Gluon saturation, Factorization, and Parton Distributions

François Gelis

GDR QCD, June 1-2, 2017

Gluon saturation • Factorization in the dense regime

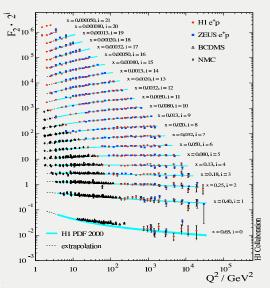
- - From dense to dilute

 - When can we use standard PDFs?

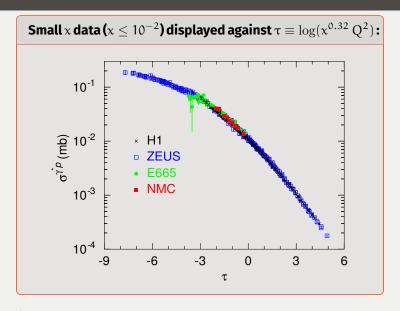
WHAT DO WE KNOW FROM QCD?

- Asymptotic freedom + time dilation in a high energy hadron explain why the partons appear as almost free at large Q²
- QCD loop corrections lead to violations of Bjorken scaling, that are visible as a Q² dependence of the structure functions (1/Q is the spatial resolution at which the hadron is probed)
- Parton distributions are non-perturbative in QCD, but their Q² and x dependence are governed by equations that are perturbative (DGLAP, BFKL)
- One can prove that the parton distributions are universal, i.e. are the same in all inclusive processes

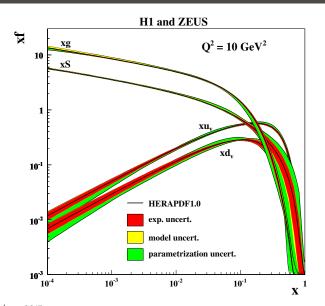
DIS RESULTS FOR F_2 AND DGLAP FIT AT NLO:



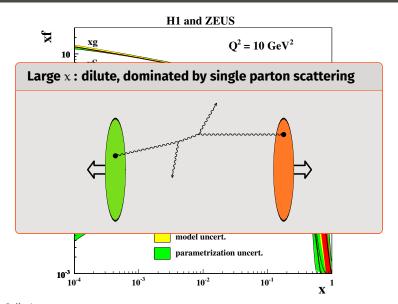
SMALL χ DATA DISPLAYED DIFFERENTLY... (GEOMETRICAL SCALING)



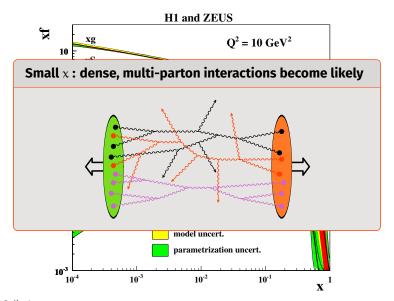
NNLO PARTON DISTRIBUTIONS - AND POSSIBLE CAVEATS



NNLO PARTON DISTRIBUTIONS - AND POSSIBLE CAVEATS



NNLO PARTON DISTRIBUTIONS – AND POSSIBLE CAVEATS



 When their occupation number becomes large, gluons can recombine:

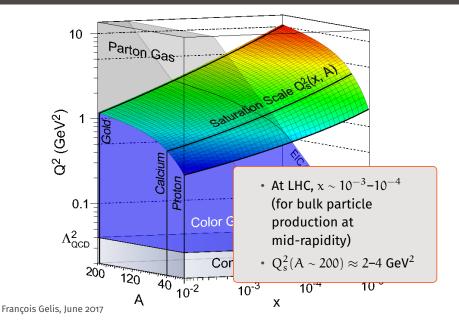
Gluon Saturation

Saturation criterion [Gribov, Levin, Ryskin (1983)]

$$\underbrace{\alpha_s \, Q^{-2}}_{\sigma_g \, g \to g} \times \underbrace{A^{-2/3} x G(x, Q^2)}_{\text{surface density}} \geq 1$$

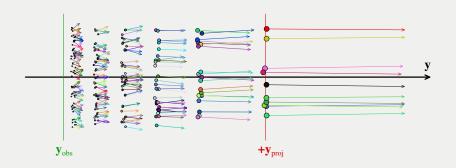
$$Q^2 \leq \underbrace{Q_s^2}_{\text{(saturation momentum)}^2} \sim A^{1/3} x^{-0.3}$$

SATURATION DOMAIN



6

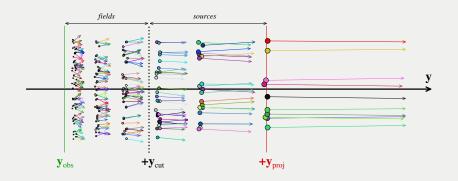
DEGREES OF FREEDOM



•
$$p_{\perp}^2 \sim Q_s^2 \sim \Lambda_{\rm OCD} e^{\lambda(y_{\rm proj} - y)}$$
 , $p_z \sim Q_s e^{y - y_{\rm obs}}$

- Fast partons : frozen dynamics, negligible $p_\perp \ \Rightarrow \ \text{classical sources}$
- Slow partons: evolve with time ⇒ gauge fields

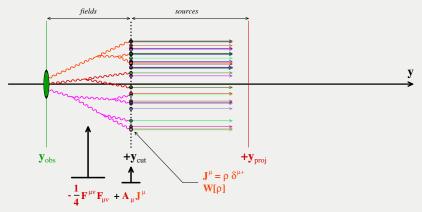
DEGREES OF FREEDOM



•
$$p_{\perp}^2 \sim Q_s^2 \sim \Lambda_{\rm OCD} e^{\lambda(y_{\rm proj} - y)}$$
 , $p_z \sim Q_s e^{y - y_{\rm obs}}$

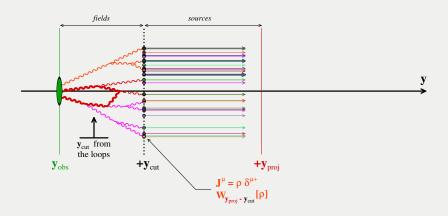
- Fast partons : frozen dynamics, negligible $p_{\perp} \ \Rightarrow \ \text{classical sources}$
- Slow partons: evolve with time ⇒ gauge fields

DEGREES OF FREEDOM



- $\bullet \ p_{\perp}^2 \sim Q_s^2 \sim \Lambda_{_{\rm OCD}} \ e^{\lambda(y_{\rm proj} y)} \quad , \quad p_z \sim Q_s \ e^{y y_{\rm obs}}$
- Fast partons : frozen dynamics, negligible $p_{\perp} \ \Rightarrow \ \text{classical sources}$
- Slow partons: evolve with time ⇒ gauge fields

CANCELLATION OF THE CUTOFF DEPENDENCE



- The cutoff $y_{\rm cut}$ is arbitrary and should not affect the result
- The probability density $W[\rho]$ changes with the cutoff
- Loop corrections cancel the cutoff dependence from $W[\rho]$

B-JIMWLK EVOLUTION EQUATION

Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner

$$\frac{\partial W_{\gamma}[\rho]}{\partial Y} = \underbrace{\frac{1}{2} \int_{\vec{x}_{\perp}, \vec{y}_{\perp}} \frac{\delta}{\delta \rho_{\alpha}(\vec{x}_{\perp})} \chi_{ab}(\vec{x}_{\perp}, \vec{y}_{\perp}) \frac{\delta}{\delta \rho_{b}(\vec{y}_{\perp})}}_{\mathcal{H} \text{ (JIMWLK Hamiltonian)}} W_{\gamma}[\rho]$$

- Mean field approx. (BK equation): [Kovchegov (1999)]
- Langevin form of B-JIMWLK: [Blaizot, Iancu, Weigert (2003)]
- First numerical solution : [Rummukainen, Weigert (2004)]

B-JIMWLK EVOLUTION EQUATION

Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner

Recent developments:

Running coupling correction

[Lappi, Mäntysaari (2012)]

B-JIMWLK equation at Next to Leading Log

• Me

[Kovner, Lublinsky, Mulian (2013)]

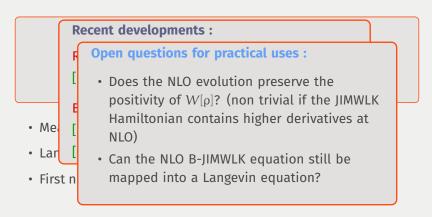
• Lar

[Caron-Huot (2013)] [Balitsky, Chirilli (2013)]

• First numerical solution : [Rummukainen, Weigert (2004)]

B-JIMWLK EVOLUTION EQUATION

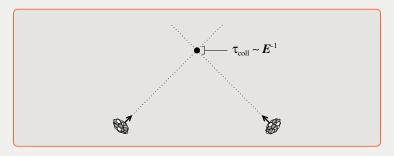
Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner



Factorization in the dense regime

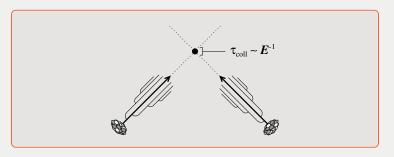
- Deep inelastic scattering
 - Nucleus-nucleus collisions

HANDWAVING ARGUMENT FOR FACTORIZATION



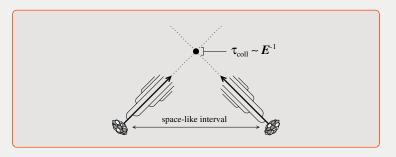
- The duration of the collision is very short: $\tau_{\rm coll} \sim E^{-1}$

HANDWAVING ARGUMENT FOR FACTORIZATION



- The duration of the collision is very short: $\tau_{\rm coll} \sim E^{-1}$
- The logarithms we want to resum are due to the radiation of soft gluons, which takes a long time
 - \triangleright it must happen (long) before the collision

HANDWAVING ARGUMENT FOR FACTORIZATION



- The duration of the collision is very short: $\tau_{\rm coll} \sim E^{-1}$
- The logarithms we want to resum are due to the radiation of soft gluons, which takes a long time
 ▷ it must happen (long) before the collision
- The projectiles are not in causal contact before the impact
 the logarithms are intrinsic properties of the projectiles,
 independent of the measured observable

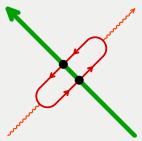
Deep Inelastic Scattering

INCLUSIVE DIS AT LEADING ORDER

• CGC effective theory with cutoff at the scale Λ_0^- :

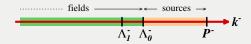


• At Leading Order, DIS can be seen as the interaction between the target and a $q\bar{q}$ fluctuation of the virtual photon :

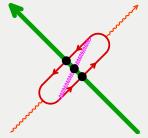


INCLUSIVE DIS AT NLO

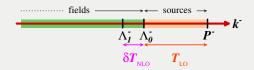
• Consider now quantum corrections to the previous result, restricted to modes with $\Lambda_1^- < k^- < \Lambda_0^-$ (the upper bound prevents double-counting with the sources):



- At NLO, the $q\bar{q}$ dipole must be corrected by a gluon, e.g. :



INCLUSIVE DIS AT NLO



 At leading log accuracy, the contribution of the quantum modes in that strip is:

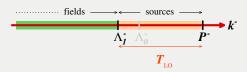
$$\delta \mathsf{T}_{\scriptscriptstyle{\mathrm{NLO}}}(\vec{\mathbf{x}}_{\perp}, \vec{\mathbf{y}}_{\perp}) = \ln \left(\frac{\Lambda_0^-}{\Lambda_1^-} \right) \, \mathfrak{H} \, \mathsf{T}_{\scriptscriptstyle{\mathrm{LO}}}(\vec{\mathbf{x}}_{\perp}, \vec{\mathbf{y}}_{\perp})$$

INCLUSIVE DIS AT NLO

These NLO corrections can be absorbed in the LO result,

$$\left\langle \mathbf{T}_{_{\mathbf{LO}}} + \delta \mathbf{T}_{_{\mathrm{NLO}}} \right\rangle_{\Lambda_{_{0}}^{-}} = \left\langle \mathbf{T}_{_{\mathbf{LO}}} \right\rangle_{\Lambda_{_{1}}^{-}}$$

provided one defines a new effective theory with a lower cutoff Λ_1^- and an extended distribution of sources $W_{\Lambda_1^-}[\rho]$:



$$W_{\Lambda_1^-} \equiv \left[1 + \ln\left(\frac{\Lambda_0^-}{\Lambda_1^-}\right) \, \mathfrak{H}\right] W_{\Lambda_0^-}$$

LEADING LOG CORRECTIONS IN AA COLLISIONS

 By keeping only the terms that contain logarithms of the cutoff, the NLO result can be written as:

$$\boldsymbol{\mathfrak{O}_{_{\mathrm{NLO}}}} \ \ \underset{\text{Leading Log}}{=} \ \left[\, \log \left(\boldsymbol{\Lambda}^{+} \right) \boldsymbol{\mathfrak{H}}_{1} + \log \left(\boldsymbol{\Lambda}^{-} \right) \boldsymbol{\mathfrak{H}}_{2} \right] \, \boldsymbol{\mathfrak{O}_{_{\mathrm{LO}}}}$$

 $\mathfrak{H}_{1,2}$: JIMWLK Hamiltonians for the two nuclei

• Note : the logs do not mix the two nuclei \Rightarrow Factorization

FACTORIZATION OF THE LOGARITHMS

• By integrating over $\rho_{1,2}$'s, one can absorb the logarithms into universal distributions $W_{1,2}[\rho_{1,2}]$

Inclusive observables at Leading Log accuracy

$$\mathcal{O}_{\mathrm{leading\ log}} = \int \left[D \rho_{_1} \ D \rho_{_2} \right] \ W_1 \left[\rho_{_1} \right] \ W_2 \left[\rho_{_2} \right] \ \underbrace{\mathcal{O}_{_{\mathrm{LO}}}}_{\mathrm{fixed\ }\rho_{1,}}$$

• Logs absorbed into the evolution of $W_{1,2}$ with the scales

$$\Lambda \frac{\partial W}{\partial \Lambda} = \mathcal{H} W \qquad \text{(JIMWLK equation)}$$

$\textbf{Dense} \to \textbf{Dilute Limit}$

· Factorization in the saturated regime:

$$\left\langle \mathfrak{O}\right\rangle_{\scriptscriptstyle \mathrm{LLog}} = \left\lceil \left[\mathsf{D}\rho_{\scriptscriptstyle 1} \; \mathsf{D}\rho_{\scriptscriptstyle 2}\right] \, W_{1} \left[\rho_{\scriptscriptstyle 1}\right] \, \textcolor{red}{W_{2} \left[\rho_{\scriptscriptstyle 2}\right]} \; \mathfrak{O}[\rho_{\scriptscriptstyle 1,2}] \right.$$

($\mathfrak{O}[\rho_{1,2}]$ can only be calculated numerically)

• When ρ_1 is a weak source (projectile 1 is dilute):

$$\mathbb{O}[\rho_{1,2}] = \int_{\vec{k}_{1\perp}} \rho_1^2(\vec{k}_{1\perp}) \, \mathbb{O}_2[\vec{k}_{1\perp}, \rho_2] + \rho_1^4(\vec{k}_{1\perp}) \, \mathbb{O}_4[\vec{k}_{1\perp}, \rho_2] + \cdots$$

and $\mathfrak{O}_2[\vec{k}_{1\perp}, \rho_{{}_2}]$ has a compact analytical expression

Dense \rightarrow **Dilute Limit**

• One gets the non-integrated gluon distribution:

$$\int [\mathsf{D} \rho_{\scriptscriptstyle 1}] \; W_1[\rho_{\scriptscriptstyle 1}] \; \rho_{\scriptscriptstyle 1}^2(\vec{k}_{1\perp}) \equiv \phi_1(\vec{k}_{1\perp})$$

ullet The expectation value of ${\mathbb O}$ can be rewritten as

$$\left\langle \text{O} \right\rangle_{\text{\tiny LLog}} = \int\limits_{\vec{k}_{1\perp}} \phi_1(\vec{k}_{1\perp}) \int \left[\text{D}\rho_2\right] \, W_2 \big[\rho_2\big] \, \, \text{O}_2[\vec{k}_{1\perp},\rho_2]$$

• $\mathcal{O}_2[\vec{k}_{1\perp}, \rho_2]$ is made of correlators of Wilson lines

EXAMPLE: HEAVY QUARKS PRODUCTION IN PA COLLISIONS

Pair production cross-section:

ightharpoonup standard factorization schemes broken for the nucleus: one needs three different "distributions" in order to describe the target

TARGET CORRELATORS

$$\varphi_{_{\mathbf{A}}}^{(2)}(\vec{k}_{2\perp}) \propto \int\limits_{\vec{\mathbf{x}}_{\perp},\vec{\mathbf{y}}_{\perp}} e^{\mathrm{i}\vec{\mathbf{k}}_{2\perp}\cdot(\vec{\mathbf{x}}_{\perp}-\vec{\mathbf{y}}_{\perp})} \ \mathrm{tr} \Big\langle u(\vec{\mathbf{x}}_{\perp})u^{\dagger}(\vec{\mathbf{y}}_{\perp}) \Big\rangle$$

$$\begin{split} \varphi_A^{(3)}(\vec{k}_{2\perp}|\vec{k}_\perp) & \propto \int\limits_{\vec{x}_\perp, \vec{y}_\perp, \vec{z}_\perp} e^{i\left[\vec{k}_\perp \cdot \vec{x}_\perp + (\vec{k}_{2\perp} - \vec{k}_\perp) \cdot \vec{y}_\perp - \vec{k}_{2\perp} \cdot \vec{z}_\perp\right]} \\ & \times \ \mathrm{tr} \Big\langle \widetilde{U}(\vec{x}_\perp) t^\alpha \widetilde{U}^\dagger(\vec{y}_\perp) t^b U_{b\alpha}(\vec{z}_\perp) \Big\rangle \end{split}$$

$$\begin{split} \varphi_{A}^{(4)}(\vec{k}_{2\perp}|\vec{k}_{\perp},\vec{k}_{\perp}') &\propto \int e^{i\left[\vec{k}_{\perp}\cdot\vec{x}_{\perp} - \vec{k}_{\perp}'\cdot\vec{x}_{\perp}' + (\vec{k}_{2\perp} - \vec{k}_{\perp})\cdot\vec{y}_{\perp} - (\vec{k}_{2\perp} - \vec{k}_{\perp}')\cdot\vec{y}_{\perp}'\right]} \\ &\stackrel{\vec{x}_{\perp},\vec{y}_{\perp},\vec{x}_{\perp}',\vec{y}_{\perp}'}{\times} &\times & \mathrm{tr}\Big\langle \widetilde{U}(\vec{x}_{\perp})t^{\alpha}\widetilde{U}^{\dagger}(\vec{y}_{\perp})\widetilde{U}(\vec{y}_{\perp}')t^{\alpha}\widetilde{U}^{\dagger}(\vec{x}_{\perp}')\Big\rangle \end{split}$$

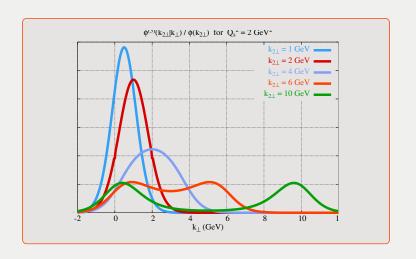
LIMIT OF KT FACTORIZATION

- In the single quark cross-section, the integration over the $k_{_{\rm T}}$ of the antiquark simplifies $\varphi_{_{\rm A}}^{(4)}$ into a 2-point function
- The quark cross-section factorizes in terms of transverse momentum dependent distributions provided that the the 3-point and 2-point functions are related by:

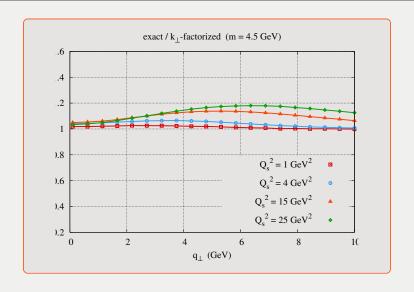
$$\phi_{A}^{(3)}(\vec{\mathbf{k}}_{2\perp}|\vec{\mathbf{k}}_{\perp}) = (2\pi)^{2} \frac{1}{2} \left[\delta(\vec{\mathbf{k}}_{\perp}) + \delta(\vec{\mathbf{k}}_{\perp} - \vec{\mathbf{k}}_{2\perp}) \right] \phi_{A}^{(2)}(\vec{\mathbf{k}}_{2\perp})$$

- This relation is satisfied if the $Q\overline{Q}$ pair interacts with the target in such a way that all the momentum exchanged goes to the quark or to the antiquark
- The ratio $\phi_{_A}^{(3)}(\vec{k}_{2\perp}|\vec{k}_\perp)/\phi_{_A}(\vec{k}_{2\perp})$ should be close to the sum of two delta functions for factorization to be approximately valid

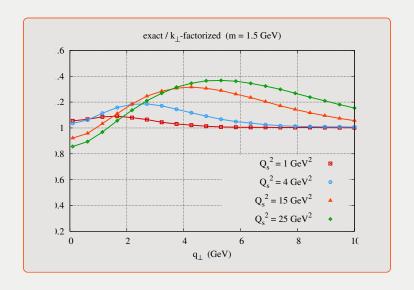
3-POINT / 2-POINT RATIO



FACTORIZATION VIOLATION FOR B QUARKS



FACTORIZATION VIOLATION FOR C QUARKS



When can we use standard PDFs?

DEFINITION

$$\begin{split} &q(x,Q^2) \sim \int d^4y \ e^{i\,q\cdot y} \ \left\langle \overline{\Psi}(0) \cdots \Psi(y) \right\rangle \\ &G(x,Q^2) \sim \int d^4y \ e^{i\,q\cdot y} \ \left\langle \mathfrak{F}(0) \cdots \mathfrak{F}(y) \right\rangle \end{split}$$

- In the OPE classification, these are leading twist operators
- OPE evolution: form a closed set that mix only within itself
- Universality: the same PDFs appear in all observables

COLLINEAR FACTORIZATION

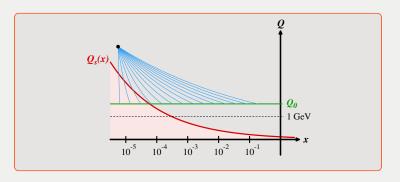
- From their operator definition, it is possible to calculate the PDFs in the dense regime
- Nevertheless, their use would be dubious in this regime because collinear factorization is broken by power corrections that become large when $k_{_{\rm T}}\lesssim Q_s$

$$\mathcal{O}_{\mathrm{hadrons}} = f \otimes \mathcal{O}_{\mathrm{partons}} \ \oplus \ \underbrace{\sum_{n \geq 1} \left(\frac{Q_s^2}{k_{\mathrm{T}}^2}\right)^n}_{\mathrm{power \ corrections}}$$

Note: some nuclear effects (e.g. leading twist shadowing) may be included in standard PDFs

COLLINEAR FACTORIZATION

 Even when used in the non-saturated domain, PDFs may have been contaminated by using DGLAP evolution at too low Q. The initial scale Q₀ should be large enough to mitigate this effect



Summary and Conclusions

- Gluon saturation enhanced in nuclei, reached earlier than in nucleons
- A form of factorization exists in the dense regime (established at Next-to-Leading Log for DIS, at Leading Log for nucleus-nucleus collisions)
 - The universal object is a functional distribution of sources
 - Complicated to use in practice (evolution hard to solve, initial condition poorly constrained)
- When one of the projectiles is dilute, the observables depend only on a few correlators of Wilson lines in the field of the dense projectile. These correlators are universal but more of them are needed for more complicated final states
- Collinear factorization in terms of nuclear PDFs valid when $k_{_{\rm T}}\gg Q_s$. But beware of possible contamination by DGLAP evolution in unsafe region