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Abstract

The first part of this course will be devoted to the path integral approach in quantum field
theory. Starting with elementary examples in quantum mechanics, we will firstly revisit the
theory of an interacting scalar field with functional methods. Then, we will discuss the case of
fermionic fields and introduce Grassman variables. Focusing on quantum electrodynamics,
we will use these functional techniques in order to derive the Schwinger-Dyson equations.

The part on non-abelian gauge fields will start with a discussion of non-abelian Lie groups
and algebras, their representations and of the field structures that admit such a local symmetry.
Then, we will proceed with the path integral quantization of a vector field with an SU(N) local
gauge symmetry, following the Fadeev-Popov method. After having derived the Feynman
rules, we will discuss the unitarity and renormalizability of such a field theory, focusing on
the aspects that make them different from simpler theories such as QED. An important step
for this will be the BRST symmetry. The course will finish with an introduction to lattice
field theory.
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Chapter 1

Reminders of QFT I

1.1 Special relativity

1.1.1 Lorentz transformations

Special relativity plays a crucial role in quantum field theories1. Various observers in frames
that are moving at a constant speed relative to each other should be able to describe physical
phenomena using the same laws of Physics. This does not imply that the equations governing
these phenomena are independent of the observer’s frame, but that these equations transform
in a constrained fashion –depending on the nature of the objects they contain– under a change
of reference frame.

Let us consider two frames F and F ′, in which the coordinates of a given event are
respectively xµ and x

′µ. A Lorentz transformation is a linear transformation such that the
interval ds2 ≡ dt2 − dx2 is the same in the two frames2. If we denote the coordinate
transformation by

x′µ = Λµν x
ν , (1.1)

the matrix Λ of the transformation must obey

gµν = ΛµρΛ
ν
σ g

ρσ (1.2)

where gµν is the Minkowski metric tensor

gµν ≡


+1

−1

−1

−1

 . (1.3)

1An exception to this assertion is for quantum field models applied to condensed matter physics, where the basic
degrees of freedom are to a very good level of approximation described by Galilean kinematics.

2The physical premises of special relativity require that the speed of light be the same in all inertial frames, which
implies solely that ds2 = 0 be preserved in all inertial frames. The group of transformations that achieves this is
called the conformal group. In four space-time dimensions, the conformal group is 15 dimensional, and in addition
to the 6 orthochronous Lorentz transformations it contains dilatations as well as non-linear transformations called
special conformal transformations.
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If we consider an infinitesimal Lorentz transformation,

Λµν = δµν +ωµν (1.4)

(with all components ofω much smaller than unity), this implies that

ωµν = −ωνµ (1.5)

(with all indices down). Consequently, there are 6 independent Lorentz transformations, three
of which are ordinary rotations and three are boosts. Note that the infinitesimal transforma-
tions (1.4) have a determinant3 equal to +1 (they are called proper transformations), and do
not change the direction of the time axis since Λ00 = 1 ≥ 0 (they are called orthochronous).
Any combination of such infinitesimal transformations shares the same properties, and their
set forms a subgroup of the full group of transformations that preserve the Minkowski metric.

1.1.2 Representations of the Lorentz group

More generally, a Lorentz transformation acts on a quantum system via a transformation
U(Λ), that forms a representation of the Lorentz group, i.e.

U(ΛΛ ′) = U(Λ)U(Λ ′) . (1.6)

For an infinitesimal Lorentz transformation, we can write

U(1+ω) = I+
i

2
ωµνM

µν . (1.7)

(The prefactor i/2 in the second term of the right hand side is conventional.) Since the ωµν
are antisymmetric, the generatorsMµν can also be chosen antisymmetric. By using eq. (1.6)
for the Lorentz transformation Λ−1Λ ′Λ, we arrive at

U−1(Λ)MµνU(Λ) = ΛµρΛ
ν
σM

ρσ , (1.8)

indicating thatMµν transforms as a rank-2 tensor. When used with an infinitesimal transfor-
mationΛ = 1+ω, this identity leads to the commutation relation that defines the Lie algebra
of the Lorentz group[

Mµν,Mρσ
]
= i(gµρMνσ − gνρMµσ) − i(gµσMνρ − gνσMµρ) . (1.9)

In a fashion similar to eq. (1.8), we can obtain the transformation of the 4-impulsion Pµ,

U−1(Λ)PµU(Λ) = ΛµρP
ρ , (1.10)

which leads to the following commutation relation between Pµ andMµν,[
Pµ,Mρσ

]
= i(gµσPρ − gµρPσ) . (1.11)

A scalar field φ(x) is a (number or operator valued) object that depends on a spacetime
coordinate x and is invariant under a Lorentz transformation, except for the change of coor-
dinate induced by the transformation:

U−1(Λ)φ(x)U(Λ) = φ(Λ−1x) . (1.12)

3From eq. (1.2), the determinant may be equal to ±1.
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This formula just reflects the fact that the point x where the transformed field is evaluated
was located at the pointΛ−1x before the transformation. The first derivative ∂µφ of the field
transforms as a 4-vector,

U−1(Λ)∂µφ(x)U(Λ) = Λµν∂
νφ(Λ−1x) , (1.13)

where the bar in ∂ν indicates that we are differentiating with respect to the whole argument
of φ, i.e. Λ−1x. Likewise, the second derivative ∂µ∂νφ transforms like a rank-2 tensor, but
the D’Alembertian �φ transforms as a scalar.

1.2 Free scalar fields, Mode decomposition

1.2.1 Quantum harmonic oscillators

Let us consider a continuous collection of quantum harmonic oscillators, each of them corre-
sponding to particles with a given momentum p. These harmonic oscillators can be defined
by a pair of creation and annihilation operators a†p, ap, where p is a 3-momentum that labels
the corresponding mode. Note that the energy of the particles is fixed from their 3-momentum
by the relativistic dispersion relation,

p0 = Ep ≡
√
p2 +m2 . (1.14)

The operators creating or destroying particles with a given momentum p obey usual commu-
tation relations,[

ap, ap
]
=
[
a†p, a

†
p

]
= 0 ,

[
ap, a

†
p

]
∼ 1 . (1.15)

(in the last commutator, the precise normalization will be defined later.) In contrast, operators
acting on different momenta always commute:[

ap, aq
]
=
[
a†p, a

†
q

]
=
[
ap, a

†
q

]
= 0 . (1.16)

If we denote by H the Hamiltonian operator of such a system, the property that a†p creates
a particle of momentum p (and therefore of energy Ep) implies that[

H, a†p
]
= +Epa

†
p . (1.17)

Likewise, since ap destroys a particle with the same energy, we have[
H, ap

]
= −Epap . (1.18)

(Implicitly in these equations is the fact that particles are non-interacting, so that adding or
removing a particle of momentum p does not affect the rest of the system.) In these lectures,
we will adopt the following normalization for the free Hamiltonian4,

H =

∫
d3p

(2π)32Ep
Ep

(
a†pap + VEp

)
, (1.19)

4In a relativistic setting, the measure d3p/(2π)32Ep has the important benefit of being Lorentz invariant. More-
over, it results naturally from the 4-dimensional momentum integration d4p/(2π)4 constrained by the positive
energy mass-shell condition 2π θ(p0) δ(p2 −m2).
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where V is the volume of the system. To make contact with the usual treatment5 of a harmonic
oscillator in quantum mechanics, it is useful to introduce the occupation number fp defined
by,

2Ep V fp ≡ a†pap . (1.20)

In terms of fp, the above Hamiltonian reads

H = V

∫
d3p

(2π)3
Ep

(
fp + 1

2

)
. (1.21)

The expectation value of fp has the interpretation of the number of particles par unit of
phase-space (i.e. per unit of volume in coordinate space and per unit of volume in momentum
space), and the 1/2 in fp+ 1

2
is the ground state occupation of each oscillator6. Of course, this

additive constant is to a large extent irrelevant since only energy differences have a physical
meaning. Given eq. (1.19), the commutation relations (1.17) and (1.18) are fulfilled provided
that [

ap, a
†
q

]
= (2π)3 2Ep δ(p− q) . (1.22)

1.2.2 Scalar field operator, Canonical commutation relations

Note that in quantum mechanics, a particle with a well defined momentum p is not localized
at a specific point in space, due to the uncertainty principle. Thus, when we say that a†p
creates a particle of momentum p, this production process may happen anywhere in space
and at any time since the energy is also well defined. Instead of using the momentum basis,
one may introduce an operator that depends on space-time in order to give preeminence to
the time and position at which a particle is created or destroyed. It is possible to encapsulate
all the ap, a

†
p into the following Hermitean operator7

φ(x) ≡
∫

d3p

(2π)32Ep

[
a†p e

+ip·x + ap e
−ip·x] , (1.23)

where p · x ≡ pµxµ with p0 = +Ep. In the following, we will also need the time derivative
of this operator, denoted Π(x),

Π(x) ≡ ∂0φ(x) = i
∫

d3p

(2π)32Ep
Ep

[
a†p e

+ip·x − ap e
−ip·x] . (1.24)

5In relativistic quantum field theory, it is customary to use a system of units in which h̄ = 1, c = 1 (and also
k
B

= 1 when the Boltzmann constant is needed to relate energies and temperature). In this system of units, the
action S is dimensionless. Mass, energy, momentum and temperature have the same dimension, which is the inverse
of the dimension of length and duration:[

mass
]
=
[
energy

]
=
[
momentum

]
=
[
temperature

]
=
[
length−1

]
=
[
duration−1

]
.

Moreover, in four dimensions, the creation and annihilation operators introduced in eq. (1.19) have the dimension of
an inverse energy:[

ap
]
=
[
a
†
p

]
=
[
energy−1

]
(the occupation number fp is dimensionless.)

6This is reminiscent of the fact that the energy of the level n in a quantized harmonic oscillator of base energyω
is En = (n + 1

2
)ω.

7In four space-time dimensions, this field has the same dimension as energy:[
φ(x)

]
=
[
energy

]
.
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Given the commutation relation (1.22), we obtain the following equal-time commutation re-
lations for φ and Π,[
φ(x), φ(y)

]
x0=y0

=
[
Π(x), Π(y)

]
x0=y0

= 0 ,
[
φ(x), Π(y)

]
x0=y0

= iδ(x−y) . (1.25)

These are called the canonical field commutation relations. In this approach (known as canon-
ical quantization), the quantization of a field theory corresponds to promoting the classical
Poisson bracket between a dynamical variable and its conjugate momentum to a commutator:

{
Pi, Qj

}
= δij → [

P̂i, Q̂j
]
= ih̄ δij . (1.26)

In addition to these relations that hold for equal times, one may prove that φ(x) and Π(y)
commute for space-like intervals (x − y)2 < 0. Physically, this is related to the absence of
causal relation between two measurements performed at space-time points with a space-like
separation.

It is possible to invert eqs. (1.23) and (1.24) in order to obtain the creation and annihilation
operators given the operators φ and Π. These inversion formulas read

a†p = −i

∫
d3x e−ip·x

[
Π(x) + iEpφ(x)

]
= −i

∫
d3x e−ip·x

↔
∂0 φ(x) ,

ap = +i

∫
d3x e+ip·x

[
Π(x) − iEpφ(x)

]
= +i

∫
d3x e+ip·x

↔
∂0 φ(x) , (1.27)

where the operator
↔
∂0 is defined as

A
↔
∂0 B ≡ A

(
∂0B

)
−
(
∂0A

)
B . (1.28)

Note that these expressions, although they appear to contain x0, do not actually depend on
time. Using these formulas, we can rewrite the Hamiltonian in terms of φ and Π,

H =

∫
d3x

{
1
2
Π2(x) + 1

2
(∇φ(x))2 + 1

2
m2φ2(x)

}
. (1.29)

From this Hamiltonian, one may obtain equations of motion in the form of Hamilton-Jacobi
equations. Formally, they read

∂0φ(x) =
δH

δΠ(x)
= Π(x) ,

∂0Π(x) = −
δH

δφ(x)
=
(
∇2 +m2

)
φ(x) . (1.30)

1.2.3 Lagrangian formulation

One may also obtain a Lagrangian L(φ, ∂0φ) that leads to the Hamiltonian (1.29) by the
usual manipulations. Firstly, the momentum canonically conjugated to φ(x) should be given
by as

Π(x) ≡ δL

δ∂0φ(x)
. (1.31)
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For this to be consistent with the first Hamilton-Jacobi equation, the Lagrangian must contain
the following kinetic term

L =

∫
d3x 1

2
(∂0φ(x))

2 + · · · (1.32)

The missing potential term of the Lagrangian is obtained by requesting that we have

H =

∫
d3x Π(x)∂0φ(x) − L . (1.33)

This gives the following Lagrangian,

L =

∫
d3x

{
1
2
(∂µφ(x))(∂

µφ(x)) − 1
2
m2φ2(x)

}
. (1.34)

Note that the action.

S =

∫
dx0 L , (1.35)

is a Lorentz scalar (this is not true of the Hamiltonian, which may be considered as the time
component of a 4-vector from the point of view of Lorentz transformations). The Lagrangian
(1.34) leads to the following Euler-Lagrange equation of motion,(

�x +m
2
)
φ(x) = 0 , (1.36)

which is known as the Klein-Gordon equation. This equation is of course equivalent to the
pair of Hamilton-Jacobi equations derived earlier.

1.3 Interacting scalar fields, Interaction representation

1.3.1 Interaction term

Until now, we have only considered non-interacting particles, which is of course of very lim-
ited use in practice. That the Hamiltonian (1.19) does not contain interactions follows from
the fact that the only non-trivial term it contains is of the form a†pap, that destroys a particle
of momentum p and then creates a particle of momentum p (hence nothing changes in the
state of the system under consideration). By momentum conservation, this is the only allowed
Hermitian operator which is quadratic in the creation and annihilation operators. Therefore,
in order to include interactions, we must include in the Hamiltonian terms of higher degree
in the creation and annihilation operators. The additional term must be Hermitean, since H

generates the time evolution, which must be unitary.

The simplest Hermitean addition to the Hamiltonian is a term of the form

H
I
=

∫
d3x

λ

n!
φn(x) , (1.37)

where n is a power larger than 2. The constant λ is called a coupling constant and controls
the strength of the interactions, while the denominator n! is a symmetry factor that will prove
convenient later on. At this point, it seems that any degree n may provide a reasonable
interaction term. However, theories with an odd n have an unstable vacuum, and theories
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with n > 4 are non-renormalizable in four space-time dimensions, as we shall see later. For
these reasons, n = 4 is the only case which is widely studied in practice, and we will stick to
this value in the rest of this chapter.

With this choice, the Hamiltonian and Lagrangian read

H =

∫
d3x

{
1
2
Π2(x) + 1

2
(∇φ(x))2 + 1

2
m2φ2(x) + λ

4!φ
4(x)
}
,

L =

∫
d3x

{
1
2
(∂µφ(x))(∂

µφ(x)) − 1
2
m2φ2(x) − λ

4!φ
4(x)
}
, (1.38)

and the Klein-Gordon equation is modified into(
�x +m

2
)
φ(x) +

λ

6
φ3(x) = 0 . (1.39)

1.3.2 Interaction representation

A field operator that obeys this non-linear equation of motion can no longer be represented as
a linear superposition of plane waves such as (1.23). Let us assume that the coupling constant
is very slowly time-dependent, in such a way that

lim
x0→±∞ λ = 0 . (1.40)

What we have in mind here is that λ goes to zero adiabatically at asymptotic times, i.e.
much slower than all the physically relevant timescales of the theory under consideration.
Therefore, at x0 = ±∞, the theory is a free theory whose spectrum is made of the eigenstates
of the free Hamiltonian. Likewise, the field φ(x) should be in a certain sense “close to a free
field” in these limits. In the case of the x0 → −∞ limit, let us denote this by8

lim
x0→−∞φ(x) = φin(x) , (1.41)

where φin is a free field operator that admits a Fourier decomposition similar to eq. (1.23),

φin(x) ≡
∫

d3p

(2π)32Ep

[
a†p,in e

+ip·x + ap,in e
−ip·x

]
. (1.42)

Eq. (1.41) can be made more explicit by writing

φ(x) = U(−∞, x0)φin(x)U(x
0,−∞) , (1.43)

where U is a unitary time evolution operator defined as a time ordered exponential of the
interaction term in the Lagrangian, evaluated with the φin field:

U(t2, t1) ≡ T exp i
∫t2
t1

dx0d3x L
I
(φin(x)) , (1.44)

8In this equation, we ignore for now the issue of field renormalization, onto which we shall come back later (see
the section 1.8).
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where

L
I
(φ(x)) ≡ − λ

4! φ
4(x) . (1.45)

This time evolution operator satisfies the following properties

U(t, t) = 1

U(t3, t1) = U(t3, t2)U(t2, t1) (for all t2)
U(t1, t2) = U−1(t2, t1) = U

†(t2, t1) . (1.46)

One can then prove that

(�x +m
2)φ(x) +

λ

6
φ3(x) = U(−∞, x0) [(�x +m2)φin(x)

]
U(x0,−∞) . (1.47)

This equation shows that φin obeys the free Klein-Gordon equation if φ obeys the non-linear
interacting one, and justifies a posteriori our choice of the unitary operator U that connects φ
and φin.

1.3.3 In and Out states

The in creation and annihilation operators can be used to define a space of eigenstates of
the free Hamiltonian, starting from a ground state (vacuum) denoted

∣∣0in
〉
. For instance, one

particle states would be defined as∣∣pin
〉
= a†p,in

∣∣0in
〉
. (1.48)

The physical interpretation of these states is that they are states with a definite particle content
at x0 = −∞, before the interactions are turned on9.

In the same way as we have constructed in field operators, creation and annihilation op-
erators and states, we may construct out ones such that the field φout(x) is a free field that
coincides with the interacting field φ(x) in the limit x0 → +∞ (with the same caveat about
field renormalization). Starting from a vacuum state

∣∣0out
〉
, we may also define a full set of

states, such as
∣∣pout

〉
, that have a definite particle content at x0 = +∞. It is crucial to observe

that the in and out states are not identical:∣∣0out
〉
6=
∣∣0in
〉

(they differ by the phase
〈
0out
∣∣0in
〉
) ,

∣∣pout
〉
6=
∣∣pin

〉
, · · · (1.49)

Taking the limit x0 → +∞ in eq. (1.43), we first see that10

ap,out = U(−∞,+∞)ap,inU(+∞,−∞) , a†p,out = U(−∞,+∞)a†p,inU(+∞,−∞) ,

(1.50)

from which we deduce that the in and out states must be related by∣∣αout
〉
= U(−∞,+∞)

∣∣αin
〉
. (1.51)

The two sets of states are identical for a free theory, since the evolution operator reduces to
the identity in this case.

9For an interacting system, it is not possible to enumerate the particle content of states, because of quantum
fluctuations that may temporarily create additional virtual particles.

10The evolution operator from x0 = −∞ to x0 = +∞ is sometimes called the S-matrix: S ≡ U(+∞,−∞).
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1.4 LSZ reduction formulas

Among the most interesting physical quantities are the transition amplitudes〈
q1q2 · · · out

∣∣p1p2 · · · in〉 , (1.52)

whose squared modulus enters in cross-sections that are measurable in scattering experi-
ments. Up to a normalization factor, the square of this amplitude gives the probability
that particles with momenta p1p2 · · · in the initial state evolve into particles with momenta
q1q2 · · · in the final state.

A first step in view of calculating transition amplitudes is to relate them to expectation
values involving the field operator φ(x). In order to illustrate the main steps in deriving
such a relationship, let us consider the simple case of the transition amplitude between two
1-particle states,〈

qout
∣∣pin

〉
. (1.53)

Firstly, we write the state |pin
〉

as the action of a creation operator on the corresponding
vacuum state, and we replace the creation operation by its expression in terms of φin,〈

qout
∣∣pin

〉
=

〈
qout

∣∣a†p,in∣∣0in
〉

= −i

∫
d3x e−ip·x

〈
qout

∣∣Πin(x) + iEpφin(x)
∣∣0in
〉
. (1.54)

Next, we use the fact that φin, Πin are the limits when x0 → −∞ of the interacting fields
φ,Π, and we express this limit by means of the following trick:

lim
x0→−∞ F(x0) = lim

x0→+∞ F(x0) −
∫+∞
−∞ dx

0 ∂x0F(x
0) . (1.55)

The term with the limit x0 → +∞ produces a term identical to the r.h.s. of the first line of
eq. (1.54), but with an a†p,out instead of a†p,in. At this stage we have〈

qout
∣∣pin

〉
=

〈
0out
∣∣aq,outa

†
p,out

∣∣0in
〉

+i

∫
d4x ∂x0 e

−ip·x 〈qout
∣∣Π(x) + iEpφ(x)∣∣0in

〉
. (1.56)

In the first line, we use the commutation relation between creation and annihilation operators
to obtain〈

0out
∣∣aq,outa

†
p,out

∣∣0in
〉
= (2π)32Ep δ(p− q) . (1.57)

This term does not involve any interaction, since the initial state particle simply goes through
to the final state (in other words, this particle just acts as a spectator in the process). Such
trivial terms always appear when expressing transition amplitudes in terms of the field opera-
tor, and they are usually dropped since they do not carry any interesting physical information.
We can then perform explicitly the time derivative in the second line to obtain11

〈
qout

∣∣pin
〉 .
= i

∫
d4x e−ip·x (�x +m

2)
〈
qout

∣∣φ(x)∣∣0in
〉
, (1.58)

11We use here the dispersion relation p20 − p2 = m2 of the incoming particle to arrive at this expression. The
mass that should enter in this formula is the physical mass of the particles. This remark will become important when
we discuss renormalization.
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where we use the symbol .= to indicate that the trivial non-interacting terms have been
dropped.

Next, we repeat the same procedure for the final state particle: (i) replace the annihilation
operator aq,out by its expression in terms of φout, (ii) write φout as a limit of φ when x0 →
+∞, (iii) write this limit as an integral of a time derivative plus a term at x0 → −∞, that we
rewrite as the annihilation operator aq,in:

〈
qout

∣∣pin
〉 .

= i

∫
d4x e−ip·x (�x +m

2)
{〈
0out
∣∣aq,inφ(x)∣∣0in

〉
+i

∫
d4y ∂y0 e

iq·y 〈0out
∣∣(Π(y) − iEqφ(y))φ(x)∣∣0in

〉}
.(1.59)

However, at this point we are stuck because we would like to bring the aq,in to the right
where it would annihilate

∣∣0in
〉
, but we do not know the commutator between aq,in and the

interacting field operator φ(x). The remedy is to go one step back, and note that we are free
to insert a T-product in(

Πout(y) − iEqφout(y)
)
φ(x) = lim

y0→+∞T
((
Π(y) − iEqφ(y)

)
φ(x)

)
(1.60)

since the time y0 → +∞ is obviously larger than x0. Then the boundary term at y0 → −∞
will automatically lead to the desired ordering φ(x)aq,in,

〈
qout

∣∣pin
〉 .

= i

∫
d4x e−ip·x (�x +m

2)
{〈
0out
∣∣φ(x)aq,in∣∣0in

〉︸ ︷︷ ︸
0

+i

∫
d4y ∂y0 e

iq·y 〈0out
∣∣T (Π(y) − iEqφ(y))φ(x)∣∣0in

〉}
.

(1.61)

Performing the derivative with respect to y0, we finally arrive at〈
qout

∣∣pin
〉 .
= i2

∫
d4xd4y ei(q·y−p·x) (�x+m

2)(�y+m
2)
〈
0out
∣∣Tφ(x)φ(y)∣∣0in

〉
. (1.62)

Such a formula is known as a (Lehmann-Symanzik-Zimmermann) reduction formula.

The method that we have exposed above on a simple case can easily be applied to the
most general transition amplitude, with the following result for the part of the amplitude that
does not involve any spectator particle:

〈
q1 · · ·qn out

∣∣p1 · · ·pm in
〉 .
= im+n

∫ m∏
i=1

d4xj e
−ipi·xi (�xi +m

2)

×
∫ n∏
j=1

d4yj e
iqj·xj (�yj +m

2)
〈
0out
∣∣Tφ(x1) · · ·φ(xm)φ(y1) · · ·φ(yn)

∣∣0in
〉
.

(1.63)

The bottom line is that an amplitude withm+n particles is related to the vacuum expectation
value of a time-ordered product of m + n interacting field operators (a slight but important
modification to this formula will be introduced in the section 1.8, in order to account for field
renormalization). Note that the vacuum states on the left and on the right of the expectation
value are respectively the out and the in vacua.
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1.5 Generating functional

1.5.1 Definition

To facilitate the bookkeeping, it is useful to introduce a generating functional that encapsu-
lates all the expectation values, by defining

Z[j] ≡
∞∑
n=0

1

n!

∫
d4x1 · · ·d4xn ij(x1) · · · ij(xn)

〈
0out
∣∣Tφ(x1) · · ·φ(xn)∣∣0in

〉
=

〈
0out
∣∣T exp i

∫
d4x j(x)φ(x)

∣∣0in
〉
. (1.64)

Note that

Z[0] =
〈
0out
∣∣0in
〉
6= 1 (1.65)

in an interacting theory (but if the vacuum state is stable, then this vacuum to vacuum tran-
sition amplitude must be a pure phase whose squared modulus is one). From this functional,
the relevant expectation values are obtained by functional differentiation〈

0out
∣∣Tφ(x1) · · ·φ(xn)∣∣0in

〉
=

δnZ[j]

iδj(x1) · · · iδj(xn)

∣∣∣∣
j=0

. (1.66)

The knowledge of Z[j] would therefore give access to all the transition amplitudes. However,
it is in general not possible to derive Z[j] in closed form, and we need to resort to perturbation
theory, in which the answer is obtained as an expansion in powers of the coupling constant.

1.5.2 Relation between the free and interacting generating functionals

The generating functional can be brought to a more useful form by first writing

φ(x1) · · ·φ(xn) = U(−∞, x01)φin(x1)U(x
0
1, x

0
2)φin(x2) · · ·φin(xn)U(x

0
n,∞) . (1.67)

For convenience, we split the leftmost evolution operator as

U(−∞, x01) = U(−∞,+∞)U(+∞, x01) . (1.68)

Noticing that the formula (1.67) is true for any ordering of the times x0i and using the expres-
sion of the U’s as a time-ordered exponential, we have

Tφ(x1) · · ·φ(xn) = U(−∞,+∞) Tφin(x1) · · ·φin(xn) exp i
∫
d4x L

I
(φin(x)) , (1.69)

where the time-ordering in the right-hand side applies to all the operators on its right. This
leads to the following representation of the generating functional

Z[j] =
〈
0out
∣∣U(−∞,+∞)︸ ︷︷ ︸〈

0in

∣∣ T exp i
∫
d4x

[
j(x)φin(x) + L

I
(φin(x))

]∣∣0in
〉

= exp i
∫
d4x L

I

(
δ

iδj(x)

) 〈
0in
∣∣T exp i

∫
d4x j(x)φin(x)

∣∣0in
〉

︸ ︷︷ ︸
Z0[j]

. (1.70)

This expression ofZ[j] is the most useful, since it factorizes the interactions into a (functional)
differential operator acting on Z0[j], the generating functional for the non-interacting theory.
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1.5.3 Free generating functional

It turns out that the latter is calculable analytically. The main difficulty in evaluating Z0[j] is
to deal with the non-commuting objects contained in the exponential. A central mathematical
result that we shall need is a particular case of the Baker-Campbell-Hausdorff formula,

if [A, [A,B]] = [B, [A,B]] = 0 , eA eB = eA+B e
1
2
[A,B] . (1.71)

This formula is applicable to our problem because commutators [a, a†] are c-numbers that
commute with everything else. In order to apply it, let us slice the time axis into an infinite
number of small intervals, by writing

T exp
∫+∞
−∞ d

4x O(x) =

+∞∏
i=−∞T exp

∫x0i+1
x0
i

d4x O(x) , (1.72)

where the intermediate times are ordered according to · · · x0i < x0i+1 < · · · . The product
in the right hand side should be understood with the convention that the factors are ordered
from left to right when the index i decreases. When the size ∆ ≡ x0i+1−x0i of these intervals
goes to zero, the time-ordering can be removed in the individual factors12:

T exp
∫+∞
−∞ d

4x O(x) = lim
∆→0+

+∞∏
i=−∞ exp

∫x0i+1
x0
i

d4x O(x) . (1.73)

A first application of the Baker-Campbell-Hausdorff formula leads to

T exp i
∫
d4x j(x)φin(x) = exp

{
i

∫
d4x j(x)φin(x)

}
× exp

{
−
1

2

∫
d4xd4y θ(x0 − y0) j(x)j(y)

[
φin(x), φin(y)

]}
. (1.74)

Note that the exponential in the second line is a c-number. In the end, we will need to evaluate
the expectation value of this operator in the

∣∣0in
〉

vacuum state. Therefore, it is desirable to
transform it in such a way that the annihilation operators are on the right and the annihilation
operators are on the left. This can be achieved by writing

φin(x) = φ
(+)
in (x) + φ

(−)
in (x) ,

φ
(+)
in (x) ≡

∫
d3p

(2π)32Ep
a†p,in e

+ip·x ,

φ
(−)
in (x) ≡

∫
d3p

(2π)32Ep
ap,in e

−ip·x , (1.75)

and by using once again the Baker-Campbell-Hausdorff formula. We obtain

T exp i
∫
d4x j(x)φin(x) = exp

{
i

∫
d4x j(x)φ

(+)
in (x)

}
exp
{
i

∫
d4x j(x)φ

(−)
in (x)

}
× exp

{1
2

∫
d4xd4y j(x)j(y)

[
φ

(+)
in (x), φ

(−)
in (y)

]}
× exp

{
−
1

2

∫
d4xd4y θ(x0 − y0) j(x)j(y)

[
φin(x), φin(y)

]}
. (1.76)

12Field operators commute for space-like intervals,[
O(x), O(y)

]
= 0 if (x − y)2 < 0 .

Moreover, when ∆ → 0, the separation between any pair of points x, y with x0i < x0, y0 < x0i+1 is always
space-like.
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The operator that appears in the right hand side of the first line is called a normal-ordered
exponential, and is denoted by bracketing the exponential with colons (: · · · :):

: exp i
∫
d4x j(x)φin(x) : ≡ exp

{
i

∫
d4x j(x)φ

(+)
in (x)

}
exp
{
i

∫
d4x j(x)φ

(−)
in (x)

}
.

(1.77)

A crucial property of the normal ordered exponential is that its in-vacuum expectation value
is equal to unity:〈

0in
∣∣ : exp i

∫
d4x j(x)φin(x) :

∣∣0in
〉
= 1 . (1.78)

Therefore, we have proven that the generating functional of the free theory is a Gaussian in
j(x),

Z0[j] = exp
{
−
1

2

∫
d4d4y j(x)j(y) G0

F
(x, y)

}
, (1.79)

where G0
F
(x, y) is a 2-point function called the free Feynman propagator and defined as

G0
F
(x, y) = θ(x0 − y0)

[
φin(x), φin(y)

]
−
[
φ

(+)
in (x), φ

(−)
in (y)

]
. (1.80)

1.5.4 Feynman propagator

Since the commutators in the right hand side of eq. (1.80) are c-numbers, we can also write

G0
F
(x, y) =

〈
0in
∣∣θ(x0 − y0)[φin(x), φin(y)

]
−
[
φ

(+)
in (x), φ

(−)
in (y)

]∣∣0in
〉

=
〈
0in
∣∣Tφin(x)φin(y)

∣∣0in
〉
. (1.81)

In other words, the free Feynman propagator is the in-vacuum expectation value of the time-
ordered product of two free fields. Using the Fourier mode decomposition of φin and the
commutation relation between creation and annihilation operators, the Feynman propagator
can be rewritten as follows

G0
F
(x, y) =

∫
d3p

(2π)32Ep

{
θ(x0 − y0) e−ip·(x−y) + θ(y0 − x0) e+ip·(x−y)

}
. (1.82)

In the following, we will also make an extensive use of the Fourier transform of this propa-
gator (with respect to the difference of coordinates xµ − yµ, since it is translation invariant):

G̃0
F
(k) ≡

∫
d4(x− y) eik·(x−y) G0

F
(x, y)

=
1

2Ek

{∫+∞
0

dz0 ei(k
0−Ek)z0 +

∫0
−∞ dz

0 ei(k
0+Ek)z0

}
. (1.83)

The remaining Fourier integrals over z0 are not defined as ordinary functions. Instead, they
are distributions, that can also be viewed as the limiting value of a family of ordinary func-
tions. In order to see this, let use write∫+∞

0

dz0 eiaz
0

= lim
ε→0+

∫+∞
0

dz0 ei(a+iε)z
0

=
i

a+ i0+
. (1.84)
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Likewise∫0
−∞ dz

0 eiaz
0

= lim
ε→0+

∫0
+∞ dz

0 ei(a−iε)z
0

= −
i

a− i0+
. (1.85)

Therefore, the Fourier space Feynman propagator reads

G̃0
F
(k) =

i

k2 −m2 + i0+
. (1.86)

Note that G̃0
F
(k) is Lorentz invariant. Henceforth, G0

F
(x, y) is also Lorentz invariant13. It

is sometimes useful to have a representation of eq. (1.86) in terms of distributions. This is
provided by the following identity:

i

z+ i0+
= iP

(
1

z

)
+ πδ(z) , (1.87)

where P(1/z) is the principal value of 1/z (i.e. the distribution obtained by cutting out –
symmetrically– an infinitesimal interval around z = 0). As far as integration over the variable
z is concerned, this prescription amounts to shifting the pole slightly below the real axis, or
equivalently to going around the pole at z = 0 from above (the term in πδ(z) can be viewed
as the result of the integral on the infinitesimally small half-circle around the pole):

z

-i0+

z

0

From eq. (1.86), it is trivial to check that G0
F
(x, y) is a Green’s function of the operator

�x +m2 (up to a normalization factor −i):

(�x +m
2)G0

F
(x, y) = −iδ(x− y) . (1.88)

Strictly speaking, the operator �x + m2 is not invertible, since it admits as zero modes
all the plane waves exp(±ik · x) with an on-shell momentum k20 = k2 + m2. The i0+

prescription in the denominator of eq. (1.86) amounts to shifting infinitesimally the zeroes
of k20 = k2 + m2 in the complex k0 plane, in order to have a well defined inverse. The

13This is somewhat obfuscated by the fact that the step functions θ(±(x0 − y0)) that enter in the definition of the
time-ordered product are not Lorentz invariant. The Lorentz invariance of time-ordered products follows from the
following properties:

• if (x − y)2 < 0, then the two fields commute and the time ordering is irrelevant,

• if (x − y)2 ≥ 0, then the sign of x0 − y0 is Lorentz invariant.
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regularization of eq. (1.86) is specific to the time-ordered propagator. Other regularizations
would provide different propagators; for instance the free retarded propagator is given by

G̃0
R
(k) =

i

(k0 + i0+)2 − (k2 +m2)
. (1.89)

One can easily check that its inverse Fourier transform is a function G0
R
(x, y) that satisfies

(�x +m
2)G0

R
(x, y) = −iδ(x− y) ,

G0
R
(x, y) = 0 if x0 < y0 . (1.90)

In other words, G0
R

is also a Green’s function of the operator �x +m2, but with boundary
conditions that differ from those of G0

F

1.6 Perturbative expansion and Feynman rules

The generating functional Z[j] is usually not known analytically in closed form, but is given
indirectly by eq. (1.70) as the action of a functional differential operator that acts on the
generating functional of the free theory. The latter is a Gaussian in j, whose variance is
given by the free Feynman propagator G0

F
. Although not explicit, this formula provides a

straightforward method for obtaining vacuum expectation values of T-products of fields to a
given order in the coupling constant λ.

1.6.1 Examples

Let us first illustrate this by computing to order λ1 the following two functions:
〈
0out
∣∣0in
〉

and
〈
0out
∣∣Tφ(x)φ(y)∣∣0in

〉
. In order to make the notations a bit lighter, we denote G0xy ≡

G0
F
(x, y). At order one in λ, we have

〈
0out
∣∣0in
〉

= Z[0] =

[
1− i

λ

4!

∫
d4z

(
δ

iδj(z)

)4
+ O(λ2)

]
Z0[j]|j=0

= 1− i
λ

8

∫
d4z G0 2zz + O(λ2) , (1.91)

and

〈
0out
∣∣Tφ(x)φ(y)∣∣0in

〉
=

[
1−i

λ

4!

∫
d4z

(
δ

iδj(z)

)4
+ O(λ2)

]
δ2Z0[j]

i2δj(x)δj(y)

∣∣∣∣
j=0

= G0xy − iG
0
xy

λ

8

∫
d4z G0 2zz − i

λ

2

∫
d4z G0xzG

0
zzG

0
zy + O(λ2)

=
[
1− i

λ

8

∫
d4z G0 2zz + O(λ2)︸ ︷︷ ︸
Z[0]

]

×
[
G0xy − i

λ

2

∫
d4z G0xzG

0
zzG

0
zy + O(λ2)

]
. (1.92)
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Although the final expressions at order one are rather simple, the intermediate steps are quite
cumbersome due to the necessity of taking a large number of functional derivatives. More-
over, the expression of the 2-point function

〈
0out
∣∣Tφ(x)φ(y)∣∣0in

〉
becomes simpler after we

notice that one can factor out Z[0]. This property is in fact completely general; all transi-
tion amplitudes contain a factor Z[0]. From the remark made after eq. (1.65), this factor is a
pure phase and its squared modulus is one and will have no effect in transition probabilities.
Therefore, it would be desirable to identify from the start the terms that lead to this prefactor,
to avoid unnecessary calculations.

1.6.2 Diagrammatic representation

This simplification follows a quite transparent rule if we represent the above expressions
diagrammatically, by introducing the following notation

G0xy ≡ x y . (1.93)

The functions considered above can be represented as follows:

Z[0] = 1+ 1
8 z

+ O(λ2)

〈
0out
∣∣Tφ(x)φ(y)∣∣0in

〉
= x y + 1

8 x y
z

+ 1
2 z

x y + O(λ2)

(1.94)

The graphs that appear in the right hand side of these equations are called Feynman dia-
grams. By adding to eq. (1.93) the rule that each vertex should have a factor −iλ and an
integration over the entire space-time, then these graphs are in one-to-one correspondence
with the expressions of eqs. (1.91) and (1.92). For now, we have recalled explicitly the nu-
merical prefactors (1/8, 1/2,...) but they can in fact be recovered simply from the symmetries
of the graphs.

In the second of eqs. (1.94), the second term of the right hand side contains a factor which
is not connected to any of the points x and y. These disconnected graphs are precisely the
ones responsible for the factor Z[0] that appears in all transition amplitudes. We can therefore
disregard these type of graphs altogether.

1.6.3 Feynman rules

The diagrammatic representation of eqs. (1.94) can in fact be used to completely bypass the
explicit calculation of the functional derivatives of Z0[j]. The rules that govern this con-
struction are called Feynman rules. The contributions of order λp to a n-point function〈
0out
∣∣Tφ(x1) · · ·φ(xn)∣∣0in

〉
can be obtained as follows:

1. Draw all the graphs (with only vertices of valence 4) that connect the n points x1 to xn
and have exactly p vertices. Graphs that contain a subgraph which is not connected to
any of the xi’s should be ignored.

2. Each line of a graph represents a free Feynman propagator G0
F
.
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3. Each vertex represents a factor −iλ and an integral over the space-time coordinate
assigned to this vertex.

4. The numerical prefactor for a given graph is the inverse of the order of its discrete sym-
metry group. As an illustration, we indicate below the generators of these symmetry
groups and their order for the graphs that appear in eqs. (1.94):

z
−→ order 8 −→ 1

8
,

z
x y −→ order 2 −→ 1

2
. (1.95)

Note that this rule for obtaining the symmetry factor associated to a given graph is cor-
rect only if the corresponding term in the Lagrangian has been properly symmetrized.
For instance, the operator φ4 should appear in the Lagrangian with a prefactor 1/4!.

1.6.4 Connected graphs

At the step 1, graphs made of several disconnected subgraphs can usually appear in certain
functions, provided that each subgraph is connected to at least one of the points xi. For
instance, a 4-point function contains a piece which is simply made of the product of two 2-
point functions. In addition, it contains terms that correspond to a genuine 4-point function,
not factorizable in a product of 2-point functions. The factorizable pieces are usually less
interesting because they can be recovered from already calculated simpler building blocks.
For this reason, it is sometimes useful to introduce the generating function of the connected
graphs, denotedW[j]. This functional is very simply related to Z[j] by

W[j] = logZ[j] . (1.96)

To give a glimpse of this identity, let us write

W[j] =

∞∑
n=1

1

n!

∫
d4x1 · · ·d4xn Cn(x1, · · · , xn) j(x1) · · · j(xn) , (1.97)

where the Cn(x1, · · · , xn) are n-point functions whose diagrammatic representation contain
only connected graphs. If we expand Z[j] = expW[j], we obtain

Z[j] = 1+

∫
d4x C1(x) j(x) +

1

2!

∫
d4xd4y

[
C2(x, y) + C1(x)C1(y)︸ ︷︷ ︸〈

0out

∣∣Tφ(x)φ(y)
∣∣0in

〉
]
j(x)j(y)

+
1

3!

∫
d4xd4yd4z

[
C3(x, y, z) + C2(x, y)C1(z)

+C2(y, z)C1(x) + C2(z, x)C1(y)

+C1(x)C1(y)C1(z)︸ ︷︷ ︸〈
0out

∣∣Tφ(x)φ(y)φ(z)
∣∣0in

〉
]
j(x)j(y)j(z) + · · ·

(1.98)

This expansion highlights how the vacuum expectation values of time-ordered products of
fields can be factorize into products of connected contributions.
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1.6.5 Feynman rules in momentum space

Until now, we have obtained Feynman rules in terms of objects that depend on space-time
coordinates, leading to expressions for the perturbative expansion of the vacuum expectation
value of time-ordered products of fields. However, in most practical applications, we need
subsequently to use the LSZ reduction formula (1.63) to turn these expectation values into
transition amplitudes. This involves the application of the operator i(�+m2) to each external
point, and a Fourier transform. Firstly, note that thanks to eq. (1.88), the application of
i(�+m2) simply removes the external line to which it is applied:

(�x +m
2)

[
x

z

]
=

x

. (1.99)

Thus, these operators just produce Feynman graphs that are amputated of all their external
lines. Then, the Fourier transform can be propagated to all the internal lines of the graph,
leading to an expression that involves propagators and vertices that depend only on momenta.
The Feynman rules for obtaining directly these momentum space expressions are:

1 ′. The graph topologies that must be considered is of course unchanged. The momenta of
the initial state particles are entering into the graph, and the momenta of the final state
particles are going out of the graph

2 ′. Each line of a graph represents a free Feynman propagator in momentum space G̃0
F
(k)

3 ′. Each vertex represents a factor −iλ(2π)2δ(k1 + · · · + k4), where the ki are the four
momenta entering into this vertex

3 ′′. All the internal momenta that are not constrained by these delta functions should be
integrated over with a measure d4k/(2π)4

4 ′. Symmetry factors are computed as before.

For instance, these rules lead to:

P = −i
λ

2

∫
d4k

(2π)4
i

k2 −m2 + i0+

p
1

p
2

q
1

q
2k

= =
(−iλ)2

2

∫
d4k

(2π)4
i

k2−m2+i0+
i

(p1+p2−k)2−m2+i0+
.

(1.100)

1.6.6 Counting the powers of λ and h̄

The order in λ of a (connected) graph G is of course related to the number of vertices n
V

in
the graph,

G ∼ λnV . (1.101)

This can also be related to the number of loops of the graph, which is a better measure of its
complexity since it determines how many momentum integrals it contains. Let us denote n

E
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the number of external lines, n
I

the number of external lines and n
L

the number of loops.
These parameters are related by the following two identities:

4n
V

= 2n
I
+ n

E

n
L

= n
I
− n

V
+ 1 . (1.102)

The first of these equations equates the number of “handles” carried by the vertices, and
the number of propagator endpoints that must attached to them. The right hand side of the
second equation counts the number of internal momenta that are not constrained by the delta
functions of momentum conservation carried the vertices (the +1 comes from the fact that not
all these delta functions are independent - a linear combination of them must simply tell that
the sum of the external momenta must be zero, and therefore does not constrain the internal
ones in any way). From these two identities, one obtains

n
V
= n

L
− 1+

n
E

2
, (1.103)

and the order in λ of the graph is also

G ∼ λnL−1+nE/2 . (1.104)

According to this formula, the order of a graph depends only on the number of external lines
n
E

(i.e. on the number of particles involved in the transition amplitude under consideration),
and on the number of loops. Thus, the perturbative expansion is also a loop expansion, with
the leading order being given by tree diagrams, the first correction in λ by one-loop graphs,
etc...

It turns out that the number of loops also counts the order in the Planck constant h̄ of a
graph. Although we have been using a system of units in which h̄ = 1, it is easy to reinstate
h̄ by the substitution

S → S

h̄
= −

∫
d4x
{1
2
φ(x)

�x +m2

h̄
φ(x) +

λ

4!h̄
φ4(x)

}
. (1.105)

From this, we see that h̄ enters in the Feynman rules as follows

Propagator :
ih̄

p2 −m2 + i0+
,

Vertex : −i
λ

h̄
, (1.106)

and the order in h̄ of a graph is given by

G ∼ h̄nI−nV ∼ h̄nL−1 . (1.107)

Therefore, each additional loop brings a power of h̄, and the loop expansion can also be
viewed as an expansion in powers of h̄.

1.7 Calculation of loop integrals

1.7.1 Wick’s rotation

Let us consider the first of the examples given in eq. (1.100) and define

−iΣ(P) ≡ −i
λ

2

∫
d4k

(2π)4
i

k2 −m2 + i0+
. (1.108)
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In order to calculate the momentum integral, it is useful to perform a Wick rotation, in which
we rotate the k0 integration axis by 90 degrees to bring it along the imaginary axis, as illus-
trated in the following figure:

k
0

E
p
-i0+

-E
p
+i0+

The integrals along the horizontal and vertical axis are opposite because the shaded domain
does not contain any of the poles of the Feynman propagator, and because the propagator
vanishes as k−20 when |k0|→∞. The integral along the vertical axis amounts to writing k0 =
−iκ with κ varying from −∞ to +∞. After this transformation, the integral of eq. (1.108)
becomes

Σ(P) =
λ

2

∫
d4k

E

(2π)4
1

k2
E
+m2

, (1.109)

where k
E

is the Euclidean 4-vector defined by ki
E

= k (i = 1, 2, 3) and k4
E

= κ, with
squared norm k2

E
= k2 + κ2.

1.7.2 Volume element in D dimensions

When the integrand depends only on the norm |k
E
|, we can separate the radial integration on

|k
E
| from the angular integration over the orientation of the vector in 4-dimensional Euclidean

space. In D dimensions, the volume measure for a rotationally invariant integrand reads

dDk
E
= DV

D
(1) kD−1

E
dk

E
, (1.110)

where V
D
(k
E
) is the volume of the D-dimensional ball of radius k

E
. These volumes can be

determined recursively by

V1(kE) = 2kE , V
D
(k
E
) = k

E

∫π
0

dθ sin θ V
D−1

(k
E

sin θ) . (1.111)

Therefore, we have

V2(kE) = πk
2
E
, V3(kE) =

4π

3
k3
E
, V4(kE) =

π2

4
k4
E
. (1.112)
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Although knowing V4(kE) is sufficient for performing a radial momentum integral in four
dimensions, it is interesting to have the formula for an arbitrary dimension, in view of appli-
cations to dimensional regularization. More generally, we have

V
D+1

(1) = V
D
(1)π1/2

Γ(D
2
+ 1)

Γ(D
2
+ 3
2
)

and V
D
(1) =

2 πD/2

DΓ(D
2
)
. (1.113)

1.7.3 Feynman parameterization of denominators

Let us now consider the second diagram of eq. (1.100) (with the notation P ≡ p1 + p2),

−iΓ4(P) ≡
(−iλ)2

2

∫
d4k

(2π)4
i

k2−m2+i0+
i

(P − k)2−m2+i0+
. (1.114)

In this more complicated example, an extra difficulty is that the integrand is not rotationally
invariant. The following trick, known as Feynman parameterization can be used to rearrange
the denominators14:

1

AB
=

∫1
0

dx

[xA+ (1− x)B]2
. (1.115)

The denominator resulting from this transformation is

x(k2−m2+ i0+)+(1−x)((P−k)2−m2+ i0+) = l2−m2−∆(x, P)+ i0+ , (1.116)

where we denote l ≡ k− (1− x)P and ∆(x, P) ≡ −x(1− x)P2. At this point, we can apply
a Wick rotation15 to the shifted integration variable l, in order to obtain

Γ4(P) = −
λ2

2

∫1
0

dx

∫
d4l

E

(2π)4
1

[l2
E
+m2 + ∆(x, P)]2

, (1.117)

where the integrand is again invariant by rotation in 4-dimensional Euclidean space.

1.8 Källen-Lehmann spectral representation

As we shall see now, the limit in eq. (1.41) that relates the interacting field φ and the free
field of the interaction picture φin is too naive. One of the consequences is that we will have
to make a slight modification to the reduction formula (1.63).

Consider the time-ordered 2-point function,〈
0out
∣∣Tφ(x)φ(y)∣∣0in

〉
= θ(x0−y0)

〈
0out
∣∣φ(x)φ(y)∣∣0in

〉
+θ(y0−x0)

〈
0out
∣∣φ(y)φ(x)∣∣0in

〉
.

(1.118)
14For n denominators, this formula can be generalized into

1

A1A2 · · ·An
= Γ(n)

∫1
0

dx1 · · ·dxn δ(1 −
∑
i

xi)
1

[x1A1 + · · · + xnAn]n
.

15It is allowed because the integration axis can be rotated counterclockwise without passing through the poles in
the variable l0.
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For each of the expectation values in the right hand side, let us insert an identity operator
between the two field operators, written in the form of a sum over all the possible physical
states,

1 =
∑

states λ

∣∣λ〉〈λ∣∣ . (1.119)

The states λ can be arranged into classes inside which the states differ only by a boost. A
class of states, that we will denote α, is characterized by its particle content and by the relative
momenta of these particles. Within a class, the total momentum of the state can be varied by
applying a Lorentz boost. For a class α, we will denote

∣∣αp〉 the state of total momentum
p. Each class of states has an invariant mass mα, such that the total energy p0 and total
momentum p of the states in this class obey p20−p

2 = m2α. In addition, it is useful to isolate
the vacuum in the sum over the states. Therefore, the identity operator can be rewritten as

1 =
∣∣0〉〈0∣∣+ ∑

classes α

∫
d3p

(2π)32
√
p2 +m2α

∣∣αp〉〈αp∣∣ , (1.120)

where we have written the integral over the total momentum of the states in a Lorentz invariant
fashion. (We need not specify if we are using in or out states here.)

When we insert this identity operator between the two field operators, the vacuum does
not contribute. For instance〈

0out
∣∣φ(x)∣∣0〉 = 0 . (1.121)

(φ creates or destroys a particle, and therefore has a vanishing matrix element between vac-
uum states.) Using the momentum operator P̂, we can write〈

0out
∣∣φ(x)∣∣αp〉 =

〈
0out
∣∣eiP̂·xφ(0)e−iP̂·x∣∣αp〉

=
〈
0out
∣∣φ(0)∣∣αp〉 e−ip·x

=
〈
0out
∣∣φ(0)∣∣α0〉 e−ip·x . (1.122)

The second line uses the fact that the total momentum in the vacuum state is zero, and is p
for the state αp. In the last equality, we have applied a boost that cancels the total momentum
p, and used the fact that the vacuum is invariant, as well as the scalar field φ(0). Therefore,
we obtain the following representation for the time-ordered 2-point function〈

0out
∣∣Tφ(x)φ(y)∣∣0in

〉
=

∑
classes α

〈
0out
∣∣φ(0)∣∣α0〉〈α0∣∣φ(0)∣∣0in

〉
×
∫

d3p

(2π)32
√
p2 +m2α

{
θ(x0 − y0)e−ip·(x−y) + θ(y0 − x0)eip·(x−y)

}
︸ ︷︷ ︸

G0
F
(x,y;m2α)

,

(1.123)

where the underlined integral, G0
F
(x, y;m2α), is the Feynman propagator for a hypothetical

scalar field of massmα (compare this integral with eq. (1.82)). It is customary to rewrite the
above representation as〈

0out
∣∣Tφ(x)φ(y)∣∣0in

〉
=

∫∞
0

dM2

2π
ρ(M2) G0

F
(x, y;M2) , (1.124)
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where ρ(m2) is the spectral function defined as

ρ(M2) ≡ 2π
∑

classes α
δ(M2 −m2α)

〈
0out
∣∣φ(0)∣∣α0〉〈α0∣∣φ(0)∣∣0in

〉
. (1.125)

This function describes the invariant mass distribution of the non-empty states of the theory
under consideration, and the exact Feynman propagator is a sum of free Feynman propagators
with varying masses, weighted by this mass distribution.

In a theory of massive particles, the spectral function has a delta function corresponding
to states containing a single particle of mass m, and a continuum distribution16 that starts at
the minimal invariant mass (2m) of a 2-particle state:

ρ(M2) = 2πZδ(M2 −m2) + continuum forM2 ≥ 4m2 , (1.126)

where Z is the product of matrix elements that appear in eq. (1.125), in the case of 1-particle
states. In a theory with interactions, Z in general differs from unity (in fact, it may be infinite).
Note that in this equation,mmust be the physical mass of the particles, as it would be inferred
from the simultaneous measurement of their energy and momentum. As we shall see shortly,
this is not the same as the parameter we denotedm in the Lagrangian.

Taking the Fourier transform of eq. (1.124) and using eq. (1.126) for the spectral function,
we obtain the following pole structure for the exact Feynman propagator:

G̃
F
(p) =

i Z

p2 −m2 + i0+
+ terms without poles . (1.127)

Therefore, the parameter Z that appears in the spectral function has also the interpretation of
the residue of the single particle pole in the exact Feynman propagator.

The fact that Z 6= 1 calls for a slight modification of the LSZ reduction formulas.
Eq. (1.126) implies that a factor

√
Z appears in the overlap between the state φ(x)

∣∣0in
〉

and
the 1-particle state

∣∣pin
〉
. In other words, φ(x) creates a particle with probability Z rather

than 1. Therefore, there should be a factor Z−1/2 for each incoming and outgoing particle in
the LSZ reduction formulas that relate transition amplitudes to products of fields φ:

〈
q1 · · ·qn out

∣∣p1 · · ·pm in
〉 .
=

(
i

Z1/2

)m+n ∫ m∏
i=1

d4xj e
−ipi·xi (�xi +m

2)

×
∫ n∏
j=1

d4yj e
iqj·xj (�yj +m

2)
〈
0out
∣∣Tφ(x1) · · ·φ(xm)φ(y1) · · ·φ(yn)

∣∣0in
〉
.

(1.128)

In practical calculations, the factor Z at a given order of perturbation theory is obtained by
studying the 1-particle pole of the dressed propagator, as the residue of this pole. It is common
to introduce a renormalized field φr defined as a rescaling of φ,

φ ≡
√
Z φr . (1.129)

By construction, the Feynman propagator defined from the 2-point time-ordered product of
φr has a single-particle pole of residue 1. In other words, we may replace in the right hand
side of the LSZ reduction formula (1.128) all the fields by renormalized fields, and at the
same time remove all the factors Z−1/2.

16Between the 1-particle delta function and the 2-particle continuum, there may be additional delta functions
corresponding to multi-particle bound states (to have a stable bound state, the binding energy should decrease the
mass of the state compared to the mass 2m of two free particles at rest).
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1.9 Ultraviolet divergences and renormalization

Until now, we have not attempted to calculate explicitly the integrals over the Euclidean
momentum k

E
in eqs. (1.109) and (1.117). In fact, these integrals do not converge when

|k
E
| → ∞, and as such they are therefore infinite. These infinities are called ultraviolet

divergences.

1.9.1 Regularization of divergent integrals

As we shall see shortly, this has very deep implications on how we should interpret the theory.
However, before we can discuss this, it is crucial to make the integrals temporarily finite in
order to secure the subsequent manipulations. This procedure, called regularization, amounts
to altering the theory to make all the integrals finite. There is no unique method for achieving
this, and the most common ones are the following:

• Pauli-Villars method : modify the Feynman propagator according to

i

k2 −m2 + i0+
→ i

k2 −m2 + i0+
−

i

k2 −M2 + i0+
. (1.130)

When |k
E
|�M, this modified propagator decreases as |k

E
|−4 instead of |k

E
|−2 for the

unmodified propagator, which is usually sufficient to render the integrals convergent.
The original theory (and its ultraviolet divergences) are recovered in the limitM→∞.

• Lattice regularization : replace continuous space-time by a regular lattice of points, for
instance a cubic lattice with a spacing a between the nearest neighbor sites. On such
a lattice, the momenta are themselves discrete, with a maximal momentum of order
a−1. Therefore, the momentum integrals are replaced by discrete sums that are all
finite. The original theory is recovered in the limit a → 0. A shortcoming of lattice
regularization is that the discrete momentum sums are usually much more difficult to
evaluate than continuum integrals, and that it breaks the usual space-time symmetries
such as translation and rotation invariance. This is nevertheless the basis of numerical
Monte-Carlo methods (lattice field theory).

• Cutoff regularization : cut the integration over the norm of the Euclidean momentum
by |k

E
| ≥ Λ. The underlying theory is recovered in the limit Λ → ∞. This is a

commonly used regularization in scalar theories, due to its simplicity and because it
preserves all the symmetries of the theory.

• Dimensional regularization : this method is based on the observation that the integral

∫∞
0

dk
E

kD−1
E

[k2
E
+ ∆]n

=
1

2

∫∞
0

du
u
D
2
−1

[u+ ∆]n

=
1

2
∆
D
2
−n

∫1
0

dx xn−
D
2
−1(1− x)

D
2
−1︸ ︷︷ ︸

Γ

(
n−
D
2

)
Γ

(
D
2

)
Γ(n)

. (1.131)

24



is well defined for almost any D except for D = 2n, 2n + 2, 2n + 4, · · · and D =
0,−2,−4, · · · thanks to the analytical properties of the Gamma function17. Dimen-
sional regularization keeps the number of space-time dimensions D arbitrary in all the
intermediate calculations, and at the end one usually writes D = 4 − 2ε with ε � 1.
This regularization does not break any of the symmetries of the theory, including gauge
invariance (which is not the case of cutoff regularization). There is an extra compli-
cation: the coupling constant λ is a priori dimensionless only when D = 4. In order
to keep the dimension of λ unchanged, we must introduce a parameter µ that has the
dimension of a mass, and replace λ by λµ4−D. Note that the field φ(x) has the dimen-
sion of a mass to the power (D − 2)/2. Setting D = 4 − 2ε, the singular part of the
integrals Σ(P) and Γ4(P) introduced above as examples is

Σ(P) = −
λ

2

m2

(4π)2
1

ε
+ O(1) , Γ4(P) = −

λ2

2

1

(4π)2
1

ε
+ O(1) . (1.132)

1.9.2 Mass renormalization

Let us now make a few observations:

• The above divergent terms are momentum independent18,

• They appear in 2-point and 4-point functions only.

Moreover, it is important to realize that the parameters (m2 and λ) in the Lagrangian are
not directly observable quantities by themselves19. For instance, the mass of a particle is a
measurable property of the particle (e.g. by measuring both its energy and its momentum,
via p20 − p

2). In quantum field theory, this definition of the mass corresponds to the location
of the poles of the propagator in the complex p0 plane. However, as we shall see, loop
corrections modify substantially the propagator, and it turns out that the parameter m in the
free propagator has in fact little to do with this physical mass. If we dress the propagator by
summing the multiple insertions of the 1-loop correction −iΣ,

G̃
F
(P) ≡ P

+

P
+

P
+ + . . .

P ,

(1.133)

we obtain

G̃
F
(P) =

i

p20 − p
2 −m2 − Σ+ i0+

, (1.134)

from which it is immediate to see that this loop correction alters the location of the pole, now
given by

p20 − p
2 = m2 + Σ︸ ︷︷ ︸

new squared mass

. (1.135)

17Γ(z) is analytic in the complex plane, at the exception of a discrete series of simple poles, located at zn = −n
for n ∈ N, with residues (−1)n/n!.

18These examples are not completely general. As we shall see later, divergent terms proportional to P2 may also
appear in the 2-point function.

19In this regard, it is important to realize that the renormalization of the parameters of the Lagrangian would be
necessary even in a theory that has no divergent loop integrals.
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Since the propagator given in eq. (1.134) includes loop corrections, its poles ought to give a
value of the mass closer to the physical one. Therefore, it is tempting to write:

m2phys = m
2 + Σ+ O(λ2) . (1.136)

Of course, since Σ is infinite, the only way this can be satisfied is that the parameter m2 that
appears in the Lagrangian be itself infinite, with an opposite sign in order to cancel the infinity
from Σ. To further distinguish it from the physical mass, the parameter m in the Lagrangian
is usually called the bare mass, whilemphys is the physical –or renormalized– mass.

1.9.3 Field renormalization

Note that the 1-loop function Σ in a theory with aφ4 interaction is somewhat special, because
at this order it is independent of the momentum P. Being a constant, the infinity it contains
can be absorbed entirely into a redefinition of the bare mass, but the residue of the pole
remains equal to 1. However, starting at two loops, the 2-point functions that correct the
propagator are usually momentum dependent, as is the case for instance with this graph:

It is convenient to expand Σ(P2) around the physical mass:

Σ(P2) = Σ(m2phys)+ (P2−m2phys)Σ
′(m2phys)+

1
2
(P2−m2phys)Σ

′′(m2phys)+ · · · (1.137)

For the resummed propagator G̃
F

to have a pole at P2 = m2phys, we need to impose

m2phys = m
2 + Σ(m2phys) , (1.138)

that generalizes eq. (1.136) to a momentum-dependent Σ. Then, in the vicinity of the pole,
the dressed propagator behaves as

G̃
F
(P) ≈

P2→m2phys

i

(1− Σ ′(m2phys)) (P
2 −m2phys) + i0

+
. (1.139)

This indicates that the field renormalization factor Z cannot be equal to 1 when the propagator
is corrected by a momentum-dependent loop. Instead, we have

Z =
1

1− Σ ′(m2phys)
. (1.140)

Moreover, Weinbergs’s theorem states that the ultraviolet divergences of the 2-point function
Σ(P2) arise only in Σ(m2phys) and in the first derivative Σ ′(m2phys), while higher derivatives
are all finite. Eqs. (1.138) and (1.140) therefore indicate that these infinities can be “hidden”
in the bare massm2 and in the field renormalization factor Z.

1.9.4 Ultraviolet power counting

From the above considerations, it appears crucial that Σ has divergences only in its 0th and
1st order Taylor coefficients and Γ4 only in the 0th order, in order to be able to absorb the
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divergences by a proper definition of m2, Z and λ. A simple dimensional argument gives
plausibility to this assertion (of which Weinberg’s theorem provides a more rigorous justifi-
cation). Let us assume that we scale up all the internal momenta of a graph by some factor ξ.
In doing this, a graph G with n

V
vertices and n

I
internal lines will scale as

G ∼ ξDnL−2nI , (1.141)

assuming D space-time dimensions for more generality. The exponent ω(G) ≡ Dn
L
− 2n

I

is called the superficial degree of divergence of the graph. This exponent characterizes how
the graph diverges when all its internal momenta are rescaled uniformly:

• ω ≥ 0 : The graph has an intrinsic divergence.

• ω < 0 : The graph may be finite, or may contain a divergent subgraph. However, in the
renormalization process, subgraphs will have been dealt with earlier since they occur
at a lower order of the perturbative expansion.

The superficial degree of divergence signals all then-point functions that may have ultraviolet
divergences of their own. Using eqs. (1.102),ω(G) can be rewritten in the following way

ω(G) = 4− n
E
+ (D− 4)n

L
. (1.142)

An important consequence of this formula is that in 4 dimensions the superficial degree of
divergence of a graph does not depend on the number of loops, but only on the number of
external lines. When D = 4, the only functions that have a non-negative ω are the 2-point
function and the 4-point function20. It is important to realize that this does not mean that a
6-point cannot be divergent. However, it can diverge only if it contains a divergent 2-point or
4-point subgraph. Moreover, the value of the superficial degree of divergence indicates the
maximal power of the ultraviolet cutoff that may appear in these functions:

• 2-point: up to Λ2

• 4-point: up to log(Λ)

Note also that if we differentiate a graph with respect to the invariant norm P2 of one of its
external momenta, we get

ω

(
∂G

∂P2

)
= 2− n

E
+ (D− 4)n

L
. (1.143)

(ω further decreases by two units with each additional derivative with respect to P2.) There-
fore, the momentum derivative Σ ′(P2) of the 2-point function has ω = 0 in D = 4, and its
higher derivatives all have ω < 0. The fact that only Γ4(m2phys), Σ(m

2
phys) and Σ ′(m2phys)

haveω ≥ 0 is the very reason why it is possible to get rid of all the divergences of this theory
(in 4 dimensions) by a redefinition of the parameters of the Lagrangian. This theory is said
to be renormalizable.

20Functions with an odd number of external lines vanish in the theory under consideration. Note also that 0-point
functions (vacuum graphs) have a superficial degree of divergence equal to 4, indicating that they may contain up to
quartic divergences ∼ Λ4.
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1.9.5 Ultraviolet classification of quantum field theories

In dimensions lower than 4, ω(G) is a strictly decreasing function of the number of loops,
which indicates that graphs with a given n

E
do not develop new divergences beyond a cer-

tain loop order. Such theories are said super renormalizable because they only have a finite
number of divergent graphs. Conversely, in dimensions higher than 4, ω(G) increases with
the number of loops, and any function will eventually become divergent at some loop order.
These theories are usually21 non renormalizable. One may think of introducing, as they be-
come necessary, additional operators in the Lagrangian with a coupling constant adjusted to
cancel the new divergences that arise at a given loop order. However, an infinite number of
such parameters would need to be introduced, thereby reducing to nil the predictive power of
this type of theory22.

As we have seen, the renormalizability of a field theory depends both on the interaction
terms it contains, and on the dimensionality of space-time. In fact, a simpler equivalent
criterion is the mass dimension of the coupling constant in front of the interaction term:

• dim > 0 : super-renormalizable,

• dim = 0 : renormalizable,

• dim < 0 : non-renormalizable.

For instance, the “coupling constant” m2 in front of the mass term has always a mass di-
mension equal to two, and this term is therefore super-renormalizable. In contrast, the
coupling constant λ in front of a φ4 interaction has a mass dimension 4 − D, and is (su-
per)renormalizable in dimensions less than or equal to four.

1.9.6 Renormalization in perturbation theory, Counterterms

A convenient setup for casting the renormalization procedure within perturbation theory is to
write the bare Lagrangian,

L =
1

2

(
∂µφb

)(
∂µφb

)
−
1

2
m2bφ

2
b −

λb

4!
φ4b , (1.144)

(here we denote φb, mb and λb the bare field, mass and coupling, to stress that they are not
the physical ones) as the sum of a renormalized Lagrangian and a correction:

L = Lr + ∆L

Lr ≡ 1

2

(
∂µφr

)(
∂µφr

)
−
1

2
m2r φ

2
r −

λr

4!
φ4r

∆L ≡ 1

2
∆
Z

(
∂µφr

)(
∂µφr

)
−
1

2
∆mφ

2
r −

1

4!
∆λφ

4
r . (1.145)

Lr contains the renormalized (i.e. physical) massmr and coupling constant λr (the latter may
be defined from the measurement of some cross-section chosen as reference). In ∆L, the

21It may happen that an internal symmetry, such as a gauge symmetry, renders a function finite while its superficial
degree of divergence is non negative.

22Non-renormalizable field theories may nevertheless be used as low energy effective field theories, where they
approximate below a certain cutoff a more fundamental –possibly unknown– theory supposedly valid above the
cutoff.
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coefficients ∆
Z
, ∆m, ∆λ are called counterterms. Recalling that φb =

√
Zφr, the bare and

physical parameters and the counterterms must be related by

∆
Z
= Z− 1

∆m = Zm2b −m2r

∆λ = Z2λb − λr . (1.146)

The terms in ∆L are treated as a perturbation to Lr, and one may introduce extra Feynman
rules for the various terms it contains:

1

2
∆
Z

(
∂µφr

)(
∂µφr

)
−
1

2
∆mφ

2
r → P

= −i
(
∆
Z
P2 + ∆m

)
−
1

4!
∆λφ

4
r → = −i ∆λ (1.147)

At tree level, only the term Lr is used, and by construction the physical quantities computed
at this order will depend only on physical parameters. Higher orders involve divergent loop
corrections. The counterterms ∆

Z
, ∆m, ∆λ should be adjusted at every order to cancel the

new divergences that arise at this order. In particular, after having included the contribu-
tion of the counterterms, the self-energy Σ(P2) are usually required to satisfy the following
conditions23:

Σ(m2r ) = 0 , Σ ′(m2r ) = 0 . (1.148)

With this choice, it is not necessary to dress the external lines in the LSZ reduction formulas
for transition amplitudes. Indeed, the renormalization conditions (1.148) imply that

i(�+m2r )GF = 1 , lim
p2→m2r (−iΣ)GF = 0 . (1.149)

For each external line, the reduction formula contains an operator i(�x +m2r ) acting on the
dressed propagator of this external line:

i(�+m2r )
{
G
F
+G

F
(−iΣ)G

F
+G

F
(−iΣ)G

F
(−iΣ)G

F
+ · · ·︸ ︷︷ ︸

dressed propagator

}
= 1 . (1.150)

Therefore, all the terms except the first one cancel, and we can ignore self-energy corrections
on the external lines.

1.10 Spin 1/2 fields

1.10.1 Dimension-2 representation of the rotation group

In ordinary quantum mechanics, the spin s is related to the dimension n of representations of
the rotation group by

n = 2s+ 1 . (1.151)
23Strictly speaking, the only requirement is that the counterterms cancel the infinities, which does not fix uniquely

their finite part. Various renormalization schemes are possible, that differ in how these finite parts are chosen.
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Thus, spin 1/2 corresponds to representations of dimension 2. Such a representation is based
on the (Hermitean) Pauli matrices:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
, (1.152)

from which we can construct the following unitary 2× 2 matrices

U ≡ exp
(
− i
2
θiσi

)
. (1.153)

That the Pauli matrices (up to a factor 2) are generators of the Lie algebra of rotations can be
seen from[

Ji, Jj
]
= i εijk Jk with Ji ≡ σ

i

2
. (1.154)

1.10.2 Spinor representation of the Lorentz group

This idea can be extended to quantum field theory in order to encompass all the Lorentz
transformations rather than just the spatial rotations. We are therefore seeking a dimension 2
representation of the commutation relations (1.9). Firstly, let us assume that we know a set
of four n× n matrices γµ that satisfy the following anti-commutation relation:{

γµ, γν
}
= 2 gµν 1n×n . (1.155)

Such matrices are called Dirac matrices. From these matrices, it is easy to check that the
matrices

Mµν ≡ i

4

[
γµ, γν

]
(1.156)

form an n-dimensional representation of the Lorentz algebra. However, an exhaustive search
indicates that the smallest matrices that fulfill eqs. (1.155) (in four space-time dimensions,
i.e. for µ, ν = 0, · · · , 3) are 4 × 4. Several unitarily equivalent choices are possible for
these matrices. A possible representation (known as the Weyl or chiral representation) is the
following24

γ0 ≡

(
0 1

1 0

)
, γi ≡

(
0 σi

−σi 0

)
. (1.157)

In this representation, the generators for the boosts and for the rotations are

M0i = −
i

2

(
σi 0

0 −σi

)
, Mij =

1

2
εijk

(
σk 0

0 σk

)
. (1.158)

Given a Lorentz transformation Λ defined by the parametersωµν, let us define

U1/2(Λ) ≡ exp
(
−
i

2
ωµνM

µν
)
. (1.159)

24Although it is sometimes convenient to have an explicit representation of the Dirac matrices, most manipulations
only rely on the fact that the obey the anti-commutation relations (1.155).
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A Dirac spinor is a 4-component field ψ(x) that transforms as follows:

ψ(x) → U1/2(Λ)ψ(Λ
−1x) . (1.160)

In other words, the matrixU1/2 defines how the four components of this field transform under
a Lorentz transformation (since these four components mix, ψ(x) is not the juxtaposition of
four scalar fields). The fact that the lowest dimension for the Dirac matrices is 4 indicates
that the spinor ψ(x) describes two spin-1/2 particles: a particle and its antiparticle, that are
distinct from each other.

1.10.3 Dirac equation and Lagrangian

Let us now determine an equation of motion obeyed by this field, such that it is invariant
under Lorentz transformations. Since the Mµν’s act only on the Dirac indices, a trivial
answer could be the Klein-Gordon equation,(

�x +m
2
)
ψ(x) = 0 . (1.161)

But there is in fact a stronger equation that remains invariant whenψ is transformed according
to eq. (1.160). Notice first that

U−1
1/2(Λ)γ

µU1/2(Λ) = Λ
µ
νγ
ν . (1.162)

This equation indicates that rotating the Dirac indices of γµ with U1/2 is equivalent to trans-
forming the µ index as one would do for a normal 4-vector. Using this identity, we can check
that under the same Lorentz transformation we have

(
iγµ∂µ −m

)
ψ(x) → U1/2(Λ)

(
iγµ∂µ −m

)
ψ(Λ−1x) . (1.163)

Therefore, the Dirac equation,(
iγµ∂µ −m

)
ψ(x) = 0 , (1.164)

is Lorentz invariant. This equation implies the Klein-Gordon equation (to see it, apply the
operator iγµ∂µ +m on the left), and is therefore stronger.

The Dirac matrices are not Hermitean. Instead, they satisfy(
γµ
)†

= γ0γµγ0 . (1.165)

Therefore, the Hermitic conjugate of U1/2(Λ) is

U†
1/2

(Λ) = exp
( i
2
ωµν(M

µν)†
)
= γ0 exp

( i
2
ωµνM

µν
)
γ0 = γ0U−1

1/2(Λ)γ
0 . (1.166)

Because of this, the simplest Lorentz scalar bilinear combination ofψ’s isψ†γ0ψ (instead of
the naive ψ†ψ). It is common to denote ψ ≡ ψ†γ0. From this, we conclude that the Lorentz
scalar Lagrangian density that leads to the Dirac equation reads

L = ψ
(
iγµ∂µ −m

)
ψ(x) . (1.167)
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1.10.4 Basis of free spinors

Before quantizing the spinor field in a similar fashion as the scalar field, we need to find plane
wave solutions of the Dirac equation. There are two types of solutions:

ψ(x) = u(p) e−ip·x with (pµγ
µ −m)u(p) = 0 ,

ψ(x) = v(p) e+ip·x with (pµγ
µ +m) v(p) = 0 . (1.168)

The solutions u(p) and v(p) each form a 2-dimensional linear space, and it is customary to
denote a basis by us(p) and vs(p) (the index s, that takes two values s = ±, is interpreted
as the two spin states for a spin 1/2 particle). A convenient normalization of the base vectors
is

ur(p)us(p) = 2mδrs , u†r(p)us(p) = 2Epδrs ,

vr(p)vs(p) = −2mδrs , v†r(p)vs(p) = 2Epδrs ,

ur(p)vs(p) = vr(p)us(p) = 0 . (1.169)

When summing over the spin states, we have:∑
s=±

us(p)us(p) = /p+m ,
∑
s=±

vs(p)vs(p) = /p−m , (1.170)

where we have introduced the notation /p ≡ pµγµ.

1.10.5 Canonical quantization

From the Lagrangian (1.167), the momentum canonically conjugated to ψ(x) is

Π(x) = iψ†(x) . (1.171)

Trying to generalize the canonical commutation relation of scalar field operators (1.25) would
lead to[

ψa(x), ψ
†
b(y)

]
x0=y0

= δ(x− y)δab , (1.172)

where we have written explicitly the Dirac indices a, b. However, by decomposing ψ(x) on
a basis of plane waves by introducing creation and annihilation operators,

ψ(x) ≡
∑
s=±

∫
d3p

(2π)32Ep

{
a†sp vs(p)e

+ip·x + bsp us(p)e
+ip·x

}
, (1.173)

one would find a Hamiltonian which is not bounded from below. The resolution of this
paradox is that the commutation relation (1.172) is incorrect, and should be replaced by an
anti-commutation relation,{

ψa(x), ψ
†
b(y)
}
x0=y0

= δ(x− y)δab , (1.174)

which leads to anti-commutation relations for the creation and annihilation operators{
arp, a

†
sq

}
=
{
brp, b

†
sq

}
= (2π)32Epδ(p− q)δrs . (1.175)

(All other combinations are zero.) These anti-commutation relations imply that the square
of creation operators is zero, which means that it is not possible to have two particles with
the same momentum and spin in a quantum state. This is nothing but the Pauli exclusion
principle. This is the simplest example of the spin-statistics theorem, which states that half-
integer spin particles must obey Fermi statistics.
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1.10.6 Free spin-1/2 propagator

From eq. (1.173), we obtain the following expression for the free Feynman propagator of the
Dirac field25

S0
F
(x, y) ≡

〈
0
∣∣ θ(x0 − y0)ψa(x)ψb(y) − θ(y0 − x0)ψb(y)ψa(x)︸ ︷︷ ︸

T (ψa(x)ψb(y))

∣∣0〉

=

∫
d4p

(2π)4
e−ip·(x−y)

i(/p+m)

p2 −m2 + i0+︸ ︷︷ ︸
S0
F
(p)

. (1.176)

The diagrammatic representation of this propagator is a line with an arrow:

S0
F
(p) =

p

. (1.177)

1.10.7 LSZ reduction formula for spin-1/2

The LSZ reduction formula for transition amplitudes with fermions and/or anti-fermions in
the initial and final states reads:〈

qσqσ · · ·︸ ︷︷ ︸
n particles

out
∣∣psps · · ·︸ ︷︷ ︸
m particles

in
〉 .
=

(
i

Z1/2

)m+n ∫
d4x e−ip·x

∫
d4x e−ip·x · · ·

×
∫
d4y e+iq·y

∫
d4y e+iq·y · · · vs(p)(i

→
/∂x −m)uσ(q)(−i

→
/∂y +m)

×
〈
0out
∣∣Tψ(x)ψ(y)ψ(x)ψ(y) · · · ∣∣0in

〉
(i
←
/∂x +m)us(p) (−i

←
/∂y −m)vσ(q) ,

(1.178)

where we give examples for fermions and anti-fermions (indicated by a bar over the momen-
tum and spin), both for the initial and final states. Besides the requirement that the external
lines of the Feynman graphs should be amputated, this formula leads to the following pre-
scriptions for the open ends of fermionic lines:

Incoming fermion : p = u(p)

Incoming anti-fermion : p = v(p)

Outgoing fermion : p = u(p)

Outgoing anti-fermion : p = v(p) .

25We have introduced a minus sign in the definition of the time-ordered product of Dirac fields. One would have
to mimic the derivation of the section 1.5 in order to see that this is the propagator that naturally appears in the
generating functional for the amplitudes with fermions.
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Note that when writing the expression corresponding to a given Feynman graph, the fermion
lines it contains must be read in the direction opposite to the arrow carried by the lines.

1.11 Spin 1 fields

1.11.1 Classical electrodynamics

The best known spin-1 particle is the photon. In classical electrodynamics, the electric field
E and magnetic field B obey Maxwell’s equations,

∇ · E = ρ

∇× B− ∂tE = J

∇× E+ ∂tB = 0

∇ · B = 0 , (1.179)

written here in terms of charge density ρ and current J. The local conservation of electrical
charge implies the following continuity equation

∂tρ+∇ · J = 0 . (1.180)

The last two Maxwell’s equations are automatically satisfied if we write the E,B fields in
terms of potentials V and A,

E ≡ ∂tA+∇V , B ≡ −∇×A . (1.181)

This representation is not unique, since E and B are unchanged if we transform the potentials
as follows:

V → V + ∂tχ , A→ A−∇χ , (1.182)

where χ is an arbitrary function of space and time. Eq. (1.182) is called a (Abelian) gauge
transformation. Quantities that do not change under (1.182) are said to be gauge invariant.
For instance, the electrical and magnetic fields are invariant.

1.11.2 Classical electrodynamics in Lorentz covariant form

In order to make manifest the properties of Maxwell’s equations under Lorentz transforma-
tions, let us firstly rewrite them in covariant form. Introduce a 4-vector Aµ and a rank-2
tensor Fµν,

Aµ ≡ (V,A) , Fµν ≡ ∂µAν − ∂νAµ . (1.183)

(Fµν is called the field strength.) Recalling that ∂µ = (∂t,−∇), gauge transformations take
the following form

Aµ → Aµ + ∂µχ , (1.184)

and Fµν is gauge invariant. Moreover, we see that

Ei = F0i , Bi = 1
2
εijk Fjk . (1.185)
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If we also encapsulate ρ and J in a 4-vector,

Jµ ≡ (ρ, J) , (1.186)

the first two Maxwell’s equations and the continuity equation read

∂µF
µν = −Jν , ∂µJ

µ = 0 . (1.187)

The last two Maxwell’s equations become

εµνρσ∂
νFρσ = 0 . (1.188)

(It is automatically satisfied thanks to the antisymmetric structure of Fµν.)

A Lorentz scalar Lagrangian density whose Euler-Lagrange equations of motion are the
Maxwell’s equations is

L ≡ −
1

4
FµνF

µν + JµAµ . (1.189)

Because of the term JµAµ that couples the potential to the sources, this Lagrangian density
is not gauge invariant, but the action (integral of L over all space-time) is, provided that the
current is conserved (i.e. satisfies the continuity equation). Indeed, we have

∫
d4x JµAµ → ∫

d4x Jµ(Aµ+∂µχ) =

∫
d4x JµAµ−

∫
d4x χ ∂µJ

µ︸ ︷︷ ︸
0

+
boundary

term
.

(1.190)

(The boundary term is zero if we assume that there are no sources at infinity.)

1.11.3 Canonical quantization in Coulomb gauge

Although it leads to Maxwell’s equations, the above Lagrangian has an unusual property,
related to gauge invariance: the conjugate momentum of the potential A0 is identically zero,

Π0(x) ≡ δL

δ∂0A0(x)
= 0 . (1.191)

Therefore, we cannot quantize electrodynamics simply by promoting the Poisson bracket
between A0 and its conjugate momentum to a commutator. However, this problem is not
intrinsic to quantum mechanics: the very same issue arises when trying to formulate classical
electrodynamics in Hamilton form. The resolution of this problem is to fix the gauge, i.e. to
impose an extra condition on the potential Aµ such that a unique Aµ corresponds to given E
and B fields. Possible gauge conditions are:

Axial gauge : nµAµ = 0 (nµ is a fixed 4-vector) ,
Lorenz gauge : ∂µAµ = 0 ,

Coulomb gauge : ∇ ·A = 0 . (1.192)
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Let us illustrate this procedure in Coulomb gauge26. Firstly, let us decompose the vector
potential Ai into longitudinal and transverse components:

Ai = Ai‖ +A
i
⊥ , (1.193)

with

Ai‖ ≡
∂i∂j

∂2
Aj , Ai⊥ ≡

(
δij −

∂i∂j

∂2

)
Aj . (1.194)

The Coulomb gauge condition is equivalent to Ai‖ = 0. The remaining components of Aµ

are therefore A0 and the two components of Ai⊥, in terms of which the Lagrangian reads:

L =
1

2
(∂tA

i
⊥)(∂tA

i
⊥) −

1

2
(∂jA

i
⊥)(∂jA

i
⊥) +

1

2
(∂iA

0)(∂iA
0)

+(∂tA
i
⊥)(∂iA

0) +
1

2
(∂iA

j
⊥)(∂jA

i
⊥) + J

0A0 − JiAi⊥ . (1.195)

Note that the two underlined terms will vanish in the action, after an integration by parts
(thanks to the transversality of Ai⊥). The Euler-Lagrange equation for the field A0 is

∂2A0 = J0 , (1.196)

i.e. the Poisson equation with source term J0. Note that this equation has no time derivative.
Therefore, A0 reflects instantaneously the changes of the charge density J0 (this does not
contradict special relativity, since A0 is not an observable – only E and B are). Ignoring all
the terms that would vanish in the action upon integration by parts, we may thus rewrite the
Lagrangian as

L =
1

2
(∂tA

i
⊥)(∂tA

i
⊥) −

1

2
(∂jA

i
⊥)(∂jA

i
⊥) − J

iAi⊥ +
1

2
J0
1

∂2
J0 , (1.197)

and obtain the following Euler-Lagrange equation of motion for the field Ai⊥:

�Ai⊥ = −
(
δij −

∂i∂j

∂2

)
Jj , (1.198)

i.e. a massless Klein-Gordon equation with the transverse projection of the charge current as
source term.

In this form, electrodynamics has no redundant degrees of freedom, and can now be
quantized in the vacuum (J0 = Ji = 0) in the canonical way. Firstly, we define the momentum
conjugated to Ai⊥,

Πi⊥(x) ≡
δL

δ ∂tA
i
⊥(x)

= ∂tA
i
⊥(x) . (1.199)

The, we promote Ai⊥ and Πi⊥ to quantum operators, and we impose on them the following
canonical equal-time commutation relations,[

Ai⊥(x),Π
j
⊥(y)

]
x0=y0

= i
(
δij −

∂i∂j

∂2

)
δ(x− y) ,[

Ai⊥(x),A
j
⊥(y)

]
x0=y0

=
[
Πi⊥(x),Π

j
⊥(y)

]
x0=y0

= 0 . (1.200)

26One may start from another gauge condition, and follow a similar line of reasoning in order to derive a quantized
theory of the photon field in another gauge. However, as we shall see later, we can make the gauge fixing much more
transparent by using functional quantization.

36



(In the first of these relations, the transverse projector in the right hand side follows from the
fact that Ai⊥ and Πj⊥ are both transverse.) These commutation relations can be realized by
decomposing Ai⊥ on a basis of solutions of the Klein-Gordon equation, i.e. plane waves:

Ai⊥(x) ≡
∑
λ=1,2

∫
d3p

(2π)32|p|

[
εiλ(p)a

†
λp e

+ip·x + εi∗λ (p)aλp e
−ip·x

]
, (1.201)

where the two vectors εi1,2(p) are polarization vectors orthogonal to p,

p · ελ(p) = 0 . (1.202)

In 3 spatial dimensions, a basis of such vectors has two elements, that we have labeled with
λ = 1, 2. In addition, it is convenient to normalize the polarization vectors as follows

ελ(p) · ε∗λ ′(p) = δλλ ′ ,
∑
λ=1,2

εi∗λ (p)εjλ(p) = δ
ij −

pipj

p2
. (1.203)

With this choice, the commutation relations of eqs. (1.200) are equivalent to the following
commutation relations between creation and annihilation operators:[

aλp, aλ ′q

]
=
[
a†λp, a

†
λ ′q

]
= 0 ,[

aλp, a
†
λ ′q

]
= (2π)3 2|p| δλλ ′ δ(p− q) . (1.204)

1.11.4 Feynman rules for photons

Eq. (1.201) can be inverted to obtain the creation and annihilation operators as

a†λp = −iεi∗λ (p)

∫
d3x e−ip·x

↔
∂0 A

i
⊥(x) ,

aλp = +iεiλ(p)

∫
d3x e+ip·x

↔
∂0 A

i
⊥(x) , (1.205)

With these formulas, it is easy to derive the LSZ reduction formulas for photons in the initial
and final states,

〈
qλ ′ · · ·︸ ︷︷ ︸
n photons

out
∣∣ pλ · · ·︸ ︷︷ ︸
m photons

in
〉 .
=

(
i

Z1/2

)m+n ∫
d4x e−ip·x εi∗λ (p) �x · · ·

×
∫
d4y e+iq·y εjλ ′(q) �y · · ·

〈
0out
∣∣T (Ai⊥(x)Aj⊥(y) · · · )∣∣0in

〉
.

(1.206)

The free Feynman propagator of the photon (in Coulomb gauge) can be read off the quadratic
part of the Lagrangian (1.197). In momentum space, it reads

G0 ij
F

(p) =
p

i j =
i
(
δij − pipj

p2

)
p2 + i0+

. (1.207)
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The operator εiλ(p)�x in the reduction formula simply amputates the external photon line to
which it is applied27. Transition amplitudes with incoming and outgoing photons are there-
fore given by amputated graphs, with a polarization vector contracted to the Lorentz index of
each external photon.

1.12 Abelian gauge invariance, Quantum Electrodynamics

So far, we have derived a quantized field theory for spin 1/2 fermions and a quantized field
theory of photons (in the absence of charged sources), but they appear as unrelated construc-
tions. The next step is to combine the two into a quantum theory of charged fermions that
interact electromagnetically via photon exchanges.

1.12.1 Global U(1) symmetry of the Dirac Lagrangian

Firstly, note that the fermion Lagrangian is invariant under the following transformation of
the fermion field

ψ → Ω† ψ , (1.208)

where Ω is a phase (i.e. an element of the group U(1)), provided that we consider only rigid
transformations (i.e. independent of the space-time point x). By Noether’s theorem, this
continuous symmetry corresponds to the existence of a conserved current,

Jµ = ψγµψ . (1.209)

It is indeed straightforward to check from Dirac’s equation that

∂µ J
µ = 0 . (1.210)

A more physical interpretation of this current emerges from the spatial integral of the com-
ponent J0,

Q ≡
∫
d3x J0(x) . (1.211)

Using the Fourier mode decomposition (1.173) of the spinor ψ(x), we obtain the following
expression:

Q =
∑
s=±

∫
d3p

(2π)32Ep

{
aspa

†
sp + b†spbsp

}
=
∑
s=±

∫
d3p

(2π)32Ep

{
b†spbsp − a†spasp

}
+ (infinite) constant . (1.212)

Thus, the operator Q counts the number of particles created by b† minus the number of
particles created by a†. If we assign a charge +1 to the former and −1 to the latter, wee can
interpret Q as the operator that measures the total charge in the system.

27Note that(
δij −

pipj

p2

)
ε
j
λ(p) = ε

i
λ(p) .

Therefore, the transverse projectors attached to the external photon lines can be dropped.
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1.12.2 Minimal coupling to a spin-1 field

Secondly, note that the gauge transformation of the potential Aµ, given in eq. (1.184), can
also be written in the following form28:

Aµ → Ω†AµΩ+ iΩ† ∂µΩ , (1.213)

with

Ω(x) ≡ e−i χ(x) . (1.214)

When written in this form, the gauge transformation of the photon field appears to be also
generated by the group U(1). Unlike the quantum field theory for fermions, the photon
Lagrangian is invariant under local gauge transformations, i.e. where Ω depends on x in
an arbitrary fashion. Therefore, at this point we have two disjoint quantum field theories: a
theory of non-interacting charged fermions that has a global U(1) invariance, and a theory of
non-interacting photons that has a local U(1) invariance, but no coupling between the two.

Let us see what minimal modification would be necessary in order to promote the U(1)
symmetry of the fermion sector into a local symmetry. An immediate obstacle is that

Ω(x)∂µΩ†(x) 6= ∂µ . (1.215)

Equivalently, the problem comes from the fact that the derivative ∂µψ does not transform in
the same way as ψ itself whenΩ depends on x. Instead, we have

∂µψ → ∂µΩ
†ψ = Ω† ∂µψ+ (∂µΩ

†)ψ . (1.216)

But we see that the second term can be connected to the variation of a photon field under
the same transformation. This suggests that the combination (∂µ − iAµ)ψ has a simpler
transformation law:(

∂µ − iAµ
)
ψ → (

∂µ − i
(
Ω†AµΩ+ iΩ†∂µΩ

))
Ω†ψ

= Ω†
(
∂µ − iAµ

)
ψ+Ω†

(
Ω(∂µΩ

†) + (∂µΩ)Ω†︸ ︷︷ ︸
∂µ(ΩΩ†)=0

)
ψ .

(1.217)

The operator Dµ ≡ ∂µ − iAµ is called a covariant derivative. The above calculation shows
that ψDµψ is invariant under local gauge transformations.

1.12.3 Abelian gauge theories

This observation is the basis of (Abelian) gauge theories: the minimal change to the Dirac
Lagrangian that makes it locally gauge invariant introduces a coupling ψAµψ between two
fermion fields and a spin-1 field such as the photon. The complete Lagrangian of this theory
therefore reads:

L = −
1

4
FµνF

µν +ψ
(
i /D−m)ψ . (1.218)

28Naturally, Ω†AµΩ = Aµ. We have used this somewhat more complicated form to highlight the analogy with
the non-Abelian gauge theories that we will study later.
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We already know the Feynman rules for the photon and fermion propagators, and the pre-
scription for external photon and fermion lines. The only additional Feynman rules is the
following interaction vertex,

µ
= −iγµ , (1.219)

that can be read off directly from the Lagrangian.

Quantum Electrodynamics (QED) is a quantum field theory that describes the interactions
between electromagnetic radiation (photons) and charged particles (electrons and positrons
for instance), whose Lagrangian is of the form (1.218). The only necessary generalization
compared to the previous discussion is to introduce a parameter e that represents the (bare)
electrical charge of the electron, which leads to the following changes:

Covariant derivative : Dµ ≡ ∂µ − i eAµ

Gauge transformation of the photon : Aµ → Ω†AµΩ+
i

e
Ω† ∂µΩ

Electrical current : eψγµψ

Photon-electron vertex : − i e γµ . (1.220)

1.13 Charge conservation and Ward-Takahashi identities

1.13.1 Charge of 1-particle states

The charge operatorQ defined in eq. (1.211) is invariant by translation in time (because Jµ is
a conserved current) and in space (because it is integrated over all space). Since the current
Jµ is a 4-vector, Q is also invariant under Lorentz transformations. Therefore Q conserves
the energy and momentum of the states on which it acts. When acting on the vacuum state,
one has

Q
∣∣0〉 = 0 . (1.221)

When acting on a 1-particle state
∣∣αp〉, Q gives another state with the same 4-momentum,

and therefore the same invariant mass. But since single particle states are separated from
states with a higher occupancy in the spectral function of the theory, Q |αp

〉
must in fact be

proportional to
∣∣αp〉 itself,

Q |αp
〉
= qα,p

∣∣αp〉 . (1.222)

In other words, 1-particle states are eigenvectors of the charge operator. Since Q is Lorentz
invariant, the eigenvalue qα,p cannot depend on the momentum p (nor on the spin state of
the particle), and it can only depend on the species of particle α. We will thus denote it qα,
and call it the electrical charge of the particle of type α.

In theories with 1-particle states that do not correspond to the fundamental fields of the
Lagrangian (e.g. composite bound states made of several elementary particles), one may go
a bit further. The canonical anti-commutation relations imply[

J0(x), ψ(y)
]
x0=y0

= −eψ(x) δ(x− y) ,
[
Q,ψ(y)

]
= −eψ(y) . (1.223)
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More generally, for any local function F(ψ(x), ψ†(x)), we have[
Q, F(ψ(y), ψ†(y))

]
x0=y0

= −e (n+ − n−) F(ψ(y), ψ
†(y)) (1.224)

where n+ is the number of ψ’s in F and n− the number of ψ†’s. If we evaluate this identity
between the vacuum and a 1-particle state

∣∣αp〉, we obtain〈
0
∣∣F(ψ(y), ψ†(y))∣∣αp〉 (qα − (n+ − n−)e) = 0 . (1.225)

Therefore, if the operator F(ψ,ψ†) can create the particle α from the vacuum (i.e. the matrix
element in the left hand side is non-zero), then we must have

qα = (n+ − n−) e . (1.226)

In other words, the charge of the particle α is the number of ψ’s it contains, minus the
number of ψ†’s, times the electrical charge e of the field ψ (as it appears in the Lagrangian).
The non-trivial aspect of this assertion comes from the fact that it does not depend on the
(usually complicated and non-perturbative) interactions that produce the binding.

So far, we have not discussed the renormalization of the parameter e. Its renormalized
value er should be such that the covariant derivative retains its form29 when expressed in
terms of the renormalized photon field Aµr , i.e.

∂µ − i erA
µ
r . (1.227)

Since the field Aµr is related to the bare photon field Aµb by

Aµb = Z
1/2
3 Aµr , (1.228)

the bare and renormalized charges must be related by

eb = Z
−1/2
3 er . (1.229)

In combination with eq. (1.226), this means that the charges of all 1-particle states are renor-
malized by the same factor Z−1/2

3 , regardless of the species of particle contained in the state.
For this to work, cancellations between various Feynman graphs are necessary. These can-
cellations are a consequence of the local gauge invariance of the theory, and in their simplest
form they can be encapsulated in the Ward-Takahashi identities, that we shall derive now.

1.13.2 Ward-Takahashi identities

Amplitudes with amputated external photon lines can be obtained as follows:

Mµ1µ2···(q1, q2, · · · ) =

∫
d4x1 d

4x2 · · · e−iq1·x1 e−iq2·x2 · · ·

×
〈
βout

∣∣T{Jµ1(x1)Jµ2(x2) · · ·}∣∣αin
〉
, (1.230)

where only electromagnetic currents appear inside the T-product, and all the external charged
particles are kept in the initial and final states α and β (and are therefore on-shell).

29The implicit assumption of this sentence is that the renormalization of QED preserves its local gauge invariance.
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Let us contract the Lorentz index µ1 with the momentum qµ11 of the first photon. After
an integration by parts, this reads

q1,µ1M
µ1µ2···(q1, q2, · · · ) = −i

∫
d4x1 d

4x2 · · · e−iq1·x1 e−iq2·x2 · · ·

×
〈
0out
∣∣∂µ1 T

{
Jµ1(x1)J

µ2(x2) · · ·
}∣∣0in

〉
.

(1.231)

The derivative of the T-product involves two types of terms: (i) terms where the derivative
acts directly on the current Jµ1(x1), that are zero thanks to current conservation, and (ii)
terms where it acts on the theta functions that order the times inside the T-product. With two
currents, the latter term reads30

∂

∂xµ
T
{
Jµ(x)Jν(y)

}
= δ(x0 − y0)

[
J0(x), Jν(y)

]
= 0 . (1.232)

This generalizes to more than two currents, and we therefore have quite generally

q1,µ1M
µ1µ2···(q1, q2, · · · ) = 0 . (1.233)

The same property would hold for all the external photon lines of the amplitude. This equa-
tion is known as the Ward-Takahashi identity.

A consequence of eq. (1.233) is that QED transition amplitudes are unchanged if the pho-
ton propagators or polarization vectors are modified by terms proportional to the momentum
pµ,

G0 µν
F

(p) → G0 µν
F

(p) + aµ pν + bν pµ

εµλ(p) → εµλ(p) + c p
µ . (1.234)

This is precisely the modification of the Feynman rules one would encounter by using a
different gauge fixing in the quantization of the theory. Thus, the Ward-Takahashi identities
imply the gauge invariance of the transitions amplitudes in QED.

1.14 Perturbative Unitarity

Unitarity is one of the pillars of quantum mechanics, since it is tightly related to the conser-
vation of probability. A completely general consequence of unitarity is the optical theorem,
whose perturbative translation becomes manifest in the so-called Cutkosky’s cutting rules.

1.14.1 Optical theorem

The “S-matrix” is the name given to the evolution operator that relates the in and out states:〈
αout

∣∣ ≡ 〈αin
∣∣ S . (1.235)

30This step of the argument would fail if we had kept charged field operators inside the T-product, because their
equal-time commutator with J0 is non-zero. Therefore, the Ward-Takahashi identities are valid provided all the
external charged particles are on-shell, but there is no such requirement for the neutral external particles (e.g. the
photons).
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In a unitary field theory, the S matrix is a unitary operator on the space of physical states:

SS† = S†S = 1 . (1.236)

This property means that for a properly normalized initial physical state
∣∣αin

〉
, we have∑

states β

|〈βout|αin〉|2 = 1 , (1.237)

where the sum includes only physical states. In other words, in any interaction process, the
state α must evolve with probability one into other physical states. In general, one subtracts
from the S-matrix the identity operator, that corresponds to the absence of interactions, and
one writes:

S ≡ 1+ iT . (1.238)

Therefore, one has

1 = (1+ iT)(1− iT †) = 1+ iT − iT † + TT † , (1.239)

or equivalently

−i(T − T †) = TT † . (1.240)

Let us now take the expectation value of this identity in the state
∣∣αin

〉
, and insert the identity

operator written as a complete sum over physical states between T and T † in the right hand
side. This leads to:

−i
〈
αin|T − T †|αin

〉
=
∑

states β

∣∣ 〈αin|T |βin〉
∣∣2 . (1.241)

Equivalently, this identity reads

Im 〈αin|T |αin〉 =
1

2

∑
states β

∣∣ 〈αin|T |βin〉
∣∣2 . (1.242)

This identity is known as the optical theorem. It implies that the total probability to evolve
from the state α to any state β equals twice the imaginary part of the forward transition
amplitude α→ α.

1.14.2 Cutkosky’s cutting rules

Eq. (1.242) is valid to all orders in the interactions. But as we shall see it also manifests itself
in some properties of the perturbative expansion. Let us first consider as an example a scalar
field theory, with a cubic interaction in − i

3!λφ(x)
3.

Firstly, decompose the free Feynman propagator in two terms, depending on the ordering
between the times at the two endpoints:

G0
F
(x, y) ≡ θ(x0 − y0)G0−+(x, y) + θ(y

0 − x0)G0+−(x, y) . (1.243)

The 2-point functions G0−+ and G0+− are therefore defined as

G0−+(x, y) ≡
〈
0in
∣∣φin(x)φin(y)

∣∣0in
〉
, G0+−(x, y) ≡

〈
0in
∣∣φin(y)φin(x)

∣∣0in
〉
. (1.244)
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In order to streamline the notations, it is convenient to rename G0
F

by G0++, and to introduce
another propagator with a reversed time ordering:

G0−−(x, y) ≡ θ(x0 − y0)G0+−(x, y) + θ(y
0 − x0)G0−+(x, y) . (1.245)

The usual Feynman rules in coordinate space amount to connect a vertex at x and a vertex
at y by the propagator G0++(x, y). The coordinate x of each vertex is integrated out over all
space-time, and a factor −iλ is attached to each vertex. We will call + this type of vertex.
Thus, the Feynman rules for calculating transition amplitudes involve only the + vertex and
the G0++ propagator.

Let us then introduce a vertex of type −, to which a factor +iλ is assigned (instead of −iλ
for the vertex of type +). The integrand of a Feynman graph G is a function G(x1, x2, · · · )
of the coordinates xi of its vertices. We will generalize this function by assigning + or −
indices to all the vertices,

G(x1, x2, · · · ) → Gε1ε2···(x1, x2, · · · ) , (1.246)

where the indices εi = ± indicate which is the type of the i-th vertex. The usual Feynman
rules thus correspond to the function G++···. These generalized integrands are constructed
according to the following rules:

+ vertex : −iλ ,

− vertex : +iλ ,

Propagator from ε to ε ′ : G0εε ′(x, y) . (1.247)

Let us assume that the i-th vertex carries the largest time among all the vertices of the
graph. Since x0i is largest than all the other times, then the propagator that connects this
vertex to an adjacent vertex of type ε at the position x is given by

G0±ε(xi, x) = G
0
−εε(xi, x) . (1.248)

In other words, this propagator depends only on the type ε of the neighboring vertex, but not
on the type of the i-th vertex. Therefore, we have

G···[+i]···(x1, x2, · · · ) + G···[−i]···(x1, x2, · · · ) = 0 , (1.249)

where the notation [±i] indicates that the i-th vertex has type + or − (the types of the vertices
not written explicitly are the same in the two terms, but otherwise arbitrary). This identity,
known as the largest time equation, follows from eq. (1.248) and from the sign change when
a vertex changes from + to −.

A similar identity also applies to the sum extended to all the possible assignments of the
+ and − indices:∑

{εi=±}

Gε1ε2···(x1, x2, · · · ) = 0 . (1.250)

This is obtained by pairing the terms and using eq. (1.249). It is crucial to observe that this
identity is now valid for any ordering of the times at the vertices of the graph. Therefore, it
is also valid in momentum space after a Fourier transform. If we isolate the two terms where
all the vertices are of type + or all of type −, this also reads

G++··· + G−−··· = −
∑

{εi=±} ′
Gε1ε2··· , (1.251)
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where the symbol {εi = ±} ′ indicates the set of all the vertex assignments, except + + · · ·
and −− · · · .

Using eq. (1.82),

G0++(x, y) =

∫
d3p

(2π)32Ep

{
θ(x0−y0) e−ip·(x−y)+θ(y0−x0) e+ip·(x−y)

}
, (1.252)

and comparing with eq. (1.245), we can read off the following representations for G0−+ and
G0+−,

G0−+(x, y) =

∫
d3p

(2π)32Ep
e−ip·(x−y)

G0+−(x, y) =

∫
d3p

(2π)32Ep
e+ip·(x−y) . (1.253)

Likewise, we obtain

G0−−(x, y) =

∫
d3p

(2π)32Ep

{
θ(x0−y0) e+ip·(x−y)+θ(y0−x0) e−ip·(x−y)

}
, (1.254)

Note that G0++ +G0−− = G0−+ +G0+−.

Using the following representation for step functions:

θ(x0 − y0) =

∫
dp0

2π

−i

p0 − i0+
eip0(x

0−y0) ,

θ(y0 − x0) =

∫
dp0

2π

i

p0 + i0+
eip0(x

0−y0) , (1.255)

we can derive the momentum space expressions of these propagators:

G0++(p) =
i

p2 −m2 + i0+
,

G0−−(p) =
−i

p2 −m2 − i0+
=
[
G0++(p)

]∗
,

G0−+(p) = 2π θ(+p0)δ(p
2 −m2) ,

G+−(p) = 2π θ(−p0)δ(p
2 −m2) . (1.256)

Therefore, the momentum space Feynman rules for the − sector are the complex conjugate
of those for the + sector, since we have also +iλ = (−iλ)∗. Note that for this assertion to be
true, it is crucial that the coupling constant λ be real, which is a condition for unitarity.

The Fourier transform of an amputated Feynman graph G gives a contribution to a tran-
sition amplitude (recall the LSZ reduction formula), i.e. a matrix element of the S operator.
Therefore, Γ ≡ iG gives a matrix element of the T operator. Therefore, after Fourier trans-
form, eq. (1.251) becomes

Im Γ++··· =
1

2

∑
{εi=±} ′

[
iΓ
]
ε1ε2···

. (1.257)
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If the graph contains N vertices, there are a priori 2N − 2 terms in the right hand side of
this equation. However, this number is considerably reduced if we notice that the +− and
−+ propagators can carry energy only in one direction (from the − vertex to the + vertex),
because of the factors θ(±p0). This constraint on energy flow forbids “islands” of vertices
of type + surrounded by only type − vertices, or the reverse. From the LSZ reduction for-
mula (1.62) and the definition (1.83) of the Fourier transformed propagators, we see that the
notation G−+(p) implies a momentum p defined as flowing from the + endpoint to the −
endpoint:

G−+(p) =
p

+ -
. (1.258)

Thus, the proportionality G−+(p) ∝ θ(p0) indicates that the energy flows from the + end-
point to the − endpoint.

Let us consider the example of a very simple 1-loop two-point function31 Γ(p),

−iΓ(p) =
p

. (1.259)

Because of the constrained energy flow direction in the propagators G−+, G+−, if the mo-
mentum p is entering into the graph from the left with p0 > 0, the only assignments that
mix + and − vertices must divide the graph into two connected subgraphs: a connected part
made only of + vertices that comprises the vertex where p0 > 0 enters in the graph, and a
connected part containing only − vertices comprising the vertex where the energy leaves the
graph. For the topology shown in eq. (1.259), there is only one possibility,

−iΓ+−(p) =
p

, (1.260)

where the vertex of type − is circled in the diagrammatic representation. The division of the
graph into these two subgraphs may be materialized by drawing a line (shown in gray above)
through the graph. This line is called a cut, and the rules for calculating the value of a graph
with a given assignment of + and − vertices are called Cutkosky’s cutting rules. For instance,
in the case of the above example, they lead immediately to the following expression32 for the
imaginary part of Γ++,

Im Γ++(p) =
λ2

2

1

2

∫
d4k

(2π)4
G−+(k)G−+(p− k) , (1.261)

that can be rewritten as

Im Γ++(p) =
λ2

4

∫
d4k1

(2π)4
2πθ(k01)δ(k

2
1 −m

2)

×
∫
d4k2

(2π)4
2πθ(k02)δ(k

2
2 −m

2)(2π)4δ(p− k1 − k2) . (1.262)

31Momentum conservation implies that it depends on a single momentum p.
32The first factor 1/2 comes from eq. (1.257), and the second 1/2 is the symmetry factor of the graph for a scalar

loop. In the formula for Im Γ++, it has the interpretation of the factor that symmetrizes a 2-particle final state.
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In the right hand side of this equation, we recognize the square of the transition amplitude〈
k1k2out

∣∣pin
〉

(whose value at tree level is simply λ), integrated over the (symmetrized) ac-
cessible phase-space for a 2-particle final state. We can therefore view this equation as a
perturbative realization of the optical theorem at order λ2. Indeed, at this order, the only
states β that may be included in the sum over final states are 2-particle states.

The considerations developed on this example can be generalized to the 2-point function
at any loop order. We can write

Im Γ++(p) =
1

2

∑
cuts γ

(iΓγ(p)) , (1.263)

where the sum is now limited reduced to a sum over all the possible cuts (with the + vertices
left of the cut and the − vertices right of the cut). As an illustration, let us consider the
following 2-loop example, for which three cuts are possible:

Im Γ++(p) = . (1.264)

At this order start to appear various contributions to the right hand side of eq. (1.242): the
central cut corresponds to a 3-body final state, while the other two cuts correspond to an
interference between the tree level and the 1-loop correction to a 2-body decay.

1.14.3 Fermions

In the case of spin 1/2 fermions, the propagators connecting the various types of vertices are
given by

S0++(p) =
i(/p+m)

p2 −m2 + i0+
,

S0−−(p) =
−i(/p+m)

p2 −m2 − i0+
,

S0−+(p) = 2π (/p+m)θ(−p0)δ(p
2 −m2) ,

S0+−(p) = 2π (/p+m)θ(+p0)δ(p
2 −m2) . (1.265)

The cutting rules for fermions are therefore similar to those for scalar particles. The possi-
bility to interpret the cut fermion propagators in terms of on-shell final state fermions is a
consequence of the following identities:

/p+m =
∑

spin s
us(p)us(p) ,

/p−m =
∑

spin s
vs(p)vs(p) , (1.266)

that are valid when p0 =
√
p2 +m2 > 0. In the case of the propagator S0−+(p), we may

attach the spinor us(p) to the amplitude on the right of the cut, and the spinor us(p) to
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the amplitude on the left, which are precisely the spinors required by the LSZ formula for
a fermion of momentum p in the final state. In the case of S0+−(p), for which p0 < 0, we
should first write

S0+−(p) = −2π(−/p−m)θ(−p0)δ(p
2 −m2)

= −2π
∑

spin s

vs(−p)vs(−p)θ(−p0)δ(p
2 −m2) , (1.267)

in order to see that it corresponds to an anti-fermion in the final state.

1.14.4 Photons

Coulomb gauge : For photons in Coulomb gauge, the reasoning is very similar to the case
of fermions. Firstly, the four different types of propagators read

G0 ij++(p) =
i
(
δij − pipj

p2

)
p2 + i0+

,

G0 ij−−(p) =
−i
(
δij − pipj

p2

)
p2 − i0+

,

G0 ij−+(p) = 2π θ(+p0)
(
δij − pipj

p2

)
δ(p2) ,

G0 ij+−(p) = 2π θ(−p0)
(
δij − pipj

p2

)
δ(p2) . (1.268)

Recalling also that∑
λ=±

εi∗λ (p)εjλ(p) = δ
ij −

pipj

p2
, (1.269)

we see that the projector that appears in the cut propagators can be interpreted as the polar-
ization vectors that should attached to amplitudes for each final state photon. Therefore, the
cutting rules in Coulomb gauge have a direct interpretation in terms of the optical theorem.
This simplicity follows from the fact that the only propagating modes are physical modes in
Coulomb gauge.

Feynman gauge : This interpretation is not so direct in covariant gauges, such as the
Feynman gauge. In this gauge, the free photon propagator is given by:

G0µν++ (p) = −gµν
i

p2 + i0+
. (1.270)

The factor −gµν does not change anything to the cutting rules, and simply appears as a
prefactor in all propagators:

G0µν−− (p) = −gµν
−i

p2 − i0+
,

G0µν−+ (p) = −2πgµνθ(+p0)δ(p
2) ,

G0µν+− (p) = −2πgµνθ(−p0)δ(p
2) . (1.271)
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Let us assume for definiteness that the photon momentum p is in the ẑ direction, i.e. p =
(0, 0, p). Therefore, the two physical polarizations vectors, orthogonal to p, can be chosen
as follows

εµ1 (p) ≡ (0, 1, 0, 0) ,

εµ2 (p) ≡ (0, 0, 1, 0) . (1.272)

They are orthonormal

ελ(p) · ελ ′(p) = −δλλ ′ , (1.273)

and transverse: pµε
µ
1,2(p) = 0. However, the tensor −gµν that appears in the cut photon

propagators cannot be written as a sum over physical polarizations:

−gµν 6=
∑
λ=1,2

εµλ(p)ε
ν
λ(p)

∗ . (1.274)

Only the µ = 1, 2 components of these tensors are equal. As a consequence, it seems that
Cutkosky’s cutting rules may not lead to terms that we cannot interpret as physical final
photon states, which would violate the optical theorem. If this was the case, then perturbation
theory would not be consistent with unitarity. To see how this paradox is resolved, let us
introduce two more (unphysical) polarization vectors 33:

εµ+(p) ≡
1√
2
(1, 0, 0, 1) ,

εµ−(p) ≡
1√
2
(1, 0, 0,−1) , (1.276)

thanks to which we may now write

gµν = εµ+(p)ε
ν
−(p)

∗ + εµ−(p)ε
ν
+(p)

∗ −
∑
λ=1,2

εµλ(p)ε
ν
λ(p)

∗ . (1.277)

In other words, the physical polarization sum in the right hand side of eq. (1.274) is equal to
−gµν, plus some extra terms that are proportional to pµ of pν.

When we use Cutkosky’s cutting rules in order to calculate the imaginary part of graph,
a cut photon line carrying the momentum pµ leads to an expression that has the following
structure:

iMµ
1 (p) [−g

µν] (iMν
2 (p))

∗
, (1.278)

where iMµ
1 and iMν

2 are the amplitudes on the left and on the right of the cut, respectively.
Here, we have highlighted only one of the cut photons, and the other cut lines have not been
written explicitly since they do not play any role in the argument. Moreover, only the tensor

33For an arbitrary momentum p, these polarization vectors read:

ε
µ
+(p) ≡

1
√
2|p|

(p0,p) ,

ε
µ
−(p) ≡

1
√
2|p|

(p0,−p) . (1.275)
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structure of the cut propagator matters, and we have therefore only written the factor −gµν.
The above quantity can be rewritten as

iMµ
1 (p)

[∑
λ=1,2

εµλ(p)ε
ν
λ(p)

∗−εµ+(p)ε
ν
−(p)

∗−εµ−(p)ε
ν
+(p)

∗

]
(iMν

2 (p))
∗

= iMµ
1 (p)

[∑
λ=1,2

εµλ(p)ε
ν
λ(p)

∗

]
(iMν

2 (p))
∗
. (1.279)

Indeed, the last two terms are zero thanks to the Ward identity satisfied34 by the amplitudes
iMµ

1 and iMν
2 :

pµM
µ
1 (p) = pνM

ν
2 (p) = 0 , (1.280)

and because εµ+(p) is proportional to pµ. Therefore, the non-physical photon degrees of
freedom, that may appear in the cutting rules in covariant gauges, are in fact canceled by the
Ward identities satisfied by QED amplitudes.

1.14.5 Schwinger-Keldysh formalism

Perturbation theory provides a way of computing transition amplitudes like
〈
p′q′out

∣∣pqin
〉
.

The calculation of these matrix elements is amenable via the LSZ reduction formulas to
the expectation value of time-ordered products of field operators, between the in- and out-
vacuum states, for instance

〈
0out
∣∣Tφ(x1)φ(x2)φ(x3)φ(x4)∣∣0in

〉
, the calculation of which

can be performed with the usual Feynman rules.

However, there is a class of more general problems that cannot be addressed by this
standard perturbation theory. One of the simplest problems of that kind is the evaluation of the
expectation value of the number operator

〈
αin
∣∣a†out(p)aout(p)

∣∣αin
〉
, that counts the particles

of momentum p in the final state, given that the initial state was the state α. To evaluate
this matrix element, one needs to calculate the amplitude

〈
αin
∣∣φ(x)φ(y)∣∣αin

〉
, that has no

time ordering, and where one has in states on both sides. More generally, one sometimes
needs the amplitudes

〈
0in
∣∣T (φ(x1) · · ·φ(xn)) T

(
φ(y1) · · ·φ(yp)

)∣∣0in
〉
, where T denotes

the anti-time ordering. The Schwinger-Keldysh formalism is tailored for addressing these
more general questions. Moreover, as we shall see, it is formally identical to Cutkosky’s
cutting rules.

Schwinger-Keldysh perturbation theory : Consider the expectation value〈
0in
∣∣T (φ(x1) · · ·φ(xn)) T

(
φ(y1) · · ·φ(yp)

)∣∣0in
〉
. (1.281)

As we did in the derivation of ordinary perturbation theory, let us first replace each Heisenberg
field operator by its counterpart in the interaction representation, using eq. (1.43). After some

34When an amplitude has external charged particles, the Ward identity is satisfied only if these particles are on-
shell. This is indeed the case here, because all the cut lines are on-shell, as well as all the incoming particles.
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rearrangement of the evolution operators, we get :〈
0in
∣∣Tφ(x1) · · ·φ(xn) Tφ(y1) · · ·φ(yp)

∣∣0in
〉
=

=
〈
0in
∣∣T [φin(x1) · · ·φin(xn) exp i

∫+∞
−∞ d

4x L
I
(φin(x))

]
×T
[
φin(y1) · · ·φin(yp) exp i

∫+∞
−∞ d

4x L
I
(φin(x))

]∣∣0in
〉
.

(1.282)

Here, we have exploited the fact that the factor U(−∞,+∞) that appears in these manip-
ulations is the anti-time ordered exponential of the interaction term, in order to write this
formula in a more symmetric way. To go further, it is useful to imagine that the time axis is
in fact a contour C made of two branches labeled + and − running parallel to the real axis, as
illustrated in figure 1.1. This contour is oriented, with the + branch running in the direction

Figure 1.1: Time contour in the Schwinger-Keldysh formalism.

C
x0

−

+

of increasing time, followed by the − branch running in the direction of decreasing time.
Then, it is convenient to introduce a path ordering, denoted by P and defined as a standard
ordering along the contour C. In more detail, one has

PA(x)B(y) =


TA(x)B(y) if x0, y0 ∈ C+ ,

TA(x)B(y) if x0, y0 ∈ C− ,

A(x)B(y) if x0 ∈ C− , y
0 ∈ C+ ,

B(y)A(x) if x0 ∈ C+ , y
0 ∈ C− .

(1.283)

One can use this contour ordering to write the previous equations in a much more compact
way. In particular, eq. (1.282) can be generalized into :〈

0in
∣∣Pφ−(x1) · · ·φ−(xn)φ

+(y1) · · ·φ+(yp)
∣∣0in
〉
=

=
〈
0in
∣∣Pφ−

in (x1) · · ·φ
−
in (xn)φ

+
in (y1) · · ·φ

+
in (yp) exp i

∫
C

d4x L
I
(φin(x))

∣∣0in
〉
.

(1.284)

The differences compared to eq. (1.282) are threefold :

i. A single overall path ordering takes care automatically of both the time ordering and
the anti-time ordering contained in the original formula,

ii. For this trick to work, one must (temporarily) assume that the fields on the upper and
lower branch of the contour C are distinct: φ+ and φ− respectively,
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iii. The time integration in the exponential is now running over both branches of the con-
tour C.

The advantage of having introduced this more complicated time contour is that it leads to a
expressions that are formally identical to those of ordinary perturbation theory, provided one
replaces the time ordering by the path ordering and provided one extends the time integration
fromR to C. In particular, one can first define a generating functional,

ZSK [j] ≡
〈
0in
∣∣T exp i

∫
C

d4x j(x)φ(x)
∣∣0in
〉
, (1.285)

that encodes all the correlators considered in this section, provided the external source j has
distinct values j+ and j− on the two branches of the contour (the superscript SK is used to
distinguish this generating functional from the standard one). As in the case of Feynman
perturbation theory, one can write this generating functional as:

ZSK [j] = exp i
∫
C

d4xL
I

(
δ

iδj(x)

) 〈
0in
∣∣T exp i

∫
C

d4x j(x)φin(x)
∣∣0in
〉

︸ ︷︷ ︸
ZSK
0 [j]

, (1.286)

with

ZSK
0 [j] = exp

{
−
1

2

∫
C

d4xd4y j(x)j(y)G0
C
(x, y)

}
G0

C
(x, y) ≡

〈
0in
∣∣Pφin(x)φin(y)

∣∣0in
〉
. (1.287)

The free propagator G0
C

, defined on the contour C, is a natural extension of the Feynman
propagator (in particular, it coincides with the Feynman propagator if the two time arguments
are on the + branch of the contour). Besides the propagator, the other change to the perturba-
tive expansion in the Schwinger-Keldysh formalism is that the time integration at the vertices
of a diagram must run over the contour C instead of the real axis.

The connection with Cutkosky’s cutting rules appears when we break down the propaga-
tor into 4 components G0±±(x, y), depending on whether the times x0, y0 are on the upper or
lower branch of the contour. An explicit calculation of these free propagators leads to

G0++(x, y) = i

∫
d4p

(2π)4
e−ip·(x−y)

p2 −m2 + iε
,

G0−−(x, y) = −i

∫
d4p

(2π)4
e−ip·(x−y)

p2 −m2 − iε
,

G0+−(x, y) =

∫
d4p

(2π)4
e−ip·(x−y) 2πθ(−p0)δ(p2 −m2) ,

G0−+(x, y) =

∫
d4p

(2π)4
e−ip·(x−y) 2πθ(+p0)δ(p2 −m2) . (1.288)

The time integration on the contour C is also split into two terms, the upper branch corre-
sponding to a vertex + (−iλ) and the lower branch to a vertex − (+iλ, because of the minus
sign due to integrating from +∞ to −∞).
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In the Schwinger-Keldysh formalism, the vacuum-vacuum diagrams are simpler than in
conventional perturbation theory. Here, one has

ZSK [0] =
〈
0in
∣∣0in
〉
= 1 , (1.289)

which means that all the connected vacuum-vacuum diagrams are zero. This is due to the
fact that in this formalism one is calculating correlators that have the in- vacuum on both
sides. This cancellation works individually for each diagram topology, and results from a
cancellation between the various ways of assigning the + and − indices to the vertices of a
diagram (a vacuum-vacuum diagram with a fixed assignment of + and − vertices is not zero
in general). This cancellation can be viewed as a consequence of eq. (1.250).

Relation between the functionals Z[j] and ZSK [j] : There is a useful functional relation
between the generating functional of conventional perturbation theory Z[j], and that of the
Schwinger-Keldysh formalism :

ZSK [j+, j−] = exp
[∫
d4xd4y G0+−(x, y)�x�y

δ2

δj+(x)δj−(y)

]
Z[j+]Z

∗[j−] . (1.290)

(Here, in order to avoid any confusion, we write explicitly the two components + and −
of the source j in the Schwinger-Keldysh generating functional.) Thanks to this formula,
one can construct diagrams in the Schwinger-Keldysh formalism by stitching an ordinary
Feynman diagram and the complex conjugate of another Feynman diagram. In order to prove
this relation, it is sufficient to establish it for the free theory, since the interactions are always
trivially factorizable (see eqs. (1.70) and (1.286)).
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Chapter 2

Functional quantization

2.1 Path integral in quantum mechanics

Let us consider a quantum mechanical system with a single degree of freedom, whose Hamil-
tonian is

H ≡ P2

2m
+ V(Q) . (2.1)

The position and momentum operators Q and P obey the following commutation relation[
Q,P

]
= i. We would like to calculate the probability for the system to start at the position

qi at a time ti and end at the position qf at the time tf. The answer may be obtained as∣∣ψ(qf, tf)∣∣2 by solving Schrödinger’s equation with an initial wavefunction localized at qi,

i∂tψ(q, t) = Hψ(q, t) , ψ(q, ti) ≡ δ(q− qi) . (2.2)

More formally, in the Schrödinger picture, it is given by the squared modulus of the following
transition amplitude〈

qf
∣∣e−iH(tf−ti)

∣∣qi〉 , (2.3)

where
∣∣q〉 denote the eigenstate of the position operator with eigenvalue q. Let us subdivide

the time interval [ti, tf] into N equal sub-intervals, by introducing:

∆ ≡ tf − ti
N

, tn ≡ ti + n∆ . (2.4)

(Therefore, we have t0 = ti and t
N
= tf.) The time evolution operator can be factorized as

e−iH(tf−ti) = e−iH(t
N
−t
N−1

) × e−iH(t
N−1

−t
N−2

) × · · · × e−iH(t
1
−t
0
) . (2.5)

Between the successive factors in the right hand side, we can insert the identity operator
written as a complete sum over the position eigenstates:

1 =

∫+∞
−∞ dq

∣∣q〉〈q∣∣ , (2.6)
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and the transition amplitude (2.3) becomes

〈
qf
∣∣e−iH(tf−ti)

∣∣qi〉 =

∫ N−1∏
j=1

dqj
〈
qf
∣∣e−i∆H

∣∣q
N−1

〉〈
q
N−1

∣∣e−i∆H
∣∣q
N−2

〉
· · ·

· · ·
〈
q
1

∣∣e−i∆H
∣∣qi〉 . (2.7)

Note that this formula, illustrated in the figure 2.1, is exact for any value ofN. In the Hamilto-

Figure 2.1: Illustration of eq. (2.7) with 10 and 200 intermediate points. The endpoints (green)
are fixed, while the intermediate points (red) are integrated over. The line segments connect-
ing the points are just a help to guide the eye, but there is no “path” at this stage.

t

q

t

q

nian (2.1), the kinetic energy and potential energy terms do not commute, which complicates
the evaluation of its exponential. We can remedy this situation by using the Baker-Campbell-
Hausdorff formula, that we shall write here as follows

e∆(A+B) = e∆Ae∆B e−
∆2

2
[A,B]+O(∆3) . (2.8)

In the limit ∆ → 0 (i.e. N → ∞), we may neglect the last factor since the product of all
such factors goes to unity1 when N → ∞. Therefore, each elementary factor of eq. (2.7) is

1We use

lim
N→∞ eα1/N

2
eα2/N

2
· · · eαN/N

2

= 1 ,

provided that the sum
∑
i αi’s does not diverge too quickly.

56



rewritten as

〈
qi+1

∣∣e−i∆H
∣∣qi〉 ≈

〈
qi+1

∣∣e−i∆ P22m e−i∆V(Q)
∣∣qi〉

=

∫
dpi

2π

〈
qi+1

∣∣e−i∆ P22m ∣∣pi〉 〈pi∣∣e−i∆V(Q)
∣∣qi〉 , (2.9)

where we have introduced the identity operator, written this time as a complete sum over
momentum eigenstates:

1 ≡
∫
dp

2π

∣∣p〉〈p∣∣ . (2.10)

In the two factors, the exponential operator depends only on P orQ, and the matrix elements
are trivial to evaluate by using the fact that the operators are enclosed between momentum
and position eigenstates:

〈
qi+1

∣∣e−i∆ P22m ∣∣pi〉 = e−i∆ p2i2m 〈
qi+1

∣∣pi〉 ,〈
pi
∣∣e−i∆V(Q)

∣∣qi〉 = e−i∆V(qi)
〈
pi
∣∣qi〉 . (2.11)

Using now〈
q
∣∣p〉 = eipq , (2.12)

we arrive at the formula2〈
qi+1

∣∣e−i∆H
∣∣qi〉 = e−i∆H(pi,qi) ei pi(qi+1−qi)

(
1+ O(∆2)

)
. (2.13)

If we define q̇i ≡ (qi+1−qi)/∆ the slope of the line segments in the figure 2.1, and we take
the limit N→∞, we may write the transition amplitude as a path integral:

〈
qf
∣∣e−iH(tf−ti)

∣∣qi〉 = ∫
q(ti)=qi
q(tf)=qf

[
Dp(t)Dq(t)

]
exp
{
i

∫tf
ti

dt
(
p(t)q̇(t)−H(p(t), q(t))

)}
.

(2.14)

One should be aware of the fact that the functional measure
[
Dq(t)Dp(t)

]
in general lacks

solid mathematical foundations, although it allows for some powerful manipulations that
would be extremely cumbersome to perform at the level of quantum operators. Note that
at the boundaries ti,f the position is well defined, and therefore the momentum is not con-
strained (by the uncertainty principle). A crucial aspect of eq. (2.14) is that all the objects that
appear in the right hand side are ordinary c-numbers that commute, while the left hand side is
made of quantum operators and states. In this section, we have started from the conventional
formulation of transition amplitudes in quantum mechanics, in order to arrive at the formula
(2.14). However, one may now “forget” the canonical formalism and view the path integral
expression of transition amplitudes as another way of going from a classical Hamiltonian H

to a quantized theory.

2A bit more care is necessary for Hamiltonians that are not separable into a sum of a P-dependent term and aQ-
dependent term. A proper treatment should use Weyl’s prescription for defining the quantum Hamiltonian operator
from the classical Hamiltonian. In eq. (2.13), one would obtain H(pi,

1
2
(qi + qi+1)) instead of H(pi, qi).
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For a Hamiltonian where the P dependence has no powers higher than quadratic, as in
the example of eq. (2.1), it is possible to perform exactly the integral over p(t). This type
of integral is called a Gaussian path integral. Gaussian path integrals can be evaluated in the
same way as their ordinary counterparts, using the following formulas,∫+∞

−∞ dx e
−x2/(2σ) =

√
2πσ ,

∫+∞
−∞ dx e

±ix2/(2σ) = e±i
π
4
√
2πσ , (2.15)

and treating each p(t) as an independent variable. In the present case, we need the integral∫
dp ei∆(pq̇−

p2

2m
) = e−i

π
4

√
2πm

∆︸ ︷︷ ︸
prefactor

independent of q,q̇

ei∆
mq̇2

2 . (2.16)

The (infinite in the limit ∆→ 0) prefactors can be hidden in the measure
[
Dq(t)

]
since they

do not depend on the path, and we are therefore led to the following formula:

〈
qf
∣∣e−iH(tf−ti)

∣∣qi〉 = ∫
q(ti)=qi
q(tf)=qf

[
Dq(t)

]
exp
{
i

∫tf
ti

dt L(q(t))
}
=

∫
q(ti)=qi
q(tf)=qf

[
Dq(t)

]
eiS[q(t)] ,

(2.17)

where L(q) is the classical Lagrangian:

L(q) ≡ mq̇
2

2
− V(q) (2.18)

and S[q] the corresponding classical action.

2.2 Classical limit, Least action principle

In the previous section, we have written all the formulas with h̄ = 1. Had we kept the Planck
constant, the final formula would have been:〈

qf
∣∣e−iH(tf−ti)

∣∣qi〉 = ∫
q(ti)=qi
q(tf)=qf

[
Dq(t)

]
e
i
h̄
S[q(t)] . (2.19)

(This can be guessed a posteriori based on the fact that h̄ has the dimension of an action.)
Because of the factor i inside the exponential, this integral is wildly oscillating, except in the
immediate vicinity of the function qc(t) that realizes the extremum of the action. Note that
this function is precisely the solution of the classical Euler-Lagrange equations of motion.
Roughly speaking, the phase oscillations become significant when∣∣S[q(t)] − S[qc(t)]

∣∣ ≥ 2πh̄ , (2.20)

and paths that fulfill this inequality do not contribute to the path integral. Therefore, in the
limit h̄ → 0, the path integral is dominated by the unique path qc(t), i.e. by the classical
trajectory of the system. The path integral formalism thus provides a very intuitive way of
connecting smoothly quantum and classical mechanics.
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Figure 2.2: Illustration of eq. (2.19). The paths whose action is far apart from the classical ex-
tremum are plotted in fainter colors. The solid black line is the classical trajectory.

t

q

2.3 More functional machinery

2.3.1 Time-ordered products

Consider the matrix element〈
qf
∣∣e−iH(tf−t1) Q e−iH(t1−ti)

∣∣qi〉 , (2.21)

that measures the expectation value of the position at the time t1. In order to evaluate this
object, we need to insert on either side of the position operatorQ an identity operator written
as a complete sum over position eigenstates, i.e.

Q → ∫
dqdq ′

∣∣q〉 〈q∣∣Q∣∣q ′〉︸ ︷︷ ︸
qδ(q−q ′)

〈
q ′
∣∣ = ∫ dq q ∣∣q〉〈q∣∣ . (2.22)

This leads immediately to the following path integral representation:〈
qf
∣∣e−iH(tf−t1) Q e−iH(t1−ti)

∣∣qi〉 = ∫
q(ti)=qi
q(tf)=qf

[
Dq(t)

]
q(t1) e

iS[q(t)] . (2.23)

Likewise, if t2 > t1, we have:〈
qf
∣∣e−iH(tf−t2) Q e−iH(t2−t1) Q e−iH(t1−ti)

∣∣qi〉 =
=

∫
q(ti)=qi
q(tf)=qf

[
Dq(t)

]
q(t1)q(t2) e

iS[q(t)] . (2.24)

If we introduce a time-dependent position operator

Q(t) ≡ eiHtQe−iHt , (2.25)
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and its eigenstates∣∣q, t〉 ≡ eiHt ∣∣q〉 , (2.26)

the previous equation takes a much more compact form

〈
qf, tf

∣∣Q(t2)Q(t1)
∣∣qi, ti〉 =

t2>t1

∫
q(ti)=qi
q(tf)=qf

[
Dq(t)

]
q(t1)q(t2) e

iS[q(t)] . (2.27)

The condition t2 > t1 is crucial here, because the left hand side would is quite different if
the times are ordered differently. In contrast, the objects q(t1) and q(t2) in the right hand
side are ordinary numbers that commute. One may render this formula true for any ordering
between t1 and t2 by introducing a T-product, that ensures that the operator with the largest
time is always on the left:

〈
qf, tf

∣∣T (Q(t1)Q(t2)
)∣∣qi, ti〉 = ∫

q(ti)=qi
q(tf)=qf

[
Dq(t)

]
q(t1)q(t2) e

iS[q(t)] . (2.28)

This formula generalizes to n factors:

〈
qf, tf

∣∣T (Q(t1) · · ·Q(tn)
)∣∣qi, ti〉 = ∫

q(ti)=qi
q(tf)=qf

[
Dq(t)

]
q(t1) · · ·q(tn) eiS[q(t)] .(2.29)

This result is extremely important in applications to quantum field theory, since time-ordered
products of field operators are the central objects that appear in the LSZ reduction formulas.
One may also apply differential operators containing time derivatives on this equation, for
instance:

∂

∂t1

〈
qf, tf

∣∣T (Q(t1) · · ·Q(tn)
)∣∣qi, ti〉 = ∫

q(ti)=qi
q(tf)=qf

[
Dq(t)

]
q̇(t1) · · ·q(tn) eiS[q(t)] .(2.30)

In other words, a time derivative in the integrand of the path integral also applies to the step
functions that ensure the time ordering in the left hand side.

2.3.2 Functional sources and derivatives

The amplitudes of the form (2.29) can all be encapsulated into the following generating func-
tional:

Zfi[j(t)] ≡
〈
qf, tf

∣∣T exp i
∫tf
ti

dt j(t)Q(t)
∣∣qi, ti〉 , (2.31)

where j(t) is some arbitrary function of time. From Zfi[j], the amplitudes can be recovered
by functional differentiation:〈

qf, tf
∣∣T (Q(t1) · · ·Q(tn)

)∣∣qi, ti〉 = δn Zfi[j]

inδj(t1) · · · δj(tn)

∣∣∣∣
j≡0

. (2.32)
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Functional derivatives obey the usual rules of differentiation, with the additional property that
the values of the function j(t) at different times should be viewed as independent variables,
i.e.

δj(t)

δj(t ′)
= δ(t− t ′) . (2.33)

From this formula, one may also read the dimension of a functional derivative:

dim
[ δ

δj(t)

]
= −dim

[
j(t)
]
− dim

[
t
]
. (2.34)

From eq. (2.29), we can derive an expression of the generating functional Zfi as a path
integral,

Zfi[j(t)] =

∫
q(ti)=qi
q(tf)=qf

[
Dq(t)

]
e
iS[q(t)]+i

∫tf
ti
dt j(t)q(t)

, (2.35)

that involves only the commuting c-number q(t) and no time-ordering. Note also that there
ia an Hamiltonian version of this path integral:

Zfi[j(t)] =

∫
q(ti)=qi
q(tf)=qf

[
Dp(t)Dq(t)

]
exp
{
i

∫tf
ti

dt
(
p(t)q̇(t)−H(p(t), q(t))+j(t)q(t)

)}
.

(2.36)

2.3.3 Projection on the ground state at asymptotic times

So far in this section, we have considered amplitudes where the initial and final states are
position eigenstates. However, the path integral formalism is not limited to this situation. Let
us assume for instance that the system is in a state

∣∣ψi〉 at the time ti and in the state
∣∣ψf〉 at

the time tf. For any operator O, the expectation value between these two states can be related
to transitions between position eigenstates by writing〈

ψf, tf
∣∣O∣∣ψi, ti〉 = ∫ dqidqf ψ∗f(qf)ψi(qi) 〈qf, tf∣∣O∣∣qi, ti〉 , (2.37)

where

ψ(q) ≡
〈
q
∣∣ψ〉 (2.38)

is the position representation of the wavefunction of the state
∣∣ψ〉. However, the use of this

formula is cumbersome in practice, because of the integrations over qi,f.
In the special case where the initial and final states are the ground state of the Hamilto-

nian,
∣∣0〉, and the initial and final times are −∞ and +∞, there is trick to circumvent this

difficulty. Let us introduce the eigenstates
∣∣n〉 of the Hamiltonian, with eigenvalue En and

eigenfunction ψn(q) ≡
〈
q
∣∣n〉, and write∣∣qi, ti〉 = eiHti
∣∣qi〉

=

∞∑
n=0

eiHti
∣∣n〉〈n∣∣qi〉

=

∞∑
n=0

ψ∗n(qi) e
iEnti

∣∣n〉 . (2.39)
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We will assume that the Hamiltonian is shifted by a constant so that the energy of the ground
state

∣∣0〉 is E0 = 0. Now, we multiply the Hamiltonian by 1 − i0+, where 0+ denotes
some positive infinitesimal number. All the factors exp(i(1 − i0+)Enti) go to zero when
ti → −∞, except for n = 0. Therefore, after this alteration of the Hamiltonian, we have:

lim
ti→−∞

∣∣qi, ti〉 = ψ∗0(qi) ∣∣0〉 . (2.40)

We can then weight this equation by a function ϕ(qi),

lim
ti→−∞ϕ(qi)

∣∣qi, ti〉 = ∫ dqiϕ(qi)ψ∗0(qi)︸ ︷︷ ︸〈
0

∣∣ϕ〉
∣∣0〉 . (2.41)

For instance, the constant function ϕ(q) = 1, corresponding to the momentum eigenstate
p = 0, would be appropriate in this role. But this would also be the case of any function
ϕ(q) such that the state

∣∣ϕ〉 has a non-zero overlap with the ground state
〈
0
∣∣. Likewise,

changing H→ (1− i0+)H has a similar effect on the final state in the limit tf → +∞,

lim
tf→+∞

〈
qf, tf

∣∣ = ψ0(qf) 〈0∣∣ . (2.42)

From these considerations, when the initial and final states at ±∞ are the ground state, we
can write the generating functional in the following simple path integral form:

Z[j(t)] =

∫ [
Dp(t)Dq(t)

]
exp
{
i

∫
dt
(
p(t)q̇(t)−(1−i0+)H(p(t), q(t))+j(t)q(t)

)}
.

(2.43)

From the discussion after eq. (2.41), we see that the boundary conditions on the paths are
not important. They only affect an overall prefactor, that can be adjusted in such a way that
Z[0] = 1. After performing the Gaussian functional integral over p(t), we can rewrite this
expression in Lagrangian form:

Z[j(t)] =

∫ [
Dq(t)

]
exp
{
i

∫
dt
(
(1+ i0+)

mq̇2(t)

2
−(1− i0+)V(q(t))+ j(t)q(t)

)}
.

(2.44)

The term in (i0+)q̇2 may be viewed as contributing to the convergence of the integral at large
velocities. Likewise, for a confining potential such that V(q) → +∞ when

∣∣q∣∣ → ∞, the
term in (i0+)V(q) contributes to the convergence at large coordinates.

2.3.4 Functional Fourier transform

Given a functional F[q(t)], its functional Fourier transform is defined by

F̃[p(t)] ≡
∫ [
Dq(t)

]
F[q(t)] exp

{
i

∫
dt p(t)q(t)

}
. (2.45)

In other words, the Fourier conjugate of the “variable” q(t) is another function of time, p(t).
Eq. (2.45) may be inverted by

F[q(t)] ≡
∫ [
Dp(t)

]
F̃[p(t)] exp

{
− i

∫
dt p(t)q(t)

}
. (2.46)

The usual properties of ordinary Fourier transforms extend to the functional case, e.g.:
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• The Fourier transform of a constant is a delta function,

• The Fourier transform of a Gaussian is another Gaussian,

• The Fourier transform of a product is the convolution product of the Fourier transforms.

2.3.5 Functional translation operator

The functional derivative δ/δj(t) may be viewed as the generator of translations in the space
of the functions j(t). Its exponential provides a translation operator:

exp
{∫

dt a(t)
δ

δj(t)

}
F[j(t)] = F[j(t) + a(t)] , (2.47)

for any functional F[j(t)].

Another extremely important formula is

exp
{
λ

∫
dt
( δ

δj(t)

)n}
exp
{∫

dt j(t)q(t)
}

︸ ︷︷ ︸
A[j,q;λ]

= exp
{∫

dt
(
j(t)q(t) + λqn(t)

)}
︸ ︷︷ ︸

B[j,q;λ]

.

(2.48)

The proof of this formula consists in noticing that A[j, q; λ = 0] = B[j, q; λ = 0], and in
comparing their (ordinary) derivatives with respect to λ:

∂λA[j, q; λ] = λ

∫
dt
( δ

δj(t)

)n
A[j, q; λ] = λ

∫
dt qn(t) A[j, q; λ] ,

∂λB[j, q; λ] = λ

∫
dt qn(t) B[j, q; λ] . (2.49)

Therefore A[j, q; λ] and B[j, q; λ] are equal at λ = 0 and obey the same differential equation.

2.3.6 Functional diffusion operator

It is sometimes useful to evaluate the action of an operator which is quadratic in functional
derivatives. The result is given by

exp
{∫

dt
σ(t)

2

( δ

δj(t)

)2}
F[j] =

∫ [
Da(t)

]
exp
{
−

∫
dt
a2(t)

2σ(t)

}
F[j+ a] . (2.50)

In order to establish this formula, consider the following differential equation,

∂zF[j(t); z] =
{ ∫

dt
σ(t)

2

( δ

δj(t)

)2}
F[j; z] , (2.51)

where z is an ordinary real-valued variable. One may view this equation as a diffusion equa-
tion in the space of the functions j(t), and F[j; z] as a density functional on this space. The
left hand side of eq. (2.50) is the formal expression of the solution of this equation at z = 1,
if we interpret F[j] as its initial condition at z = 0. In order to show that it is equal to the right
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hand side, one should first transform the diffusion equation (2.51) by performing a functional
Fourier transform,

F̃[k(t); z] ≡
∫ [
Dj(t)

]
exp
{
i

∫
dt j(t)k(t)

}
F[j(t)]

∂zF̃[k(t); z] = −
{ ∫

dt
σ(t)

2
k2(t)

}
F̃[k(t); z] . (2.52)

The solution of the latter equation is simply

F̃[k(t); z = 1] = exp
{
−

∫
dt
σ(t)

2
k2(t)

}
F̃[k(t); z = 0] , (2.53)

and the inverse Fourier transform of this solution leads to the right hand side of eq. (2.50).

2.4 Path integral in scalar field theory

The functional formalism that we have exposed in the context of quantum mechanics can now
be extended to quantum field theory. The main change is that the functions over which one
integrates are functions of time and space (as opposed to functions of time only in quantum
mechanics). All the result of the previous section can be translated into analogous formulas
in quantum field theory, thanks to the following correspondence:

q(t) ←→ φ(x)

p(t) ←→ Π(x)

j(t) ←→ j(x)

(2.54)

The main results of the previous section, namely that time-ordered products of operators in
the canonical formalism become simple products of ordinary functions in the path integral
representation, and that the ground state at ±∞ can be obtained by relaxing the boundary
conditions and multiplying the Hamiltonian by 1 − i0+, remain true in this new context.
Thus, the analogue of eq. (2.43) in a real scalar field theory is:

Z[j] =

∫ [
DΠ(x)Dφ(x)

]
exp
{
i

∫
d4x

(
Π(x)φ̇(x)−(1−i0+)H(Π,φ)+j(x)φ(x)

)}
. (2.55)

Since the Hamiltonian is quadratic in Π,

H =
1

2
Π2 +

1

2
(∇φ) · (∇φ) + 1

2
m2φ2 + V(φ) , (2.56)

it is easy to perform the (Gaussian) functional integration on Π, to obtain:

Z[j] =

∫ [
Dφ(x)

]
exp
{
i

∫
d4x

(
L(φ) + j(x)φ(x)

)}
, (2.57)

where

L(φ) ≡ 1
2
(1+ i0+)φ̇2−

1

2
(1− i0+)

(
(∇φ) · (∇φ)+m2φ2

)
−(1− i0+)V(φ) . (2.58)
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Note that the 1 − i0+ in front of the interaction potential plays no role if we turn off adia-
batically the coupling constant when |x0| → ∞. Using the analogue of eq. (2.48), we can
separate the interactions as follows

Z[j] = exp
{
− i

∫
d4x V

( δ

iδj(x)

)}
Z0[j] , (2.59)

with

Z0[j] ≡
∫ [
Dφ(x)

]
exp
{
i

∫
d4x

(
L0(φ) + j(x)φ(x)

)}
,

L0(φ) =
1

2
(1+ i0+)φ̇2 −

1

2
(1− i0+)

(
(∇φ) · (∇φ) +m2φ2

)
. (2.60)

The functional integral that gives Z0[j] in eq. (2.60) is Gaussian in φ and can be performed
in a straightforward manner, giving

Z0[j] = exp
{
−
1

2

∫
d4xd4y j(x)j(y) G0

F
(x, y)

}
, (2.61)

where G0
F
(x, y) is the inverse of the operator

i
[
(1+ i0+)∂20 − (1− i0+)(∇2 +m2)

]
. (2.62)

Note that the terms in i0+ ensure the existence of this inverse. Going to momentum space,
we see that the Fourier transform of this inverse is

i

(1+ i0+)k20 − (1− i0+)(k2 +m2)
, (2.63)

which after some rearrangement of the i0+’s appears to be nothing but eq. (1.86). Although
the canonical quantization of a scalar field theory was tractable, we see on this example that
the path integral approach provides a much quicker way of obtaining the expression of the
free generating functional, with the correct pole prescription for the free Feynman propagator.

2.5 Functional determinants

In the earlier sections of this chapter, we have been a bit cavalier with Gaussian integrations,
since we have disregarded the constant prefactors they produce. This was legitimate in the
problems we were considering, since the normalization of the generating functional can be
fixed by hand. However, in certain situations, these prefactors depend crucially on quantities
that have a physical significance, e.g. on a background field.

In order to compute this prefactor, let us start from a simple 1-dimensional Gaussian
integral,∫+∞

−∞ dx e
−
1
2
ax2 =

√
2π

a
. (2.64)

The first stage of generalization is to replace x by an n-component vector x ≡ (x1, · · · , xn),
and the positive number a by a positive definite symmetric matrix A, and to consider the
integral

I(A) ≡
∫ n∏
i=1

dxi e
−
1
2
xTAx . (2.65)

65



This integral can be calculated by representing the vector x in the orthonormal basis made of
the eigenvectors of A (such a basis exists, since A is symmetric). The measure

∏
i dxi is

unchanged, because the diagonalization of the matrix can be done by an orthogonal transfor-
mation. Therefore, the above integral also reads

I(A) =

∫ n∏
i=1

dyi e
−
1
2

∑
i aiy

2
i =

n∏
i=1

√
2π

ai
, (2.66)

where the numbers ai are the eigenvalues of A. This result can be written in a much more
compact form:

I(A) =
(2π)n/2√

detA
. (2.67)

This reasoning can be generalized to the functional case by writing:∫ [
Dφ(x)

]
exp
{
−
1

2

∫
d4xd4y φ(x)A(x, y)φ(y)

}
=
[
det (A)

]−1/2
, (2.68)

where A(x, y) is a symmetric operator. In this formula, we have still disregarded some truly
constant (and infinite) prefactors, made of powers of 2π. One can also generalize this Gaus-
sian integral to the case where the vector x is complex,

J(A) ≡
∫ n∏
i=1

dxidx
∗
i e

−x†Ax =
(2π)n

detA
, (2.69)

where A is a Hermitean matrix. The functional analogue of this integral is∫ [
Dφ(x)Dφ∗(x)

]
exp
{
−

∫
d4xd4y φ∗(x)A(x, y)φ(y)

}
=
[
det (A)

]−1
, (2.70)

Zeta function regularization : Despite the elegance of this formula, one should keep in
mind that the functional determinant detA is most often infinite, because the spectrum of the
operator extends to infinity. A common regularization technique for functional determinants
is based on a generalization of Riemann’s ζ function. Let the λn be the eigenvalues ofA, and
define:

ζ
A
(s) ≡ tr

(
A−s

)
=
∑
n

1

λsn
. (2.71)

(The function ζ
A

is called the zeta function of the operator A.) The determinant of A is
related to this function by

det
(
A
)
= exp

(
− ζ ′

A
(0)
)
. (2.72)

The sum over n in the definition of ζ
A

usually converges only if Re (s) is large enough (how
large depends on the distribution of eigenvalues at large n), but not for s = 0. However, like
in the case of Riemann’s zeta function, ζ

A
(s) can be analytically continued to most of the

complex s-plane, which provides a regularized definition of the determinant.
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Diagrammatic interpretation : Let us consider as an example the operator A
ϕ
≡ � +

λ
2
ϕ2, where ϕ(x) is a background field. The inverse of this operator is the propagator of a

scalar particle (with a φ4 interaction) over the background field ϕ. We can skip the regu-
larization step if we make a ratio with the determinant of the similar operator with no back-
ground field:

R ≡
det
(
�
)

det
(
�+ λ

2
ϕ2
) . (2.73)

A very useful formula relates the determinant of an operator to the trace of its logarithm,

det
(
A
)
= exp

(
Tr log

(
A
))
. (2.74)

This formula can be proven (heuristically, since the objects we are manipulating may not be
finite) by writing both sides of the equation in terms of the eigenvalues of A:

det
(
A
)
=
∏
n

λn = exp
∑
n

log λn = exp
(
Tr log

(
A
))
. (2.75)

Therefore, the ratio defined in eq. (2.73) can be rewritten as

R = exp
(
−Tr log

(
1+ λϕ2

2
�−1

))
. (2.76)

Writing �−1 = iG0
F
, and expanding the logarithm gives

R = exp
{ ∞∑
n=1

1

n
Tr
([

− iλϕ
2

2
G0
F

]n)}
. (2.77)

The argument of the exponential has a simple interpretation as a 1-loop diagram made of a
line dressed with insertions of the background field, the index n being the number of such
insertions:

1

n
Tr
([

− iλϕ
2

2
G0
F

]n)
=

︸ ︷︷ ︸
n insertions

. (2.78)

Each of the insertions of the background field (shown in green in the above diagram) corre-
sponds to a factor −iλ

2
ϕ2. The prefactor 1/n is the symmetry factor for the cyclic permu-

tations of the n insertions. The argument of the exponential is a sum of connected 1-loop
diagrams. Taking the exponential to obtain the ratio R simply produces all the multiply con-
nected graphs made of products of such 1-loop diagrams.

2.6 Quantum effective action

2.6.1 Definition

The action S[φ] that enters in the path integral representation of the generating functional
Z[j] is the classical action. Its parameters reflect the interactions among the constituents of
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the system at tree level, but in order to express higher order corrections loop corrections
are necessary. The quantum effective action, denoted Γ [φ], is defined as the functional that
would produce the all-orders value of the interactions solely from tree-level contributions.
Γ [φ] should coincide with the classical action at lowest order of perturbation theory, but also
encapsulates all the higher order corrections. One may write Γ [φ] formally as

Γ [φ] ≡
∞∑
n=2

1

n!

∫
d4x1 · · ·d4xn φ(x1) · · ·φ(xn) Γn(x1, · · · , xn) . (2.79)

Γ2(x1, x2) is therefore the inverse of the exact propagator, Γ4(x1, · · · , x4) is the exact 4-point
function (in coordinate space), etc...

An important class of diagrams when discussing the quantum effective action are the one-
particle irreducible (1PI) diagrams, that are defined as diagrams that remain connected if one
cuts any one of their internal propagators. For instance, the first of these diagrams is 1PI
while the second one is not:

1PI diagram :

Non-1PI diagram :

The concept of 1PI diagrams is most useful when discussing two-point functions, since it
allows to isolate the elementary building blocks that allow to construct the full propagator
by the resummation of a geometrical series. Thus, the Γ2 that enters in the expansion of the
quantum effective action is made of 1PI graphs.

2.6.2 Relation between Γ [φ] andW[j]

Until now, we have introduced the generating functional of the vacuum expectation value of
time-ordered products of fields, Z[j], as well as the functional W[j] ≡ logZ[j] that generates
the subset made of connected Feynman graphs. Recall that in term of path integrals,

Z[j] = eW[j] =

∫ [
Dφ(x)

]
exp

[
iS[φ(x)] + i

∫
d4x j(x)φ(x)

]
. (2.80)

Let us replace the classical action S[phi] by the quantum effective action Γ [φ] in the previous
formula, to define

Z
Γ
[j] = eWΓ [j] =

∫ [
Dφ(x)

]
exp

[
iΓ [φ(x)] + i

∫
d4x j(x)φ(x)

]
. (2.81)

This functional generates graphs whose building blocks are the exact propagator (Γ−12 ), and
the exact vertices (Γ3, Γ4. · · · ). From the definition of Γ [φ] as the “action” that would generate
the exact theory at tree level, we conclude that

W
Γ
[j]|tree =W[j] . (2.82)

In other words, the tree diagrams of W
Γ
[j] should be equal to the all-orders W[j]. The tree

diagrams may be isolated by reintroducing Planck’s constant in the definition of Z
Γ
[j] as

follows

Z
Γ
[j;h̄] = eWΓ [j;h̄] =

∫ [
Dφ(x)

]
exp

[ i
h̄

(
Γ [φ(x)] +

∫
d4x j(x)φ(x)

)]
. (2.83)
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As we have discussed in the section 1.6.6, the order in h̄ of a connected graph is

h̄nL−1 , (2.84)

where n
L

is the number of loops of the graph. Therefore, the functional W
Γ
[j;h̄] has the

following loop expansion:

W
Γ
[j;h̄] =

∞∑
n
L
=0

h̄nL−1 W
Γ ,nL

[j]︸ ︷︷ ︸
n
L

loops

, (2.85)

and the tree level contributions inW
Γ
[j] are the terms that dominate in the formal limith̄→ 0:

W
Γ
[j]|tree = lim

h̄→0h̄WΓ
[j;h̄] . (2.86)

But from our discussion of the classical limit of path integrals in section 2.2, we know that
the limit h̄→ 0 corresponds to the extremum of the argument of the exponential, i.e.

δΓ [φ]

δφ(x)
+ j(x) = 0 . (2.87)

Note that this equation is the analogue of the usual Euler-Lagrange equation of motion, with
the quantum effective action in place of the classical action. This equation implicitly defines
φ as a function of j, that we will denote φj, in terms of which we can write

eWΓ [j;h̄] ≈
h̄→0 exp

[ i
h̄

(
Γ [φj(x)] +

∫
d4x j(x)φj(x)

)]
, (2.88)

which leads to the following relationship between the quantum effective action and the gen-
erating functional of connected graphs:

Γ [φj] = −iW[j] −

∫
d4x j(x)φj(x) . (2.89)

Note that the “quantum equation of motion” (2.87) may also be viewed as defining j in
terms of φ, that we shall denote j

φ
. Eq. (2.89) may therefore also be written as

Γ [φ] = −iW[j
φ
] −

∫
d4x j

φ
(x)φ(x) . (2.90)

Taking a functional derivative of this equation with respect to φ(y) and using the chain rule,
we obtain

δΓ [φ]

δφ(y)︸ ︷︷ ︸
−j
φ
(y)

= −i

∫
d4x

δW[j]

δj(x)

∣∣∣∣
j=j

φ

δj
φ
(x)

δφ(y)
− j

φ
(y) −

∫
d4x

δj
φ
(x)

δφ(y)
φ(x) . (2.91)

This leads to

φ(x) = −i
δW[j]

δj(x)

∣∣∣∣
j=j

φ

, or equivalently φj(x) = −i
δW[j]

δj(x)
=
〈
φ(x)

〉
j
. (2.92)
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In other words, φj is the connected 1-point function (i.e. the vacuum expectation value of the
field) in the presence of the source j.

Differentiating eq. (2.87) with respect to j(y) gives:

δ(x− y) = −
δ

δj(y)

δΓ [φj]

δφj(x)

= −

∫
d4z

δφj(z)

δj(y)

δ2Γ [φj]

δφj(x)δφj(z)

= i

∫
d4z

δ2W[j]

δj(y)δj(z)︸ ︷︷ ︸
G(y,z)connected

δ2Γ [φj]

δφj(z)δφj(x)︸ ︷︷ ︸
Γ2(z,x)

. (2.93)

This formula shows a posteriori that (up to a factor i), the coefficient Γ2 in the expansion
(2.79) is indeed the inverse of the exact connected 2-point function, as was expected from our
request that the effective action Γ [φ] reproduces the full content of the theory. By similar
(but much more cumbersome) manipulations, one could check that the higher functional
derivatives of Γ [φ] are the connected 1PI amplitudes.

2.6.3 One-loop effective action

At one loop, one may obtain a closed expression for the quantum effective action. For this,
write the Lagrangian as a renormalized Lagrangian plus counter-terms:

L ≡ Lr(φr) + ∆L(φr) , (2.94)

both depending on the renormalized field φr. We will denote Sr and ∆S the corresponding
actions. Likewise, we write the external source j = jr + δj, where jr is the current that solves
the following equation:

δSr[φr]

δφr(x)

∣∣∣∣
ϕ

+ jr(x) = 0 , (2.95)

i.e. the current that solves at lowest order the defining equation of the effective action. The
correction ∆j is then adjusted order by order so that the expectation value of the field remains
equal to ϕ at all orders,

ϕ(x) =
〈
φr(x)

〉
jr+∆j

. (2.96)

In the path integral representation of the generating functional Z[j], we write the field as
φr = ϕ+ η:

Z[j] =

∫ [
Dη(x)

]
ei
{
Sr[ϕ+η]+∆S[ϕ+η]+

∫
d4x (jr+∆j)(ϕ+η)

}
, (2.97)

and we expand the argument of the exponential in powers of η up to quadratic order:

Sr[ϕ+ η] +

∫
d4x jr(ϕ+ η) = Sr[ϕ] +

∫
d4x jr(x)ϕ(x)

+

∫
d4x

( δSr[φr]

δφr(x)

∣∣∣∣
ϕ

+ jr

)
η(x)

+
1

2

∫
d4xd4y η(x)

( δ2Sr[φr]

δφr(x)δφr(y)

∣∣∣∣
ϕ

)
η(y)

+ · · · (2.98)
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Note that the term linear in η is zero by virtue of eq. (2.95). Therefore, we may rewrite Z[j]
as follows

Z[j] = ei
{
Sr[ϕ]+∆S[ϕ]+

∫
d4x jϕ

} ∫ [
Dη(x)

]
ei
{
Sϕ[η]+∆Sϕ[η]

}
, (2.99)

where we denote

Sϕ[η] ≡
1

2

∫
d4xd4y η(x)

( δ2Sr[φr]

δφr(x)δφr(y)

∣∣∣∣
ϕ

)
η(y) + · · · (2.100)

(Likewise, ∆Sϕ[η] results from the expansion in powers of η of the counter-terms.) At one
loop, it is sufficient to keep only the quadratic terms in η, and the path integral gives a deter-
minant:[

det
(
−
i

2

δ2Sr[φr]

δφr(x)δφr(y)

∣∣∣∣
ϕ

)]−1/2
= exp

[
−
1

2
tr ln

(
−
i

2

δ2Sr[φr]

δφr(x)δφr(y)

∣∣∣∣
ϕ

)]
.

(2.101)

At this order, the generating functional of connected graphs reads

W[j] = i
{
Sr[ϕ]+∆S[ϕ]+

∫
d4x jϕ

}
−
1

2
tr ln

(
−
i

2

δ2Sr[φr]

δφr(x)δφr(y)

∣∣∣∣
ϕ

)
+ · · · (2.102)

from which we obtain the following quantum effective action

Γ [ϕ] = Sr[ϕ] + ∆S[ϕ] +
i

2
tr ln

(
−
i

2

δ2Sr[φr]

δφr(x)δφr(y)

∣∣∣∣
ϕ

)
+ · · · (2.103)

Note that the object inside the logarithm is the inverse of the propagator dressed by the back-
ground field ϕ.

2.7 Euclidean path integral and Statistical mechanics

2.7.1 Statistical mechanics in path integral form

A path integral formalism also exists for statistical mechanics. In order to illustrate this, let
us consider again the quantum mechanical system described by the Hamiltonian of eq. (2.1).
Our goal is to calculate the partition function in the canonical ensemble3,

Zβ ≡ Tr
(
e−βH

)
, (2.104)

where β is the inverse temperature (it is customary to use a system of units in which Boltz-
mann’s constant k

B
is equal to unity – therefore temperature has the same dimension as

energy.) More generally, one may want to calculate the following canonical ensemble expec-
tation values,〈

O
〉
β
≡ Z−1

β Tr
(
e−βH O

)
. (2.105)

3In theories with a conserved quantity, it is also possible to study the grand canonical ensemble. One needs to
substitute H→ H − µQ in the definition of the partition function, whereQ is the operator of the conserved charge
and µ the associated chemical potential.
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The cyclicity of the trace leads to an important identity for expectation values of products of
operators:〈

O1(t)O2(t
′)
〉
β
≡ Z−1

β Tr
(
e−βH O1(t)O2(t

′)
)

= Z−1
β Tr

(
e−βH O1(t) e

+βHe−βH︸ ︷︷ ︸
1

O2(t
′)
)

= Z−1
β Tr

(
e−βHO2(t

′) e−βH O1(t)e
+βH︸ ︷︷ ︸

O1(t+iβ)

)
=

〈
O2(t

′)O1(t+ iβ)
〉
β
, (2.106)

where we have formally identified the density operator exp(−βH) with a time evolution
operator for an imaginary time iβ. This relationship is called the Kubo-Martin-Schwinger
(KMS) identity. Although we have established it for an expectation value of a product of two
operators, it is completely general.

The identification of the density operator with an imaginary time evolution operator is at
the heart of the formalism to evaluate canonical ensemble expectation values. If we represent
the trace that appears in the partition function in the coordinate basis,

Zβ =

∫
dq
〈
q
∣∣e−βH∣∣q〉 , (2.107)

the integrand in the right hand side is a transition amplitude similar to eq. (2.3), except that
initial and final coordinates are identical, and the time interval is imaginary. We can never-
theless formally reproduce all the manipulations of the section 2.1, with an initial time ti ≡ 0
and a final time tf ≡ −iβ. It is common to introduce the Euclidean time τ ≡ it, with τ
varying from 0 to β. The only changes to our original derivation of the path integral is that
the path q(t) must be replaced by a path q(τ) whose time derivative is the Euclidean velocity
q̇
E

, related to the usual velocity q̇ by

q̇ ≡ dq
dt

= i
dq

dτ︸︷︷︸
q̇
E

. (2.108)

We obtain the following path integral representation of the partition function:

Zβ =

∫
dq

∫
q(0)=q
q(β)=q

[
Dp(τ)Dq(τ)

]
exp
{∫β
0

dτ
(
i p(τ)q̇

E
(τ) −H(p(τ), q(τ))

)}

=

∫
q(0)=q(β)

[
Dp(τ)Dq(τ)

]
exp
{∫β
0

dτ
(
i p(τ)q̇

E
(τ) −H(p(τ), q(τ))

)}
.

(2.109)

In the second line, we have simplified the boundary conditions of the path q(τ), since the only
constraint it must obey is to be β-periodic in imaginary time. The integration over the mo-
mentum p(τ) is again Gaussian, and after performing it we obtain the following expression

Zβ =

∫
q(0)=q(β)

[
Dq(τ)

]
exp
{
−

∫β
0

dτ
(m
2
q̇2
E
(τ) + V(q(τ))

)
︸ ︷︷ ︸

S
E
[q(τ)]

}
. (2.110)
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The quantity S
E
[q] is called the Euclidean action.

Then, we can generalize this formalism to calculate ensemble averages of time-ordered
(in imaginary time) products of position operators. For instance, the analogue of eq. (2.28) is

Tr
(
e−βH Tτ

(
Q(τ1)Q(τ2)

))
=

∫
q(0)=q(β)

[
Dq(τ)

]
e−S

E
[q(τ)] q(τ1)q(τ2) , (2.111)

where the symbol Tτ denotes the time-ordering in the imaginary time τ. Likewise, we may
define a generating functional for these expectation values

Tr
(
e−βH Tτ exp

∫β
0

dτ j(τ)Q(τ)
)
=

∫
q(0)=q(β)

[
Dq(τ)

]
e−S

E
[q(τ)]+

∫
β
0
dτ j(τ)q(τ) .

(2.112)

2.7.2 Statistical field theory

This formalism can be extended readily to a quantum field theory. In this context, it can be
used to calculate canonical ensemble expectation values of operators for a system of relativis-
tic particles. One can write directly the following generalization of eq. (2.112),

Tr
(
e−βH Tτ exp

∫β
0

d4x
E
j(x)φ(x)

)
︸ ︷︷ ︸

Z[j;β]

=

∫
φ(0,x)=φ(β,x)

[
Dφ(x)

]
e−S

E
[φ(x)]+

∫
β
0
d4x

E
j(x)φ(x) ,

(2.113)

where the measure d4x
E

stands for dτd3x. Like in the case of ordinary QFT in Minkowski
space-time, we can isolate the interactions by writing:

Z[j;β] = exp
{
−

∫
d4x

E
L
E,I

(
δ

δj(x)

)}
Z0[j;β] , (2.114)

where L
E,I

is the interaction term in the Euclidean Lagrangian density, and Z0[j;β] is the
generating functional of the non-interacting theory:

Z0[j;β] =

∫
φ(0,x)=φ(β,x)

[
Dφ(x)

]
exp

[
−

∫β
0

d4x
E

(1
2

(
(∂τφ)

2+(∇φ)2+m2φ2
)
− jφ

)]
.

(2.115)

The Gaussian path integral in this expression leads to:

Z0[j;β] = exp
{1
2

∫β
0

d4x
E
d4y

E
j(x) G0

E
(x, y) j(y)

}
, (2.116)

where the free Euclidean propagator G0
E
(x, y) is the inverse of the operator m2 − ∂2τ −∇2

over the space of functions that are β-periodic in the imaginary time variable. Because of this
periodicity, the “energy” variable, conjugate to the Euclidean time, is discrete:

ωn ≡
2πn

β
(n ∈ Z) . (2.117)
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In terms of these energies, called Matsubara frequencies, the free Euclidean propagator in
momentum space reads

G̃0
E
(ωn,p) =

1

ω2n + p2 +m2
. (2.118)

Note that the denominator cannot vanish, and therefore this propagator does not need an i0+

prescription for being fully defined. Eqs. (2.114) and (2.116) lead to a perturbative expansion
that can be cast into an expansion in terms of Feynman diagrams. The Feynman rules associ-
ated to these graphs are very similar to those already encountered when calculating scattering
amplitudes, with only a few modifications:

Propagators :
1

ω2n + p2 +m2
, (2.119)

Vertices : − λ 2π δ
(∑
i

ωni
)
(2π)3δ

(∑
i

pi
)
, (2.120)

Loops :
1

β

∑
n∈Z

∫
d3p

(2π)3
. (2.121)

In other words, the main difference with the usual perturbative expansion is that the energies
are replaced by the discrete Matsubara frequencies, and that the loop integration on p0 is
replaced by a discrete sum over these frequencies.
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Chapter 3

Fermion path integral

In the previous chapter, we have learned that the quantization of a scalar field may be per-
formed by means of the path integral representation. This leads to a much more concise
derivation of the generating functional, and of the free propagator, compared to the canonical
approach. In this chapter, we will therefore seek a similar path integral formalism for other
types of fields, in view of the functional quantization of a gauge theory such as QED (and
later, of non-Abelian gauge theories, for which a canonical approach would be extremely
difficult to implement).

3.1 Grassmann variables

3.1.1 Definition

In the functional formulation of a scalar field theory, we saw that time-ordered products of
field operators correspond to the ordinary product of the integration variable in the integrand
of the path integral (see the eq. (2.29)). Ultimately, a path integral representation of the
time-ordered product of fermion field operators should allow the same, but with a catch: the
T-product for fermions involves a minus sign when two operators are exchanged (see 1.176),
that we need to be able to generate in the integrand of a would-be fermionic path integral.
This can be achieved with Grassmann numbers1, that are anti-commuting variables. In a
sense, Grassmann numbers are the classical analogue of anti-commuting quantum operators.
For a set of Grassmann variables ψi (i = 1 · · ·N), we have{

ψi, ψj
}
= 0 . (3.1)

The linear space spanned by the ψi’s is called a Grassmann algebra.
1Although we call them “numbers”, they are not representable as scalar (e.g. real or complex) variables. A

Grassmann number may be represented by a nilpotent 2 × 2 matrix, and the Grassmann algebra with N generators
admits a representation in terms of 2N × 2N matrices, that may be viewed as operators acting on the Hilbert space
of N identical fermions of spin 1/2 (of dimension 2N since each spin has two states). For instance, when N = 2,
one may represent the Grassmann numbers ψ1,2 as

ψ1 =


0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0

 , ψ2 =


0 0 0 0

0 0 0 0

1 0 0 0

0 −1 0 0

 .
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3.1.2 Functions of a single Grassmann variable

Consider first the case N = 1. The square of a Grassmann number ψ is therefore zero,
ψ2 = 0, and by induction all higher powers of ψ are also zero. The Taylor expansion of a
function of ψ is therefore limited to the first two terms,

f(ψ) = a+ψb . (3.2)

In general, we need to deal with functions f(ψ) that are themselves commuting objects.
Therefore, the coefficient a is an ordinary number, while b is another Grassmann number,
{b, b} = {b,ψ} = 0. This implies that

f(ψ) = a+ψb = a− bψ . (3.3)

Because of the non-commuting nature of b and ψ, we may define left and right derivatives,
denoted by:

→
∂ψ f(ψ) = b , f(ψ)

←
∂ψ= −b . (3.4)

One may define a linear mapping on functions of a Grassmann variable, that behaves for
most purposes as an integration (although it is not an integral in the Lebesgue sense), called
the Berezin integral. We require two basic axioms:

• Linearity :∫
dψ α f(ψ) = α

∫
dψ f(ψ) , (3.5)

• The integral of a total derivative is zero:∫
dψ ∂ψf(ψ) = 0 . (3.6)

The only definition consistent with these requirements is∫
dψ f(ψ) = b , (3.7)

up to an overall constant that should be the same for all functions. Thus, integration and dif-
ferentiation of functions of a Grassmann variable are essentially the same thing. In particular,
the Berezin integral satisfies:∫

dψ 1 = 0 ,

∫
dψ ψ = 1 . (3.8)

3.1.3 Functions of N Grassmann variables

Taylor expansion : We will denote collectively ψ ≡ (ψ1, · · · , ψN). The most general
function of N Grassmann variables can be written as

f(ψ) =

N∑
p=0

1

p!
ψi1ψi2 · · ·ψip Ci1i2···ip , (3.9)
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with implicit summations on the indices in. Terms of degree higher than N cannot exist
because they would contain the square of at least one of the ψi’s, and therefore be zero.
We have chosen to write the Grassmann variables on the left of the coefficients in order to
simplify the calculation of the left derivatives

→
∂ψ. Note that the last coefficient Ci1···iN must

be proportional to the Levi-Civita tensor:

Ci1···iN ≡ γεi1···iN . (3.10)

Note that this last term can also be written as:

1
N! ψi1 · · ·ψiN γεi1···iN = ψ1 · · ·ψN γ . (3.11)

Integration : In order to be consistent with eqs. (3.8), the integral of f(ψ) over the N
Grassmann variables ψ1, · · · , ψN , must be given by∫

dNψ f(ψ) = γ . (3.12)

The terms of degree 0 through N − 1 in the “Taylor expansion” of f(ψ) cannot contribute
to the integral, since at least one of the ψi is absent in these terms, and the integral over this
ψi will therefore give zero. A somewhat more explicit formulation of an integral over N
Grassmann variables is to write the measure as dNψ ≡ dψ

N
dψ

N−1
· · ·dψ1 (in this order),

and to perform the N integrals successively, starting with the innermost one (i.e. dψ1).
Therefore∫

dNψ ψ1 · · ·ψN =

∫
dψ

N
· · ·
( ∫
dψ2

( ∫
dψ1 ψ1︸ ︷︷ ︸
1

)
ψ2

︸ ︷︷ ︸
1

)
· · ·ψ

N
= 1 . (3.13)

Change of variables : Let us now consider a linear change of variables:

ψi ≡ Jij θj , (3.14)

where θ1 · · · θN areN Grassmann variables. The last term of the expansion of f(ψ), the only
one relevant for integration, can be rewritten as

ψi1 · · ·ψi
N
εi1···iN γ =

(
Ji1j1θj1

)
· · ·
(
Ji
N
j
N
θj
N

)
εi1···iN γ

= det
(
J
)
θj1 · · · θjN εj1···jN γ . (3.15)

From this relationship, we conclude that∫
dNψ f(ψ)︸ ︷︷ ︸

γ

=
[
det
(
J
)]−1 ∫

dNθ f(ψ(θ))︸ ︷︷ ︸
det (J) γ

. (3.16)

Thus, a change of variables in a Grassmann integral involves the inverse of the Jacobian that
would normally appear in the same change of variables for a scalar integral.
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Gaussian integrals : Let ψ1, · · · , ψN beN Grassmann variables, and consider the follow-
ing integral

I(M) ≡
∫
dNψ exp

(
1
2
ψiMijψj

)
, (3.17)

whereM is an antisymmetricN×Nmatrix made of commuting numbers (real or complex).
Firstly, note that such an integral is non-zero only if N is even. For N = 2, this matrix is of
the form

M =

(
0 µ

−µ 0

)
, (3.18)

and the exponential in the integral reads

exp
(
1
2
ψiMijψj

)
= 1+ µ ψ1ψ2 . (3.19)

(Recall that functions of two Grassmann variables are in fact polynomials of degree two.)
Therefore, in the case N = 2, the Gaussian integral (3.17) reads2

I(M) = µ =
[
det (M)

]1/2
. (3.20)

In the case of a general evenN, the matrixMmay be written in the following block diagonal
form,

M = Q



0 µ1

−µ1 0

0 µ2

−µ2 0

. . .


︸ ︷︷ ︸

D

QT , (3.21)

whereQ is a special3 orthogonal matrix. DefiningQTψ ≡ θ, we have

I(M) =
[
det (Q)

]−1 ∫
dNθ exp

(
1
2
θTDθ

)
︸ ︷︷ ︸
µ1µ2···=[det (D)]1/2

. (3.22)

But since det (Q) = +1, this becomes

I(M) =
[
det (D)

]1/2
=
[
det (M)

]1/2
. (3.23)

Contrast this with the result of a Gaussian integral in the case of ordinary real variables,
eq. (2.67), where the square root of the determinant appeared in the denominator.

It is often necessary to perform a Gaussian integral in the presence of a source that shifts
the minimum of the quadratic form in the exponential,

I(M,η) ≡
∫
dNψ exp

(
1
2
ψiMijψj + ηiψi

)
, (3.24)

where η is a set of N Grassmann sources. By introducing the new Grassmann variable
ψ ′i ≡ ψi −M

−1
ij ηj, this integral falls back to the previous type, and we obtain:

I(M,η) =
[
det (M)

]1/2
exp

(
− 1
2
ηTM−1η

)
. (3.25)

2The determinant of a real antisymmetric matrix of even size is the square of its Pfaffian and is therefore positive.
3Orthogonal matrices have determinant +1 or −1. The special orthogonal matrices are the subgroup of those that

have determinant +1.
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Gaussian integral with 2N variables : Another useful type of Gaussian integral is

J(M) ≡
∫
dNξdNψ exp

(
ψiMijξj

)
, (3.26)

where M is an N ×N matrix of commuting numbers, and ψ and ξ are independent Grass-
mann variables. The only non-zero contribution to this integral comes from the term of order
N in the Taylor expansion of the exponential,

J(M) =
1

N!

∫
dNξdNψ

(
ψi1Mi1j1ξj1

)
· · ·
(
ψi
N
Mi

N
j
N
ξj
N

)
=

(−1)
N(N−1)

2

N!

∫
dNξdNψ

(
ψi1 · · ·ψiN

)(
ξj1 · · · ξjN

)
Mi1j1 · · ·Mi

N
j
N

=
(−1)

N(N−1)
2

N!
εi1···iN εj1···jN Mi1j1 · · ·Mi

N
j
N
. (3.27)

In the second line, we have reordered the Grassmann variables in order to bring all the ψi’s
on the left, and the sign in the prefactor keeps track of the number of permutations that
are necessary to achieve this. To give a non-zero result, the indices {in} and {jn} must be
permutations of [1 · · ·N]:

J(M) =
(−1)

N(N−1)
2

N!

∑
σ,ρ∈Sn

ε(σ)ε(ρ)Mσ(1)ρ(1) · · ·Mσ(N)ρ(N)

=
(−1)

N(N−1)
2

N!

∑
σ,τ∈Sn

ε(σ)ε(τσ)M1τ(1) · · ·MNτ(N) (3.28)

where ε(σ) is the signature of the permutation σ, and with τ ≡ ρσ−1 in the second line.
Using ε(σ)ε(τσ) = ε(τ), this becomes:

J(M) = (−1)
N(N−1)

2

( 1

N!

∑
σ∈Sn

1︸ ︷︷ ︸
1

) ∑
τ∈Sn

ε(τ)M1τ(1) · · ·MNτ(N)︸ ︷︷ ︸
det (M)

. (3.29)

Note that this overall sign may be absorbed into a reordering of the measure, since:

dNξdNψ = (−1)
N(N−1)

2 dξ
N
dψ

N
· · ·dξ1dψ1 . (3.30)

Therefore, we have∫
dξ

N
dψ

N
· · ·dξ1dψ1 exp

(
ψiMijξj

)
= det

(
M
)
. (3.31)

3.1.4 Complex Grassmann variables

Now, let us define complex Grassmann variables, from two of the previously defined Grass-
mann variables ψ and ξ:

χ ≡ ψ+ iξ√
2

, χ ≡ ψ− iξ√
2

. (3.32)
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Conversely, we have

ψ =
χ+ χ√
2

, ξ =
i (χ− χ)√

2
, (3.33)

and the integrations over these variables are related by

dψ2dψ1 = i dχdχ ,

ψ1ψ2 = −i χχ ,∫
dχdχ χχ =

∫
dψ2dψ1 ψ1ψ2 = 1 . (3.34)

From this, we obtain∫
dχdχ exp

(
µχχ

)
= µ , (3.35)

that can be generalized into∫
dχ

N
dχ

N
· · ·dχ1dχ1 exp(χTMχ) = det

(
M
)
. (3.36)

In the presence of sources η and η, we obtain the following Gaussian integral:∫
dχ

N
dχ

N
· · ·dχ1dχ1 exp

(
χTMχ+ηTχ+χTη

)
= det

(
M
)

exp
(
−ηTM−1η

)
. (3.37)

3.2 Path integral for fermions

We now have all the ingredients for constructing a path integral for spin 1/2 fermions. Let
us work our way backwards, starting from a generating functional that generates the free
time-ordered products of spinors,

Z0[η, η] ≡ exp
{
−

∫
d4xd4y η(x)S0

F
(x, y)η(y)

}
, (3.38)

where S0
F
(x, y) is the free Dirac time-ordered propagator and η and η are a pair of complex

Grassmann-valued sources. Indeed, we have→
δ

iδη(x)
Z0[η, η]

←
δ

iδη(y)

∣∣∣∣∣
η=η=0

= S0
F
(x, y) . (3.39)

Taking more than two derivatives (but with an equal number of derivatives with respect to η
and with respect to η) will lead to all the contributions in the free time-ordered product of
spinors, with the correct signs to account for their anti-commuting nature. Note that using
Grassmann-valued sources was necessary in order to get these signs.

Then, by comparing eqs. (3.37) and (3.38), we can represent this free generating function
as a path integral over Grassmann variables:

Z0[η, η] =

∫ [
Dψ(x)Dψ(x)

]
exp
{
i

∫
d4x

(
ψ(x)(i/∂−m)ψ(x)

+η(x)ψ(x) +ψ(x)η(x)
)}

=

∫ [
Dψ(x)Dψ(x)

]
eiS[ψ,ψ] ei

∫
d4x

(
η(x)ψ(x)+ψ(x)η(x)

)
. (3.40)
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We have ignored the determinant, since it is independent of the sources. Instead, one simply
adjusts the normalization of the generating functional so that Z0[0, 0] = 1. The second line
shows that the path integral formulation of a field theory of spin 1/2 fermions takes the same
form as that of scalar fields, provided we use Grassmann variables instead of commuting
c-numbers.

In quantum electrodynamics, fermions interact only by their minimal coupling to the
photon fields,

L
I
= −i eψγµAµψ . (3.41)

As in the scalar case, this interaction can be factored out of the generating functional, by
writing:

Z[η, η] = exp
{
− ie

∫
d4x Aµ(x)

→
δ

iδη(x)
γµ

←
δ

iδη(x)

}
Z0[η, η] . (3.42)

Here, we are treating the photon field as a fixed background. When we consider the path inte-
gral representation of dynamical photons in the next section, theAµ(x) inside the exponential
will also be replaced by a functional derivative.

3.3 Path integral for photons

3.3.1 Problems with the naive path integral

In the case of photons, the difficulties encountered in the path integral formulation are of
a different nature. Since photons are bosons, we expect that they can be represented by a
functional integration over commuting functions Aµ(x). But the gauge invariance of the
theory implies that there is an unavoidable redundancy in this representation: the naive path
integral over [DAµ(x)] would integrate over infinitely many copies of the same physical
configurations. Therefore, we need a way to cut through this redundancy, which is achieved
by gauge fixing.

In order to better see the nature of this difficulty, let us assume that we can treat Aµ(x) as
four scalar fields, and write the following path integral,

Z0[j
µ] ≡

∫ [
DAµ(x)

]
exp
{
i

∫
d4x

(
− 1
4
FµνFµν + jµAµ

)}
. (3.43)

This is a Gaussian integral, since FµνFµν is quadratic in the field Aµ,

−
1

4

∫
d4x FµνFµν = −

1

4

∫
d4x

(
∂µAν − ∂νAµ

)(
∂µAν − ∂νAµ

)
= +

1

2

∫
d4x Aµ

(
gµν�− ∂µ∂ν

)
Aν

= −
1

2

∫
d4k

(2π)4
Ãµ(k)

(
gµνk

2 − kµkν
)
Ãν(−k) . (3.44)

Performing this Gaussian integral requires the inverse of the object gµνk2 − kµkν, that one
may seek as a linear combination of the metric tensor gµν and kµkν/k2, i.e. we are looking
for coefficients α and β such that:(

gµνk
2 − kµkν

)(
α gνρ + β kνkρ

k2

)︸ ︷︷ ︸
α k2δρµ−α kµkρ

= δρµ . (3.45)
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This equation has clearly no solution, and therefore it is impossible to invert gµνk2 − kµkν.
This means that some eigenvalues of this operator are zero, and that the quadratic form
Ãµ(k)

(
gµνk

2 − kµkν
)
Ãν(−k) has flat directions. Along these flat directions, the expo-

nential in the path integral (3.43) does not decrease, which spoils its convergence. These flat
directions correspond to the projection of Ãµ(k) along kµ. Note that they also do not con-
tribute to the linear term jµAµ, for a conserved current that satisfies ∂µjµ = 0. Therefore,
one should not integrate over these components of Aµ in eq. (3.43).

3.3.2 Path integral in Landau gauge

A simple way out it to decompose Aµ as follows:

Aµ = Aµ⊥ +Aµ‖ ,

Ãµ⊥(k) ≡
(
gµν −

kµkν

k2

)
Ãν(k) ,

Ãµ‖ (k) ≡
(kµkν
k2

)
Ãν(k) . (3.46)

The functional measure can be factorized as follows[
DAµ

]
=
[
DAµ⊥

] [
DAµ‖

]
, (3.47)

and since nothing depends on Aµ‖ the photon kinetic term, we can write

Z0[j
µ] ≡

∫ [
DAµ‖ (x)

]
exp
{
i

∫
d4x jµA

µ
‖

}
×
∫ [
DAµ⊥(x)

]
exp
{
i

∫
d4x

(
− 1
4
FµνFµν + jµA

µ
⊥
)}
. (3.48)

By integrating by parts the argument of the exponential in the integral on Aµ‖ , we obtain a
delta function of ∂µjµ. Thus, for external currents that obey the continuity equation ∂µjµ =
0, this prefactor is an infinite constant that can be ignored. When restricted to the subspace of
Aµ⊥, the operator gµνk2−kµkν is invertible, and we can now perform the Gaussian integral,
to obtain:

Z0[j
µ] = exp

{
−
1

2

∫
d4xd4y jµ(x)G

0µν
F

(x, y) jν(y)
}
, (3.49)

with the free photon propagator in momentum space given by

G0µν
F

(p) ≡ −i

p2 + i0+

(
gµν −

pµpν

p2

)
. (3.50)

(We have introduced the i0+ prescription that selects the ground state at x0 → ±∞, using the
same argument as in the section 2.3.3.) The procedure used here is equivalent to imposing the
gauge fixing condition ∂µAµ = 0, called Lorenz gauge or Landau gauge. As one can see, the
resulting propagator (3.50) differs from the Coulomb gauge propagator given in eq. (1.207).

82



3.3.3 General covariant gauges

All gauge fixings amount to constrain in some way the quantity ∂µAµ, since it does not
appear in the integrand of the photon path integral. Instead of imposing ∂µAµ = 0, one may
instead impose the more general condition

∂µA
µ(x) = ω(x) , (3.51)

where ω(x) is some arbitrary function of space-time. This can be done by introducing a
functional delta function, δ[∂µAµ −ω], inside the path integral. However, the introduction
of the function ω(x) breaks Lorentz invariance. To mitigate this problem, one integrates
over all the functionsω(x), with a Gaussian weight. This amounts to defining the generating
functional as follows4,

Z0[j
µ] ≡

∫ [
Dω(x)

]
exp
{
− i
ξ

2

∫
d4x ω2(x)

}
×
∫ [
DAµ(x)

]
δ
[
∂µA

µ −ω
]

exp
{
i

∫
d4x

(
− 1
4
FµνFµν + jµAµ

)}
,

(3.52)

where ξ is an arbitrary constant. Performing the integration on ω(x) thanks to the delta
functional, and integrating by parts, this becomes

Z0[j
µ] =

∫ [
DAµ(x)

]
exp
{
i

∫
d4x

(
1
2
Aµ(gµν�−(1−ξ)∂µ∂ν)A

ν+ jµAµ
)}
. (3.53)

From this formula, a standard Gaussian integration tells us that the corresponding photon
propagator in momentum space should be the inverse of

i
(
gµνp

2 − (1− ξ)pµpν
)
. (3.54)

Looking for an inverse of the form α gνρ + β pνpρ

p2
, we find

G0µν
F

(p) =
−i gµν

p2 + i0+
+

i

p2 + i0+

(
1−

1

ξ

)
pµpν

p2
. (3.55)

The gauge fixing parameter ξ appears in the propagator, but only in the term proportional to
pµpν. Thanks to the Ward-Takahashi identities, it does not have any incidence on physical
results, provided that all the external charged particles are on mass-shell. The Landau gauge
of the previous subsection corresponds to ξ → ∞. Another popular choice is the Feynman
gauge, obtained for ξ = 1,

G0µν
F

(p) =
ξ=1

−i gµν

p2 + i0+
. (3.56)

Note that one could also introduce a non Lorentz covariant condition inside the delta function,
such as δ[∂iAi−ω], in order to derive the photon propagator in Coulomb gauge via the path
integral.

4Since the argument of the delta function is linear in the variable Aµ‖ that does not appear in the integrand, we
do not need a Jacobian. It is possible to impose non-linear gauge conditions of the form δ[F(∂µAµ) −ω], but this
should be done by writing the path integral as follows∫ [

Dω(x)
]

exp
{
− i
ξ

2

∫
d4x ω2(x)

} ∫ [
DAµ(x)

]
F ′(∂µA

µ)︸ ︷︷ ︸
Jacobian

δ
[
F(∂µA

µ) −ω
]
· · ·

In general, the Jacobian cannot be ignored since it depends on the gauge field, but it can be expressed in terms of
ghost fields. Doing this would be an useless complication in QED, but is an essential step in the quantization of
non-Abelian gauge theories.
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3.4 Schwinger-Dyson equations

3.4.1 Functional derivation

Consider a Lagrangian density L(φ, ∂µφ) (φ may be a collection of fields, but we do not
write any index on it to keep the notation light), and S ≡

∫
x
L the corresponding action.

The generating functional of time-ordered products of fields has the following path integral
representation:

Z[j] =

∫ [
Dφ(x)

]
eiS[φ]+i

∫
jφ . (3.57)

In the right hand side, φ(x) should be viewed as a dummy integration variable, and the result
of the integral should be unmodified if we change φ(x) → φ(x) + δφ(x). This translates
into

0 = δZ[j] = i

∫ [
Dφ(x)

]
eiS[φ]+i

∫
jφ
{∫

d4x δφ(x)
(
j(x) +

δS

δφ(x)

)}
. (3.58)

Taking n functional derivatives of this identity with respect to ij(x1),...,ij(xn) and setting
then j to zero gives:

0 =

∫ [
Dφ(x)

]
eiS[φ]

∫
d4x δφ(x)

{
i φ(x1) · · ·φ(xn)

δS

δφ(x)

+

n∑
i=1

δ(x− xi)
∏
j6=i

φ(xj)
}
. (3.59)

Since in this discussion the variation δφ(x) is arbitrary, this implies the following identities

0 =

∫ [
Dφ(x)

]
eiS[φ]

{
i φ(x1) · · ·φ(xn)

δS

δφ(x)
+

n∑
i=1

δ(x− xi)
∏
j6=i

φ(xj)
}
, (3.60)

known as the Schwinger-Dyson equations (here written in functional form). For instance, in
the case of a scalar field theory with a φ4 interaction term, this leads to

i
(
�x +m

2
)〈
0out
∣∣Tφ(x1) · · ·φ(xn)φ(x)∣∣0in

〉
+i λ
3!

〈
0out
∣∣Tφ(x1) · · ·φ(xn)φ3(x)∣∣0in

〉
=

n∑
i=1

δ(x− xi)
〈
0out
∣∣T ∏

j6=i

φ(xj)
∣∣0in
〉
.

(3.61)

(We have used the remark following eq. (2.30) in order to let the operator � +m2 act also
on the step functions that order the operators in the time-ordered product.) If we convolute
this equation with the free Feynman propagator (i.e. the inverse of the operator �x +m2),
the above Schwinger-Dyson equation can be represented diagrammatically as follows:

x

1
2

n

+ x

1
2

n

=

n∑
i=1

x

i 1
i-1

i+1

n︸ ︷︷ ︸
contact terms

. (3.62)
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The Schwinger-Dyson equations have several simple consequences. When applied to a
free theory (λ = 0) in the case n = 1, we get(

�x +m
2
)〈
0out
∣∣Tφ(x1)φ(x)∣∣0in

〉
= −iδ(x− x1) , (3.63)

which is nothing but the equation of motion satisfied by the Feynman propagator. In the
general case, if x differs from all the xi’s, we obtain(

�x +m
2
)〈
0out
∣∣Tφ(x1) · · ·φ(xn)φ(x)∣∣0in

〉
+ λ
3!

〈
0out
∣∣Tφ(x1) · · ·φ(xn)φ3(x)∣∣0in

〉
= 0 . (3.64)

Thus, in a certain sense5, we can say that time-ordered products of fields satisfy the Euler-
Lagrange equation of motion.

3.4.2 Schwinger-Dyson equations and conserved currents

The functional derivative of the action S with respect to φ(x) is given by

δS

δφ(x)
=

∂L

∂φ(x)
− ∂µ

∂L

∂(∂µφ(x))
. (3.65)

When we equate this to zero, we recover the Euler-Lagrange equation of motion. Under an
infinitesimal variation δφ(x) of the field, the Lagrangian density varies by

δL =
∂L

∂φ(x)
δφ(x) +

∂L

∂(∂µφ(x))
∂µ(δφ(x))

= ∂µ

( ∂L

∂(∂µφ(x))
δφ(x)

)
+

δS

δφ(x)
δφ(x) . (3.66)

When the variation δφ(x) corresponds to a symmetry of the Lagrangian, we have δL = 0,
and therefore

δS

δφ(x)
δφ(x) = −∂µ

( ∂L

∂(∂µφ(x))
δφ(x)︸ ︷︷ ︸

Jµ(x)

)
, (3.67)

where Jµ is the Noether current associated to this continuous symmetry. In the classical
theory, this current is conserved, i.e. ∂µJµ = 0, if the fields obey the Euler-Lagrange equation
of motion. The Schwinger-Dyson equations provide a quantum analogue of this conservation
law, at the level of the expectation values of time-ordered products of fields. In eq. (3.59),
we can replace δφ(δS/δφ) by −∂µJ

µ. When the resulting identity is rewritten in terms of
operators, the derivative ∂µ should go outside the time-ordering, and we obtain

∂µ
〈
0out
∣∣T Jµ(x)φ(x1) · · ·φ(xn)∣∣0in

〉
+i

n∑
i=1

δ(x− xi)
〈
0out
∣∣T δφ(x)∏

j 6=i

φ(xj)
∣∣0in
〉
= 0 .

(3.68)
5I.e., up to the terms in δ(x − xi) that may appear in the right hand side, called contact terms. These contact

terms in fact take care of the action of the time derivative on the theta functions of the time ordering operator T.

85



Therefore, when a Noether current operator is inserted inside a time-ordered product, it sat-
isfies the continuity equation up to contact terms (coming from the action of ∂0 on the theta
functions of the T product). Eq. (3.68) is a generalization of the Ward-Takahashi identities,
already discussed in the context of electric charge conservation.

Note that in some cases, a continuous symmetry does not leave the Lagrangian density
invariant, but modifies it by a total derivative,

δL = ∂µK
µ , (3.69)

so that only the action is invariant. There is still a conserved current, given by

Jµ(x) ≡ ∂L

∂(∂µφ(x))
δφ(x) − Kµ(x) . (3.70)

This however does not modify eqs. (3.68).

3.5 Quantum anomalies

3.5.1 General considerations

It may happen that some symmetries of the Lagrangian (i.e. symmetries of the classical
theory) are broken by quantum corrections. This phenomenon is called a quantum anomaly.
One way this may appear is via the introduction of a regularization (e.g. a cutoff), whose
effect leaves an imprint on physical results even after the cutoff has been taken to infinity.
Here we will adopt a functional point of view on this issue. In the previous section, a crucial
point in the derivation of the Schwinger-Dyson equations is that the functional measure must
be invariant under the symmetry under consideration. Quantum anomalies may be viewed as
an obstruction in defining a functional measure which is invariant under certain symmetries,
e.g. axial symmetry.

Let us consider a set of fermion fieldsψn(x), that we encapsulate into a multiplet denoted
ψ(x), and assume that they interact with a gauge potential Aaµ(x) in a non-chiral way (this
is the case of electromagnetic interactions and of strong interactions). Consider now the
following transformation of the fermion fields:

ψ(x)→ U(x)ψ(x) . (3.71)

The Hermitic conjugate of ψ transforms as:

ψ†(x)→ ψ†(x)U†(x) , (3.72)

so that we have

ψ(x) ≡ ψ†(x)γ0 → ψ†(x)U†(x)γ0 = ψ(x)γ0U†(x)γ0 . (3.73)

Since they are Grassmann variables, the measure should be transformed with the inverse of
the determinant of the transformation. Since the transformation under consideration is local
in x, it reads[

DψDψ
]→ 1

det (U) det (U)

[
DψDψ

]
, (3.74)

where the matrices U and U carry both indices for the fermion species and space-time indices:

Uxm,yn ≡ Umn(x) δ(x− y) ,
Uxm,yn ≡ (γ0U†(x)γ0)mn δ(x− y) . (3.75)
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3.5.2 Non-chiral transformations

Let us consider the following transformation:

U(x) = eiα(x)t , (3.76)

where α(x) ∈ R and where t is a Hermitean matrix that does not contain γ5 ≡ i γ0γ1γ2γ3.
Therefore:

U†(x) = e−iα(x)t , (3.77)

and

(UU)xm,yn =

∫
d4z

∑
p

Uxm,zp Uzp,yn

=

∫
d4z δ(x− z)δ(z− y)

∑
p

(
e−iα(z)t

)
mp

(
eiα(z)t

)
pn

= δmnδ(x− y) . (3.78)

Thus UU = 1, which implies detU detU = 1, and the fermion measure is invariant under this
kind of transformations. This means that this symmetry does not exhibit quantum anomalies.

3.5.3 Chiral transformations

Let us now define the right-handed and left-handed projections of a spinor,

ψ
R
≡
(
1+ γ5

2

)
ψ , ψ

L
≡
(
1− γ5

2

)
ψ , (3.79)

and consider a transformation that acts differently on these two components:

U(x) = eiα(x)γ
5t , (3.80)

where t is again a Hermitean matrix. Such transformations are called chiral transformations.
The matrix γ5 ≡ iγ0γ1γ2γ3 satisfies

(
γ5
)2

= 1 ,

γ5 † = γ5 ,

{γ5, γ0} = 0 , (3.81)

which implies:

γ0U†(x)γ0 = γ0e−iα(x)γ
5tγ0 = eiα(x)γ

5t = U(x) . (3.82)

Thus U = U, and detU = detU. Unless this determinant is equal to one, the measure is not
invariant and transforms according to:[

DψDψ
]→ 1

(detU)2
[
DψDψ

]
. (3.83)
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Consider an infinitesimal transformation of the form given in eq. (3.80). We can write:

(U− 1)xm,yn = i α(x)(γ5t)mn δ(x− y) . (3.84)

In order to calculate
(
detU

)−2
, we use the formula6:

(detU)−2 = e−2 tr ln U . (3.85)

In the present case, we have:

(detU)−2 = exp
[
−2 tr ln

(
1+ iα(x)γ5 t δ(x− y)

)]
≈
α�1

exp
[
−2 i tr

(
α(x)γ5 t δ(x− y)

)]
= exp

[
i

∫
d4x α(x)A(x)

]
, (3.86)

with a function A(x) whose formal expression is

A(x) ≡ −2 tr (γ5t) δ(x− x) . (3.87)

In this equation, the trace symbol tr denotes both a trace on the indices carried by the Dirac
matrices and a trace on the fermion species. In terms of this function, the measure transforms
as [

DψDψ
]→ ei

∫
d4x α(x)A(x)

[
DψDψ

]
. (3.88)

The fact that this measure is not invariant under the transformation (3.80) implies that there
exists fermion loop corrections that break the invariance under chiral transformations, even
if the Dirac Lagrangian itself is invariant (this is the case when one considers a global trans-
formation, i.e. a constant α(x), and the fermions are massless). The prefactor that alters the
measure can be absorbed into a redefinition of the Lagrangian,

L(x)→ L(x) + α(x)A(x) . (3.89)

All happens as if the Lagrangian itself was not invariant under this transformation. If one
integrates out the fermion fields in order to obtain an effective theory for the other fields,
the term in α(x)A(x) must be included in the Lagrangian of this effective theory in order to
correctly account for the quantum anomalies.

3.5.4 Calculation of A(x)

At first sight, the expression (3.87) of the anomaly function A(x) is very poorly defined: the
trace is zero, but it is multiplied by an infinite δ(0). In order to manipulate finite expressions,
we must first regularize the delta function. This can be done by writing:

A(x) = −2 lim
y→x,M→+∞ tr

{
γ5 t F

(
−
/D2x
M2

)}
δ(x− y) , (3.90)

6If the λi are the eigenvalues of U, we have:

detU =
∏
i

λi = exp
(∑
i

ln λi
)
= etr ln U .
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where /Dx is the Dirac operator7

/Dx ≡ γµ
(
∂µ − i g taAaµ(x)

)
, (3.91)

and where F(s) is a function such that

F(0) = 1 ,

F(+∞) = 0 ,

sF′(s) = 0 at s = 0 and at s = +∞ . (3.92)

A covariant derivative is mandatory in eq. (3.90), since an ordinary derivative would break
gauge invariance. Then, we replace the delta function by its Fourier representation:

δ(x− y) =

∫
d4k

(2π)4
eik(x−y) , (3.93)

which leads to

A(x) = −2

∫
d4k

(2π)4
lim

y→x,M→+∞ tr

{
γ5 tF

(
−
/D2x
M2

)}
eik(x−y)

= −2

∫
d4k

(2π)4
lim

M→+∞ tr
{
γ5 t F

(
−
(i/k+ /Dx)

2

M2

)}
. (3.94)

The second equality follows from

lim
y→xF(∂x) eik·(x−y) = F(ik+ ∂x) . (3.95)

The function A(x) can then be rewritten as follows:

A(x) = −2 lim
M→+∞M4

∫
d4k

(2π)4
tr

{
γ5 t F

(
−

[
i/k+

/Dx

M

]2)}
, (3.96)

by redefining the integration variable, k→Mk. Then, we can write:

−

[
i/k+

/Dx

M

]2
= k2 − 2i

k ·Dx
M

−

(
/Dx

M

)2
, (3.97)

and expand the function F(·) in powers of 1/M. The only terms that give a non-zero contri-
bution to A(x) should not go to zero too quickly whenM→ +∞: only the terms decreasing
at most as 1/M4 should be kept. Moreover, the Dirac trace should be non-zero, which im-
plies that the matrix γ5 must be accompanied by at least four ordinary γµ matrices. The
matrices γµ come from the term /D2x in eq. (3.97), that brings two of them8, and we therefore
need to go to the second order in the Taylor expansion of the function F(·). In fact, a single
term fulfills all these constraints:

A(x) = −

∫
d4k

(2π)4
F′′(k2) tr

(
γ5 t /D4x

)
. (3.98)

7We are considering here the case where the fermions are coupled to a non-Abelian gauge field. The index a
carried byAaµ is a “color” index, and the ta’s are the generators of the Lie algebra representation where the fermions
live. g is the coupling of the fermions to the gauge fields. See the next chapter for more details.

8In this counting, we assume that the matrix t does not contain Dirac matrices.
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By a Wick’s rotation (k→ iκ, k2 → κ2), we obtain9:

∫
d4k F′′(k2) = 2iπ2

+∞∫
0

dκ κ3 F′′(κ2) = iπ2 . (3.99)

The last equality is obtained by two successive integrations by parts. We also have:

/D2x = Dµx D
ν
x γµ γν

=
1

2
Dµx D

ν
x ({γµ, γν}+ [γµ, γν])

= D2x +
1

4
[Dµx , D

ν
x ] [γµ, γν]

= D2x −
ig

4
taFµνa [γµ, γν] . (3.100)

Using

tr (γ5γµγνγργσ) = −4 i εµνρσ , (3.101)

we obtain

A(x) = −
g2

16π2
εµνρσ F

µν
a (x) Fρσb (x) tr (tatbt) , (3.102)

where the trace is now only on the fermion species. When t is the identity matrix, the integral
of A(x) depends only on topological properties of the gauge field configuration and takes dis-
crete values. In the context of anomalies, it is called the Chern-Pontryagin index. Moreover,
the Atiyah-Singer theorem relates this invariant to the zero modes of the Euclidean Dirac
operator in this gauge field (see the section 3.5.7).

3.5.5 Anomaly of the axial current

When the action is invariant under global chiral transformations, its variation under local
chiral transformation may be written as

δS =

∫
d4x Jµ5 (x) ∂µα(x) , (3.103)

where Jµ5 (x) is the axial current. Integrating by parts, and identifying this variation with the
term obtained in the previous section, we should have

〈∂µJµ5 (x)〉A = −
g2

16π2
εµνρσ F

µν
a (x) Fρσb (x) tr (tatbt) , (3.104)

where 〈·〉
A

is an average over the fermion fields, in a fixed gauge field configuration.

9Recall that the rotationally invariant measure in 4-dimensional Euclidean space is 2π2κ3dκ.
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3.5.6 Anomaly in the u and d quarks sector

Strong interaction : Consider the sector of the two lightest quarks flavors, u et d. If one
neglects their mass, the corresponding action is invariant under the following chiral transfor-
mations:

δu = i αγ5 u , δd = −i αγ5 d . (3.105)

The matrix t in quark flavor space that corresponds to this transformation is

t =

(
1 0

0 −1

)
. (3.106)

Through the strong interactions, all quark flavors couple identically with the gluons (i.e. all
quarks belong to the same representation of the SU(3) algebra). In other words, the matrices
ta that describe this coupling do not depend on the quark flavor, and the trace that appears in
the anomaly function is

tr (tatbt) = tuutr (tatb) + tddtr (tatb) = 0 . (3.107)

This means that the anomalies that may occur in the gluon-gluon term cancel between the u
and d flavors of quarks.

Electromagnetic interaction : The situation is different with electromagnetic interactions,
because the u and d quarks have different electrical charges. The analogue of the matrices
ta is the charge matrix of the ((u, d) doublet:

Q ≡

(
2
3

0

0 −1
3

)
⊗ 1color . (3.108)

(The factor 1color comes from the fact that all quark colors couple to photons in the same
way.) Therefore we have

tr (Q2t) =
Nc

3
, (3.109)

where Nc = 3 is the number of colors. This leads to

A(x) = −
e2Nc

48π2
εµνρσ F

µν(x) Fρσ(x) , (3.110)

where Fµν is the electromagnetic field strength.

Decay of the neutral pion in two photons : At low energy, the strong interactions may be
described by an effective theory that couples a doublet of fermions ψ (the u and d quarks),
the three pions π and a field σ. The interaction term in this model is

L
I
≡ λ ψ(σ+ iπ · τγ5)ψ , (3.111)

where τi (i = 1, 2, 3) are the Pauli matrices. Note that π3 must be the neutral pion, since
it couples diagonally to the two components of the doublet (τ3 is a diagonal matrix). This
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interaction term is invariant under the transformation (3.105) provided that the fields σ and π
transform as

σ→ σ− απ3 , π1,2 → π1,2 , π3 → π3 + ασ . (3.112)

Moreover, the masses of nucleons are due to a spontaneous breaking of this symmetry, in
which the σ field has a non-zero expectation value in the ground state:

〈
σ
〉
= fπ. Thus the

variation of the field π3 is δπ3 = fπ α.

When photons are added to this model, there is no direct coupling between the neutral
pion and the photon. Let us now consider the theory that would result from integrating out
the quark fields. The anomaly (3.110) would produce a term

Lanom(x) = −
e2Nc

48π2
εµνρσ F

µν(x) Fρσ(x)α(x) . (3.113)

in the Lagrangian. This term should be canceled somehow, because we are now talking about
an effective theory of pions and photons, that should be chiral invariant. The resolution of
this issue is that this effective theory contains a coupling between the neutral pion and two
photons, of the form:

Lπ0γγ = −
e2Nc

48π2fπ
εµνρσ F

µν(x) Fρσ(x)π3(x) . (3.114)

The decay rate of a neutral pion into two photons can be easily determined from the effective
coupling (3.114):

Γ(π0 → 2γ) =
N2cα

2
emm

3
π

144π3f2π
. (3.115)

This result could also be obtained by computing the transition amplitude at one loop from a
neutral pion to two photons in the effective model we started from. The present considerations
show that this decay is in fact controlled to a large extent by a quantum anomaly.

3.5.7 Atiyah-Singer index theorem

Covariant derivatives Dµ = ∂µ − i gAaµt
a are anti-Hermitean, because the gauge potential

Aaµ is real and the color matrices ta are Hermitean (recall that an ordinary derivative is anti-
Hermitean). However, γ0 is Hermitean, while γ1,2,3 are anti-Hermitean. Therefore, the
Dirac operator Dµγµ in Minkowski space is neither Hermitean not anti-Hermitean.

Let us introduce an Euclidean time via x4 ≡ ix0. Likewise, we also have:

∂4 = i∂0 , A4 = iA0 , γ4 = iγ0 , (3.116)

and the measure over space-time becomes d4x = i d4x
E

where d4x
E

is the measure over
4-dimensional Euclidean space (d4x

E
= dx1dx2dx3dx4). The Dirac operator becomes:

/D =

4∑
i=1

(∂i − i gA
a
i t
a)γi , (3.117)
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where the index i runs from 1 to 4. Now, the Dirac matrices γi are all anti-Hermitean, which
implies that the Euclidean Dirac operator is Hermitean. It can therefore be diagonalized in an
orthonormal basis of eigenfunctions φk:

/Dxφk(x) = λkφk(x) ,∫
d4x

E
φ†k(x)φk′(x) = δkk′ , (3.118)

with real eigenvalues λk.

Moreover, let us consider transformations that act in flavor space, but do not contain Dirac
matrices. Therefore, the matrix t commutes with the Dirac operator, and we can choose the
eigenfunctions φk so that they are also eigenfunctions of t:

t φk(x) = tkφk(x) . (3.119)

Note also that these eigenfunctions must obey the following completeness relation:∑
k

φk(x)φ
†
k(y) = δ(x− y) . (3.120)

We can use this completeness identity in order to express the delta function in the anomaly
function A(x) in eq. (3.90):

A(x) = −2 lim
y→x,M→+∞ tr

{
γ5 tF

(
−
/D2x
M2

)∑
k

φk(x)φ
†
k(y)

}

= −2 lim
y→x,M→+∞

∑
k

tr

{
φ†k(y)γ

5 tF

(
−
/D2x
M2

)
φk(x)

}

= −2 lim
M→+∞

∑
k

tkF

(
−
λ2k
M2

)
φ†k(x)γ

5φk(x) . (3.121)

Specializing to the case where t = 1 (i.e. all the eigenvalues tk are equal to 1), we obtain the
following relationship,

g2

32π2

∫
d4x

E
εijkl F

a
ij(x) F

b
kl(x) tr(tatb)

= −
1

2

∫
d4x

E
A(x) = lim

M→+∞
∑
k

F

(
−
λ2k
M2

) ∫
d4x

E
φ†k(x)γ

5φk(x) ,

(3.122)

between an integral that involves the field strength of a gauge field configuration and a sum
over the spectrum of the Euclidean Dirac operator (in the same gauge field). Since γ5 anti-
commutes with the Dirac operator,{

γ5, /D
}
= 0 , (3.123)

the state φk′ ≡ γ5φk(x) is also an eigenfunction of /Dx with the eigenvalue −λk:

/Dx(γ
5φk(x)) = −λk(γ

5φk(x)) . (3.124)
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When λk 6= 0, the state φk′ is distinct from the state φk(x). Since /Dx is Hermitean, they are
in fact orthogonal:∫

d4x
E
φ†k(x)γ

5φk(x) =

∫
d4x

E
φ†k(x)φk′(x) = 0 . (3.125)

This implies that none of the eigenfunctions φk with a non-zero eigenvalue can contribute
to the right hand side of eq. (3.122). The only contributions to eq. (3.122) come from the
eigenfunctions for which λk = 0, i.e. the zero modes of the Euclidean Dirac operator. Since
we have assumed that f(0) = 1, we have:

g2

32π2

∫
d4x

E
εijkl F

a
ij(x) F

b
kl(x) tr(tatb) =

∑
k|λk=0

∫
d4x

E
φ†k(x)γ

5φk(x) . (3.126)

Since
{
γ5, /Dx

}
= 0, we can choose these zero modes in such a way that they are also

eigenmodes of γ5, with eigenvalues +1 or −1. We can thus divide the zero modes in two
families, the right-handed and the left-handed zero modes:

/DxφR(x) = 0 , γ5φ
R
(x) = +φ

R
(x) ,

/DxφL(x) = 0 , γ5φ
L
(x) = −φ

L
(x) . (3.127)

Using also the fact that the eigenfunctions are normalized as follows,∫
d4x

E
φ†
R
(x)φ

R
(x) = 1 ,∫

d4x
E
φ†
L
(x)φ

L
(x) = 1 , (3.128)

we obtain the following identity

g2

32π2

∫
d4x

E
εijkl F

a
ij(x) F

b
kl(x) tr(tatb) = n

R
− n

L
, (3.129)

where n
R

and n
L

are the numbers of right-handed and left-handed zero modes, respectively.
This formula is the Atiyah-Singer theorem. It tells us that the integral in the left hand side
is an integer, despite being the integral of a quantity that changes continuously when one
deforms the gauge field. Different considerations, from the study of Euclidean gauge field
configurations known as instantons, provide another insight on this integral by relating it to
the third homotopy group of the gauge group, π3(SU(Nc)) = Z.
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Chapter 4

Non-Abelian gauge symmetry

4.1 Non-abelian Lie groups and algebras

4.1.1 Reminder: Abelian gauge transformations

Gauge theories are quantum field theories with matter fields (usually spin 1/2 fermions, but
also possibly scalars) and gauges potentials in such a way that the Lagrangian is invariant
under the action of a local continuous transformation. Quantum Electrodynamics is the sim-
plest such theory, with a local U(1) invariance. Given Ω(x) ∈ U(1), the various objects that
enter in the theory transform as follows:

ψ → Ω†ψ ,

Aµ → Aµ +
i

e
Ω†∂µΩ ,

Fµν → Fµν ,

Dµ → Ω†DµΩ = ∂µ − ie
(
Aµ +

i

e
Ω†∂µΩ

)
. (4.1)

In this construction, the gauge transformation of Aµ could have been found by requesting
that Dµψ transforms as ψ itself,

Dµψ → Ω†(x) Dµψ , (4.2)

withDµ ≡ ∂µ− ieAµ the covariant derivative. The field strength Fµν would then be defined
as ∂µAν − ∂νAµ.

Our goal is now to generalize the concept of gauge theory to more general transforma-
tions, in view of applications to the electroweak and to the strong interactions. In these two
cases, the internal group of transformations is SU(2) and SU(3), respectively, but we will
consider in most of this chapter a general Lie group G. Starting from the first of eqs. (4.1),
withΩ(x) ∈ G, we want to determine the other transformation laws, and construct an invari-
ant action.
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4.1.2 Lie groups

Let us start by recalling that a Lie group is a group which is also a smooth manifold. The
group operation will be denoted multiplicatively, as inΩ2Ω1, and we will denote the identi-
cal element by 1 and the inverse of a group element Ω by Ω−1. The fact that a Lie group G

is also a manifold allows to use concepts of differential geometry in their study.

Matrix Lie groups, that will be our main concern in view of applications to quantum field
theory, are closed subsets of GL(n,C), the general linear group of n × n matrices on the
field of complex numbers. Here is a list of some classical examples of matrix Lie groups,
along with their definition:

Special linear groups : SL(n,C) , SL(n,R) det (Ω) = 1

Special orthogonal group : SO(n) ΩTΩ = 1 , detΩ = 1

Unitary group : U(n) Ω†Ω = 1

Special unitary group : SU(n) Ω†Ω = 1 , detΩ = 1

(4.3)

4.1.3 Lie algebras

Geometrically, the Lie algebra g is a vector space that may be viewed as tangent to the group
at the identity 1. Therefore, its dimension is the same as that of the group manifold. The
group multiplication induces on the tangent space a non-associative multiplication, the Lie
bracket, thereby turning it into an algebra. The Lie algebra completely encapsulates the local
properties of the underlying Lie group, and if the group is simply connected its Lie algebra
defines it globally. Because they are linear spaces, Lie algebras are usually easier to study
than their group counterpart, although they provide most of the information.

In the specific case of matrix Lie groups, the corresponding Lie algebra can be defined as
the following set of matrices1

g ≡
{
X
∣∣eitX ∈ G,∀t ∈ R

}
. (4.4)

A crucial property of the matrix exponential is that

eX+Y 6= eX eY if [X, Y] 6= 0 . (4.5)

Instead, one may use Trotter’s formula2:

eX+Y = lim
n→∞

(
eX/n eY/n

)n
. (4.6)

(See the figure 4.2 for a geometrical illustration of this formula.) From the definition (4.4) of
the Lie algebra, and using Trotter’s formula, one can check that any real linear combination

1The prefactor i inside the exponential is common in the quantum physics literature, but seldom used in mathe-
matics. Its main benefit is to make X a Hermitean matrix when the group elements are unitary.

2A sketch of the proof is the following:

eX/n eY/n = 1 + X
n
+ Y
n
+ O(n−2) = exp

(
X+Y
n

+ O(n−2)
)
,(

eX/n eY/n
)n

= exp
(
X + Y + O(n−1)

)
.
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of elements of g is in g, i.e. that g is a vector space. Therefore, every element of g can be
written as a linear combination of some basis elements ta,

X = xat
a , (4.7)

with an implicit sum on the index a. The ta’s are also called the generators of the algebra.

Thanks to the exponential mapping (4.4), the properties of the Lie groups listed in eqs. (4.3)
translate into specific properties of the matrices X in the corresponding algebras:

Special linear groups : sl(n,C) , sl(n,R) tr (X) = 0
Special orthogonal group : so(n) XT = −X

Unitary group : u(n) X† = X

Special unitary group : su(n) X† = X , tr (X) = 0
(4.8)

Note that the conditions imposed onΩ in eqs. (4.3) are non-linear, in contrast with the linear
conditions obeyed by the matrices X in eqs. (4.8). This is why a Lie group is a curved
manifold, while a Lie algebra is a linear space.

4.1.4 Geometrical interpretation

First note that we have

iX =
d

dt
eitX

∣∣∣∣
t=0

. (4.9)

The group elements exp(itX) form a smooth curve on the group manifold (t = 0 corresponds
to the identity), and iX may be viewed as the vector tangent to this curve at the identity, as
illustrated in the figure 4.1. The non-commutativity of the group is related to the curvature
of the corresponding manifold3. Because of this curvature, a displacement eiX followed by
a displacement eiY does not lead to the same point as the two displacements performed in
reverse order. This geometrical representation also provides an interpretation of Trotter’s
formula for the exponential of a sum, as shown in the figure 4.2. From the figure 4.1, we see
that the dimension of the Lie algebra is the number of independent directions on the group
manifold. From the conditions listed in (4.8) on the matrices X ∈ g, it is easy to determine
the dimension of these algebras (viewed as algebras over the fieldR):

Algebra Dimension
sl(n,R) n2 − 1

so(n) n(n− 1)/2

u(n) n2

su(n) n2 − 1

Despite these correspondences, the Lie algebra may not reflect the global properties of the
group (e.g. whether it is connected), and distinct Lie groups may have isomorphic Lie alge-
bras. This is for instance the case of U(1) and SO(2), SO(3) and SU(2), or SU(2)× SU(2)
and SO(4).

3This statement can be made more precise: it is possible to define a metric tensor for the group manifold, and to
express the associated curvature tensor in terms of the structure constants.
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Figure 4.1: Lie group and Lie algebra.

e
i tX

1

i X

Lie Algebra

Lie Group manifold

Figure 4.2: Geometrical interpretation of Trotter’s formula: the broken path, made of a succes-
sion of elementary steps eitX/n and eitY/n, approximates better and better the curve eit(X+Y)

on the group manifold as n→ ∞.

e i tX

e i t (X+Y)

e i tY

i X

i Y

i (X+Y)
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4.1.5 Lie bracket and structure constants

Consider an element Ω of the Lie group and an element X of the Lie algebra. For any real
number t, we have

exp
(
i tΩ−1XΩ

)
= Ω−1 eitX︸︷︷︸

∈G

Ω

︸ ︷︷ ︸
∈G

, (4.10)

where the equality follows from the Taylor series of the exponential. From the definition of
the Lie algebra, this implies thatΩ−1 XΩ ∈ g. Therefore, if X, Y ∈ g we also have

e−itX Y eitX ∈ g , (4.11)

and the derivative with respect to t at t = 0 is also an element of the algebra,

−i
[
X, Y

]
∈ g . (4.12)

In other words, −i times the commutator of two elements of a Lie algebra is another element
of the algebra. Thus −i[·, ·] is the multiplication law4 in g (it is also called the Lie bracket).
Therefore, the commutators between its generators can be written as[

ta, tb
]
= i fabc tc , (4.13)

where the fabc are real numbers called the structure constants. The antisymmetry of the
commutator implies that fabc = −fbac. Given three elements X, Y, Z ∈ g of the algebra,
their commutator satisfies the Jacobi identity[

X,
[
Y, Z
]]

+
[
Y,
[
Z,X

]]
+
[
Z,
[
X, Y

]]
= 0 , (4.14)

which implies the following relationship among the structure constants:

fadefbcd + fbdefcad + fcdefabd = 0 . (4.15)

4.1.6 Baker-Campbell-Hausdorff formula

Given an element X ∈ g, we may define a function from g to g as follows:

ad
X
(Y) ≡ −i

[
X, Y

]
. (4.16)

The function ad
X

is called the adjoint mapping at the point X. The exponential of the adjoint
mapping plays an important role, thanks to the following formula

ead
X Y = e−iX Y eiX . (4.17)

This allows to write the derivative of the exponential of a (matrix-valued) function as follows:

d

dt
eiX(t) = i eiX(t)

e
ad
X(t) − 1

ad
X(t)

dX(t)

dt
. (4.18)

4In contrast, the ordinary product of two elements of the algebra is in general not in the algebra.
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(This is known as Duhamel’s formula5.) The non-trivial aspect of this formula is that it is true
even when X(t) does not commute with its derivative. Then, given X, Y ∈ g, let us define a
matrix Z(t) by

eiZ(t) ≡ eiX eitY . (4.19)

Differentiating both sides with respect to t (using eq. (4.18) for the left hand side), we obtain

dZ(t)

dt
=

[
e

ad
Z(t) − 1

ad
Z(t)

]−1
Y . (4.20)

From eq. (4.17), we can also see that

e
ad
Z(t) = et ad

Y ead
X . (4.21)

Integrating eq. (4.20) from t = 0 to t = 1, we obtain the following identity:

ln
(
eiXeiY

)
= i X+ i

∫1
0

dt F
(
et ad

Y ead
X

)
Y , (4.22)

where the function F(·) is defined by

F(z) ≡ ln(z)
z− 1

. (4.23)

Eq. (4.22) is the integral form of the Baker-Campbell-Hausdorff formula. In order to recover
the more familiar expansion in nested commutators, note that

et ad
Y ead

X = 1+ t ad
Y
+ ad

X
+ 1
2
(t2ad2

Y
+ ad2

X
) + t ad

Y
ad
X
+ · · ·

F(z) = 1−
1

2
(z− 1) + 1

3
(z− 1)2 · · · . (4.24)

This leads to

ln
(
eiXeiY

)
= i(X+ Y) −

1

2

[
X, Y

]
−
i

12

([
X,
[
X, Y

]]
−
[
Y,
[
X, Y

]])
+ · · · (4.25)

(Explicit expressions for all the coefficients of this series are given by Dynkin’s formula.)
In applications to quantum field theory, we usually need only the first two terms of this ex-
pansion because the commutators we encounter are c-numbers and all the subsequent terms
are zero. Besides being an intermediate step in the derivation of eq. (4.25), the integral form
(4.22) shows that the group product can be reconstructed from Lie algebra manipulations
(since the right hand side of this equation contains only objects that belong to the algebra).

5Note that this formula is equivalent to:

d

dt
eiX(t) = i

∫1
0

ds eisX(t)
dX(t)

dt
ei(1−s)X(t) .

This latter form can be proven by writing

eiX(t
′) = ei

(
X(t)+(t ′−t)X ′(t)+···

)
= lim
n→∞

(
e
i
X(t)
n e

i(t ′−t)
X ′(t)
n

+···
)n

and by expanding the right hand side to first order in t ′ − t.
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4.2 Representations

A real representation of a Lie group G is a group homomorphism from elements of G to ele-
ments of GL(n,R), i.e. a mapping π from G to GL(n,R) that preserves the group structure:

π(1) = 1 , π(Ω2Ω1) = π(Ω2)π(Ω1) . (4.26)

Likewise, one may define representations of a Lie algebra, as homomorphisms from g to
gl(n,R). A representation is said to be faithful if π is a one-to-one mapping.

Since we are focusing on matrix Lie groups, their elements are already matrices, and one
may wonder what representations are good for. In fact, it is often important to know how
a given group (e.g. the rotation group SO(3)) acts on a more general linear space. In the
example of SO(3), even though the “defining” action is onR3 in terms of 3×3matrices, the
group has many other matrix representations made of objects that act on spaces other than
R3.

Singlet representation : The singlet representation, or trivial representation, is the repre-
sentation for which the mapping is π(Ω) = 1 for all Ω’s. The objects that belong to this
representation space are invariant under the transformations of the group G. In quantum field
theory, one says that these objects are “neutral” (under the group G).

Fundamental representation : The fundamental representation, or standard representa-
tion, is the smallest faithful representation. It is also the representation obtained when π is
the identical map. In other words, in the fundamental representation, the elements of a matrix
Lie group are simply represented by themselves. It is customary to normalize the generators
of the fundamental representation of the Lie algebra, denoted taf , as follows:

tr
(
taf t

b
f

)
=
δab

2
. (4.27)

This choice sets the normalization of the structure constants, through eq. (4.13). Then, one
usually normalizes the generators of other representations in such a way that they fulfill the
commutation relation (4.13) with the same structure constants (but the trace formula (4.27)
will in general be satisfied only in the fundamental representation).

Fierz identity for su(n) : In the case of su(n), there are n2 − 1 generators taf , while the
linear space of all n× n Hermitian matrices has a dimension n2. A basis of the latter can be
obtained by adding the identity matrix to the taf ’s. Thus, any n×n Hermitean matrixM can
be written as

M = m0 1+ma t
a
f . (4.28)

Since the taf ’s are traceless, we have

m0 =
1

n
tr (M) , ma = 2 tr (Mta) . (4.29)
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Considering the entry ij of the matrixM, we can write

Mij =
1

n
Mkk δij + 2Mlk

(
taf
)
kl

(
taf
)
ij

= Mlk

[ 1
n
δklδij + 2

(
taf
)
kl

(
taf
)
ij

]
. (4.30)

Since this is true for any Hermitean matrixM, we must have

1

n
δklδij + 2

(
taf
)
kl

(
taf
)
ij
= δilδjk , (4.31)

which is usually written as follows(
taf
)
ij

(
taf
)
kl

=
1

2

[
δilδjk −

1

n
δijδkl

]
. (4.32)

This formula is called a Fierz identity. It has a convenient diagrammatic representation,

(taf )ij(t
a
f )kl =

k l

j i

=
1

2
−
1

2n
, (4.33)

in which the solid blobs represent the taf matrices, and the wavy line indicates that the indices
a are contracted. In the right hand side, the solid lines indicate how the indices ijkl are
connected by the delta symbols. By contracting the indices jk in the Fierz identity (4.32), we
obtain:(

taf t
a
f

)
il
=
n2 − 1

2n
δil . (4.34)

The quadratic combination taf t
a
f , called the fundamental Casimir operator, is proportional to

the identity (and therefore commutes with everything). The prefactor is sometimes denoted
Cf ≡ (n2 − 1)/2n.

The diagrammatic representation (4.33) provides a very convenient way of obtaining cer-
tain identities involving the generators of the fundamental representation. As an illustration,
let us consider the following example:

taf t
b
f t
a
f =

a a

b

=
1

2
−
1

2n

=
1

2
tr (tbf ) 1−

1

2n
tb = −

1

2n
tb . (4.35)

For the first term, we have used the fact that a closed loop in this diagrammatic representation
corresponds to a trace over the color indices, and the tracelessness the generators. Likewise,
one would obtain

taf t
b
f t
c
f t
a
f t
b
f =

a ab b

c
=
1

4

(
1+

1

n2

)
tcf . (4.36)
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Adjoint representation : The adjoint representation of a Lie group G is a representation as
linear operators that act on the Lie algebra g, defined by the following mapping:

Ω ∈ G → Ad
Ω
∈ GL(g) such that Ad

Ω
(X) = Ω−1XΩ . (4.37)

If the dimension of the Lie algebra is d, then Ad
Ω

may be viewed as an d × d matrix. We
may also define the adjoint representation of the algebra g, as follows:

X ∈ g → ad
X
∈ GL(g) such that ad

X
(Y) = −i[X, Y] . (4.38)

It is sufficient to know the adjoint representation of the generators ta, for which one often
uses the following notation

−i adta ≡ Taadj . (4.39)

Note that Taadj can be represented by a d × d matrix. Using Jacobi’s identity, one may check
that

[
adta , adtb

]
= −adi[ta,tb] = fabc adtc . Therefore, the Taadj’s fulfill the same commuta-

tion relations as the ta’s themselves:[
Taadj, T

b
adj

]
= i fabc Tcadj . (4.40)

Using eq. (4.13), we find that the components of these matrices are given by(
Taadj

)
bc

= −i fabc . (4.41)

In other words, the adjoint representation is a representation by matrices whose size is the
dimension of the algebra, and in which the components of the generators are the structure
constants. That eqs. (4.40) and (4.41) are consistent is a consequence of the Jacobi identity
(4.15) satisfied by the structure constants.

A common use of the adjoint representation is to rearrange expressions such as

e−iX Y eiX = ead
X Y , (4.42)

where X and Y are in some representation r of the Lie algebra. Using X = Xat
a
r and Y =

Yat
a
r , we can rewrite this as follows

ead
X Y = eXa adta Ybt

b
r = tcr

[
eiXaT

a
adj

]
cb
Yb . (4.43)

Thus, we have[
e−iX Y eiX

]
c
=
[
eiXadj

]
cb
Yb , (4.44)

where the left hand side may be in any representation r. In other words, the right and left
multiplication by a group element and its inverse can be rewritten as a left multiplication by
the adjoint of this group element.

4.2.1 More identities for su(n)

We list here a few useful identities, that are specific to the case of su(n). Contrary to the
commutator, the anti-commutator of two matrices of the algebra does not belong to the alge-
bra. However, it can be decomposed as a linear combination of the identity and the generators
of the algebra:{

taf , t
b
f

}
= δab

n
1+ dabc tcf . (4.45)
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The first term is obtained by taking the trace of the equation, using eq. (4.27) and the fact that
the generators are traceless. The constants dabc are sometimes called the symmetric structure
constants. Therefore, the product of two generators of the fundamental representation can be
written as

taf t
b
f =

1

2

(
δab

n
1+ (dabc + i fabc) tcf

)
. (4.46)

From this, we deduce the following identities

tr
(
taf t

b
f t
c
f

)
=

1

4

(
dabc + i fabc

)
,

tr
(
taf t

b
f t
a
f t
c
f

)
= −

1

4n
δbc ,

facdfbcd = n δab ,

dacddbcd =
( 4
n

− n
)
δab ,

facddbcd = 0 ,

fadefbeffcfd =
n

2
fabc . (4.47)

Note that the third of these equations provides the trace of the product of two generators in
the adjoint representation:

tr
(
TaadjT

b
adj

)
= n δab . (4.48)

4.3 Covariant derivative

Spinors : Consider a spinorψ (this may be a multiplet made of several elementary spinors).
Saying that ψ lives in a representation r of the Lie group G means that the group G acts on ψ
as follows:

ψ → Ω−1ψ , (4.49)

whereΩ is an element of the representation r of the Lie group.

In the Dirac Lagrangian density, the kinetic term ψγµ∂µψ and the mass term mψψ are
invariant under such transformations when the Lie group G is SU(N). The mass term is in
fact invariant under local transformations, i.e. whenΩ depends on space-time:

ψ(x) → Ω−1(x)ψ(x) , (4.50)

but this is not true of the kinetic term. Loosely speaking the obstruction comes from the fact
that we cannot carry an x-dependentΩ(x) through the derivative ∂µ:

Ω(x)∂µ · · · = ∂µΩ(x) · · ·−
(
∂µΩ(x)

)
· · ·︸ ︷︷ ︸

extra term

(4.51)
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Gauge fields : A covariant derivative, denotedDµ, is a deformation of the ordinary deriva-
tive such that ψDµψ is invariant under local SU(N) transformations. Given the transforma-
tion law of ψ, the covariant derivative must therefore transform as follows:

Dµ → Ω†(x)DµΩ(x) . (4.52)

Let us look for a covariant derivative of the form

Dµ ≡ ∂µ − igAµ(x) , (4.53)

where g is a coupling constant similar to the constant e in QED and Aµ(x) a 4-vector (in
quantum field theory, this field is called a gauge field). The transformation law (4.52) is
fulfilled provided that Aµ(x) transforms in a very specific way. Note first that the ordinary
derivative ∂µ is invariant (i.e. it belongs to the singlet representation of SU(N)). If we denote
AΩµ (x) the transformed Aµ(x), then we must have:

∂µ − igAΩµ (x) = Ω†(x)
[
∂µ − igAµ(x)

]
Ω(x)

= ∂µ +Ω†(x)
(
∂µΩ(x)

)
− igΩ†(x)Aµ(x)Ω(x) , (4.54)

from which we obtain the transformation law6 of Aµ(x):

Aµ(x) → AΩµ (x) ≡ Ω†(x)Aµ(x)Ω(x) +
i

g
Ω†(x)

(
∂µΩ(x)

)
. (4.55)

From eqs. (4.16), (4.17) and (4.18), we see that if Ω is an element of a Lie group G, then
Ω†∂µΩ belongs to the Lie algebra g. Thus the second term in the right hand side of eq. (4.55)
is an element of the representation r of su(N). For consistency, the first term should also be
in this algebra, which implies that Aµ is also an element of the representation r of the Lie
algebra, that we can decompose as follows:

Aµ(x) ≡ Aaµ(x) tar , (4.56)

where the tar are the generators of the algebra in this representation.

Like in quantum electrodynamics, we see that imposing the invariance of the Dirac La-
grangian under local transformations (4.52) leads to the necessity of introducing a vector field
Aµ(x) whose transformation law is given in eq. (4.55). This requirement also completely
specifies the form of the coupling between the fields ψ and Aµ:

L
I
= −igψiγ

µAaµ
(
tar
)
ij
ψj , (4.57)

where we have written explicitly the su(N) indices i, j of all the objects. These indices, that
run from 1 to the size of the representation r, label the “charge” (under the group SU(N))
carried by the fermions, while the index a may be viewed as the charge carried by the spin-
1 particle associated to the vector field Aaµ (this index runs from 1 to the dimension of the
group, i.e. N2 − 1 for SU(N)).

6From this transformation law, we see that field configurations of the form ig−1Ω†∂µΩ may be transformed
into the null field Aµ ≡ 0. Such configurations are called pure gauge fields.
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Infinitesimal transformations : Eqs. (4.50) and (4.55) specify how the fields ψ and Aµ
change under any transformation of G. However, it is sometimes useful to consider infinites-
imal transformations, i.e. Ω close to 1. This is done by writing Ω = exp(ig θatar ), with
|θa| � 1, and by expanding eqs. (4.50) and (4.55) to order one in θa. The variations of the
fields ψ and Aµ are given by:

δψ(x) = −igθr(x)ψ(x)

δAµ = −∂µθr(x) + i g
[
Aµ(x),θr(x)

]
= −

[
Dµ,θr(x)

]
, (4.58)

where we have defined θr ≡ θatar . The second one can be written more explicitly as

δAaµ = −∂µθa(x) + g fabc θb(x)A
c
µ(x) = −

(
Dadj
µ

)
ab
θb(x) , (4.59)

where Dadj
µ is the covariant derivative in the adjoint representation.

4.4 Field strength

In the previous section, we have constructed a Dirac Lagrangian which is invariant under
local transformations of G, by introducing a vector fieldAµ that we shall interpret as a spin-1
particle that mediates the gauge interaction. But so far, this field enters only in the interaction
term of eq. (4.57). We therefore need to construct a kinetic term for Aµ, with the constraint
that it is invariant under the transformations (4.55). In the case of quantum electrodynamics,
this Lagrangian was −1

4
FµνF

µν, where the field strength was defined as Fµν ≡ ∂µAν −
∂νAµ. However, a direct verification indicates that this expression of the field strength cannot
lead to an invariant Lagrangian.

In order to mimic QED, we aim at constructing a Lagrangian with second order deriva-
tives. Indeed, since the field Aµ(x) has the dimension of a mass, two derivatives and two
powers of the field would provide the required dimension 4 for a Lagrangian in four space-
time dimensions. A useful intermediate step is the construction of a field that depends only
on Aµ(x) and has a simple transformation law. From the transformation law of the covariant
derivative, we find that the commutator [Dµ, Dν] transforms as[

Dµ, Dν
] → Ω†(x)

[
Dµ, Dν

]
Ω(x) . (4.60)

More explicitly, this commutator reads[
Dµ, Dν

]
= −ig

(
∂µAν − ∂νAµ − ig

[
Aµ, Aν

]︸ ︷︷ ︸
Fµν

)
. (4.61)

This generalizes the field strength Fµν to an arbitrary gauge group G. Note the extra term,
made of a commutator between gauge fields, that did not exist in QED. By construction, the
field strength is an element of algebra, in the same representation as Aµ,

Fµν(x) ≡ Faµν(x) tar , (4.62)

and its transformation law7 is

Fµν(x) → Ω†(x) Fµν(x)Ω(x) . (4.63)

7The field strength associated to a pure gauge field is zero, since there exists a transformation Ω for which Aµ
becomes the null field.
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As in QED, one may define electrical and magnetic fields8 by

Eia = F0ia , Bia = 1
2
εijk Fjka , (4.64)

but with a few important differences: these E and B fields carry a group index, and they are
not gauge invariant. Instead, they transform covariantly under a gauge transformation:

Ei(x) → Ω†(x)Ei(x)Ω(x) , Bi(x) → Ω†(x)Bi(x)Ω(x) . (4.65)

In order to build a kinetic term for Aµ from Fµν, we must contract all the Lorentz in-
dices to have a Lorentz invariant Lagrangian. This forces us to have at least two F’s, since
gµν Fµν = 0. Therefore, if we restrict to objects of mass dimension 4, this kinetic term
should be quadratic in F. Moreover, a trace is necessary in order to obtain a gauge invariant
quantity. Therefore, we arrive at the following Lagrangian9 for the field Aµ,

L
A
≡ −

1

2
tr
(
Fµν(x)F

µν(x)
)
= −

1

4
Faµν(x)F

µν
a (x) . (4.66)

Despite its resemblance with the photon kinetic term in QED, this Lagrangian has a quite
remarkable feature: due to the commutator term in Fµν, L

A
contains terms that are cubic in

Aµ and terms which are quartic in Aµ. These terms are interactions between three and four
of the spin-1 particles described by Aµ, respectively. Thus, unlike in QED, the Lagrangian
(4.66) has a very rich structure, and defines in itself a very interesting quantum field theory,
called Yang-Mills theory.

4.5 Non-Abelian gauge theories

A non-Abelian gauge theory is a quantum field theory that has at least a gauge field whose
symmetry group is a non-Abelian group G. Thus, the Lagrangian of all non-Abelian gauge
theories contains a Yang-Mills term:

L
A
≡ −

1

2
tr
(
Fµν(x)F

µν(x)
)
. (4.67)

If the gauge potential Aµ is the only field of the theory, then it is called a Yang-Mills theory.
However, all useful gauge theories in particle physics also have matter fields. For each spin
1/2 matter field, the Dirac Lagrangian

L
D
= ψ(x)

(
i /Dx −m

)
ψ(x) (4.68)

must be added to the Lagrangian. Two important interactions in Nature are described by
non-Abelian gauge theories of this type:

• Quantum chromodynamics, the quantum field theory of strong interactions, is of this
type: the gauge fields are the gluons, and the matter fields are the quarks, of which exist
6 families, or flavors (up, down, strange, charmed, bottom, top). The charge associated
to this gauge interaction is called color. The gauge group of QCD is SU(3), and the
quarks live in the fundamental representation (therefore, they can have three different
colors). In QCD, the gluons interact equally with the right-handed and left-handed
projections of the spinors: it is said to be non-chiral.

8In Quantum Chromodynamics, these fields are called the chromo-electric and chromo-magnetic fields.
9We ignore for now the operator εµνρσ tr (FµνFρσ). This term will be discussed later in the section 4.7.
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• Likewise, the Electroweak theory is a non-Abelian gauge theory with the gauge group
U(1)×SU(2), but with the peculiarity that the SU(2) acts only on the left-handed pro-
jection of the fermions. In other words, the right-handed fermions belong to the singlet
representation of SU(2) (while the left-handed fermions are arranged in doublets, in
representations of dimension 2).

It is also possible to couple a (charged) scalar field φ(x) to a gauge potential Aµ. Under a
local gauge transformation, φ transforms as follows

φ(x) → Ω†(x)φ(x) , (4.69)

and therefore the following Lagrangian density is invariant under local gauge transformations:

Lscalar =
(
Dµφ(x)

)†(
Dµφ(x)

)
−m2φ†(x)φ(x) − V

(
φ†(x)φ(x)

)
. (4.70)

(The potential should depend on the scalar field via the combinationφ†φ in order to be gauge
invariant). The most important example of such scalar in particle physics is the Higgs boson.

4.6 Classical equations of motion

From the Lagrangians (4.67), (4.68) and (4.70), it is straightforward to obtain the classical
Euler-Lagrange equations of motion. For the fermions, we simply obtain the Dirac equation(

i /D−m
)
ψ(x) = 0 . (4.71)

For scalar fields, the classical equation of motion is a deformation of the Klein-Gordon equa-
tion, in which the ordinary derivatives are replaced by covariant derivatives:[

DµD
µ +m2 + V ′

(
φ†(x)φ(x)

]
φ(x) = 0 . (4.72)

For the gauge field Aµ, the derivatives of the various pieces of the Lagrangian read:

∂µ
∂L

A

∂(∂µAaν)
= −Faµν ,

∂L
A

∂Aaν
= g fabcAbµ F

cµν ,

∂L
D

∂Aaν
= gψγν taψ ,

∂Lscalar

∂Aaν
= ig

(
φ† ta

(
Dνφ

)
−
(
Dνφ

)†
taφ

)
. (4.73)

This leads to the following equation of motion[
Dµ, F

µν
]
a
= −Jνa ,

Jνa = gψγν taψ+ ig
(
φ† ta

(
Dνφ

)
−
(
Dνφ

)†
taφ

)
, (4.74)

known as Yang-Mills equation. From the Dirac and Klein-Gordon equations, one may check
that the color current Jνa is covariantly conserved:[

Dν, J
ν
]
= 0 . (4.75)

The field strength also obeys another, homogeneous, equation,[
Dµ, F

νρ
]
+
[
Dν, F

ρµ
]
+
[
Dρ, F

µν
]
= 0 , (4.76)

that follows from the Jacobi identity between covariant derivatives.
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4.7 θ-term and strong-CP problem

4.7.1 CP-odd gauge invariant operator

In the construction of the Lagrangian of Yang-Mills theory, we have argued that the only
dimension four gauge invariant local operator is an operator quadratic in the field strength
Fµνa . All the Lorentz indices should be contracted in order to obtain a Lorentz invariant
Lagrangian density. An obvious possibility is Fµνa Faµν, which is the combination that appears
in the Yang-Mills action. However, there exist another Lorentz invariant contraction, obtained
by introducing the Levi-Civita tensor,

Lθ ≡
g2θ

32π2
εµνρσ tr (Fµν Fρσ) . (4.77)

The prefactor 1/32π2 will appear convenient later, and the coupling constant in front of this
term is usually denoted θ. Consequently, this term is referred to as the θ-term.

4.7.2 Expression as a total derivative

Firstly, we should clarify why we have not considered this term right away when we listed the
possible gauge invariant operators that may enter in a non-Abelian gauge theory. As we shall
prove now, the θ-term is a total derivative. Therefore, it does not enter in the field equations
of motion, and has also no influence on perturbation theory. Since our discussion has been
so far centered on the perturbative expansion, this term was irrelevant. However, the θ-term
–that we cannot exclude on the grounds of symmetries– may lead to non-perturbative effects
that we shall discuss in this section.

Let us consider the following vector10:

Kµ ≡ εµνρσ
[
AaνF

a
ρσ −

g

3
fabcAaνA

b
ρA

c
σ

]
. (4.78)

The divergence of this vector is given by

∂µK
µ = εµνρσ

[
(∂µA

a
ν)(∂ρA

a
σ − ∂σA

a
ρ + gfabcAbρA

c
σ)

+Aaν(∂µ∂ρA
a
σ − ∂µ∂σA

a
ρ + gfabc(∂µA

b
ρ)A

c
σ + gfabcAbρ(∂µA

c
σ))

−
g

3
fabc(∂µA

a
ν)A

b
ρA

c
σ −

g

3
fabcAaν(∂µA

b
ρ)A

c
σ −

g

3
fabcAaνA

b
ρ(∂µA

c
σ)
]

=
1

2
εµνρσ

[
FaµνF

a
ρσ

−g2fabcfadeAbµA
c
νA

d
ρA

e
σ

+
g

3
fabc

(
AbµA

c
ν(∂ρA

a
σ − ∂σA

a
ρ) −A

b
ρA

c
σ(∂µA

a
ν − ∂νA

a
µ)
)]
. (4.79)

10Note that this vector can also be expressed as a trace:

Kµ ≡ 2εµνρσ tr
[
AνFρσ +

2ig

3
AνAρAσ

]
.
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The two terms of the third line are antisymmetric under the exchange (µν) ↔ (ρσ), while
the prefactor εµνρσ is symmetric under this exchange. These terms are therefore zero after
summing over the indices νρσµ. Then, the term on the second line can be written as follows:

g2εµνρσ tr ([Aµ, Aν][Aρ, Aσ])
= g2εµνρσ tr (AµAνAρAσ +AνAµAσAρ −AνAµAρAσ −AµAνAσAρ) .

(4.80)

Each term is a trace of four factors, and is invariant under cyclic permutations of the indices.
Since cyclic permutations are odd in four dimensions, the εµνρσ tensor changes sign under
such a permutation, and the contraction with the trace is zero. Therefore, we obtain:

∂µK
µ =

1

2
εµνρσ Faµν F

a
ρσ , (4.81)

which is proportional to the θ-term. More precisely, we have

Lθ =
g2θ

32π2
∂µK

µ . (4.82)

4.7.3 Effect of the θ-term on the Euclidean path integral

We have already encountered the integral of the θ-term over Euclidean spacetime in the con-
text of anomalies and the Atiyah-Singer theorem (see eq. (3.129)):∫

d4x
E
Lθ = nθ , n ∈ Z , (4.83)

where the integer n is related to the zero modes of the Dirac operator in the gauge field
configuration. When added to the Yang-Mills action, the integral of the θ-term modifies the
Euclidean path integral as follows∫ [

DAµ · · ·
]
e−S[A,··· ] → ∫ [

DAµ · · ·
]
e−S[A,··· ]−

∫
d4x

E
Lθ

=
∑
n∈Z

e−nθ
∫ [
DAµ · · ·

]
n
e−S[A,··· ] , (4.84)

where the measure
[
DAµ

]
n

is restricted to the gauge fields of index n. Thus, the effect of
the θ-term is to reweight the gauge field configurations by a factor (e−θ)n that depends only
on θ and on the index n. Note that since n is an integer, the path integral is periodic in θ,
with a period 2iπ.

4.7.4 Strong CP-problem

As we have seen in the section 3.5.6, an effective description of the interactions of nucleons
with pions is provided by the linear σ model, whose interaction term is

L
I
≡ λ ψ(σ+ iπ · τγ5)ψ . (4.85)
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However, this does not include any CP-violating interactions, such as those that may result by
the θ-term. Its effects may be included in the effective theory by generalizing the interaction
term into

L
I
≡ ψ(σ+ π · τ(iλγ5 + λ))ψ . (4.86)

By a matching with the underlying theory, the new coupling λ can be related to the parameter
θ by the following estimate

|λ| ≈ 0.038 |θ| . (4.87)

Then, the effective theory (4.86) can be used to estimate the neutron electric dipole moment
D
N

(in the chiral limit where the pion massmπ is much smaller than the nucleon massm
N

.
This leads to

D
N
≈ λ λ e

ln
(
m
N

mπ

)
4π2m

N

≈ 5× 10−16 θe cm . (4.88)

Current experimental limits on the neutron electric dipole moment indicate that∣∣D
N

∣∣ ≤ 3× 10−26 e cm , (4.89)

implying that

|θ| . 10−10 . (4.90)

We thus face a paradoxical situation. The gauge symmetry of quantum chromodynamics
allows the addition of the θ-term to the Yang-Mills action, and without any prior knowledge
of the coupling θ, one may expect that natural values are of order unity. This constitutes the
strong-CP problem: lacking a symmetry principle that would force θ to be zero, why is it
nevertheless extremely small?

Note that there is an interesting interplay between the θ-term and chiral transformations
of quark fields:

ψf −→ eiγ5αfψf , (4.91)

where f is an index labeling the quark flavors and the αf are real phases. Under this trans-
formation, the functional measure for the quarks is not invariant, but transforms as follows

[
DψDψ

]
−→ exp

(
−

i

32π2

∫
d4x εµνρσFaµνF

a
ρσ

∑
f

αf

) [
DψDψ

]
. (4.92)

The same effect would have been obtained by a change of the angle θ:

θ→ θ− 2
∑
f

αf . (4.93)

For the quarks, we can write generically the following mass term11

∑
f

Mf ψf
1+ γ5
2

ψf +
∑
f

M∗f ψf
1− γ5
2

ψf , (4.94)

11If the masses are complex, then the symmetries P and CP are explicitly broken.
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that transforms into the following under the above chiral transformation∑
f

e2iαfMf ψf
1+ γ5
2

ψf +
∑
f

e−2iαfM∗f ψf
1− γ5
2

ψf . (4.95)

This is equivalent to transforming the quark masses as follows:

Mf → e2iαfMf . (4.96)

Since any change of θ can be absorbed by a chiral transformation of the quarks, whose effect
is to multiply the quark masses by phases, physical quantities cannot depend separately on θ
and on the quark masses. Instead, they can depend only on the following combination

eiθ
∏
f

Mf , (4.97)

which is invariant. This discussion indicates that the θ-term has no effect if at least one of
the quarks is massless. Unfortunately, a massless up quark (the lightest quark) does not seem
consistent with existing experimental and lattice evidence...

4.7.5 Link with the topology of gauge fields

Using Stokes’ theorem, the integral of the θ-term over Euclidean spacetime may be rewritten
as an integral over a surface localized at infinity:∫

d4xE Lθ =
g2θ

32π2

∫
d4xE ∂µK

µ =
g2θ

32π2
lim
R→∞

∫
S3,R

dSµ K
µ , (4.98)

where S3,R is a 3-dimensional sphere of radius R and dSµ the measure on this surface.

Let us now assume that the colored objects of the problem are comprised in a finite region
of space-times, so that the gauge field configuration goes to a pure gauge at infinity. Such a
field can be written as

Aµ(x) = aµ(x) +
i

g
Ω†(x̂) ∂µΩ(x̂) , (4.99)

whereΩ(x̂) is an element of the gauge group that depends only on the direction of the vector
xµ, and aµ(x) the deviation from the pure gauge form. For the total field to be a pure gauge
at infinity, this deviation must decrease faster than |x|−1. When |x|→ +∞, Aν(x) goes to 0
as |x|−1, while Fρσ(x) goes to 0 faster than |x|−2 (since Aν(x) goes to a pure gauge), and we
have:

Kµ −→
|x|→+∞

4ig

3
εµνρσ tr (AνAρAσ) , (4.100)

and∫
d4xE Lθ =

θ

24π2
lim
R→∞

∫
S3,R

dS x̂µ ε
µνρσ tr

(
Ω†(∂νΩ)Ω†(∂ρΩ)Ω†(∂σΩ)

)
, (4.101)
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where we have used dSµ = x̂µ dS, with dS the element of area on the 3-sphere. Note that
the integrand decreases as R−3 because of the three derivatives, while dS ∼ R3. Therefore,
the integral is in fact independent of the radius R and we can drop the limit:∫

d4xE Lθ =
θ

24π2

∫
S3

dS x̂µ ε
µνρσ tr

(
Ω†(∂νΩ)Ω†(∂ρΩ)Ω†(∂σΩ)

)
. (4.102)

Thus, the integral of the θ-term depends only on the functionΩ(x̂), that maps the 3-dimensional
sphere S3 onto the gauge group:

Ω : S3 7−→ G . (4.103)

It turns out that these mappings can be grouped in classes of Ω’s that can be deformed con-
tinuously into one another. On the contrary, Ω’s that belong to distinct classes cannot be
related by a continuous deformation. The set of these classes possesses a group structure, and
is called the third homotopy group of G, denoted π3(G). For all SU(N) groups with N ≥ 2,
the third homotopy group is isomorphic to (Z,+). The interpretation of eq. (4.102) is that the
integral of the right hand side depends only on the class to whichΩ belongs, and is therefore
a topological quantity.

4.8 Non-local gauge invariant operators

4.8.1 Two-fermion non-local operator

The discussion in the previous sections exhausts the local gauge invariant objects of dimen-
sion less than or equal to 4. However, it is sometimes useful to construct gauge invariant
non-local operators, for instance in the definition of parton distributions. The simplest op-
erator of this type is an operator with two spinor fields at different space-time positions,
ψ(y)W(y, x)ψ(x). Since the transformation laws of the two spinors involve different Ω’s,
such an operator is gauge invariant only if the non-written object between the spinors trans-
forms as follows:

W(y, x) → Ω†(y)W(y, x)Ω(x) . (4.104)

4.8.2 Wilson lines

In order to construct such an object, let us define a path γµ(s) that goes from x to y,

γµ(0) = xµ , γµ(1) = yµ , (4.105)

and consider the following differential equation

DW

ds
≡ dγ

µ

ds
Dµ(γ(s))W = 0 , with initial condition W(0) = 1 , (4.106)

where the notationDµ(γ(s)) indicates that the gauge field in the covariant derivative must be
evaluated at the point γµ(s). In other words, the covariant derivative of W, projected along
the tangent vector to the path γµ(s), is zero. From this definition, it follows that W(s) is
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an element of the representation r of the gauge group if Aµ is in the representation r of the
algebra.

Note that when the gauge field Aµ is zero everywhere, then the solution is trivially
W(s) = 1. The value of the solution12 at s = 1 is a property of the path γµ and of the
gauge potential Aµ. This object, that we will denote as

Wyx[A;γ] ≡W(1) , (4.107)

is called a Wilson line. Let us now study how it changes under a gauge transformation Ω.
From the transformation law of the covariant derivative, the differential equation that defines
the transformedW

Ω
(s) is

dγµ

ds
Ω†(γ(s))Dµ(γ(s))Ω(γ(s))W

Ω
(s) = 0 , with initial condition W

Ω
(0) = 1 .

(4.108)

If we define Z(s) ≡ Ω(γ(s))W
Ω
(s), this equation is equivalent to

dγµ

ds
Dµ(γ(s))Z(s) = 0 , with initial condition Z(0) = Ω(x) . (4.109)

Comparing this equation with the original equation (4.106), we obtain

Z(s) =W(s)Ω(x) , i.e. W
Ω
(s) = Ω†(γ(s))W(s)Ω(x) . (4.110)

Looking now at the point s = 1, we see that the Wilson line transforms as

Wyx[A;γ] → Ω†(y)Wyx[A;γ]Ω(x) . (4.111)

Thus, the Wilson line transforms precisely as we wanted in eq. (4.104), and we conclude that
the operator ψ(y)Wyx[A;γ]ψ(x) is gauge invariant. Note that the Wilson line Wyx[A;γ],
solution of eq. (4.106) at s = 1, can also be written as a path-ordered exponential,

Wyx[A;γ] = P exp
(
ig

∫
γ

dxµ Aµ(x)
)
. (4.112)

Although this compact notation is suggestive, it is often useful to revert to the defining dif-
ferential equation (4.106).

4.8.3 Path dependence

By inserting a Wilson line between the points x and y, we can construct a gauge invariant
non-local operator ψ(y) · · ·ψ(x). However, in doing so, we have introduced a path γ, for
which there are infinitely many possible choices since only its endpoints are fixed. It turns
out that in general, the Wilson line depends on the path γ, i.e.

Wyx[A;γ] 6= Wyx[A;γ
′] . (4.113)

This implies that, although we may define gauge invariant non-local bilinear operators, their
definition is not unique and each choice of the path connecting the two points leads to a
different operator.

12Note that if the initial condition is W(0) = Ω0 instead of 1, then the solution would be changed as follows
W(s)→W(s)Ω0.
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4.8.4 Case of pure gauge fields

When the gauge potential is a pure gauge field, there exists a functionΩ(x) such that

AΩµ (x) =
i

g
Ω†(x)∂µΩ(x) . (4.114)

Since this field is a gauge transformation of the null field Aµ ≡ 0, Wilson lines in this pure
gauge field are given by

Wyx[AΩ ;γ] = Ω
†(y)Ω(x) . (4.115)

In other words, in a pure gauge field, the Wilson lines depend only on their endpoints, but not
on the path chosen to connect them. This is the only exception to the remark of the previous
paragraph.

Conversely, a gauge potential Aµ(x) in which the Wilson lines depend only on the end-
points is a pure gauge. A function Ω(x) that gives this gauge potential through eq. (4.114)
can be constructed as a Wilson line from x to some arbitrary base point x0:

Ω(x) = Wx0x[A;γ] . (4.116)

(The path γ can be chosen arbitrarily.)

4.8.5 Wilson loops

A Wilson loop is a special kind of Wilson line, where the initial point and endpoint are
identical, x = y, and therefore the path γ is a closed loop:

W[A;γ] = P exp
(
ig

∮
γ

dxµ Aµ(x)
)
. (4.117)

Note that they are a property of the closed loop γ, and do not depend on the choice of the
starting point x. Because they have identical endpoints, the trace of a Wilson loop is gauge
invariant. From the result of the previous paragraph, they are equal to the identity in a pure
gauge field, but they depend non-trivially on the path in a generic gauge field13.

In Abelian gauge theories, the Wilson loop can be rewritten in terms of the integral of the
field strength Fµν over a surface Σ of boundary γ, by using Stokes theorem:

exp
(
ig

∮
γ

dxµAµ(x)
)

=
Abelian

exp
(
i
g

2

∫
Σ

dxµ ∧ dxν Fµν(x)
)
. (4.118)

Generalizations of this formula to the non-Abelian case exist, that involve a path-ordering in
the left hand side (thus giving a Wilson loop) and a surface-ordering in the right hand side.
For infinitesimally small closed loops, a more direct connection to the field strength may be
established. Consider for instance a small square closed path in the (12) plane,

γ =

x
a

a

13Wilson loops are extensively used in lattice gauge theories. Moreover, Giles’ theorem states that all the gauge in-
variant information contained in a gauge potentialAµ can be reconstructed from the trace of Wilson loops (assuming
we know Wilson loops for arbitrary loops).
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The Wilson loop along this path may be approximated by

W[A;γ] ≈ exp
(
− igaA2(x+ a

2
̂)
)

exp
(
− igaA1

(
x+ a

2
ı̂+ â)

)
× exp

(
igaA2(x+ aı̂+ a

2
̂)
)

exp
(
igaA1(x+ a

2
ı̂)
)
, (4.119)

where we make an error of order a3 on each of the Wilson lines at the edges of the square.
By expanding the exponentials, we obtain

W[A;γ] = 1+ iga2
(
∂1A

2(x) − ∂2A
1(x)

)
−g2a2

(
A2(x)A1(x) −A1(x)A2(x)

)
+ O(a3)

= 1+ ig a2 F12(x) + O(a3) . (4.120)

Thus, the first non-trivial correction to a small Wilson loop is the area of the loop times
the field strength projected on the plane of the loop. Since W[A;γ] is an element of the
representation r of the group, in the vicinity of the identity, it may be represented as

W[A;γ] = exp
(
i
(
εαatar + ε2 βatar + O(ε3)

))
= 1r + i

(
εαatar + ε2 βatar

)
−
ε2

2
αaαb tar t

b
r + O(ε3) , (4.121)

where ε is an infinitesimal parameter quantifying how close W[A;γ] is from the identity, and
1r is the identity matrix in the representation r. Comparing eqs. (4.120) and (4.121), we see
that we must identity ε ≡ ga2 and αa ≡ F12a (x). The formula (4.120) is insufficient in order
to determine βa, since this term gives a contribution of order a4 in the Wilson loop. But we
can nevertheless use eq. (4.121) to determine the lowest order correction to the trace of the
Wilson loop,

tr (W[A;γ]) = tr
(
1r
)
−
g2 a4

2
F12a (x)F12b (x) tr

(
tar t

b
r

)
+ O(a6) , (4.122)

where we have used the fact that the generators tar are traceless for the su(N) algebra.
Eq. (4.122) is the basis of the discretization of the Yang-Mills action, the first step in the
formulation of lattice gauge theories.
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Chapter 5

Quantization of Yang-Mills theory

5.1 Introduction

Generically, the Lagrangian density of non-Abelian gauge theory reads:

L ≡
(
Dµφ(x)

)†(
Dµφ(x)

)
−m2φ†(x)φ(x) − V

(
φ†(x)φ(x)

)
+ψ(x)

(
i /Dx −m

)
ψ(x)

−1
4
Faµν(x)F

aµν(x) . (5.1)

The local non-Abelian gauge invariance of this Lagrangian does not change anything to the
quantization of the scalar field φ and of the spinor ψ, for which we may use the standard
canonical or path integral approaches, with the result that the usual Feynman rules still apply.
The main complication resides in the pure Yang-Mills part (third term) of this Lagrangian, i.e.
with the quantization of the gauge potential Aµ. The identification of the degrees of freedom
that are made redundant by the gauge symmetry is much more complicated than in QED, and
a lot more care is necessary in order to isolate the genuine dynamical variables of the theory.

In order to get a sense of the difficulty, let us try to mimic the QED case in order to guess
the Feynman rules for non-Abelian gauge fields. Using the explicit form of the field strength,

Faµν = ∂µAν − ∂νAµ + g fabcAbµA
c
ν , (5.2)

we can rewrite the Yang-Mills Lagrangian as follows

L
A

= 1
2
Aaµ
(
gµν�− ∂µ∂ν

)
Aaν

−g fabc
(
∂µA

a
ν

)
AbµAcν

−1
4
g2 fabcfadeAbµA

c
νA

dµAeν , (5.3)

where we have anticipated an integration by parts in the first (kinetic) term. Note that the
kinetic term is formally identical to the kinetic term of a photons, except for the color index
A carried by the gauge potential. Therefore, one may be tempted to generalize the QED
Feynman rules to a non-Abelian gauge boson. As in the QED case, the quadratic part of
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the Lagrangian (5.3) poses a difficulty when trying to determine the free propagator, because
the operator between Aµ · · ·Aν is not invertible. If we take for granted that a similar gauge
fixing procedure (more on this later, as this is in fact the heart of the problem) can be applied
here, we may assume that the free gauge boson propagator1 in Feynman gauge is

G0µν
F ab

(p) =

p

=
−i gµνδab
p2 + i0+

, (5.4)

and one may read off directly from the Lagrangian (5.3) the following 3-gluon and 4-gluon
vertices:

a µ

b ν c ρ

k

p

q

=
g fabc

{
gµν (k− p)ρ

+ gνρ (p− q)µ + gρµ (q− k)ν
} (5.5)

a µ b ν

c ρ d σ

=

−i g2
{
fabefcde (gµρgνσ − gµσgνρ)

+ facefbde (gµνgρσ − gµσgνρ)

+ fadefbce (gµνgρσ − gµρgνσ)
} (5.6)

All this seems fine, except for a rather subtle problem that would appear when using these
perturbation theory: these Feynman rules lead to amplitudes that do not fulfill Ward identities,
even when all the external colored particles are on their mass-shell. From the discussion of
perturbative unitarity for amplitudes with external gauge bosons in 1.14.4, the lack of Ward
identities seems to imply a violation of unitarity in perturbation theory. Since unitarity is one
of cornerstones of any quantum theory, this is not a conclusion we are ready to accept, and
we must conclude that something is missing in the above Feynman rules.

5.2 Gauge fixing

In our naive attempt to guess the Feynman rules appropriate for non-Abelian gauge bosons,
we have implicitly assumed that the gauge fixing works in the same way as in QED, namely
that the gauge fixing trivially leads to the factorization of an infinite factor in the path inte-
gral, with no other change to the degrees of freedom that are not constrained by the gauge
condition. It turns out that this assumption is incorrect. Let us start from the path integral
representation of the expectation value of some gauge invariant operator O(Aµ):〈

O
〉
≡
∫ [
DAaµ(x)

]
O(Aµ) exp

{
i

∫
d4x

(
−
1

4
FaµνF

aµν
)

︸ ︷︷ ︸
S
YM

[Aµ]

}
. (5.7)

1In this chapter, we use the diagrammatic convention of QCD, where the gauge bosons (gluons) are represented
as springs in Feynman diagrams. In the electroweak theory, it is more common to represent them as wavy lines, like
the photon in QED.

118



Local gauge transformations of the field Aµ,

Aµ(x) → AΩµ (x) ≡ Ω†(x)Aµ(x)Ω(x) +
i

g
Ω†(x)∂µΩ(x) , (5.8)

leave the action and the observable unchanged. Moreover, the functional measure is also
invariant, since[

DAΩaµ(x)
]
=
[
DAaµ(x)] det

[(δAΩaµ(x)
δAbν(y)

)]
, (5.9)

where the determinant is the Jacobian of the “change of coordinates”. Using eq. (4.44), this
determinant can be rewritten as follows

det
[(δAΩaµ(x)
δAbν(y)

)]
= det

[
gµ
ν δ(x− y)

[
Ωadj(x)

]
ab

]
= 1 , (5.10)

since the group elementΩadj is a unitary matrix. Therefore, there is a large amount of redun-
dancy in the above path integral. By applying a gauge transformation, each configuration Aµ
develops into a gauge orbit (see the figure 5.1), along which the physics is invariant. In order
to eliminate this redundancy, we would like to impose a condition at every space-time point
x on the gauge fields,

Ga
(
Aaµ(x)

)
= 0 , (5.11)

in order to select a unique2 field configuration along each orbit. Geometrically, the gauge
condition (5.11) defines a manifold that intersects each orbit, as shown in the figure 5.1, and
we choose this intersection as the representative of this field configuration.

5.3 Fadeev-Popov quantization and Ghost fields

Thus, we would like to split the integration measure in eq. (5.7) into a physical component
in the manifold G(A) = 0, and a component along the gauge orbits that we should factor
out. Unfortunately, achieving this in a non-Abelian gauge theory is far more complicated
than in QED, because the modification of the gauge potential under a gauge transformation
is non-linear. In order to see the difficulty, let us define

∆−1[Aµ] ≡
∫ [
DΩ(x)

]
δ[Ga(AΩµ )] . (5.12)

∆[Aµ] is the determinant of the derivative of the constraint G(Aµ) with respect to the gauge
transformationΩ, at the point where G(Aµ) = 0,

∆(Aµ) = det
(
δGa

δΩ

)
Ga(AΩµ )=0

. (5.13)

In QED, for linear gauge fixing conditions, this derivative (and therefore the determinant) is
independent of the gauge field, and can be trivially factored out of the path integral. This is

2It turns out that this is not possible, due to the Gribov ambiguity: all gauge conditions of the form (5.11) have
several solutions, called Gribov copies. However, only one of these solutions is a “small field”, while the others are
proportional to the inverse coupling g−1. Since perturbation theory is an expansion around the vacuum (i.e. in the
small field regime), these non-perturbatively large copies do not play any role in perturbation theory.
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Figure 5.1: Illustration of the gauge fixing procedure. The red lines represent the gauge field
configurations spanned when varyingΩ. The shaded surface is the manifold where the gauge
condition is satisfied, and the black dots are the gauge-fixed field configurations.
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G(Aµ) = 0
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fixed A
µ
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not the case in non-Abelian gauge theories, and this determinant is the source of significant
complications. One can first prove that the determinant ∆[Aµ] is gauge invariant. Indeed,
changing Aµ → AΘµ , we have:

∆−1[AΘµ ] =

∫ [
DΩ(x)

]
δ[Ga(A

Ω ′︷︸︸︷
ΘΩ
µ )]

=

∫ [
D(Θ†(x)Ω ′(x))

]
δ[Ga(AΩ ′

µ )]

=

∫ [
DΩ ′(x)

]
δ[Ga(AΩ ′

µ )] = ∆−1[Aµ] . (5.14)

By inserting

1 = ∆[Aµ]

∫ [
DΩ(x)

]
δ[Ga(AΩµ )] (5.15)

inside the path integral (5.7), we obtain〈
O
〉
=

∫ [
DΩ(x)

] ∫ [
DAaµ(x)

]
∆[Aµ] δ[G

a(AΩµ )] O(Aµ) e
iS
YM

[Aµ] . (5.16)

Now, we change the integration variable of the second integral according to Aµ → AΩ
†
µ .

In this transformation, the measure [DAµ], the Yang-Mills action S
YM

[Aµ], the observable
O(Aµ) and the determinant ∆[Aµ] are all unchanged (because they are gauge invariant):[

DAΩ
†
µ

]
=

[
DAµ

]
,

S
YM

[AΩ†
µ ] = S

YM
[Aµ] ,

O[AΩ†
µ ] = O[Aµ] ,

∆[AΩ†
µ ] = ∆[Aµ] , (5.17)

while the field AΩµ becomes Aµ. Therefore, we have〈
O
〉
=

∫ [
DΩ(x)

] ∫ [
DAaµ(x)

]
∆[Aµ] δ[G

a(Aµ)] O(Aµ) e
iS
YM

[Aµ] . (5.18)

At this point, the second integral does not contain the gauge transformation Ω anymore, and
therefore we have managed to factorize the “integral along the orbits” in the form of the first
integral over

[
DΩ

]
. Dropping this constant factor, we can therefore write an integral free of

any redundancy:〈
O
〉
=

∫ [
DAaµ(x)

]
∆[Aµ] δ[G

a(Aµ)] O(Aµ) e
iS
YM

[Aµ] . (5.19)

In the above formula, the determinant ∆[Aµ] depends on the gauge field and must there-
fore have an effect on the Feynman rules. The Fadeev-Popov method consists in rewriting
this determinant as a path integral. Note that since ∆[Aµ] appears in the numerator, we need
Grassmann variables in order to represent it as a path integral3, according to eq. (3.36):

det
(
iM
)
=

∫ [
Dχa(x)Dχa(x)

]
exp
{
i

∫
d4xd4y χa(x)Mab(x, y)χb(y)

}
. (5.20)

3The factor i in det
(
iM
)

has been included for aesthetic reasons, but does not change anything. In fact any
rescaling M → αM would leave the results unchanged. Indeed, such a change would alter the ghost propagator
according to S → α−1S, and the ghost-gauge boson vertex by V → αV . Since the ghosts appear only in closed
loops, that contain an equal number of propagators and vertices, these factors α would cancel out.
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An extra generalization, that we have already used in the path integral quantization of the
photon (see eq. (3.52)), is to shift the gauge condition from Ga(A) = 0 to Ga(A) = ωa and
to perform a Gaussian integration overωa. The final result takes the following form:

〈
O
〉

=

∫ [
DAaµ(x)

] [
Dχa(x)Dχa(x)

]
O(Aµ)

× exp i
∫
d4x

(
−
1

4
FaµνF

aµν︸ ︷︷ ︸
L
YM

−
ξ

2
(Ga(Aµ))

2︸ ︷︷ ︸
L
GF

+χaMab χb︸ ︷︷ ︸
L
FPG

)
,

(5.21)

where Mab is the derivative of Ga(AΩ) with respect to the gauge transformation Ω, at the
point Ω = 1 (here, we use the fact that the determinant is gauge invariant to choose freely
the Ω at which we compute the derivative). The unphysical Grassmann fields χ and χ intro-
duced as a trick to express the determinant are called Fadeev-Popov ghosts, or simply ghosts.
Although physical observables do not depend on these fictitious fields, there is in general a
coupling between the ghosts and the gauge fields, because the matrix Mab may contain the
gauge field. This implies that the ghosts may appear in the form of loop corrections in the
perturbative expansion. As we shall see shortly, they are in fact crucial for the consistency
of perturbation theory in non-Abelian gauge theories. In particular, the ghosts ensure that the
theory is unitary.

5.4 Feynman rules for non-abelian gauge theories

Eq. (5.21) contains all the necessary ingredients to complete the Feynman rules that we have
started to derive heuristically at the beginning of this chapter. To turn this formula into ex-
plicit Feynman rules, we should first choose the gauge fixing function Ga(A), since it enters
directly in the term in ξ

2
(Ga(A))2, and implicitly in the matrix Mab that defines the ghost

term. In the common situation where this gauge fixing function is linear inAµ (all our exam-
ples will be of this type), then the terms that are quadratic in the gauge field are the same as
in QED, and therefore the gauge boson propagator is also the same (except for an extra factor
δab that expresses the fact that the free propagation of a gluon does not change its color).
Thus our guess (5.4) for the Feynman gauge propagator was in fact correct. In addition, the
gauge fixing term and the ghost term cannot contain terms of degree 3 or 4 in the gauge field,
which implies that the vertices given in eqs. (5.5) and (5.6) are also correct.

5.4.1 Covariant gauge

Let us now consider the general covariant gauge, all known as the Rξ-gauge, already intro-
duced in eq. (3.51) for QED. This amounts to choosing the gauge fixing function as

Ga(A) ≡ ∂µAaµ −ωa(x) . (5.22)

With this gauge fixing, the free gauge boson propagator is

G0µν
F ab

(p) =

p

=
−i gµν δab
p2 + i0+

+
i δab

p2 + i0+

(
1−

1

ξ

)
pµpν

p2
. (5.23)
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(The simplest form is obtained in the limit ξ → 1, giving the Feynman gauge4.) The matrix
Mab can be calculated by applying an infinitesimal gauge transformation Ω = exp(iθata)
to Aµ. The variation of the gauge field is

δAaµ(x) = g f
abc θb(x)Acµ(x) − ∂µθa(x) , (5.24)

and the variation of Ga(A) at the point x is

δGa = g fabc
(
∂µθb(x)

)
Acµ(x) + g f

abc θb(x)
(
∂µAcµ(x)

)
−� θa(x) . (5.25)

Therefore, we have

Mab =
δGa(A)

δθb
= g fabc

(
∂µAcµ(x)

)
+ g fabcAcµ(x)∂

µ − δab� , (5.26)

and the terms that depend on the Fadeev-Popov ghosts can be encapsulated in the following
effective Lagrangian:

L
FPG

= χa

(
− δab�+ g fabc

(
∂µAcµ(x)

)
+ g fabcAcµ(x)∂

µ
)
χb (5.27)

The first term leads to the following propagator for the ghosts:

G0
F
(p) =

p

=
i δab

p2 + i0+
. (5.28)

Note that it has the form of a scalar propagator, although the ghosts are anti-commuting
Grassmann variables. The vertex between ghosts and gauge bosons reads

a

b

a µ

p

q
r

= g fabc (pµ + qµ) = g f
abc rµ . (5.29)

The Feynman rules for non-Abelian gauge theories in covariant gauge are summarized in the
figure 5.2, where we have added for completeness the rules relative to fermions.

5.4.2 Axial gauge

The axial gauge fixing consists in constraining the value of nµAaµ, where nµ is a fixed 4-
vector (when this vector is time-like, this gauge is called the temporal gauge, and when it is
light-like, it is called the light-cone gauge). Therefore, the gauge fixing function is

Ga(A) ≡ nµAaµ −ωa(x) . (5.30)

After gauge fixing, the quadratic part of the effective Lagrangian reads

1

2
Aaµ
(
gµν�− ∂µ∂ν − ξnµnν

)
Aaν , (5.31)

4Another popular choice is the Landau gauge, obtained in the limit ξ → +∞, that corresponds to a strict
enforcement of the condition ∂µAµ = 0. Indeed, in this limit the exponential of iξ

2
(∂µAµ)2 in the gauge fixed

Lagrangian oscillates wildly –and produces cancellations– unless ∂µAµ = 0. Equivalently, the Gaussian distribution
for the functionωa(x) has a vanishing width in this limit, which forces the strict equality ∂µAaµ = 0.
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Figure 5.2: Feynman rules of non-Abelian gauge theories in covariant gauge. We also list the
rules involving fermions for completeness. Latin characters a, b, c refer to the adjoint repre-
sentation, while the letters i, j refer to the representation r in which the fermions live.

p

=
−i gµν δab
p2 + i0+

+
i δab

p2 + i0+

(
1−

1

ξ

)
pµpν

p2

p

=
i δij

/p−m+ i0+

p

=
i δab

p2 + i0+

a µ

b ν c ρ

k

p

q

=
g fabc

{
gµν (k− p)ρ

+ gνρ (p− q)µ + gρµ (q− k)ν
}

a µ b ν

c ρ d σ

=

−i g2
{
fabefcde (gµρgνσ − gµσgνρ)

+ facefbde (gµνgρσ − gµσgνρ)

+ fadefbce (gµνgρσ − gµρgνσ)
}

i

j

a µ
= −i g γµ

(
tar
)
ij

a

b

a µ

p

q
r

= g fabc (pµ + qµ) = g f
abc rµ
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and the free gauge boson propagator is obtained in momentum space by inverting

gµνp2 − pµpν + ξnµnν . (5.32)

The inverse of this matrix must be of the form

Agµν + Bpµpν + Cnµnν +D (nµpν + nνpµ) . (5.33)

(This is the most general symmetric tensor that one may construct with gµν, pµ and nµ.)
This leads to the following propagator

G0µν
F ab

(p) =
−i δab
p2 + i0+

[
gµν −

pµnν + pνnµ

p · n
+

pµpν

(p · n)2
(
n2 + ξ−1p2

)]
. (5.34)

Note that this propagator does not vanish as p−2 at large momentum, because of the term
proportional to ξ−1, With this gauge fixing, the variation of the gauge fixing function under
an infinitesimal gauge transformation is given by

δGa = g fabc θb(x)n
µAcµ(x) − n

µ∂µ θa(x) . (5.35)

and the matrix M reads

Mab = g fabc nµAcµ(x) − δab n
µ∂µ , (5.36)

Therefore, the Fadeev-Popov term in the effective Lagrangian is

L
FPG

= χa

(
− δab n

µ∂µ + g fabc nµAcµ(x)
)
χb , (5.37)

which leads to the following expressions for the ghost propagator and its coupling to the
gauge boson:

G0
F
(p) =

p

= −
δab

p · n+ i0+

a

b

a µ

p

q
r

= i g fabc nµ . (5.38)

A significant simplification of these Feynman rules occurs in the limit ξ→∞ (that one may
call the strict axial gauge, since the condition nµAaµ = 0 holds exactly in this limit). In this
limit, the gauge boson propagator becomes

G0µν
F ab

(p) =
−i δab
p2 + i0+

[
gµν −

pµnν + pνnµ

p · n
+
pµpν n2

(p · n)2
]
, (5.39)

and satisfies

nµG
0µν

F ab
(p) = nνG

0µν

F ab
(p) = 0 . (5.40)

Therefore, the gauge boson propagator gives zero when contracted into the ghost-gauge boson
vertex, which effectively decouples the ghosts from the gauge bosons. Thus, the limit ξ→∞
of the axial gauge is ghost-free (but its propagator is arguably much more complicated than
the Feynman gauge propagator).
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5.5 Ghosts and unitarity

5.5.1 Example

In Abelian gauge theories, we were able to show that cutting rules provide a perturbative
realization of the optical theorem, by using the Ward identities obeyed by amplitudes when
all the external charged particles are on-shell. These identities were sufficient to conclude
that the unphysical polarizations carried by the internal photon lines of a graph cancel when
these lines are cut. But in non-Abelian gauge theories, this reasoning faces two difficulties:

i. There are no Ward identities similar to those of QED, that could be used to prove
unitarity.

ii. Higher order graphs in general have ghost loops, whose interpretation is at the moment
unclear when such loops are cut.

As we shall see, these two issues are in fact related: the cut ghost lines precisely cancel
the unphysical polarizations of the cut gluons. Let us first work out an explicit example
that illustrates this assertion: the tree level annihilation of a quark and an antiquark into two
gluons in QCD. The corresponding diagrams are the following:

We denote p et q the momenta of the incoming quark and antiquark, respectively, and k1,2
the momenta of the outgoing gluons (with Lorentz indices µ, ν and colors a, b, respectively).

The contribution of the first two graphs is very similar to that of the analogous graphs in
QED for the emission of two photons, except for the extra color matrices at the quark-gluon
vertices:

iMµν
ab |1+2 (p,q|k1,k2) = (i g)2 v(q)

{
γµta

i

/k1 − /q−m
γνtb

+γνtb
i

/p− /k1 −m
γµta

}
u(p) . (5.41)

By contracting this amplitude with the photon momentum k1µ, we get:

k1µ iM
µν
ab |1+2 (p,q|k1,k2) = (i g)2 v(q)

{
/k1t

a i

/k1 − /q−m
γνtb

+γνtb
i

/p− /k1 −m
/k1t

a
}
u(p) . (5.42)

In the numerator of the first term, we may write

/k1 = (/k1 − /q−m) + (/q+m) , (5.43)
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and use the Dirac equation v(q)(/q+m) = 0. Likewise, we may simplify the second term by
using

/k1 = (/p−m) − (/p− /k1 −m) ,

(/p−m)u(p) = 0 , (5.44)

which leads to

k1µ iM
µν
ab |1+2 (p,q|k1,k2) = i (i g)

2 v(q)γν [ta, tb]u(p) . (5.45)

This is non-zero, because of the non-commutativity of the Lie generators in a non-Abelian
gauge theory. However, by using [ta, tb] = ifabctc, this result may be related to the third
graph, that contains a 3-gluon vertex. If we use the Feynman gauge for the internal gluon
propagator, its contribution can be written as

iMµν
ab |3 (p,q|k1,k2) = i g v(q)γρt

cu(p)
−i

k23

×g fabc [gµν(k2 − k1)ρ + gνρ(k3 − k2)µ + gρµ(k1 − k3)
ν] , (5.46)

where we denote k3 ≡ −k1 − k2. Contracting this amplitude with k1µ gives

k1µ iM
µν
ab |3 (p,q|k1,k2) = i g v(q)γρt

cu(p)
−i

k23

×g fabc [gνρk22 − kν2k
ρ
2 − g

νρk23 + k
ν
3k
ρ
3 ] . (5.47)

In this equation, the term in kν3k
ρ
3 vanishes once contracted with γρ, since we can write

v(q)γρt
cu(p)kρ3 = −v(q)[(/p−m) + (/q+m)]tcu(p) = 0 . (5.48)

However, this is not sufficient for (5.47) to fully cancel (5.45).

Since gluons are charged, we put them on-shell in trying to check Ward identities. Setting
k22 = 0 indeed kills another term in eq. (5.47). The term in kν2k

ρ
2 would be canceled if in

addition we contract the amplitudes with a transverse polarization vector ε1,2ν(k2), since
kν2ε1,2ν(k2) = 0. We indeed have:

k1µ ε1,2ν(k2)
[
iMµν

ab |1+2 (p,q|k1,k2) + iMµν
ab |3 (p,q|k1,k2)

]
k2
2
=0

= 0 .

(5.49)

The same cancellation happens if we contract the amplitudes simultaneously with k1µ et k2ν:

k1µk2µ
[
iMµν

ab |1+2 (p,q|k1,k2) + iMµν
ab |3 (p,q|k1,k2)

]
= 0 , (5.50)

even if the momentum k2 is not on-shell. Thus, we may have for this process a Ward identity
similar to the QED one, but only if certain extra conditions are satisfied by the second gluon.
These restrictions weaken the resulting identity, and it is not sufficient to eliminate the lon-
gitudinal gluon polarizations when we try to recover the amplitude from the imaginary part
of the qq̄→ qq̄ forward amplitude at one loop. In particular, some unphysical polarizations
will not cancel in the following cut:
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Except for a graph with a quark loop that does not play any role in the present discussion
(since it does not give any 2-gluon final state when cut), the complete list of graphs contribut-
ing to the qq̄ → qq̄ forward amplitude at one loop is shown in the 5.3. The contribution of

Figure 5.3: One-loop diagrams contributing to qq̄→ qq̄.

the first 5 graphs (i.e. those with gluon internal lines) to the optical theorem can be calculated
easily by noting that it can be expressed in terms of the amplitude we have just calculated:

iMµν
ab(p,q|k1,k2) ≡ iM

µν
ab |1+2 (p,q|k1,k2) + iMµν

ab |3 (p,q|k1,k2) , (5.51)

as follows5

1

2

∫
d4k1

(2π)4

∫
d4k2

(2π)4
(2π)4δ(4)(p+ q− k1 − k2)

×2π(−gµρ)θ(k01)δ(k21 −m2) 2π(−gνσ)θ(k02)δ(k22 −m2)
×iMµν

ab(p,q|k1,k2) (iM
ρσ
ab(p,q|k1,k2))

∗
. (5.52)

For a successful interpretation of this formula as a physical contribution in the optical theo-
rem, only physical polarizations should survive after we have replaced the tensors −gµρ and
−gνσ by using (see eq. (1.277))

gµν = εµ+(k)ε
ν
−(k)

∗ + εµ−(k)ε
ν
+(k)

∗ −
∑
λ=1,2

εµλ(k)ε
ν
λ(k)

∗ , (5.53)

where εµ±(k) are unphysical polarizations (with εµ+(k) proportional to kµ). After this substi-
tution, several terms are not problematic:

• The terms that contain only the polarizations εµ1,2 since they are fully physical.

• The terms containing εµ1,2ε
ν
+ or εµ+εν+ vanish by virtue of eqs. (5.49) and (5.50).

5The factor 1/2 is a symmetry factor due to the presence of two identical gluons in the final state.

128



Thus, we need only study the following term

1

2

[
(iMµν

abε−µε+ν) (iM
ρσ
abε+ρε−σ)

∗

+(iMµν
abε+µε−ν) (iM

ρσ
abε−ρε+σ)

∗
]
, (5.54)

integrated over the on-shell momenta k1 and k2. Using εµ+(k) = kµ/
√
2|k| and eqs. (5.45)

and (5.47), we obtain

ε+µ(k1) iM
µν
ab = −

g2√
2|k1|

1

k23
v(q) /k2 k

ν
2 f
abc tc u(p) . (5.55)

Likewise with the other gluon, we have

ε+ν(k2) iM
µν
ab =

g2√
2|k2|

1

k23
v(q) /k1 k

ν
1 f
abc tc u(p) . (5.56)

Using then εµ−(k) = (k0,−k)/
√
2|k|, we get

ε−ν(k2) ε+µ(k1) iM
µν
ab = −g2

|k2|

|k1|

1

k23
v(q) /k2 f

abc tc u(p) ,

ε+ν(k2) ε−µ(k1) iM
µν
ab = +g2

|k1|

|k2|

1

k23
v(q) /k1 f

abc tc u(p) . (5.57)

Furthermore, notice that

v(q)(/k1 + /k2)u(p) = v(q)(/q+m+ /p−m)u(p) = 0 . (5.58)

Combining these equations, the non-physical contribution to the optical theorem of the dia-
grams with a gluon loop, (5.54), can be written as follows:

g4
1

(k23)
2

[
v(q) /k1 f

abc tc u(p)
] [
v(q) /k1 f

abd td u(p)
]
. (5.59)

If this was all there is, as the naive Feynman rules we tried to guess at the beginning of
this chapter would suggest, then we would have to conclude that Yang-Mills theories are
inconsistent because they violate unitarity. Fortunately, there is one more graph in figure 5.3,
with a ghost loop. Let us first evaluate the annihilation amplitude of the quark-antiquark pair
into a ghost-antighost pair:

iMqq̄→χχ = i g v(q)γρ t
c u(p)

i

k23
(g fabc kρ1) . (5.60)

Squaring this amplitude, and including the − sign6 associated to a ghost loop7, the contribu-
tion of the last graph of fig. 5.3 to the optical theorem becomes

−g4
1

(k23)
2

[
v(q) /k1 f

abc tc u(p)
] [
v(q) /k1 f

abd td u(p)
]
, (5.61)

that exactly cancels the unphysical gluon contribution of eq. (5.59). In other words, the
optical theorem is satisfied with only physical modes in the final state sum, thanks to a crucial
cancellation that involves ghosts.

6There is no 1/2 symmetry factors for a ghost-antighost final state, because they are not identical.
7We see here how essential it is that ghosts are anti-commuting fields – otherwise, their contribution would not

have the proper sign to cancel the unphysical gluon polarizations in the optical theorem.
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5.5.2 Becchi-Rouet-Stora-Tyutin symmetry

The cancellation that occurred in the previous example is in fact general: for every gluon loop,
there is a graph of identical topology where this loop is replaced by a ghost loop, that cancels
the contribution from the unphysical gluon polarizations in the optical theorem. However,
it is difficult to turn the calculation of the previous subsection into a general proof. It turns
out that this cancellation originates from a residual symmetry of the gauge fixed Lagrangian:
although the gauge fixing term explicitly breaks the gauge symmetry, the effective Lagrangian
that appears in eq. (5.21) has a remnant of the original gauge symmetry, known as the Becchi-
Rouet-Stora-Tyutin symmetry (BRST).

Under an infinitesimal gauge transformation parameterized by θa(x), the gauge field and
fermion field vary by

δAaµ(x) = −
(
Dadj
µ

)
ab
θb(x)

δψ(x) = −i gθa(x) t
a
r ψ(x) , (5.62)

where r is the representation in which the fermions live. A BRST transformation is similar
to the above transformation, but with the substitution θa(x) → −ϑχa(x), where ϑ is a
Grassmann constant8,

δBRSTA
a
µ(x) =

(
Dadj
µ

)
ab

[
ϑχb(x)

]
δBRSTψ(x) = i g

[
ϑχa(x)

]
tar ψ(x) . (5.63)

Since the BRST transformation is structurally identical to a local gauge transformation, any
gauge invariant combination of gauge fields and fermions is also BRST-invariant. This is
therefore the case of the Yang-Mills Lagrangian and the Dirac Lagrangian with a minimal
coupling of the fermions to the gauge fields. It is customary to introduce a generator Q

BRST

for this transformation, by denoting δBRST = ϑQ
BRST

. Thus

Q
BRST
Aaµ(x) =

(
Dadj
µ

)
ab
χb(x) , Q

BRST
ψ(x) = i g χa(x) t

a
r ψ(x) . (5.64)

Eqs. (5.63) do not tell how ghost and antighost fields transform under BRST. For reasons
that will become clear later, we shall impose that the BRST transformation is nilpotent, i.e.
that Q2

BRST
= 0 when applied to any of the fields of the theory. This requirement constrains

the BRST transformation of the ghosts. Indeed, a double BRST transformation applied to
fermions reads

Q2
BRST
ψ(x) = i g

{(
Q

BRST
χa(x)

)
tar ψ(x) − χa(x) t

a
r QBRST

ψ(x)
}

= i g
(
Q

BRST
χa(x)

)
tar ψ(x) + g

2 χa(x)χb(x) t
a
r t
b
r ψ(x) . (5.65)

(The BRST generator is an anti-commuting object, which leads to a minus sign in the second
term of the first line when we push it through the Grassmann field χa.) Since χa and χb
anti-commute, we can replace tar t

b
r by 1

2
[tar , t

b
r ] =

i
2
fabctcr . We see that eq. (5.65) will

identically vanish provided that

Q
BRST
χa(x) = −

1

2
g fabc χb(x)χc(x) . (5.66)

8This Grassmann constant makes ϑ χa(x) a commuting object like θa.
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Then, we can calculate the action of a double BRST transformation on the gauge field,

Q2
BRST
Aaµ =

(
Dadj
µ

)
ab

(
Q

BRST
χb
)
− g fabc

(
Q

BRST
Acµ
)
χb

=
(
Dadj
µ

)
ab

[
− g
2
fbcdχc(x)χd(x)

]
−g fabc

[
∂µχc−gf

cdeAeµχd
]
χb

(5.67)

The terms linear in the gauge field cancel by using the anti-commuting nature of the χ’s and
the Jacobi identity satisfied by the structure constants:

−1
2
g2fabefbcdAeµχc(x)χd(x) + g

2fabcfcdeAeµχdχb

= 1
2
g2
[
−facefcbd + fabcfcde − fadcfcbe︸ ︷︷ ︸

0

]
Aeµχbχd . (5.68)

The terms with the derivative ∂µ read

−1
2
gfacd∂µ

(
χcχd

)
− gfabc

(
∂µχc

)
χb

= 1
2
g fabc

[
∂µ(χcχb)−(∂µχc)χb + (∂µχb)χc︸ ︷︷ ︸

−(∂µχc)χb+χc(∂µχb)

=−∂µ(χcχb)

]
= 0 . (5.69)

The double transformation of the ghost field also vanishes

Q2
BRST
χa = g2

4

(
fabcfbde + facbfbde︸ ︷︷ ︸

0

)
χcχdχe (5.70)

Therefore, the prescription (5.66) for the BRST transformation of a ghost field leads to

Q2
BRST
ψ = 0 , Q2

BRST
Aaµ = 0 , Q2

BRST
χa = 0 . (5.71)

We need now to specify the BRST transformation of the antighost field. Note that in the path
integral that gives the Fadeev-Popov determinant, the ghost and antighost fields are treated as
independent; therefore the BRST transformation of the antighost does not have to be related
to that of the ghost. Let us denote:

Q
BRST
χa(x) ≡ Ba(x) , (5.72)

where Ba(x) is a commuting field. ForQ
BRST

to be nilpotent, we must have in addition:

Q
BRST
Ba(x) = 0 . (5.73)

(And of courseQ2
BRST
Ba(x) = 0.)

Consider now a local function Ξ of all the fields (including Ba), and add its BRST varia-
tion to the Yang-Mills and Dirac Lagrangians:

L ≡ L
YM

+ L
D︸ ︷︷ ︸

BRST-invariant

+ Q
BRST

Ξ . (5.74)

SinceQ
BRST

is nilpotent, this Lagrangian is BRST-invariant. Let us choose

Ξ ≡ χa(x)
[ 1
2ξ
Ba(x) +Ga(A(x))

]
, (5.75)
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where ξ is a parameter and Ga(A) is the gauge fixing function. We can write9

Q
BRST
Ξ =

(
Q

BRST
χa
) [ 1
2ξ
Ba +Ga

]
− χa

[ 1
2ξ

(
Q

BRST
Ba
)
+
∂Ga

∂Abµ

(
Q

BRST
Abµ
)]

=
1

2ξ
BaBa + BaGa + χa

∂Ga

∂Abµ

(
−Dadj

µ

)
bc
χc︸ ︷︷ ︸

L
FPG

. (5.76)

Note that the last term is nothing but the Fadeev-Popov part of the Lagrangian we have derived
earlier in this chapter. Moreover, the field Ba enters only quadratically in this Lagrangian.
Therefore, the path integral on Ba can be performed trivially10,∫ [

DBa(x)
]
e
i
∫
d4x

(
1
2ξ
BaBa+BaGa

)
= e−i

ξ
2

∫
d4x GaGa . (5.77)

Therefore, after integrating out the auxiliary field Ba, the resulting theory has exactly the
same effective Lagrangian as the one resulting from the Fadeev-Popov procedure:

Leff = L
YM

+ L
D
−
ξ

2
GaGa + χa

∂Ga

∂Abµ

(
−Dadj

µ

)
bc
χc . (5.78)

The formal construction we have followed in this section proves that Leff is BRST invariant,
but in a somewhat obfuscated manner after the auxiliary field Ba has been integrated out. The
BRST invariance of eq. (5.78) is realized if we define the BRST variation of the antighost field
as follows

Q
BRST
χa = −ξGa , (5.79)

which is reminiscent of the relationship between Ba and Ga when we do the Gaussian inte-
gration on Ba.

5.5.3 BRST current and charge

The Lagrangian (5.74), with the choice (5.75) for the function Ξ, possesses the following
symmetries:

• Global gauge invariance (because all the color indices are contracted).

• BRST invariance.

• Ghost number conservation, if we assign a ghost number +1 to χ’s and −1 to χ’s.

The BRST invariance implies the existence of a conserved current:

Jµ
BRST
≡

∑
Φ∈{Aµ,ψ,χ,χ,B}

∂L

∂
(
∂µΦ

) (Q
BRST

Φ
)
. (5.80)

9Note that a minus sign arises when movingQ
BRST

through the anti-commuting field χb.
10Note that this is equivalent to evaluating the argument of the exponential at the stationary point Ba = −ξGa,

since the stationary phase approximation is exact for Gaussian integrals.
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From the 0-th component of this current, we may obtain the BRST charge

QBRST ≡
∫
d3x J0

BRST
(x0, x) . (5.81)

In fact, this charge generates the BRST transformation in the following sense:

i
[
QBRST , Φ

]
± = Q

BRST
Φ (Φ ∈ {Aµ, ψ, χ, χ, B}) , (5.82)

where [·, ·]± is a commutator if Φ is a commuting field and an anti-commutator if Φ is anti-
commuting. If we consider free fields (i.e. we set g = 0), and we Fourier decompose all the
fields that appear in the (anti)-commutation relations (5.82),

Aµa(x) =
∑

λ=1,2,+,−

∫
d3p

(2π)32|p|

{
εµλ(p)a

†
aλp e

+ip·x + εµ∗λ (p)aaλp e
−ip·x

}
ψ(x) ≡

∑
s=±

∫
d3p

(2π)32Ep

{
d†sp vs(p)e

+ip·x + bsp us(p)e
+ip·x

}
χa(x) ≡

∫
d3p

(2π)32|p|

{
α†ap e

+ip·x + αsp e
+ip·x

}
χa(x) ≡

∫
d3p

(2π)32|p|

{
β†ap e

+ip·x + βsp e
+ip·x

}
, (5.83)

we obtain [
QBRST , a

†
aλp

]
∝ δλ+ α†ap ,{

QBRST , αap
}
= 0 ,{

QBRST , βap
}
∝ a†a−p ,[

QBRST , b
†
sp

]
=
[
QBRST , d

†
sp

]
= 0 . (5.84)

5.5.4 BRST cohomology, Physical states and Unitarity

The fact that the BRST charge is nilpotent, Q2
BRST

= 0, has profound implications on the states
of the system. The kernel of QBRST is the set of states annihilated by QBRST ,

Ker
(
QBRST

)
≡
{
ψ
∣∣∣ QBRST

∣∣ψ〉 = 0} . (5.85)

The set of states that can be obtained by the action of QBRST on another state is called the
image of QBRST ,

Im
(
QBRST

)
≡
{
QBRST

∣∣ψ〉} . (5.86)

Because QBRST is nilpotent, the image is a subset of the kernel,

Im
(
QBRST

)
⊂ Ker

(
QBRST

)
. (5.87)

Note that states in the image cannot be physical states, because they have a null norm:〈
ψ
∣∣ψ〉 = 〈φ∣∣QBRSTQBRST︸ ︷︷ ︸

0

∣∣φ〉 = 0 . (5.88)
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Consider now the following equivalence relationship between states in the kernel: two states
are considered equivalent if their difference is in the image,∣∣ψ〉 ∼ ∣∣ψ ′〉 if

∣∣ψ〉− ∣∣ψ ′〉 ∈ Im
(
QBRST

)
. (5.89)

The cohomology of QBRST is the set of classes of equivalent states,

H
(
QBRST

)
≡ Ker

(
QBRST

)
/ Im

(
QBRST

)
. (5.90)

It turns out that the physical states are the non-zero norm11 elements of the cohomology.
Indeed, using eqs. (5.84), it is easy to prove that if

∣∣ψ〉 is a state in the cohomology, then

a†
a{1,2}p

∣∣ψ〉 ∈ H
(
QBRST

)
b†sp

∣∣ψ〉 ∈ H
(
QBRST

)
d†sp

∣∣ψ〉 ∈ H
(
QBRST

)
, (5.91)

while

a†a±p
∣∣ψ〉 6∈ H

(
QBRST

)
α†p
∣∣ψ〉 6∈ H

(
QBRST

)
β†p
∣∣ψ〉 6∈ H

(
QBRST

)
. (5.92)

In other words, adding to the state a physical particle (gluon with a physical polarization,
or quark or antiquark) gives another state in the cohomology, while adding to the state a
nonphysical quantum (gluon with a non-physical polarization, ghost or antighost) takes the
state out of the cohomology.

Furthermore, since the effective Lagrangian is BRST invariant, it corresponds to a Hamil-
tonian H that commutes with QBRST . Therefore, a state in the kernel (i.e. for QBRST

∣∣ψ〉 = 0)
stays in the kernel under the time evolution generated by this Hamiltonian. Furthermore, the
time evolution preserves the norm, and therefore states in the cohomology stay in the co-
homology at all times. Therefore, starting from a physical states, the time evolution cannot
produce unphysical objects in the final state. This explains why unphysical modes cannot
appear in the final states sum in the optical theorem, despite the fact that the internal lines of
Feynman graphs may propagate all sorts of unphysical objects.

11This restriction is necessary, because one of the equivalency classes in H
(
QBRST

)
is Im

(
QBRST

)
itself, that we

know has only zero-norm states.
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Chapter 6

Renormalization of gauge theories

6.1 Ultraviolet power counting

Before studying in more detail the renormalizability of gauge theories, one may assess the
plausibility of this renormalizability by calculating the superficial degree of ultraviolet diver-
gence of graphs in such a theory. Furthermore, this will guide us regarding which classes of
graphs may contain divergences. For simplicity, we will consider here a pure Yang-Mills the-
ory, without matter fields (keeping fermions would force us to distinguish the fermion prop-
agators from the gluon and ghost propagators in the counting, because they have different
behaviors at large momentum). Note that the gluon propagator decreases as (momentum)−2

in the ultraviolet, both in covariant and axial gauge. This is also the behavior of the ghost
propagator1. Moreover, the 3-gluon vertex and the gluon-ghost-antighost vertex have the
same scaling with momentum. Therefore, we need not distinguish in the ultraviolet power
counting the ghosts and the gluons. Thus, let us consider a generic connected graph G with
the following list of propagators and vertices:

• n
E

external lines (gluons or ghosts),

• n
I

internal lines (gluons or ghosts),

• n3 trivalent vertices (3-gluon or gluon-ghost-antighost),

• n4 four-gluon vertices,

• n
L

loops.

These quantities are related by the following identities:

n
E
+ 2n

I
= 3n3 + 4n4 (6.1)

n
L
= n

I
− (n3 + n4) + 1 . (6.2)

The first equation states that each vertex must have all its “handles” attached to the endpoint
of a propagator, and the second equation counts the number of internal momenta that are not

1In axial gauge, the ghost propagator behaves differently, but the ghosts decouple from the gluons.
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fixed by energy momentum conservation. In terms of these parameters, the ultraviolet degree
of divergence of this graph (in four space-time dimensions) is

ω(G) = 4n
L
− 2n

I
+ n3 . (6.3)

Note that each trivalent vertex contains one power of momentum and therefore contribute +1
to this counting. Adding eq. (6.1) and four times eq. (6.2), we obtain

ω(G) = 4− n
E
, (6.4)

that does not depend on any of the internal details of the graph. Moreover, the only functions
that have intrinsic ultraviolet divergences are the 2-point, 3-point and 4-point functions, which
suggests that Yang-Mills theories may indeed be renormalizable. However, a Yang-Mills
theory is not simply the addition of gluon and ghost kinetic terms, 3- and 4-gluon vertices, and
a ghost-antighost-gluon vertex: all these terms of the Lagrangian are tightly constrained by
gauge symmetry. For instance (but this is not the only constraint), all the vertices depend on
a unique coupling constant g. Therefore, in order to establish the renormalizability of Yang-
Mills theories, one needs to prove that the structure of the divergences in the above listed
functions is such that they can be absorbed into a redefinition of the classical Lagrangian that
does not upset these tight constraints (up to a renormalization of the fields).

6.2 Symmetries of the quantum effective action

6.2.1 Linearly realized symmetries

After fixing the gauge with the Fadeev-Popov procedure, we have obtained the following
effective Lagrangian:

Leff = L
YM

+ L
D
−
ξ

2
GaGa + χa

∂Ga

∂Abµ

(
−Dadj

µ

)
bc
χc . (6.5)

Although the local gauge invariance of the Yang-Mills Lagrangian is now broken (this was
precisely the goal of the gauge fixing procedure), this effective Lagrangian has a number of
symmetries. One of them is the BRST symmetry, that we have exhibited in the previous
chapter. In addition, Leff has the following symmetries:

• Ghost number conservation : the effective Lagrangian is invariant under global phase
transformations of the ghost and antighost,

χ → eiαχ , χ → e−iαχ . (6.6)

Therefore, if we assign a ghost number +1 to the field χ and −1 to the field χ, this
quantity is conserved by the Feynman rules of the gauge fixed theory.

• Global gauge invariance : since all color indices are contracted in the effective La-
grangian, it is invariant under gauge transformations that do not depend on spacetime.

• Lorentz invariance is of course also present in the effective Lagrangian.
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For these three symmetries, the infinitesimal variation of the fields is linear in the fields
(which is not the case of the BRST symmetry). These linearly realized symmetries of the
classical action are inherited directly by the quantum effective action.

In order to prove this assertion, let us consider a generic infinitesimal linear transforma-
tion of the fields

φn(x) → φn(x) + ε Fn[x;φ] , (6.7)

where φ1, φ2, · · · denote the various fields of the theory (gauge fields, ghosts, ...) and
Fn[x;φ] is a local function of the fields (for now, we do not assume that it is linear in the
fields). We assume that both the classical action and the functional measure are invariant
under this symmetry. Consider now the generating functional Z[j],

Z[j] ≡
∫ [
Dφn(x)

]
ei
(
S[φn]+

∫
d4x jn(x)φn(x)

)
, (6.8)

where there is one external source jn for each field φn. Since φn(x) is a dummy integration
variable in this path integral, we should obtain the same result after performing the change of
variable (6.7). Using the fact that this transformation preserves the measure and the classical
action, this implies that

Z[j] =

∫ [
Dφn(x)

]
ei
(
S[φn]+

∫
d4x jn(x)φn(x)+ε

∫
d4x jn(x)Fn[x;φ]

)
≈ Z[j] + iε

∫ [
Dφn(x)

]
ei
(
S[φn]+

∫
d4x jn(x)φn(x)

) ∫
d4x jn(x)Fn[x;φ] .

(6.9)

Therefore, for any sources jn, we must have∫
d4x jn(x)

〈
Fn[x;φ(x)]

〉
j
= 0 , (6.10)

where
〈
· · ·
〉
j

denotes the quantum average in the presence of an external source j,

〈
O[φ]

〉
j
≡ 1

Z[j]

∫ [
Dφn(x)

]
ei
(
S[φn]+

∫
d4x jn(x)φn(x)

)
O[φ] . (6.11)

(We have normalized it so that
〈
1
〉
j
= 1.) Recall now that the sources and field can be related

implicitly by using the quantum effective action:

jn;φ(x) = −
δΓ [φ]

δφn(x)
. (6.12)

Therefore, the condition (6.10) is equivalent to∫
d4x

〈
Fn[x;φ(x)]

〉
jφ

δΓ [φ]

δφn(x)
= 0 , (6.13)

now satisfied for any fields φn. In other words, the functional Γ [φ] is invariant under the
transformation

φn(x) → φn(x) + ε
〈
Fn[x;φ]

〉
jφ
. (6.14)
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It is crucial to note that, because the quantum average in the right hand side is performed with
the external field jn;φ that depends implicitly on the fields φn, this is a priori not the same
transformation as in eq. (6.7).

Let us now consider the special case of a transformation of type (6.7) which is linear in
the fields. In this case, we may write

Fn[x;φ] =

∫
d4y fnm(x, y) φm(y) . (6.15)

(In most practical cases, the transformation will be local and the coefficients proportional to
δ(x − y), but this restriction is not necessary for the following argument.) For such a linear
transformation, we have〈

Fn[x;φ]
〉
jφ

=

∫
d4y fnm(x, y)

〈
φm(y)

〉
jφ
. (6.16)

Recalling that jφ is the configuration of the source j such that the quantum average
〈
φ(x)

〉
j

precisely equals φ(x), this in fact reads〈
Fn[x;φ]

〉
jφ

= Fn[x;φ] . (6.17)

It is this last step that fails when Fn is nonlinear in the fields. From eq. (6.17), we see that the
transformations (6.14) and (6.7) are identical. We have thus proven that all linearly realized
symmetries of the classical action are also symmetries of the quantum effective action.

6.2.2 BRST symmetry and Slavnov-Taylor identities

Since an infinitesimal BRST variation is not linear in the fields, the BRST symmetry of the
classical action is not inherited simply by the quantum effective action. Instead, it leads to a
set of identities known as the Slavnov-Taylor identities, that may be viewed as the analogue of
Ward identities for the BRST invariance. Their derivation follows the method of the section
3.4.2. Since we need to apply a BRST transformation to the Yang-Mills path integral, we
should first study how this transformation affects the measure

[
DAµDχDχ

]
. Under such a

transformation, the fields transform into

Aaµ → Aa′µ ≡ Aaµ + ϑ
(
Dadj
µ

)
ab
χb = Aaµ + ϑ

(
∂µδab + gf

abcAcµ
)
χb

χa → χ′a ≡ χa − g
ϑ

2
fabc χbχc

χa → χ′a ≡ χa + ϑBa = χa − ξ ϑGa , (6.18)

where ϑ is a Grassmann constant. The Jacobian matrix has the following block structure:

∂
(
Aa′µ , χ

′
a, χ

′
a

)
∂
(
Abν, χb, χb

) = δ(x−y)

δ
ν
µ(δab − gϑf

abcχc) ∗ 0

0 δab + gϑf
abcχc 0

−ξϑ∂G
a

∂Abν
0 δab

 , (6.19)

where the ∗ denotes a non-zero element that we do not need to calculate because it does not
contribute to the determinant. From this structure, we see that the determinant is given by the
product of the diagonal elements, and is therefore equal to 1 (recall that ϑ2 = 0).
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In the derivation of the Slavnov-Taylor identities, it is convenient to introduce sources
jaµ, ηa, ηa that couple respectively to Aaµ, χa, χa, but also two extra sources that couple di-
rectly toQ

BRST
Aaµ andQ

BRST
χa:

Z[j, η, η; ζ, κ] ≡
∫ [
DAµDχDχ

]
exp
{
i

∫
d4x

(
Leff + j

a
µA

µ
a + ηaχa + χaηa

+ζµa
(
Q

BRST
Aaµ
)
− κa

(
Q

BRST
χa
))}

=

∫ [
DAµDχDχ

]
exp
{
i

∫
d4x Ltot

}
, (6.20)

where we use the shorthand Ltot for the sum of terms inside the exponential. Note that the
coefficients of the new sources ζµa and κa are BRST invariant since the BRST transformation
is nilpotent. Let us now perform a BRST transformation of the integration variables inside
the path integral. This is just a change of variables, that does not change the value of the path
integral. Using the fact that measure and Leff are BRST invariant, we obtain

Z[j, η, η; ζ, κ] =

∫ [
DAµDχDχ

]
exp
{
i

∫
d4x Ltot

}
×
[
1+ i

∫
d4x

(
jaµϑ
(
Q

BRST
Aµa
)
+ ηaϑ

(
Q

BRST
χa
)
+ ϑ
(
Q

BRST
χa
)
ηa

)]
= Z[j, η, η; ζ, κ] + i ϑ

∫
d4x

(
jaµ(x)

δZ

iδζaµ(x)
+ ηa(x)

δZ

iδκa(x)

−ξGa
(

δZ

iδj(x)

)
ηa(x)

)
. (6.21)

(Note that ϑ anticommutes with ηa.) Therefore, we conclude that∫
d4x

(
jaµ(x)

δZ

iδζaµ(x)
+ ηa(x)

δZ

iδκa(x)
− ξGa

(
δZ

iδj(x)

)
ηa(x)

)
= 0 . (6.22)

This is one of the forms of the Slavnov-Taylor identities. In this derivation, we see that having
introduced sources specifically coupled to the BRST variation of the gauge fieldAaµ and of the
ghost χa avoided the need for terms with higher order derivatives (indeed, these variations
are non-linear in the fields, and would have required more derivatives to be expressed as
functional derivatives with respect to sources coupled to elementary fields). By writing Z =
exp(W), we see that the same identity applies toW,∫

d4x
(
jaµ(x)

δW

iδζaµ(x)
+ ηa(x)

δW

iδκa(x)
− ξGa

(
δW

iδj(x)

)
ηa(x)

)
= 0 . (6.23)

(Here, we have assumed that the gauge fixing function is linear in the gauge field.)

The next step is to convert this into an identity for the quantum effective action Γ that
generates the 1PI graphs. In this transformation, we will keep the auxiliary sources ζaµ and
κa unmodified, as parameters. Thus, Γ andW are related by

−iW[j, η, η; ζ, κ] = Γ [A, χ, χ; ζ, κ]+

∫
d4x

(
jµa(x)A

a
µ(x)+χa(x)η

a(x)+ηa(x)χa(x)
)
.

(6.24)
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Fields and sources are related by the following quantum equations of motion:

δΓ

δAaµ(x)
+ jµa(x) = 0 ,

δΓ

δχa(x)
+ ηa(x) = 0 ,

δΓ

δχa(x)
+ ηa(x) = 0 , (6.25)

and we also have

δW

δjµa(x)
= iAaµ(x) ,

δW

δζaµ(x)
= i

δΓ

δζaµ(x)
,

δW

δκa(x)
= i

δΓ

δκa(x)
. (6.26)

Therefore, the Slavnov-Taylor identity expressed in terms of the functional Γ reads∫
d4x

( δΓ

δAaµ(x)

δΓ

δζaµ(x)
+

δΓ

δχa(x)

δΓ

δκa(x)
− ξGa (A)

δΓ

δχa(x)

)
= 0 . (6.27)

This equation can be simplified a bit as follows. By inserting a derivative δ/δχa(x) under
the integral in the definition (6.21) of Z, we obtain zero since we now have the integral of a
total derivative. Recalling that the Fadeev-Popov term in the effective Lagrangian is

L
FPG

= χa
∂Ga

∂Abµ

(
−Dadj

µ

)
bc
χc , (6.28)

we can perform explicitly this derivative to obtain

0 =

∫ [
DAµDχDχ

] [∂Ga
∂Abµ

(
−Dadj

µ

)
bc
χc(x)︸ ︷︷ ︸

−Q
BRST

Abµ(x)

= i
δ

δζbµ(x)

+ηa(x)
]
ei
∫
d4x Ltot . (6.29)

This implies the following functional identity[
ηa(x) + i

∂Ga

∂Abµ

δ

δζbµ(x)

]
Z = 0 , (6.30)

or equivalent identities forW or Γ :

ηa(x) + i
∂Ga

∂Abµ

δW

δζbµ(x)
= 0 ,

δΓ

δχa(x)
+
∂Ga

∂Abµ

δΓ

δζbµ(x)
= 0 . (6.31)

Furthermore, define a slightly modified effective action:

Γ ≡ Γ + ξ

2

∫
d4x Ga(A)Ga(A) . (6.32)
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Now the Slavnov-Taylor identity takes the following more compact form:∫
d4x

( δΓ

δAaµ(x)

δΓ

δζaµ(x)
+

δΓ

δχa(x)

δΓ

δκa(x)

)
= 0 , (6.33)

from which any explicit reference to the gauge fixing function Ga(A) has disappeared, as
well as the coupling constant g.

Eq. (6.33) applies to the full quantum effective action, that encapsulates the results from
all-order perturbation theory. In the next section, we will show that this identity (combined
with the other symmetries of the effective action) completely constrains the structure of its
local terms of dimension less than or equal to four, forcing them to be identical to those in
the classical action (up to a rescaling of the fields and of the coupling constant).

6.3 Renormalizability

6.3.1 Constraints on the counterterms

By taking the h̄→ 0 limit in eq. (6.33), one immediately concludes that it is also satisfied by
the classical action, S, supplemented with ghosts as well as the sources ζµa and κa:

S[A, χ, χ; ζ, κ] =

∫
d4x

[
− 1
4
F
µν

a F
a

µν +
(
ζµa + ∂µχa

)(
D

adj
µ

)
ab
χb

+g
2
fabcκaχbχc

]
. (6.34)

By introducing the following compact notation,

(
A,B

)
≡
∫
d4x

( δA

δAaµ(x)

δB

δζaµ(x)
+

δA

δχa(x)

δB

δκa(x)

)
, (6.35)

we therefore have(
S, S
)
= 0 ,(

Γ , Γ
)
= 0 . (6.36)

The first equation may be viewed as a constraint on the terms that can appear in the classical
action, while the second equation constrains which divergences may appear in higher orders.

Let us now write the effective action as a loop expansion,

Γ ≡ S+

∞∑
l=1

Γ l , (6.37)

where S is given in eq. (6.34), and the subsequent terms Γ l are of order l in h̄. The Slavnov-
Taylor identity at order L thus reads∑

p+q=L

(
Γp, Γq

)
= 0 . (6.38)
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The renormalization procedure amounts to correcting order by order with counterterms the
classical action S,

S → S
(L)
, (6.39)

such that S
(L)

contains counterterms up to order L, and gives finite Γ l’s for l ≤ L (but in
general not beyond the order L).

The first step is to prove that it is possible to find counterterms such that the equation(
S, S
)
= 0 is preserved at every order. Let us assume that we have achieved this up to the

order L − 1. All Γ l for l ≤ L − 1 are now finite, while ΓL still contains a divergent part, that
we denote ΓL.div. We can rewrite the Slavnor-Taylor identity at order L as follows,

(
S, ΓL

)
+
(
ΓL, S

)
= −

L−1∑
l=1

(
Γ l, ΓL−l

)
. (6.40)

Only the left hand side is divergent, and we therefore have(
S, ΓL,div

)
+
(
ΓL,div, S

)
= 0 , (6.41)

which constrains the structure of the divergences at order L. A natural candidate for the
counterterm at order L is to simply add −ΓL,div to the classical action,

S → S− ΓL,div , (6.42)

since this automatically cancels the superficial divergence of ΓL without affecting anything in
the lower orders. However, this modified classical action does not obey exactly the Slavnov-
Taylor equation, since(

S−ΓL,div, S−ΓL,div
)
=

(
S, S
)︸ ︷︷ ︸

0 from lower orders

−
[ (

S, ΓL,div
)
+
(
ΓL,div, S

)︸ ︷︷ ︸
0 from eq. (6.41)

]
+
(
ΓL,div, ΓL,div

)︸ ︷︷ ︸
6=0

. (6.43)

Note that the non-zero term in the right hand side is of order strictly greater than L. It is
possible to make it vanish by adding to the shift of eq. (6.42) some terms of higher order than
L, that do not change anything for any order ≤ L. The conclusion of this inductive argument
is that one can shift the classical action at each order in such a way that the divergences in Γ
are canceled, while always preserving

(
S, S
)
= 0.

6.3.2 Allowed terms in the classical action

The second step in the discussion of the renormalization of Yang-Mills theory is to deter-
mine the terms that are allowed in the classical action. This action must satisfy the constraint(
S, S
)
= 0, as well as Lorentz invariance, global gauge symmetry and ghost number conser-

vation. In addition, from the power counting of the section 6.1 and Weinberg’s theorem, we
know that all the ultraviolet divergences in Yang-Mills theory will occur in local operators of
dimension 4 at most.

In order to discuss the form of the allowed terms, let us first list the mass dimension and
ghost number of the various fields that enter in S:

field Aµa χa χa ζµa κa

mass dimension 1 1 1 2 2
ghost number 0 +1 -1 -1 -2
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All the allowed terms in S must obey the following conditions:

• mass dimension 4 or less,

• ghost number 0,

• Lorentz invariance,

• global gauge invariance.

In addition, eq. (6.31) implies that the χ and ζ dependences come in the form of a dependence
on the combination

ζµ − χ
∂G

∂Aµ
= ζµ + ∂µχ , (6.44)

where in the right hand side we have assumed the gauge condition G(A) = ∂µA
µ and

anticipated an integration by parts. Finally, the Slavnov-Taylor identity
(
S, S
)
= 0 must be

satisfied.

Since the sources ζµa and κa have mass dimension 2, at most two of them may appear.
However, terms with two such sources cannot contain any other field since the mass dimen-
sion 4 is already reached, and they cannot have ghost number zero. Therefore, S can only
contain terms that have degree 0 or 1 in ζµa and κa.

The source ζµa must be combined with another combination of fields that have one Lorentz
index, one color index, mass dimension at most 2, and ghost number +1. The only operators
that fulfill these conditions are

fabc ζµaA
b
µ χc and ζµa∂µχa . (6.45)

Once the dependence on ζµa is fixed, the dependence on the antighosts will be completely
known from eq. (6.44). Likewise, κa must be combined with an object that has one color
index, mass dimension at most 2 and ghost number +2. The only possibility is

fabc κa χb χc . (6.46)

.

From the information gathered so far, the classical action must have the following general
form:

S[A, χ, χ; ζ, κ] = Σ[A] +

∫
d4x

[
gα fabc

(
ζµa + ∂µχa

)
Abµχc

+β
(
ζµa + ∂µχa

)
∂µχa + γ

2
fabcκaχbχc

]
, (6.47)

where α,β, γ are three arbitrary constants. The term Σ cannot depend on the sources ζµa and
κa because we have already constructed explicitly all the allowed terms that contain these
sources, and cannot depend on χ because the antighost dependence is already encapsulated
in the combination ζµa+∂µχa. A dependence on χ in Σ is also forbidden because χ would be
the only field in Σ with a non-zero ghost number. Our next step is to constrain the coefficients
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gα, β, γ and the functional Σ[A] in order to satisfy the Slavnov-Taylor identity (6.33). The
functional derivatives that enter in (6.33) are given by:

δS

δAµa
=

δΣ

δAµa
− gα fabc (ζµb + ∂µχb)χc ,

δS

δζµa
= gα fadeAµd χe + β ∂

µχa ,

δS

δχa
= gα fabc (ζµb + ∂µχb)A

µ
c + β (ζµa + ∂µχa)∂

µ + γ fabc κb χc ,

δS

δκa
=

γ

2
fade χd χe . (6.48)

Thus, the Slavnov-Taylor identity reads

0 =

∫
d4x

[ δΣ
δAµa

[
gα fadeAµd χe + β ∂

µχa
]

+(ζµb + ∂µχb)
[
− gα fabcχc

(
gα fadeAµd χe + β ∂

µχa
)

+
(
gα fabcAµc + β δab∂

µ
)
γ
2
fade χd χe

]
+
γ2

2
fabcfade κb χc χd χe

]
. (6.49)

Using the Jacobi identity satisfied by the structure constants, one may first check that the last
term, in κχχχ, is identically zero, and therefore does not provide any constraint. Consider
now the terms in ζAχχ:

gα ζµb

(
− gα fabcfadeAµdχcχe +

γ
2
fabcfade︸ ︷︷ ︸

−fabdfaec−fabefacd

Aµcχdχe

)
= gα (γ− gα) fabcfadeζµbA

µ
d χc χe . (6.50)

Since this is the only term containing this combination of fields, it cannot be canceled by
other terms, and therefore we must have

gα = γ . (6.51)

Let us now study the terms in ζχ(∂χ),

β ζµb

(
−gα fabcχc∂

µχa+
γ

2
fbde∂µ(χdχe)

)
= β (γ−gα) fbacζµb (∂

µχa)χc . (6.52)

Thus, the cancellation of this term does not bring any additional constraint beyond eq. (6.51).
At this point, all the terms containing ζµa have been canceled (and by extension also the terms
with ∂µχa), and the Slavnov-Taylor identity reduces to

0 =

∫
d4x

δΣ

δAµa

[
gα facbAµc χb + β ∂

µχa
]
. (6.53)

Let us first rewrite the second factor as follows

β
(
∂µδab − igαβ

−1 (−ifcab)Aµc︸ ︷︷ ︸
(Aµadj)ab

)
χb , (6.54)
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and note that it has the structure of an adjoint covariant derivative acting on χb,(
D
µ

adj

)
ab
≡ ∂µδab − igαβ−1 (Aµadj)ab . (6.55)

Thus, eq. (6.53) is equivalent to

0 =

∫
d4x

δΣ

δAµa

(
D
µ

adj

)
ab
χb . (6.56)

The second factor may be viewed as the variation of the gauge field under an infinitesimal
gauge transformation,

Aµa → Aµa + ϑ
(
D
µ

adj

)
ab
χb , (6.57)

where we have introduced a constant Grassmann variable ϑ to make the second term a com-
muting object. Therefore, for the integral to be zero for an arbitrary χb(x), the functional
Σ[A] must be invariant under this transformation. Recalling our discussion of the local gauge
invariant operators of mass dimension four or less, we conclude that the only possible form
for Σ is

Σ[A] = −
δ

4

∫
d4x F

µν

a F
a

µν , (6.58)

where F
µν

is the field strength constructed with the covariant derivative D
µ

and δ another
constant. Given all the above constraints, we must have

S[A, χ, χ; ζ, κ] =

∫
d4x

[
− δ
4
F
µν

a F
a

µν + β
(
ζµa + ∂µχa

)(
D

adj
µ

)
ab
χb

+gα
2
fabcκaχbχc

]
. (6.59)

Up to rescalings of the various fields and of the coupling constant g, this is structurally
identical to the bare classical action of eq. (6.34). Note that this equation implies that the
field renormalization factors for the gauge field Aµa and for the source κa are equal,

Z
A
= Zκ . (6.60)

6.4 Background field method

6.4.1 Rescaled fields

In this section, we describe the calculation of the one-loop quantum corrections to the cou-
pling constant by a method based on the quantum effective action combined with the so-called
background field method.

The first step of this method is to rescale the gauge field by the inverse of the coupling
constant:

gAµ → Aµ . (6.61)
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By doing this, the various objects that appear in the Yang-Mills action are transformed as
follows:

Fµν → 1

g

(
∂µAν − ∂ν − i [Aµ, Aν]

)
Dµ → ∂µ − iAµ . (6.62)

In other words, up to a rescaling in the case of the field strength Fµν, these objects are
transformed into their counterparts for a coupling equal to unity. In the rest of this section,
the notation Aµ, Dµ, Fµν will refer to the rescaled quantities. In terms of the rescaled fields,
the Yang-Mills action simply reads

S
YM

= −
1

4 g2

∫
d4x Fµνa F

a
µν︸ ︷︷ ︸

no g

, (6.63)

where all the dependence on the coupling constant appears now in the prefactor g−2. This
action has a local non-Abelian gauge invariance analogous to the original one, but with g = 1:

Aµ → AΩµ ≡ Ω†AµΩ+ iΩ†∂µΩ . (6.64)

6.4.2 Background field gauge

The background field method consists in choosing a background field Aaµ(x), and in writing
the gauge field Aaµ(x) as a deviation around this background

Aaµ ≡ Aaµ + aaµ . (6.65)

In this decomposition, the background field Aµ is not a dynamical field: it will just act as a
parameter that we shall not quantize, and the path integration is thus only on the deviation
aaµ (one may thus view this as a shift of the integration variable). In terms of Aaµ and aaµ, the
field strength that enters in the Yang-Mills action can be written as

Fµν = Fµν +
(
∂µaν − ig[Aµ, aν]

)
−
(
∂νaµ − ig[Aν, aµ]

)
− i [aµ, aν] , (6.66)

where Fµν is the field strength constructed with the background field. With explicit color
indices, this reads

Fµνa = Fµνa +
(
D
µ
adj

)
ab
aνb −

(
Dνadj

)
ab
aµb + fabc aµb a

ν
c , (6.67)

where D
µ
adj = ∂µ − i

[
Aµ, ·] is the adjoint covariant derivative associated to the background

field Aµ. If we view the background field as a constant, the original gauge transformation on
Aµ corresponds to the following transformation on aµ,

aµ → Ω†aµΩ+Ω†AµΩ−Aµ + iΩ†∂µΩ . (6.68)

If we parameterize Ω = exp(iθata) and expand to first order in θa, an infinitesimal gauge
transformation of aµa reads

aµa → aµa −
(
D
µ
adj

)
ab
θb + f

abcθba
µ
c . (6.69)
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This invariance leads to the same pathologies as in the original theory, and we must fix the
gauge in order to have a well defined path integral. The background field gauge corresponds
to the following condition on aaµ,

Ga(A) ≡
(
D
µ
adj

)
ab
abµ . (6.70)

Let us recall that a gauge fixing function Ga(A) leads to the following terms in the effective
Lagrangian:

L
GF

= −
ξ

2 g2
Ga(A)Ga(A) (gauge fixing term)

L
FPG

= −χa
∂Ga

∂Abµ

(
Dadj
µ

)
bc
χc (Fadeev-Popov ghosts) . (6.71)

With the choice of eq. (6.70), the Fadeev-Popov term becomes

L
FPG

= −χa
(
D
µ
adj

)
ab

(
Dadj
µ

)
bc
χc =

(
D
µ
adj χ

)
a

(
Dadj
µ χ

)
a
, (6.72)

where in the second equality we have anticipated an integration by parts and used the notation
(Dadj
µ χ)a ≡ (Dadj

µ )abχb (and a similar notation for (Dµadj χ)a).

6.4.3 Residual symmetry of the gauge fixed Lagrangian

The effective Lagrangian L
YM

+ L
GF

+ L
FPG

possesses a residual gauge symmetry that
corresponds to gauge transforming in the same way the background field Aµ and the total
field Aµ,

Aµ → Ω†AµΩ+ iΩ† ∂µΩ ,

Aµ → Ω†AµΩ+ iΩ† ∂µΩ . (6.73)

Indeed, under this joint transformation we have

aµ → Ω† aµΩ ,

Dµ → Ω†DµΩ ,

Dµ → Ω†DµΩ ,

χ → Ω† χ ,

χ → χΩ ,

G(A) → Ω†G(A)Ω . (6.74)

From this, we conclude that the gauge fixing Lagrangian L
GF

and the Fadeev-Popov La-
grangian L

FPG
are both invariant in this transformation, as well as the Yang-Mills Lagrangian.

Since the path integration measure over aµ, χ, χ is also invariant under this transformation,
the result of the path integral must be invariant under local gauge transformations of the
background field Aµ.

147



6.4.4 One-loop running coupling

Let us now turn to the calculation of the quantum effective action at one-loop. For this, we
use the results of the section 2.6.3, where we have shown that these one-loop corrections are
obtained by expanding the classical action to quadratic order in deviations with respect to a
background field, and by performing the resulting Gaussian path integration with respect to
the deviations (which gives a functional determinant).

The first step is to expand the three terms of the gauge fixed Lagrangian to second order
in the deviation aµ. In this calculation, we choose the gauge fixing parameter ξ = 1. The
quadratic terms in the combined Yang-Mills and gauge fixing terms read

L
YM

+ L
GF

= −
1

2g2

{
1
2

(
(Dµadja

ν)a−(Dνadja
µ)a
)2

+fabcFµνa abµa
c
ν+
(
(Dµadjaµ)

a
)2}

= −
1

2g2

{
aaµ

[
−
(
Dadj)

2
acg

µν − 2fabcFµνb

]
acν

}
= −

1

2g2

{
aaµ

[
−
(
Dadj)

2
acg

µν + (Fρσadj )ac(M
(1)

ρσ )
µν
]
acν

}
, (6.75)

where we have introduced (M
(1)

ρσ )
µν ≡ i(δρµδσν − δρ

νδσ
µ) the generators of the Lorentz

transformations for 4-vectors (the Lorentz transformation corresponding to the transforma-
tion parameters ωρσ reads Λµν = exp( i

2
ωρσ(M

(1)

ρσ )
µν)). For the ghost term, the quadratic

part is

L
FPG

= χa

[
−
(
Dadj

)2
ab

]
χb . (6.76)

Note that the operator that appears between the two ghost fields is the spin-0 analogue of
the one that appears in eq. (6.75), since the generators of Lorentz transformations for spin-0
objects are identically zero (M

(0)

ρσ ≡ 0). Although we have not considered fermions so far in
this chapter, the Dirac Lagrangian would give a contribution equal to the determinant of i /D,
or equivalently the square root of the determinant of (i /D)2. Noting that(

i /D
)2

= −D2 + i
(
i
2
[γµ, γν]

)
DµDν

= −D2 + (Fρσ)M
(1/2)

ρσ , (6.77)

where the M
(1/2)

ρσ ≡ i
4
[γρ, γσ] are the generators of Lorentz transformations for spin-1/2

fields. Note that the covariant derivatives and the field strength are in the fundamental rep-
resentation (assuming fermions that transform according to the fundamental representation,
like quarks). Therefore, for each of the fields that appear in the quantum effective action
(gauge fields, ghosts, fermions), we get a determinant ∆r,s of an operator containing −D2

(in the representation r corresponding to the field under consideration) plus a “spin connec-
tion”2 made of the contraction of the field strength with the Lorentz generators corresponding
to the spin s of the field:

gauge fields : ∆adj,s=1 ≡ det
(
−D2adj + F

ρσ
adj M

(1)

ρσ

)
ghosts : ∆adj,s=0 ≡ det

(
−D2adj + F

ρσ
adj M

(0)

ρσ︸ ︷︷ ︸
=0

)
fermions : ∆f,s=1/2 ≡ det

(
−D2f + F

ρσ
f M

(1/2)

ρσ

)
. (6.78)

2This terms describes the coupling between the magnetic moment of the particle and the background field.
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In terms of these determinants, the 1-loop quantum effective action is given by

Γ [A, χ,ψ] = Sr + ∆S+
i

2
ln∆adj,s=1 −

i nf

2
ln∆f,s=1/2 − i ln∆adj,s=0 , (6.79)

where ∆S denotes the 1-loop counterterms, and nf is the number of fermion flavors. Using
the invariance with respect to local gauge transformations of the background field, we must
have

ln∆r,s =
i

4
Cr,s

∫
d4x Fµνa Faµν + · · · , (6.80)

where the dots represent higher dimensional gauge invariant operators. Being of dimension
higher than four, these operators do not contribute to the renormalization of the coupling. The
constantCr,s depends on the group representation r and spin s of the field. These coefficients
are ultraviolet divergent,

Cr,s = cr,s ln
Λ2

κ2
, (6.81)

where Λ is an ultraviolet scale and κ the typical scale of inhomogeneities of the background
field. After combining them with the counterterms from ∆S, the ultraviolet scale is replaced
by a renormalization scale µ,

Cr,s → Cr,s = cr,s ln
µ2

κ2
. (6.82)

From eq. (6.79), we see that the 1-loop renormalized coupling at the scale µ and the bare
coupling must be related by

1

g2b
=

1

g2r (µ)
+
1

2
Cadj,1 −

nf

2
Cf,1/2 − Cadj,0

=
1

g2r (µ)
+
(1
2
cadj,1 −

nf

2
cf,1/2 − cadj,0

)
ln
µ2

κ2
. (6.83)

The explicit calculation of the constants cr,s requires to expand the logarithm of the func-
tional determinants to second order in the background field strength Fµν. Thanks to the
organization of eqs. (6.78), this calculation needs to be performed only once, for generic
gauge group and Lorentz representations. This leads to

cr,s =
1

(4π)2

[
1
3
d(s) − 4C(s)

]
C(r) , (6.84)

where d(s) is the number of spin components (respectively 1, 4, 4 for scalars, fermions, and
vector particles), C(s) is the normalization of the trace of two Lorentz generators3,

tr
(
M

(s)

ρσM
(s)

αβ

)
= C(s) (gραgσβ − gρβgσα

)
, (6.85)

and C(r) is the normalization of the trace of two generators of the Lie algebra in representa-
tion r,

tr
(
tar t

b
r

)
= C(r) δab . (6.86)

3For spin-0, 1
2

and 1, this constant is respectively 0, 1 and 2.
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For the fundamental and adjoint representations of su(N), we have C(f) = 1
2

and C(adj) =
N. Therefore, the constants involved in the 1-loop running coupling are

cadj,0 =
N

3(4π)2
, cadj,1 = −

20N

3(4π)2
cf,1/2 = −

4

3(4π)2
, (6.87)

and the coupling evolves according to

1

g2r (µ)
=
1

g2b
+

1

(4π)2

(
11
3
N− 2

3
nf︸ ︷︷ ︸

>0 for nf≤
11N
2

)
ln
µ2

κ2
. (6.88)

Given two scales µ and µ0, the renormalized couplings at these scales are related by

1

g2r (µ)
−

1

g2r (µ0)
=

1

(4π)2

(
11
3
N− 2

3
nf

)
ln
µ2

µ20
, (6.89)

which may be rewritten as

g2(µ) =
g2(µ0)

1+
g2r (µ0)
(4π)2

(
11
3
N− 2

3
nf
)

ln µ
2

µ2
0

. (6.90)

In quantum chromodynamics, where the gauge group is SU(3) (i.e. N = 3) and where
there are 6 flavors of quarks in the fundamental representation, the coefficient in front of
the logarithm is positive, which indicates that the coupling constant decreases as the scale µ
increases. The coupling constant in fact goes to zero when µ → ∞, a property known as
asymptotic freedom. Thanks to the formula (6.84), it would have been easy to determine the
one-loop running of the coupling in the presence of matter fields in arbitrary representations.

150



Chapter 7

Lattice field theory

7.1 Discretization of space-time

In the previous chapter, we have seen that the running coupling in non-Abelian gauge the-
ories decreases at large energy (provided the number of quark flavors is less than 11N/2).
The counterpart of asymptotic freedom is that the coupling increases towards lower energies,
precluding the use of perturbation theory to study phenomena in this regime. Among such
properties is that of color confinement, i.e. the fact that colored states cannot exist as asymp-
totic states. Instead the quarks and gluons arrange themselves into color neutral bound states,
that can be mesons (e.g. pions, kaons) made of a quark and an antiquark or baryons (e.g.
protons, neutrons) made of three quarks1. A legitimate question would be to determine the
mass spectrum of the asymptotic states of QCD from its Lagrangian.

Figure 7.1: Discretization of Euclidean space-time on a hyper-cubic lattice (here shown in three
dimensions).

1More exotic bound states made of four (tetraquarks) or five (pentaquarks) have also been speculated, but the
experimental evidence for these states is so far not fully conclusive. Likewise, there may exist bound states without
valence quarks, the glueballs.
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Since the perturbative expansion is not applicable for this type of problem, one would
like to be able to attack it via some non-perturbative approach. By non-perturbative, we
mean a method by which observables would directly be obtained to all orders in the coupling
constant, without any expansion. Such a method, known as lattice field theory, consists in
discretizing space-time in order to evaluate numerically the path integral. The continuous
space-time is replaced by a discrete grid of points, the simplest arrangement being a hyper-
cubic lattice such as the one shown in the figure 7.1. The distance between nearest neighbor
sites is called the lattice spacing, and usually denoted a. The lattice spacing, being the small-
est distance that exists in this setup, therefore provides a natural ultraviolet regularization.
Indeed, on a lattice of spacing a, the largest conjugate momentum is of order a−a. More-
over, one usually uses periodic boundary conditions; if the lattice has N spacings in a given
direction, then we have φ(x +Na) = φ(x) for bosonic fields and φ(x +Na) = −φ(x) for
fermionic fields.

7.2 Scalar field theory

As an illustration of some of the issues involved in the discretization of a quantum field
theory, let us consider a simple scalar field theory with a local interaction in φ4, whose
action in continuous space-time is

S =

∫
d4x
{
−
1

2
φ(x)

(
∂µ∂

µ +m2)φ(x) −
λ

4!
φ4(x)

}
. (7.1)

A natural choice is to replace the integral over space-time by a discrete sum over the sites of
the lattice, weighted by the volume a4 of each elementary cell of the lattice,

a4
∑

x∈ lattice

→
a→0

∫
d4x . (7.2)

Then we replace the continuous function φ(x) by a discrete set of real numbers that live on
the lattice nodes. For simplicity, we keep denoting φ(x) the value of the field on the lattice
site x. The discretization of the mass and interaction terms is trivial, but the discretization
of the derivatives that appear in the D’Alembertian operator is not unique. Using only two
nearest neighbors, one may define forward or backward finite differences,

∇
F
f(x) ≡ f(x+ a) − f(x)

a

∇
B
f(x) ≡ f(x) − f(x− a)

a
, (7.3)

that both go to the continuum derivative in the limit a → 0. However, unlike the continuous
derivative, ∇

F
and ∇

B
are not anti-adjoint. Instead, assuming periodic boundary conditions,

one has∑
x∈ lattice

f(x)
(
∇
F
g(x)

)
= −

∑
x∈ lattice

(
∇
B
f(x)

)
g(x) . (7.4)

In other words, ∇†
F
= −∇

B
. From this, we may construct a self-adjoint discrete second

derivative as follows:

∇
B
∇
F
f(x) =

f(x+ a) + f(x− a) − 2 f(x)

a2
→
a→0 f ′′(x) . (7.5)
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Thus, a self-adjoint discretization of the scalar Lagrangian leads to

Slattice = a
4
∑

x∈ lattice

{
−
1

2
φ(x)

(
∇
Bµ∇µF +m2)φ(x) −

λ

4!
φ4(x)

}
. (7.6)

Let us make a few remarks concerning the errors introduced by the discretization. Firstly,
the continuous spacetime symmetries (translation and rotation invariance) of the underlying
theory are now reduced to the subgroup of the discrete symmetries of a cubic lattice. They
are recovered in the a → 0 limit. Another source of discrepancy between the continuum
and discrete theories is the dispersion relation that relates the energy and momentum of an
on-shell particle. In the continuum theory, this relation is of course

E2 = p2 +m2 , (7.7)

where −p2 is an eigenvalue of the Laplacian. In order to find its counterpart with the above
discretization, we must determine the spectrum of the finite difference operator∇

B
∇
F
. On a

lattice with N sites and periodic boundary conditions, its eigenfunctions are given by

φk(x) ≡ e2iπ
kx
Na with k ∈ Z , −N

2
≤ k ≤ N

2
. (7.8)

The associated eigenvalue is

λk ≡
2

a2

(
cos

2πk

N
− 1
)
= −

4

a2
sin2

πk

N
. (7.9)

Thus, the one dimensional discrete analogue of the continuum p2 +m2 is

m2 +
4

a2
sin2

πk

N
. (7.10)

As long as k � N, this leads us to a linear relationship between the energy and the index
k that labels the eigenfunctions, but this correspondence becomes nonlinear for larger val-
ues of k. This discrepancy is illustrated in the figure 7.2. This mismatch does not improve
by increasing the number of lattice points: only the center of the Brillouin zone has a dis-
persion relation that agrees with the continuum one. In order to mitigate this problem, one
should choose the parameters of the lattice in such a way that the physically relevant scales
correspond to values of k for which the distortion of the dispersion curve is not important.

7.3 Gluons and Wilson action

Non-Abelian gauge theories pose an additional difficulty: since the local gauge invariance
plays a central role in their properties, any attempt at discretizing gauge fields should preserve
this symmetry. It turns out that there exists a discretization of the Yang-Mills action that goes
to the continuum action in the limit where a → 0, and has an exact gauge invariance. The
main ingredient in this construction is eq. (4.122), that relates the trace of a Wilson loop along
a small square,

[�]x;µν ≡ U†ν(x)U†µ(x+ ν̂)Uν(x+ µ̂)Uµ(x) , (7.11)

to the squared field strength. These elementary lattice Wilson loops are called plaquettes. In
the fundamental representation, we have

tr
(
[�]x;µν

)
= N−

g2a4

4
Fµνa (x)Faµν(x) + O(a6) . (7.12)
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Figure 7.2: Discrepancy between the continuous (solid curve) and discrete (points) dispersion
relations, on a one-dimensional lattice with N = 40.
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Note that, although the first two terms in the right hand side are real valued, the remainder
(terms of order a6 and beyond) may be complex. Therefore, it is convenient to take the
real part of the trace of the Wilson loop in order to construct a real valued discrete action.
By summing this equation over all the lattice points x and all the pairs of distinct directions
(µ, ν), we obtain

a4
∑

x∈ lattice

(
−
1

4
Fµνa (x)Faµν(x)

)
=
N

g2

∑
x∈ lattice

∑
(µ,ν)

(
N−1tr

(
Re [�]x;µν

)
− 1
)

︸ ︷︷ ︸
Wilson action, denoted 1

g2
S
W

[U]

+O(a2) .

(7.13)

Note that the error term of order a6 becomes a term of order a2 after summation over the
lattice sites, since the number of sites grows like a−4 if the volume is hold fixed. Thus, the
sum of the traces of the Wilson loops over all the elementary plaquettes of the lattice provides
a discretization of the Yang-Mills action. In this discrete formulation, the natural variables
are not the gauge potentials Aµ(x) themselves, but the Wilson lines Uµ(x) that live on the
edges of the lattice, called link variables. In this notation, x is the starting point and µ the
direction of the Wilson line, as illustrated in the left panel of figure 7.3. Note that the Wilson
line oriented in the −µ̂ direction, i.e. starting at the point x + µ̂ and ending at the point
x, is simply the Hermitic conjugate of Uµ(x). Under a local gauge transformation, the link
variables are changed as follows:

Uµ(x) → Ω†(x+ µ̂) Uµ(x) Ω(x) . (7.14)

The plaquette variable, shown in the right panel of figure 7.3, can then be obtained by multi-
plying four link variables, as shown by eq. (7.11), and its trace is obviously invariant under
the transformation of eq. (7.14).
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Figure 7.3: Left: link variable. Right: plaquette on an elementary square of the lattice.

x x+µ̂

Uµ(x)
x x+µ̂

x+ν̂

At this stage, the discrete analogue of the path integral that gives the expectation value of
a gauge invariant operator reads,

〈O〉 =
∫∏
x,µ

dUµ(x) O
[
U
]

exp
{
i
N

g2

∑
x

∑
(µ,ν)

(
N−1tr

(
Re [�]x;µν

)
− 1
)}

. (7.15)

Since there exists a left- and right-invariant2 group measure dUµ(x), the left hand side of
this formula is gauge invariant. Moreover, it goes to the expectation value of the continuum
theory in the limit of vanishing lattice spacing.

7.4 Monte-Carlo sampling

Thanks to the discretization, the path integral of the original theory is replaced by an ordinary
integral over each of the link variables Uµ(x), whose number is finite. A non-perturbative
answer could be obtained if one were able to evaluate these integrals numerically. However,
because of the prefactor i inside the exponential in eq. (7.15), the integrand is a strongly
oscillating function, whose numerical evaluation is practically impossible except on lattices
with a very small number of sites. In order to be amenable to a numerical calculation, this
integral must be transformed into an Euclidean one,

〈O〉
E
=

∫∏
x,µ

dUµ(x) O
[
U
]

exp
{N
g2

∑
x

∑
(µ,ν)

(
N−1tr

(
Re [�]x;µν

)
− 1
)}

. (7.16)

The exponential under the integral is now real-valued, and thus positive definite. Note that nu-
merical quadratures such as Simpson’s rule, are not practical for this problem, given the huge
number of dimensions of the integral to be evaluated. For instance, for the 8-dimensional
Lie group SU(3), in 4 space-time dimensions, on a lattice with N4 points, this dimension is
8×4×N4. For N = 32, the path integral is thus transformed into a 225-dimensional ordinary
integral. Instead, one views the exponential of the Wilson action as a probability distribution

2This means that:∫
dU f[U] =

∫
dU f[ΩU] =

∫
dU f[UΩ] .

Such a measure, known as the Haar measure, exists for compact Lie groups, such as SU(N).
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(up to a normalization constant) for the link variables, that may be sampled by a Monte-Carlo
algorithm (e.g. the Metropolis algorithm) in order to estimate the integral.

In this approach, as long as one is evaluating the expectation value of gauge invariant
observables, it is not necessary to fix the gauge in lattice QCD calculations. Gauge fixing is
necessary when calculating non-gauge invariant quantities, such as propagators for instance.
The Landau gauge is the most commonly used, because the Landau gauge condition is real-
ized at the extrema of a functional of the link variables, However, the comparison between
gauge-fixed lattice calculations and analytical calculations is very delicate, because of the ex-
istence of Gribov copies (the problem stems from the fact that the two setups may not select
the same Gribov copy).

Although considering the Euclidean path-integral instead of the Minkowski one allows
for a numerical calculation by Monte-Carlo sampling, this leads to a serious limitation: only
quantities that can be expressed as an Euclidean expectation value are directly calculable.
Others could in principle be reached by an analytic continuation from imaginary to real time,
but this turns out to be practically impossible numerically. For instance, the masses of hadrons
are accessible to lattice QCD calculations (see the section 7.6 for an example), while scatter-
ing amplitudes cannot be calculated by this method.

7.5 Fermions

7.5.1 Discretization of the Dirac action

Consider now the Dirac action, whose expression in continuum space reads

S
D
=

∫
d4x ψ(x)

(
i γµDµ −m

)
ψ(x) . (7.17)

In the discretization, we assign one spinor ψ(x) to each site of the lattice. Under a gauge
transformationΩ(x), these spinors transform in the way as in the continuous theory,

ψ(x) → Ω†(x)ψ(x) , ψ(x) → Ω(x)ψ(x) . (7.18)

The main difficulty in defining a discrete covariant derivative that transforms appropriately
under a gauge transformation is that ψ(x) and ψ(x ± a) transform differently when Ω(x)
depends on space-time. This problem can be remedied by using a link variable between the
point x and its neighbors. Like with the ordinary derivatives, one may define forward and
backward discrete derivatives,

Dµ
F
ψ(x) ≡ U

†
µ(x)ψ(x+ a) −ψ(x)

a
,

Dµ
B
ψ(x) ≡ ψ(x) −Uµ(x− a)ψ(x− a)

a
. (7.19)

However, none of these two operators is anti-adjoint, and therefore they would not give a
Hermitean Lagrangian density. This may be achieved by using instead 1

2

(
Dµ
F
+Dµ

B

)
, whose

action is given by a symmetric forward-backward difference

1

2

(
Dµ
F
+Dµ

B

)
ψ(x) =

U†µ(x)ψ(x+ a) −Uµ(x− a)ψ(x− a)

2a
. (7.20)
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7.5.2 Fermion doublers

Let us now study how the dispersion relation of fermions is modified by this discretization.
This can be done in the vacuum, i.e. by setting all the link variables to the identity. In this
case, the eigenfunctions of the operator 1

2

(
Dµ
F
+Dµ

B

)
are

ψk(x) = e
2iπ

(k+1/2)x
Na with k ∈ Z , −N

2
≤ k ≤ N

2
, (7.21)

with the eigenvalue

λk =
i

a
sin
2π (k+ 1/2)

N
, (7.22)

and the corresponding dispersion relation is E2 = |λk|
2 + m2. This dispersion relation is

shown in the figure 7.4. Like in the bosonic case, the discrete dispersion relation agrees with

Figure 7.4: Discrepancy between the continuous (solid curve) and discrete (points) dispersion
curves in the fermionic case, on a one-dimensional lattice with N = 40.
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the continuous one only for small enough k. However, the discrepancy at large k is now much
more serious, because the discrete dispersion curve has another minimum at the edge of the
Brillouin zone. This additional minimum indicates the existence of a second propagating
mode of mass m. This spurious mode is called a fermion doubler. In d dimensions, the
number of these fermionic modes is 2d, while our goal was to have only one. This problem
is quite serious, because it affects all quantities that depend on the number of quark flavors.
In particular, this is the case of the running of the coupling constant, whenever quark loops
are included.

7.5.3 Wilson term

Modifications of the discretized Dirac action have been proposed to remedy the problem of
fermion doublers. One of these modifications, known as the Wilson term, consists in adding
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to the Lagrangian the following term (written here for the direction µ),

−
1

2a
ψ(x)

[
U†µ(x)ψ(x+ a) +Uµ(x− a)ψ(x− a) − 2ψ(x)

]
, (7.23)

which is nothing but a D’Alembertian (or a Laplacian in the Euclidean theory) constructed
with covariant derivatives

a

2
ψ
(
DµD

µ
)
ψ . (7.24)

Note that the denominator in eq. (7.23) has a single power of the lattice spacing a, hence the
prefactor a in the previous equation. Therefore, this term goes to zero in the limit a→ 0, and
it should have no effect in the continuum limit. In the absence of gauge field (Uµ(x) ≡ 1), the
functions of eq. (7.21) are still eigenfunctions after adding the Wilson term, but with modified
eigenvalues,

λk =
i

a
sin
2π (k+ 1/2)

N
+
1

a

(
1− cos

2π (k+ 1/2)

N

)
. (7.25)

Thus, the Wilson term does not modify the spectrum at small k, but lifts the spurious mini-

Figure 7.5: Discrepancy between the continuous (solid curve) and discrete (points) dispersion
curves in the fermionic case, on a one-dimensional lattice with N = 40, after inclusion of the
Wilson term.
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mum that existed at the edge of the Brillouin zone, as shown in the figure 7.5. However, the
Wilson term has an important drawback: there is no Dirac matrix γµ in eqs. (7.23) and (7.24)
since the Lorentz indices are contracted between the two covariant derivatives. Therefore,
the Wilson term –like an ordinary mass term– breaks explicitly the chiral symmetry of the
Dirac Lagrangian. The fermion doublers are in fact intimately related to chiral symmetry.
Without the Wilson term, lattice QCD with massless quarks has an exact chiral symmetry
unbroken by the lattice regularization, and therefore there cannot be a chiral anomaly. In fact,
this absence of anomaly is precisely due to a cancellation of anomalies among the multiple
copies (the doublers) of the fermion modes. This argument is completely general and not
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specific to the Wilson term: any mechanism that lifts the degeneracy among the doublers will
spoil the anomaly cancellation and thus break chiral symmetry. For this reason, the study of
phenomena related to chiral symmetry is always delicate in lattice QCD.

7.5.4 Evaluation of the fermion path integral

The path integral representation for fermions uses anti-commuting Grassmann variables.
However, such variables are not representable as ordinary numbers in a numerical implemen-
tation. To circumvent this difficulty, one exploits the fact that the Dirac action is quadratic in
the fermion fields (this remains true after adding the Wilson term to remove the fermion dou-
blers). Therefore, the path integral over the fermion fields can be done exactly. In addition
to the fermion fields contained in the action, there may be ψ’s and ψ’s (in equal numbers) in
the operator whose expectation value is being evaluated. The result of such a fermionic path
integral is given by∫ [

DψDψ
] (
ψ(x1)ψ(x2)

)
eiSD [ψ,ψ] = S(x1, x2)× det

(
i γµDµ −m

)
; (7.26)

where S(x1, x2) is the inverse of the Dirac operator i /D − m between the points x1 and
x2. When there is more than one ψψ pair in the operator, one must sum over all the ways
of connecting the ψ’s and the ψ’s by the propagators S(x, y). The same can be done in
the lattice formulation. In this case, the Dirac operator is simply a (very large) matrix that
depends on the configuration of link variables. Therefore one needs the inverse of this matrix,
and its determinant.

Figure 7.6: Illustration of the two types of quark contributions. In red: quark propagators (i.e.
inverse of the Dirac operator) that connect the ψ’s and ψ’s in the operator being evaluated.
In purple: quark loops coming from the determinant of the Dirac operator.

In eq. (7.26), the determinant provides closed quark loops, while the propagator S(x1, x2)
connects the external points of the operator under consideration. This observation, illustrated
in the figure 7.6, clarifies the meaning of the quenched approximation, in which the determi-
nant of the Dirac operator is replaced by 1. This approximation, motivated primarily by the
computational difficulty of evaluating the Dirac determinant, was widely used in lattice QCD
computations until advances in computer hardware made it unnecessary. Note that, although
quark loops are not included in the quenched approximation, gluon loops are present to their
full extent. In contrast, lattice QCD calculations that include the Dirac determinant, and thus
the effect of quark loops, as said to use dynamical fermions.
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7.6 Hadron mass determination on the lattice

Let us consider a hadronic state
∣∣h〉. Any operator O that carries the same quantum numbers

as this hadron leads to a non-zero matrix element
〈
h
∣∣O∣∣0〉. The vacuum expectation value of

the product of two O at different times 0 and T can be rewritten as follows,

〈
0
∣∣O†(0)O(T)∣∣0〉 =

∑
n

〈
0
∣∣O†(0)∣∣Ψn〉〈Ψn∣∣O(T)∣∣0〉

=
∑
n

〈
0
∣∣O†(0)∣∣Ψn〉〈Ψn∣∣O(0)∣∣0〉 e−MnT

=
∑
n

∣∣∣〈Ψn∣∣O(0)∣∣0〉∣∣∣2 e−MnT . (7.27)

In the first equality, we have inserted a complete basis of eigenstates of the QCD Hamiltonian,
and the second equality follows from the fact that

〈
Ψn
∣∣ is an eigenstate of rest energy Mn

(these is no factor i inside the exponential because of the Euclidean time used in lattice QCD).
The sum in the last equality receives non-zero contributions from all the statesΨn that possess
the quantum numbers carried by the operator O. However, taking the limit T → ∞ selects
the one among these eigenstates that has the smallest mass. This observation can be turned
into a method to determine hadron masses in lattice QCD:

1. Choose an operator O that has the quantum numbers of the hadron of interest. The
choice of the operator is not crucial, as long as the overlap

〈
h
∣∣O∣∣0〉 is not zero. How-

ever, eq. (7.27) suggests that a better, i.e. less noisy with limited statistics, result may
be obtained by trying to maximize this overlap.

2. Evaluate the vacuum expectation value of O†(0)O(T) by Monte-Carlo sampling, as a
function of T .

3. Fit the large T tail of this expectation value. The slope of the exponential gives the
mass of the lightest hadron that carries these quantum numbers.

The discretized QCD Lagrangian contains several dimensionful parameters: the lattice
spacing a and the quark massesmf (one for each quark flavor), whose values need to be fixed
before novel predictions can be made. One must choose (at least) an equal number of physical
quantities that are known experimentally. Their computed values depend on a,mf, and one
should adjust these parameters so that they match the experimental values. After this has
been done, quantities computed in lattice QCD do not contain any free parameter anymore
and are thus predictions. The figure 7.7 shows results of the determination of hadron masses
using lattice QCD.

7.7 Wilson loops and confinement

7.7.1 Strong coupling expansion

While perturbation theory is an expansion in powers of g2, it is possible to use the lattice
formulation of a Yang-Mills theory in order to perform an expansion in powers of the quantity
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Figure 7.7: Hadron mass determination from lattice QCD. Blue: masses used as input in order
to set the lattice parameters. Red: predictions of lattice QCD. Boxes: experimental values.

β ≡ g−2 that appears as a prefactor in the Wilson action. This is called a strong coupling
expansion, since it becomes exact in the limit of infinite coupling.

This expansion produces integrals over the gauge group such as∫
dU Ui1j1 · · ·Uinjn U

†
k1l1
· · ·U†kmlm . (7.28)

The simplest of these integrals,∫
dU = 1 (7.29)

is simply a choice of normalization of the group measure. From the unitarity of the group
elements, one then obtains∫

dU UijU
†
kl =

1

N
δjkδil . (7.30)

In these integrals, the link variables on different edges of the lattice are independent variables,
and there is a separate integral for each of them. This is completely general: integrals of the
form (7.28) are non-zero only if the integrands contains an equal number of U’s and U†’s,
i.e. for n = m. Therefore, each link variable U that appears in such a group integral must be
matched by a corresponding U†. For instance, the group integral of the Wilson loop defined
on an elementary plaquette is zero,∫∏

x,µ

dUµ(x) tr
(
U†ν(x)U

†
µ(x+ ν̂)Uν(x+ µ̂)Uµ(x)︸ ︷︷ ︸

[�]x;µν

)
= 0 , (7.31)

because the four link variables live on four distinct edges of the lattice. In contrast, the
integral of the trace of a plaquette time the trace of the conjugate plaquette is non-zero:∫∏

x,µ

dUµ(x)
(

tr [�]x;µν
) (

tr [�]†x;µν
)
= 1 . (7.32)
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Using these results, we can calculate to order β the expectation value of the trace of a pla-
quette:

〈
tr [�]x;µν

〉
≡

∫ ∏
x,µ

dUµ(x)
(

tr [�]x;µν
)

exp
{
βN
∑
y;ρσ

(
N−1tr Re [�]y;ρσ − 1

)}
∫ ∏
x,µ

dUµ(x) exp
{
βN
∑
y;ρσ

(
N−1tr Re [�]y;ρσ − 1

)}
=

β

2
+ O(β2) . (7.33)

Consider now the trace of a more general Wilson loop along a path γ (planar, to simplify
the discussion). Each U and U† in the Wilson loop must be compensated by a link variable
coming from the β expansion of the exponential of the Wilson action. The lowest order
term in β corresponds to a minimal tiling of the Wilson loop by elementary plaquettes, as
illustrated in the figure 7.8. The corresponding contribution is

Figure 7.8: Tiling of a closed loop by elementary plaquettes.

〈trWγ〉 =
(
β

2

)Area (γ)

+ · · · , (7.34)

where the dots are terms of higher order in β (that can be constructed from non-minimal
tilings of the contour γ, such that all the U’s and U†’s are still paired appropriately).

7.7.2 Heavy quark potential

Let us consider now a rectangular loop, with an extent R in the spatial direction 1 and an
extent T in the Euclidean time direction 4. The previous result indicates that the expectation
value of the trace of the corresponding Wilson loop has the following form,

〈trWγ〉 ∼ e−σRT + · · · , (7.35)

where σ is a constant. Although it is gauge invariant, this expectation value is easier to
interpret in an axial gauge where A4 ≡ 0. Indeed, in this gauge, the Wilson loop receives
only contributions from gauge links along the spatial direction, as shown in the figure 7.9.
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Figure 7.9: Rectangular Wilson loop in the A4 ≡ 0 gauge.

x

t
= T

R

Note that the remaining Wilson lines are precisely those that are needed to make a non-local
operator made of a quark at x = R and an antiquark at x = 0 gauge invariant,

Oqq(t) ≡ ψ(t, 0)W[0,R] ψ(t, R) , (7.36)

whereW[0,R] is a (spatial) Wilson line going from (t, R) to (t, 0). Consider now the vacuum
expectation value

〈
0
∣∣O†qq(0)Oqq(T)∣∣0〉. In this expectation value, the fermionic path inte-

gral produces two quark propagators that connect the ψ’s to the ψ’s. However, in the limit
of infinite quark mass, the quarks propagate on straight lines at constant velocity and their
propagator reduces to a Wilson line along this trajectory. For the propagation between (0, x)
and (T, x), this is a temporal Wilson line, that reduces to the identity in the A4 = 0 gauge
(represented by the dotted lines in the figure 7.9). Thus, we have

〈trWγ〉 ∝ lim
M→∞

〈
0
∣∣O†qq(0)Oqq(T)∣∣0〉 . (7.37)

Inserting a complete basis of eigenstates of the Hamiltonian in the right hand side of eq. (7.37)
and taking the limit T →∞, we find a result dominated by the quark-antiquark state of lowest
energy E0,

lim
T→∞

〈
0
∣∣O†qq(0)Oqq(T)∣∣0〉 = ∣∣∣〈0∣∣O†qq(0)∣∣Ψ0〉∣∣∣2 e−E0 T . (7.38)

Moreover, in the limit of large mass, the energy E0 of this state is dominated by the po-
tential energy V(R) between the quark and the antiquark (the quark and antiquark are non-
relativistic, and their kinetic energy behaves as P2/2M→ 0),

lim
M,T→∞

〈
0
∣∣O†qq(0)Oqq(T)∣∣0〉 = ∣∣∣〈0∣∣O†qq(0)∣∣Ψ0〉∣∣∣2 e−V(R) T (7.39)

By comparing this result with that of the strong coupling expansion, eq. (7.35), we conclude
that

V(R) = σR . (7.40)

This linear potential indicates that the force between the quark and antiquark is constant
at large distance, in sharp contrast with a Coulomb potential in electrodynamics. This is a
consequence of the color confinement property of QCD.
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