}_{\text {int }}^{\prime}(\Phi), \quad \Phi_{\text {ini }} \equiv 0 \text { at } \mathrm{t}_{\mathrm{i}}
\end{aligned}
$$

- $\phi_{1}^{(0)}$ is zero everywhere
- $\phi_{2}^{(0)}=\Phi$ is the classical solution with (null) retarded boundary condition. Straightforward to obtain numerically
- $\langle\mathcal{O}(x)\rangle_{\text {tree }}=\mathcal{O}(\Phi(x))$

ORDER O (1-POINT FUNCTION)

compact notation :
(1)

ORDER 1 (2-POINT FUNCTION)

Equations of motion :

$$
\begin{aligned}
& {\left[\square+\mathrm{m}^{2}-\mathcal{L}_{\mathrm{int}}^{\prime \prime}(\Phi)\right] \phi_{1}^{(1)}=0} \\
& {\left[\square+\mathrm{m}^{2}-\mathcal{L}_{\mathrm{int}}^{\prime \prime}(\Phi)\right] \phi_{2}^{(1)}=0}
\end{aligned}
$$

Boundary conditions :

$$
\begin{array}{ll}
t_{f}: & \phi_{1}^{(1)}\left(x ; x_{1}\right)=0, \quad \partial_{0} \phi_{1}^{(1)}\left(x ; x_{1}\right)=i \delta\left(x-x_{1}\right) \mathcal{O}^{\prime}\left(\Phi\left(x_{1}\right)\right) \\
t_{i}: & \widetilde{\boldsymbol{\phi}}_{2}^{(1+)}(k)=-\frac{1}{2} \widetilde{\phi}_{1}^{(1+)}(k), \quad \widetilde{\phi}_{2}^{(1-)}(k)=\frac{1}{2} \widetilde{\boldsymbol{\phi}}_{1}^{(1-)}(k)
\end{array}
$$

ORDER 1 (2-POINT FUNCTION)

Solution :

$$
\begin{aligned}
& \phi_{1}^{(1)}\left(x ; x_{1}\right)=\mathrm{G}_{12}\left(x, x_{1}\right) \mathcal{O}^{\prime}\left(\Phi\left(x_{1}\right)\right) \\
& \phi_{2}^{(1)}\left(x ; x_{1}\right)=\mathrm{G}_{22}\left(x, x_{1}\right) \mathcal{O}^{\prime}\left(\Phi\left(x_{1}\right)\right)
\end{aligned}
$$

$\left(\mathrm{G}_{12}, \mathrm{G}_{22}=\right.$ propagators dressed by the background field $\left.\Phi\right)$

$$
\left\langle\mathcal{O}\left(\mathrm{x}_{1}\right) \mathcal{O}\left(\mathrm{x}_{2}\right)\right\rangle_{\text {tree }}=\mathcal{O}^{\prime}\left(\Phi\left(\mathrm{x}_{1}\right)\right) \mathrm{G}_{22}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mathcal{O}^{\prime}\left(\Phi\left(\mathrm{x}_{2}\right)\right)
$$

ORDER 1 (2-POINT FUNCTION)

Expression in terms of mode functions:

$$
\begin{aligned}
& {\left[\square+m^{2}-\mathcal{L}_{i n t}^{\prime \prime}(\Phi(x))\right] a_{ \pm k}(x)=0} \\
& a_{ \pm k}(x) \underset{x^{0} \rightarrow t_{i}}{\rightarrow} e^{\mp i k \cdot x} \\
& G_{22}(x, y)=\int_{k} \frac{1}{2}\left(a_{+k}(x) a_{-k}(y)+a_{-k}(x) a_{+k}(y)\right)
\end{aligned}
$$

$$
a_{ \pm k}(x)=\left.T_{ \pm k} \Phi(x)\right|_{\Phi_{\mathrm{ini}}=0}
$$

with :

$$
\mathrm{T}_{ \pm \mathrm{k}} \equiv \int_{\mathrm{t}_{\mathrm{i}}} \mathrm{~d}^{3} y \mathrm{e}^{\mp i k \cdot y} \frac{\delta}{\delta \Phi_{\mathrm{ini}}(y)}
$$

ORDER 1 (2-POINT FUNCTION)

$$
\begin{aligned}
& \mathcal{O}^{\prime}\left(\Phi\left(\mathrm{x}_{1}\right)\right) \mathrm{G}_{22}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mathcal{O}^{\prime}\left(\Phi\left(\mathrm{x}_{2}\right)\right) \\
& =\mathcal{O}\left(\Phi\left(\mathrm{x}_{1}\right)\right)[\underbrace{\int_{\mathrm{k}} \frac{1}{2}\left(\overleftarrow{\mathbf{T}}_{+\mathrm{k}} \overrightarrow{\mathbf{T}}_{-\mathrm{k}}+\overleftarrow{\mathbf{T}}_{-\mathrm{k}} \overrightarrow{\mathbf{T}}_{+\mathrm{k}}\right)}_{\otimes}] \mathcal{O}\left(\Phi\left(\mathrm{x}_{2}\right)\right)
\end{aligned}
$$

- Tree-level 2-point correlations are obtained from classical fields, by differentiation w.r.t. the initial condition

ORDER 1 (2-POINT FUNCTION)

- Can one generalize the z-expansion to obtain higher correlations? YES, but very painful combinatorics
- Is the result expressible in terms of derivatives of Φ with respect to $\Phi_{\text {ini }}$? NO, at 3-point and beyond

Strong field approximation

Approximation :

$$
\phi_{1} \ll \phi_{2}, \quad \text { i.e. } \quad \phi_{+}-\phi_{-} \ll \phi_{+}+\phi_{-}
$$

Equations of motion :

$$
\begin{array}{ll}
\left(\square+\mathrm{m}^{2}\right) \phi_{2}-\mathcal{L}_{\text {int }}^{\prime}\left(\phi_{2}\right)=0 & \left(\text { no mixing with } \phi_{1}\right) \\
{\left[\square+\mathrm{m}^{2}-\mathcal{L}_{\text {int }}^{\prime \prime}\left(\phi_{2}\right)\right] \phi_{1}=0} & \text { (linear, with } \left.\phi_{2} \text { background }\right)
\end{array}
$$

- Intricate mixing via the boundary conditions
- ϕ_{2} is a strong field, and its non-linearities cannot be neglected
- Admits a formal solution to all orders in $z(x)$

All-orders solution

Solution of the EOM for ϕ_{1} :

$$
\phi_{1}(x)=\int_{\mathbf{t}_{f}} d^{3} \mathbf{u} G_{12}(x, u) z(\mathbf{u}) \mathcal{O}^{\prime}\left(\phi_{2}(u)\right)
$$

Boundary condition at t_{i} :

$$
\phi_{2}\left(t_{i}, x\right)=\int_{t_{f}} d^{3} \mathbf{u} G_{22}(x, u) z(\mathbf{u}) \mathcal{O}^{\prime}\left(\phi_{2}(u)\right)
$$

- Propagators G_{12} and G_{22} dressed by ϕ_{2}
- Solution for ϕ_{1} valid everywhere
- Solution for ϕ_{2} valid only at t_{i} (before non-linearities set in) Can be used as initial condition for the nonlinear evolution

Formal solution in the bulk :

$$
\phi_{2}(x)=\left.\underbrace{\exp \left\{\int_{\mathrm{t}_{\mathrm{i}}} \mathrm{~d}^{3} \mathbf{y} \phi_{2}\left(\mathrm{t}_{\mathrm{i}}, \mathbf{y}\right) \frac{\delta}{\delta \Phi_{\mathrm{ini}}\left(\mathrm{t}_{\mathrm{i}}, \mathbf{y}\right)}\right\}}_{\text {translation operator of } \Phi_{\mathrm{ini}}} \Phi(x)\right|_{\Phi_{\mathrm{ini}} \equiv 0}
$$

- All the non-linear dynamics already encoded in $\Phi\left[\Phi_{\mathrm{ini}}\right]$

Formal solution in the bulk :

$$
\phi_{2}(x)=\left.\underbrace{\exp \left\{\int_{\mathrm{t}_{\mathrm{i}}} \mathrm{~d}^{3} \mathbf{y} \phi_{2}\left(\mathrm{t}_{\mathrm{i}}, \mathbf{y}\right) \frac{\delta}{\delta \Phi_{\mathrm{ini}}\left(\mathrm{t}_{\mathrm{i}}, \mathbf{y}\right)}\right\}}_{\text {translation operator of } \Phi_{\mathrm{ini}}} \Phi(x)\right|_{\Phi_{\mathrm{ini}} \equiv 0}
$$

- All the non-linear dynamics already encoded in $\Phi\left[\Phi_{\mathrm{ini}}\right]$
- Also valid for $\mathcal{O}\left(\phi_{2}\right)$:

$$
\mathcal{O}\left(\phi_{2}(x)\right)=\left.\exp \left\{\int_{\mathrm{t}_{\mathrm{i}}} \mathrm{~d}^{3} \boldsymbol{y} \phi_{2}\left(\mathrm{t}_{\mathrm{i}}, \mathbf{y}\right) \frac{\delta}{\delta \Phi_{\mathrm{ini}}\left(\mathrm{t}_{\mathrm{i}}, \boldsymbol{y}\right)}\right\} \mathcal{O}(\Phi(x))\right|_{\Phi_{\mathrm{ini}}=0}
$$

Rewrite $\phi_{2}\left(t_{i}, y\right)$ as follows:

$$
\begin{aligned}
& \phi_{2}\left(\mathbf{t}_{i}, \mathbf{y}\right)=\frac{1}{2} \int_{\mathbf{k}} \int_{\mathbf{t}_{\mathrm{f}}} \mathrm{~d}^{3} \mathbf{u} z(\mathbf{u}) \mathcal{O}\left(\phi_{2}(\mathbf{u})\right)\left\{\overleftarrow{\mathbf{T}}_{+\mathrm{k}} e^{+i \mathbf{k} \cdot \mathbf{y}}+\overleftarrow{\mathbf{T}}_{-\mathrm{k}} e^{-i \mathbf{k} \cdot \mathbf{y}}\right\} \\
& \mathcal{O}\left(\phi_{2}(x)\right)=\exp \left\{\int_{\mathbf{t}_{f}} d^{3} \mathbf{u} z(\mathbf{u}) \mathcal{O}\left(\phi_{2}\left(\mathbf{t}_{f}, \mathbf{u}\right)\right)\right. \\
& \times \underbrace{\frac{1}{2} \int_{k}\left[\overleftarrow{\mathbf{T}}_{+\mathrm{k}} \overrightarrow{\mathbf{T}}_{-k}+\overleftarrow{\mathbf{T}}_{-\mathrm{k}} \overrightarrow{\mathbf{T}}_{+\mathrm{k}}\right]}_{\otimes}\}\left.\mathcal{O}(\Phi(x))\right|_{\Phi_{\mathrm{ini}} \equiv 0}
\end{aligned}
$$

Implicit functional identity for $\mathcal{O}\left(\phi_{2}\right)$:

$$
\underline{\mathcal{O}\left(\phi_{2}(x)\right)}=\left.\exp \left\{\int_{\mathbf{t}_{\mathrm{f}}} \mathrm{~d}^{3} \mathbf{u} z(\mathbf{u}) \underline{\mathcal{O}\left(\phi_{2}\left(\mathrm{t}_{\mathrm{f}}, \mathbf{u}\right)\right)} \otimes\right\} \mathcal{O}(\Phi(x))\right|_{\Phi_{\text {ini }} \equiv 0}
$$

Diagrammatic representation :

$$
\begin{aligned}
& \text { (i) } \equiv \mathcal{O}\left(\Phi\left(\mathrm{t}_{\mathrm{f}}, \mathrm{x}_{\mathrm{i}}\right)\right) \\
& \text { (A) } \longrightarrow B \text { B } \equiv A \otimes B \\
& \frac{\frac{\delta \ln \mathcal{F}}{\delta z\left(\boldsymbol{x}_{1}\right)}}{\underline{(1)}}=\left.\exp \left\{\left(\int_{\mathbf{t}_{\mathrm{f}}} \mathrm{~d}^{3} \mathbf{u} z(\mathbf{u}) \frac{\delta \ln \mathcal{F}}{\underline{\delta z(\mathbf{u})}}\right) \longleftrightarrow\right\}(1)\right|_{\Phi_{\text {ini }} \equiv 0}
\end{aligned}
$$

(Reminder: $\mathcal{O}\left(\phi_{2}\right)$ is the first derivative of $\ln \mathcal{F}$)

COMBINATORICS OF TREES

Generating function for labeled trees:

- P. Flageolet, R. Sedgewick : Analytic Combinatorics, p 127

$$
w(z)=e^{z w(z)} \Rightarrow w(z)=\sum_{n \geq 0}(n+1)^{n-1} \frac{z^{n}}{n!}
$$

- Cayley's formula :
$(n+1)^{n-1}=\#$ of connected trees with $n+1$ labeled nodes

Introduce: $\bigcirc \equiv \int \mathrm{d}^{3} \mathbf{u} z(\mathfrak{u}) \mathcal{O}\left(\Phi\left(\mathrm{t}_{\mathrm{f}}, \mathfrak{u}\right)\right)$

Solution : sum of all trees with one labeled node

$$
\frac{\delta \ln \mathcal{F}}{\delta z\left(x_{1}\right)}=\mathbb{1}+\mathrm{O} \longleftrightarrow \mathbb{}
$$

Note : each blob is itself an infinite sum of tree Feynman diagrams

CORRELATION FUNCTIONS

- Differentiating with respect to $z\left(x_{2}\right) \cdots z\left(x_{n}\right)$:
- selects trees with exactly n nodes
- puts labels onto the remaining nodes
- removes the symmetry factors

$$
\left\langle\mathcal{O}\left(x_{1}\right) \cdots \mathcal{O}\left(x_{n}\right)\right\rangle_{\substack{\text { tree level } \\
\text { strong fields }}}=\sum_{\begin{array}{c}
\text { trees with } n \\
\text { labeled nodes }
\end{array}}
$$

CAUSAL STRUCTURE IN THE STRONG FIELD REGIME

- Correlations entirely due to initial state fluctuations

Other initial states

COHERENT STATE

$$
\mid \text { in }\rangle \equiv \mathcal{N}_{x} \exp \left\{\int_{\mathbf{k}} \chi(\mathbf{k}) \mathbf{a}_{\mathrm{in}}^{\dagger}(\mathbf{k})\right\}\left|0_{\mathrm{in}}\right\rangle
$$

$$
\begin{aligned}
& a_{\text {in }}(\mathbf{p})|\chi\rangle=\chi(\mathbf{p})|\chi\rangle \\
& \left|\mathcal{N}_{\chi}\right|^{2}=\exp \left\{-\int_{k}|\chi(\mathbf{k})|^{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{O}\left(\phi_{2}(x)\right)=\left.\exp \left\{\int_{\mathbf{t}_{f}} d^{3} \mathbf{u} z(\mathbf{u}) \mathcal{O}\left(\phi_{2}(u)\right) \otimes\right\} \mathcal{O}(\Phi(x))\right|_{\Phi_{\mathrm{ini}} \equiv \Phi_{\chi}} \\
& \Phi_{\chi}(x) \equiv \int_{k}\left(x(k) e^{-i k \cdot x}+\chi^{*}(k) e^{+i k \cdot x}\right)
\end{aligned}
$$

GAUSSIAN MIXED STATE

- Equation of motion and boundary condition at t_{f} unchanged
- Boundary condition at t_{i} ($f_{k}=$ initial occupation number) :

$$
\widetilde{\boldsymbol{\phi}}_{2}^{(+)}(\mathbf{k})=-\left(\frac{1}{2}+\mathrm{f}_{\mathrm{k}}\right) \widetilde{\boldsymbol{\phi}}_{1}^{(+)}(\mathbf{k}), \quad \widetilde{\boldsymbol{\phi}}_{2}^{(-)}(\mathbf{k})=\left(\frac{1}{2}+\mathrm{f}_{\mathrm{k}}\right) \widetilde{\boldsymbol{\phi}}_{1}^{(-)}(\mathbf{k})
$$

- Correlations have the same diagrammatic representation, with :

$$
\otimes \rightarrow \int_{k}\left(\frac{1}{2}+f_{k}\right)\left[\overleftarrow{\mathbf{T}}_{+k} \overrightarrow{\mathbf{T}}_{-k}+\overleftarrow{\mathbf{T}}_{-k} \overrightarrow{\mathbf{T}}_{+k}\right]
$$

Beyond strong fields

WHEN IS $\phi_{1} \ll \phi_{2}$ SATISFIED?

- Highly occupied initial state :
- Coherent state

$$
\mid \text { in }\rangle \equiv \mathcal{N}_{\chi} \exp \left\{\int_{\mathrm{k}} \chi(\mathbf{k}) \mathrm{a}_{\mathrm{in}}^{\dagger}(\mathbf{k})\right\}\left|\mathrm{o}_{\mathrm{in}}\right\rangle
$$

with $\chi(k) \gg 1$

- Gaussian mixed state

$$
\rho_{\mathrm{in}} \equiv \exp \left\{-\int_{\mathrm{k}} \beta_{\mathrm{k}} \mathrm{E}_{\mathrm{k}} \mathrm{a}_{\mathrm{in}}^{\dagger}(\mathbf{k}) \mathrm{a}_{\mathrm{in}}(\mathbf{k})\right\}
$$

with $f_{k} \equiv\left(e^{\beta_{k} E_{k}}-1\right)^{-1} \gg 1$

WHEN IS $\phi_{1} \ll \phi_{2}$ SATISFIED?

- Empty (or lowly occupied) initial state, and unstable classical dynamics :
- Backward evolution of ϕ_{1} :

$$
\phi_{1}\left(x^{0}\right) \sim \phi_{1}\left(t_{f}\right) e^{\mu\left(t_{f}-x^{0}\right)} \quad(\mu>0: \text { Lyapunov exponent })
$$

- Boundary condition at t_{i} :

$$
\phi_{2}\left(t_{i}\right) \sim \phi_{1}\left(t_{i}\right) \sim \phi_{1}\left(t_{f}\right) e^{\mu\left(t_{f}-t_{i}\right)}
$$

- Forward evolution of ϕ_{2} :

$$
\phi_{2}\left(x^{0}\right) \sim \phi_{1}\left(t_{f}\right) e^{\mu\left(t_{f}-t_{i}\right)} e^{\mu\left(x^{0}-t_{i}\right)}
$$

$$
\frac{\phi_{1}\left(x^{0}\right)}{\phi_{2}\left(x^{0}\right)} \sim e^{-2 \mu\left(x^{0}-t_{i}\right)} \ll 1
$$

WHEN IS $\phi_{1} \ll \phi_{2}$ SATISFIED?

Note : late time evolution

- Non-linear dynamics leads to $\phi_{1} \sim \phi_{2}$ when $t \rightarrow \infty$
- Thermalization : occupation $\lesssim 1$ for most modes
- Correlations are those of a thermal system, Remembers very little of the initial state

BEYOND THE STRONG FIELD APPROXIMATION

- If $\phi_{1} \sim \phi_{2}$, there are other tree level contributions
- Example of the 3-point function :
- The pedestrian z-expansion gives :

$$
\begin{aligned}
\xi\left(x_{1,2,3}\right)= & \frac{i g^{2}}{4} \mathcal{O}^{\prime}\left(\Phi\left(x_{1}\right)\right) \mathcal{O}^{\prime}\left(\Phi\left(x_{2}\right)\right) \mathcal{O}^{\prime}\left(\Phi\left(x_{3}\right)\right) \\
& \times \int d^{4} y G_{R}\left(x_{1}, y\right) G_{R}\left(x_{2}, y\right) G_{R}\left(x_{3}, y\right) \Phi(y)
\end{aligned}
$$

- Retarded propagator: $G_{R}\left(x_{1}, y\right) \sim e^{\mu\left(t_{f}-y^{0}\right)}$

$$
\sim e^{-\mu\left(t_{f}-t_{i}\right)} \ll 1
$$

(1) $\longleftrightarrow(2) \longrightarrow$ (3)

CAUSAL Structure

- Beyond the strong field regime, correlations are also created in the bulk $\left(y^{0}>t_{i}\right)$ by the interactions

Conclusions

- In the strong field regime :
- all correlations at tree-level depend on the retarded classical field and its derivatives with respect to initial value
- all correlations are created by initial state fluctuations
- explicit dependence given by a formula that sums over all trees with n labeled nodes
- Beyond the strong field regime :
- additional correlations created in the bulk

Mode functions

Definition

$$
\begin{aligned}
& {\left[\square+m^{2}-\mathcal{L}_{i n t}^{\prime \prime}(\Phi(x))\right] a_{ \pm k}(x)=0} \\
& a_{ \pm k}(x) \underset{x^{0} \rightarrow t_{i}}{\rightarrow} e^{\mp i k \cdot x}
\end{aligned}
$$

- Basis of the linear space of small perturbations around a classical solution

INNER PRODUCT

- Define : $\mid a) \equiv\binom{a}{\dot{a}}, \quad\left(a \left\lvert\, \equiv i\left(\begin{array}{ll}-\dot{a}^{*} & a^{*}\end{array}\right)\right.\right.$

$$
\left(a_{1} \mid a_{2}\right) \equiv i \int d^{3} x\left[a_{1}^{*}(x) \dot{a}_{2}(x)-\dot{a}_{1}^{*}(x) a_{2}(x)\right]
$$

Properties:

Hermitean: $\quad\left(a_{2} \mid a_{1}\right)=\left(a_{1} \mid a_{2}\right)^{*}$
Constant: $\partial_{0}\left(a_{1} \mid a_{2}\right)=0$

$$
\begin{aligned}
& \left(\mathbf{a}_{+\mathbf{k}} \mid \mathbf{a}_{+\mathbf{k}^{\prime}}\right)=(2 \pi)^{3} 2 \mathrm{E}_{\mathbf{k}} \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \\
& \left(\mathbf{a}_{-\mathbf{k}} \mid \mathbf{a}_{-\mathbf{k}^{\prime}}\right)=-(2 \pi)^{3} 2 \mathrm{E}_{\mathrm{k}} \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \\
& \left(\mathbf{a}_{+\mathbf{k}} \mid \mathbf{a}_{-\mathbf{k}^{\prime}}\right)=0 \\
& \text { and }
\end{aligned}
$$

COMPLETENESS

- A generic perturbation can be decomposed as :

$$
\begin{aligned}
& \left.\left.\mid \boldsymbol{a}) \left.=\int \frac{\mathrm{d}^{3} \mathrm{k}}{(2 \pi)^{3} 2 \mathrm{E}_{\mathrm{k}}}\left[\gamma_{+\mathrm{k}} \mid \mathbf{a}_{+\mathrm{k}}\right)+\gamma_{-\mathrm{k}} \right\rvert\, \mathbf{a}_{-\mathrm{k}}\right)\right] \\
& \text { with } \quad \gamma_{+\mathrm{k}}=\left(\mathbf{a}_{+\mathrm{k}} \mid \boldsymbol{a}\right), \quad \gamma_{-\mathrm{k}}=-\left(\mathbf{a}_{-\mathrm{k}} \mid \mathbf{a}\right)
\end{aligned}
$$

- Equivalently :

$$
\left.\left.\mid a)=\int \frac{\mathrm{d}^{3} k}{(2 \pi)^{3} 2 \mathrm{E}_{\mathrm{k}}}\left[\mid \mathbf{a}_{+\mathrm{k}}\right)\left(\mathbf{a}_{+\mathrm{k}} \mid \mathbf{a}\right)-\mid \mathbf{a}_{-\mathrm{k}}\right)\left(\mathbf{a}_{-\mathrm{k}} \mid \mathbf{a}\right)\right]
$$

Completeness of the mode functions:

$$
\int \frac{d^{3} k}{(2 \pi)^{3} 2 E_{k}}\left[\mid a_{+k}\right)\left(a_{+k}|-| a_{-k}\right)\left(a_{-k} \mid\right]=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)
$$

