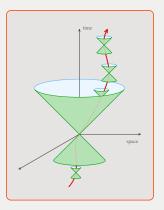
Large Fields at Small Coupling A tractable non-perturbative regime of QFT

François Gelis

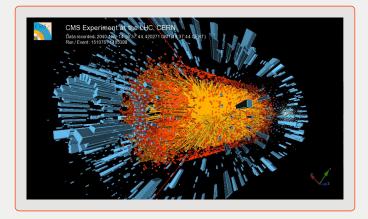
December 19th, 2016

Institut de Physique Théorique CEA/DRF Saclay



Introduction

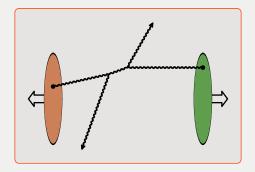
HEAVY ION COLLISIONS



- Very high multiplicity (~ 20000 produced particles)
- Most of them rather soft (P $\lesssim 2~\text{GeV})$

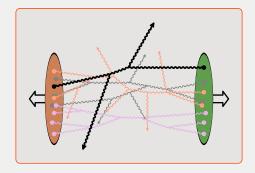
François Gelis, December 19th 2016

INITIAL STATE AND PARTON DISTRIBUTIONS



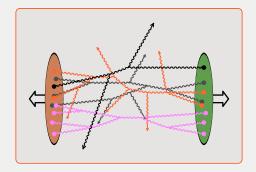
• **Factorization**: (partonic cross-section) ⊗ (parton distribution) Applicable to high momentum rare processes

INITIAL STATE AND PARTON DISTRIBUTIONS



- **Factorization :** (partonic cross-section) ⊗ (parton distribution) Applicable to high momentum rare processes
- Underlying event : cannot be calculated in this framework

INITIAL STATE AND PARTON DISTRIBUTIONS

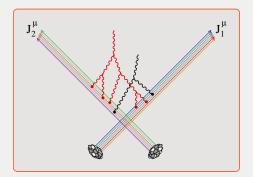


- **Factorization :** (partonic cross-section) ⊗ (parton distribution) Applicable to high momentum rare processes
- Underlying event : cannot be calculated in this framework
- In a Heavy Ion Collision, this is the most interesting part...

EFFECTIVE DESCRIPTION BY AN EXTERNAL SOURCE

Snapshot of the constituents by color currents :

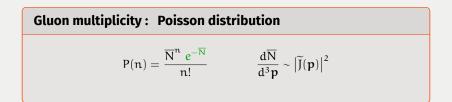
$$\mathbb{S} \equiv \int d^4 x \left(- \tfrac{1}{4} \mathsf{F}^{\mu\nu} \mathsf{F}_{\mu\nu} + J^{\mu}(\mathbf{x}) \mathsf{A}_{\mu}(\mathbf{x}) \right)$$

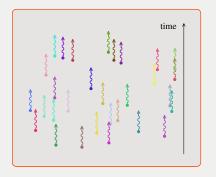


- Time dilation: static current
- Many constituents: J^{μ} large
- Current conservation: $[\mathcal{D}_{\mu},J^{\mu}]=0$

Quantum Field Theories with (Strong) Sources

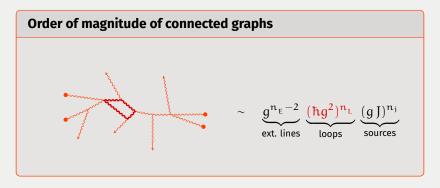
TEXTBOOK CASE : WEAK SOURCE REGIME (g J \ll 1)



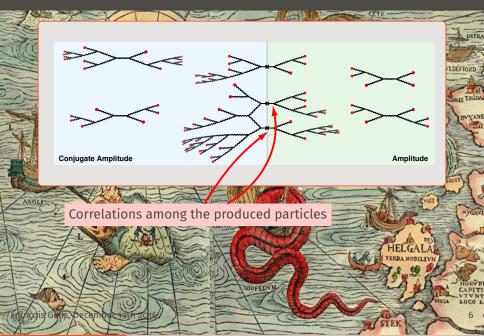


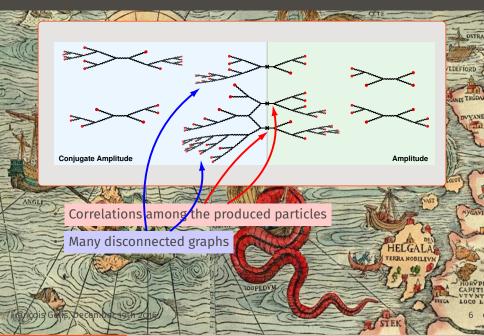
- Exactly solvable when $g\: J \to 0$
 - No interaction after production
 - No thermalization

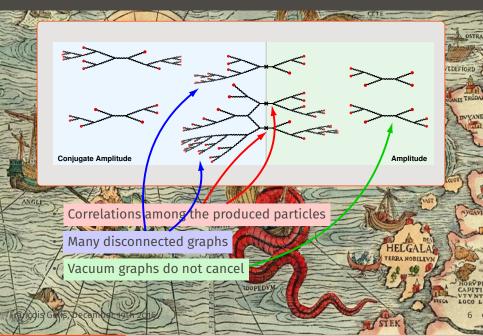
POWER COUNTING

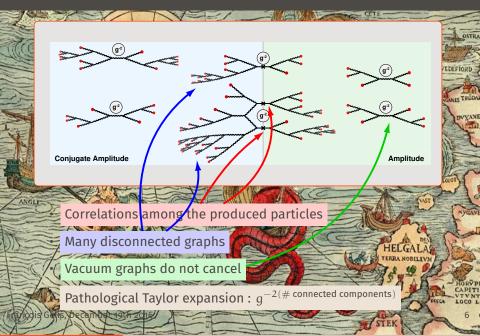


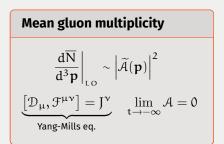
- $g J \gtrsim 1$: strong source regime \Rightarrow Non-perturbative dependence on g J
- What happens when $g~J\gtrsim 1$?
 - Non-trivial correlations?
 - Thermalization?





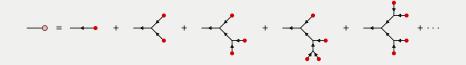




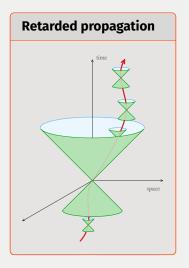


- Sum of connected graphs (vacuum graphs cancel)
- Expressible in terms of the classical field with *retarded* boundary conditions

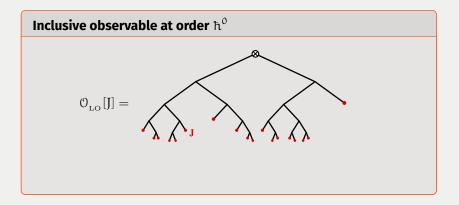
$$\overline{N}_{LO} = \bigcirc - \oslash - \bigcirc$$

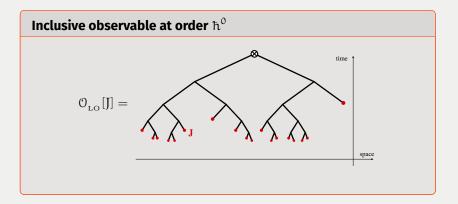


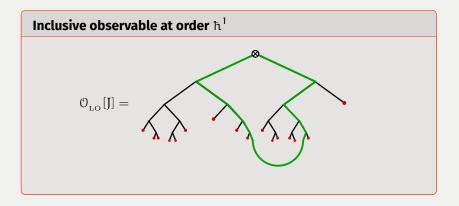
INCLUSIVE OBSERVABLES: GENERIC FEATURES

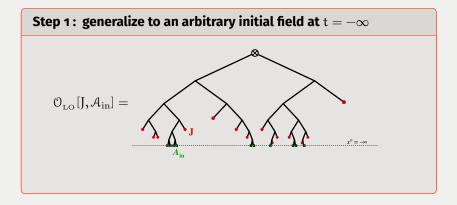


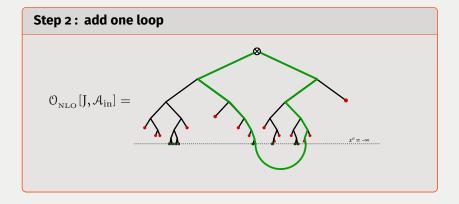
- Inclusive measurement :
 - Average of an observable over *all* final states
 - No constraint on the final state
 - + No boundary condition for the fields at $t=+\infty$
- Retarded = Causal evolution
- Numerically straightforward

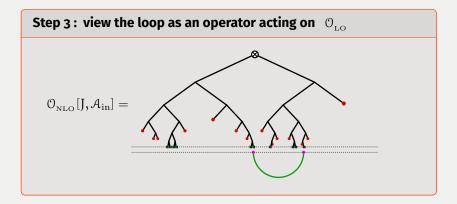




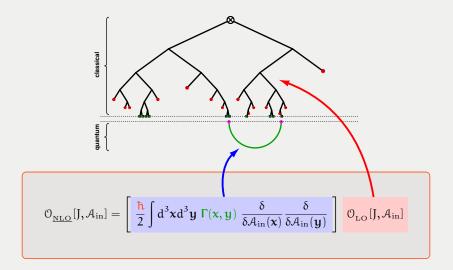








NEXT TO LEADING ORDER



Remarks

+ $\Gamma(x, y)$ is universal, and known analytically :

$$\Gamma(\mathbf{x},\mathbf{y}) = \int \frac{d^3\mathbf{p}}{(2\pi)^3 2\mathsf{E}_{\mathbf{p}}} \ e^{\mathrm{i}\mathbf{p}\cdot(\mathbf{x}-\mathbf{y})}$$

- LO contains NLO (in a somewhat obfuscated way...)
- Applications :
 - · Renormalization Group evolution of the effective theory
 - Study of thermalization

Another take on LO contains NLO: Moyal equation

- Liouville-von Neumann equation : i h $\frac{\partial \hat{\rho}_{\tau}}{\partial \tau} = [\hat{H}, \hat{\rho}_{\tau}]$
- Wigner transform : $W_{\tau}(x,p) \equiv \int ds \ e^{ip \cdot s} \ \langle x + \frac{s}{2} | \widehat{\rho}_{\tau} | x \frac{s}{2} \rangle$
- LvN equation is equivalent to Moyal equation

$$\frac{\partial W_{\tau}}{\partial \tau} = \mathcal{H}(\mathbf{x}, \mathbf{p}) \frac{2}{i\hbar} \sin\left(\frac{i\hbar}{2} \left(\overleftarrow{\partial}_{\mathbf{p}} \overrightarrow{\partial}_{\mathbf{x}} - \overleftarrow{\partial}_{\mathbf{x}} \overrightarrow{\partial}_{\mathbf{p}}\right)\right) W_{\tau}(\mathbf{x}, \mathbf{p})$$
$$= \underbrace{\{\mathcal{H}, W_{\tau}\}}_{\text{Poisson bracket}} + \mathcal{O}(\hbar^{2})$$

At O(ħ), the evolution is still classical (the ħ¹ corrections come from the quantum nature of the *initial state*)

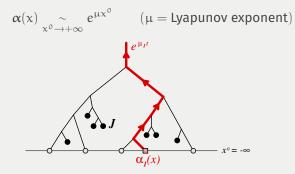
What happens if the classical dynamics is chaotic ?

INSTABILITIES

- The derivatives $\delta O_{LO} / \delta A_{in}$ are large if the classical solutions have instabilities (they measure the sensitivity to the initial condition)
- This behaviour is ubiquitous in field theory:
 - Scalar field with a φ^4 interaction : parametric resonance
 - Yang-Mills theory : Weibel instability
- Consequence : $\mathbb{O}_{_{\rm NLO}}$ growths (exponentially) with time, and eventually becomes larger than $\mathbb{O}_{_{\rm LO}}$
 - \implies breakdown of the perturbative expansion

IMPROVED POWER COUNTING

• For an unstable mode:



IMPROVED POWER COUNTING

• For an unstable mode:



• For an unstable mode:

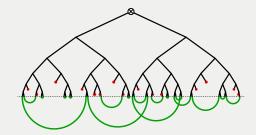
 $\alpha(x) \underset{x^{0} \to +\infty}{\sim} e^{\mu x^{0}} \qquad (\mu = \text{Lyapunov exponent})$

•
$$O_{\rm NLO} \sim e^{2\mu t}$$

- At order n, there are terms $\sim e^{2n\mu t}$

Resummation

$$\mathcal{O}_{\rm RESUM} \equiv \exp\left[\frac{\hbar}{2}\int d^3x d^3y \ \Gamma(x,y) \ \frac{\delta}{\delta\mathcal{A}_{\rm in}(x)}\frac{\delta}{\delta\mathcal{A}_{\rm in}(y)}\right] \mathcal{O}_{\rm LO}$$



 $\mathbb{O}_{_{\rm RESUM}} = \mathbb{O}_{_{\rm LO}} + \mathbb{O}_{_{\rm NLO}} + \text{subset of all higher orders}$

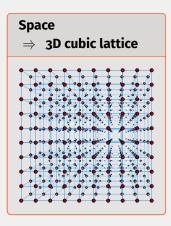
François Gelis, December 19th 2016

LEADING TERMS : CLASSICAL STATISTICAL APPROXIMATION

$$\begin{split} \exp \left[\frac{\hbar}{2} \int_{\mathbf{x}, \mathbf{y}} \underbrace{\Gamma_{2}(\mathbf{x}, \mathbf{y}) \frac{\delta}{\delta \mathcal{A}_{\mathrm{in}}(\mathbf{x})} \frac{\delta}{\delta \mathcal{A}_{\mathrm{in}}(\mathbf{y})}}_{\text{"Laplacian"}} \right] & \mathcal{O}_{\mathrm{LO}}[\mathcal{A}_{\mathrm{in}}] \\ \underbrace{\mathsf{Diffusion operator on the classical phase-space}}_{= \int \left[\mathsf{D} \mathfrak{a} \right] \exp \left[-\frac{1}{2 \hbar} \int_{\mathbf{x}, \mathbf{y}} \mathfrak{a}(\mathbf{x}) \Gamma_{2}^{-1}(\mathbf{x}, \mathbf{y}) \mathfrak{a}(\mathbf{y}) \right] \mathcal{O}_{\mathrm{LO}}[\mathcal{A}_{\mathrm{in}} + \mathfrak{a}] \end{split}$$

- In this resummation, the observable is obtained as an average over classical fields with fluctuating initial conditions
- The exponentiation of the 1-loop result promotes the classical vacuum $A_{\rm in} \equiv 0$ into the coherent quantum state $|0_{\rm in}\rangle$

Numerical implementation

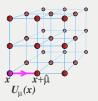


- Discrete space, continuous time
- Hamilton equations :

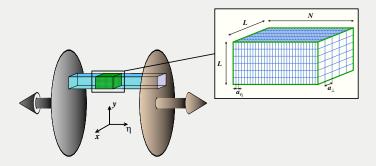
$$\partial_{t}\mathcal{A} = \mathcal{E}$$
$$\partial_{t}\mathcal{E} = F(\mathcal{A}$$

• Yang-Mills case :

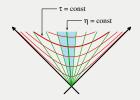
Use link variables instead of $\ensuremath{\mathcal{A}}$ to preserve residual gauge symmetry



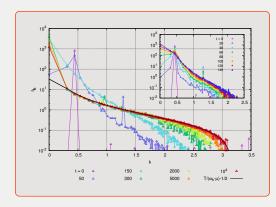
DISCRETIZATION OF THE EXPANDING VOLUME



- Comoving coordinates : τ, η, χ_{\perp}
- Only a small volume is simulated + periodic boundary conditions

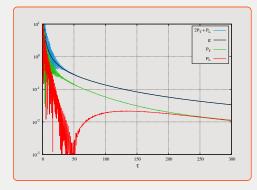


THERMALIZATION



- Unstable modes grow very quickly
- Other modes are filled later
- Possibility to form a Bose-Einstein condensate
- Asymptotic distribution: classical equilibrium $T(\omega-\mu)^{-1}-\tfrac{1}{2}$

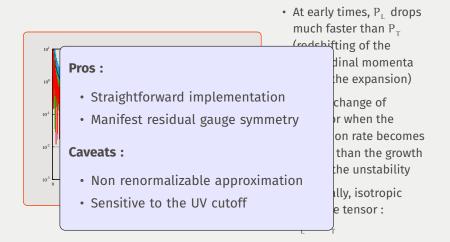
PRESSURE ISOTROPIZATION



- At early times, P_L drops much faster than P_T (redshifting of the longitudinal momenta due to the expansion)
- Drastic change of behavior when the expansion rate becomes smaller than the growth rate of the unstability
- Eventually, isotropic pressure tensor :

 $P_{_L}\approx P_{_T}$

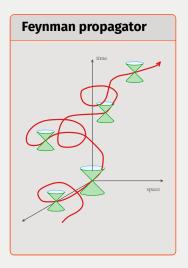
PRESSURE ISOTROPIZATION



Thank you ‼

What if... we wanted to calculate exclusive quantities?

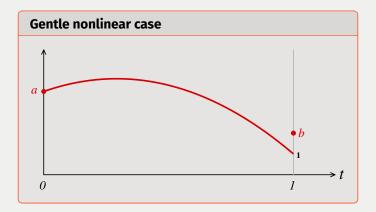
EXCLUSIVE OBSERVABLES



- Exclusive measurement :
 - Select specific final states
 - Boundary condition on the fields at $t=+\infty$
- Feynman propagator
 = Non causal evolution
- Numerically untractable

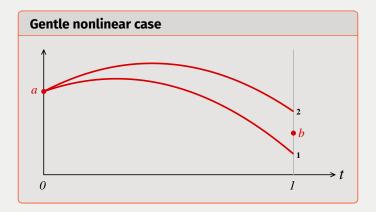
Differential equation with mixed boundary conditions

$$\ddot{\mathbf{y}} = \mathbf{f}(\mathbf{y}, \dot{\mathbf{y}})$$
, $\mathbf{y}(\mathbf{0}) = \mathbf{a}$, $\mathbf{y}(\mathbf{1}) = \mathbf{b}$



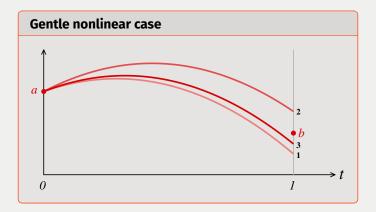
Differential equation with mixed boundary conditions

$$\ddot{\mathbf{y}} = \mathbf{f}(\mathbf{y}, \dot{\mathbf{y}})$$
, $\mathbf{y}(\mathbf{0}) = \mathbf{a}$, $\mathbf{y}(\mathbf{1}) = \mathbf{b}$



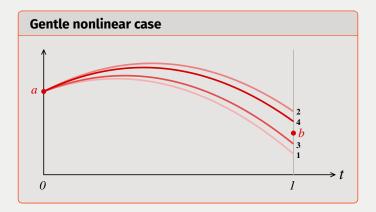
Differential equation with mixed boundary conditions

$$\ddot{\mathbf{y}} = \mathbf{f}(\mathbf{y}, \dot{\mathbf{y}})$$
, $\mathbf{y}(\mathbf{0}) = \mathbf{a}$, $\mathbf{y}(\mathbf{1}) = \mathbf{b}$



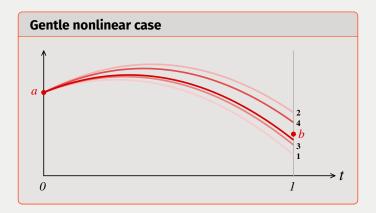
Differential equation with mixed boundary conditions

$$\ddot{\mathbf{y}} = \mathbf{f}(\mathbf{y}, \dot{\mathbf{y}})$$
, $\mathbf{y}(\mathbf{0}) = \mathbf{a}$, $\mathbf{y}(\mathbf{1}) = \mathbf{b}$



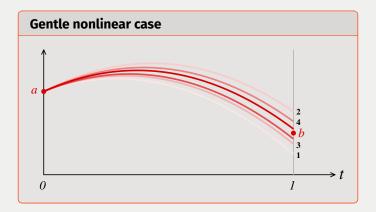
Differential equation with mixed boundary conditions

$$\ddot{\mathbf{y}} = \mathbf{f}(\mathbf{y}, \dot{\mathbf{y}})$$
, $\mathbf{y}(\mathbf{0}) = \mathbf{a}$, $\mathbf{y}(\mathbf{1}) = \mathbf{b}$



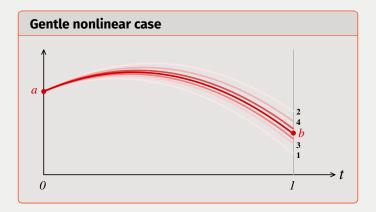
Differential equation with mixed boundary conditions

$$\ddot{\mathbf{y}} = \mathbf{f}(\mathbf{y}, \dot{\mathbf{y}})$$
, $\mathbf{y}(\mathbf{0}) = \mathbf{a}$, $\mathbf{y}(\mathbf{1}) = \mathbf{b}$



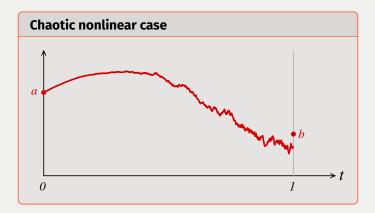
Differential equation with mixed boundary conditions

$$\ddot{y} = f(y, \dot{y})$$
, $y(0) = \alpha$, $y(1) = b$



Differential equation with mixed boundary conditions

$$\ddot{y} = f(y, \dot{y})$$
, $y(0) = \alpha$, $y(1) = b$



Differential equation with mixed boundary conditions

$$\ddot{y} = f(y, \dot{y})$$
, $y(0) = \alpha$, $y(1) = b$

