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Introduction
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Heavy Ion Collisions

• Very high multiplicity (∼ 20000 produced particles)
• Most of them rather soft (P . 2 GeV)
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Initial state and Parton distributions

• Factorization : (partonic cross-section) ⊗ (parton distribution)
Applicable to high momentum rare processes

• Underlying event : cannot be calculated in this framework

• In a Heavy Ion Collision, this is the most interesting part...
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Effective description by an external source

Snapshot of the constituents by color currents :

S ≡
∫
d4x

(
− 1

4
FµνFµν + Jµ(x)Aµ(x)

)

J
1

µ
J

2

µ

• Time dilation:
static current

• Many constituents:
Jµ large

• Current conservation:
[Dµ, J

µ] = 0
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Quantum Field Theories

with (Strong) Sources
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Textbook case : weak source regime (g J � 1)

Gluon multiplicity : Poisson distribution

P(n) =
N

n
e−N

n!

dN

d3p
∼
∣∣̃J(p)∣∣2

time

• Exactly solvable when g J → 0

• No interaction after
production

• No thermalization
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Power counting

Order of magnitude of connected graphs

∼ gn
E
−2︸ ︷︷ ︸

ext. lines

(h̄g2)nL︸ ︷︷ ︸
loops

(g J)nj︸ ︷︷ ︸
sources

• g J & 1 : strong source regime

⇒ Non-perturbative
dependence on g J

• What happens when g J & 1 ?

• Non-trivial correlations?
• Thermalization?
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Fully specified final states : there be dragons...

Conjugate Amplitude Amplitude

• Correlations among the produced particles

• Many disconnected graphs

• Vacuum graphs do not cancel

• Pathological Taylor expansion : g−2(# connected components)

François Gelis, December 19th 2016 6



Fully specified final states : there be dragons...

Conjugate Amplitude Amplitude

• Correlations among the produced particles

• Many disconnected graphs

• Vacuum graphs do not cancel

• Pathological Taylor expansion : g−2(# connected components)

François Gelis, December 19th 2016 6



Fully specified final states : there be dragons...

Conjugate Amplitude Amplitude

• Correlations among the produced particles

• Many disconnected graphs

• Vacuum graphs do not cancel

• Pathological Taylor expansion : g−2(# connected components)

François Gelis, December 19th 2016 6



Fully specified final states : there be dragons...
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g-2

g-2
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g-2
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More modest goal : inclusive observables

Mean gluon multiplicity

dN

d3p

∣∣∣∣
LO

∼
∣∣∣Ã(p)

∣∣∣2[
Dµ,F

µν
]
= Jν︸ ︷︷ ︸

Yang-Mills eq.

lim
t→−∞A = 0

• Sum of connected graphs
(vacuum graphs cancel)

• Expressible in terms of the
classical field with retarded
boundary conditions

N
LO

=

+ + + + + . . .=
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Inclusive observables : generic features

Retarded propagation

space

time • Inclusive measurement :

• Average of an observable
over all final states

• No constraint on the final state
• No boundary condition for the
fields at t = +∞

• Retarded = Causal evolution
• Numerically straightforward
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Leading Order

Inclusive observable at order h̄0

O
LO

[J] =

J
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Leading Order

Inclusive observable at order h̄0

O
LO

[J] =

J

space

time
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How to calculate the Next to Leading Order ?

Inclusive observable at order h̄1

O
LO

[J] =
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How to calculate the Next to Leading Order ?

Step 1 : generalize to an arbitrary initial field at t = −∞

O
LO

[J,Ain] =

J

A
in

x0 = -∞
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How to calculate the Next to Leading Order ?

Step 2 : add one loop

O
NLO

[J,Ain] =

x0 = -∞
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How to calculate the Next to Leading Order ?

Step 3 : view the loop as an operator acting on O
LO

O
NLO

[J,Ain] =
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Next to Leading Order

c
la

s
s
ic

a
l

q
u

a
n

tu
m

ONLO [J,Ain] =

[
h̄

2

∫
d3xd3y Γ(x,y)

δ

δAin(x)

δ

δAin(y)

]
OLO [J,Ain]
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Remarks

• Γ(x,y) is universal, and known analytically :

Γ(x,y) =

∫
d3p

(2π)32Ep
eip·(x−y)

• LO contains NLO (in a somewhat obfuscated way...)

• Applications :

• Renormalization Group evolution of the effective theory
• Study of thermalization
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Another take on LO contains NLO : Moyal equation

• Liouville-von Neumann equation : i h̄ ∂ρ̂τ

∂τ
=

[
Ĥ, ρ̂τ

]
• Wigner transform : Wτ(x,p) ≡

∫
ds eip·s 〈

x+
s

2

∣∣ρ̂τ∣∣x−
s

2

〉
• LvN equation is equivalent to Moyal equation

∂Wτ

∂τ
= H(x,p)

2

i h̄
sin

(
i h̄

2

( ←
∂p

→
∂x −

←
∂x

→
∂p

))
Wτ(x,p)

=
{
H,Wτ

}︸ ︷︷ ︸
Poisson bracket

+ O(h̄2)

• At O(h̄), the evolution is still classical (the h̄1 corrections
come from the quantum nature of the initial state)
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What happens if the

classical dynamics is chaotic ?
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Instabilities

• The derivatives δOLO/δAin are large if the classical solutions
have instabilities (they measure the sensitivity to the initial
condition)

• This behaviour is ubiquitous in field theory:

• Scalar field with a φ4 interaction : parametric resonance

• Yang-Mills theory : Weibel instability

• Consequence : ONLO growths (exponentially) with time, and
eventually becomes larger than O

LO

=⇒ breakdown of the perturbative expansion
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Improved power counting

• For an unstable mode:

α(x) ∼
x0→+∞ eµx0

(µ = Lyapunov exponent)

α
1
(x)

e µ1t

J

x 0 = -∞
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Improved power counting

• For an unstable mode:

α(x) ∼
x0→+∞ eµx0

(µ = Lyapunov exponent)

α
1
(x)α

2
(x)

e (µ1+µ2) t

J

x 0 = -∞
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Improved power counting

• For an unstable mode:

α(x) ∼
x0→+∞ eµx0

(µ = Lyapunov exponent)

α
1
(x)α

2
(x)

e (µ1+µ2) t

J

x 0 = -∞

• ONLO ∼ e2µt

• At order n, there are terms ∼ e2nµt
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Resummation of the leading terms

Resummation

O
RESUM

≡ exp

[
h̄

2

∫
d3xd3y Γ(x,y)

δ

δAin(x)

δ

δAin(y)

]
O

LO

ORESUM = OLO + ONLO + subset of all higher orders
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Leading terms : Classical Statistical Approximation

exp

[
h̄

2

∫
x,y

Γ2(x,y)
δ

δAin(x)

δ

δAin(y)︸ ︷︷ ︸
”Laplacian”

]

︸ ︷︷ ︸
Diffusion operator on the classical phase-space

O
LO

[Ain]

=

∫ [
Da

]
exp

[
−

1

2 h̄

∫
x,y

a(x)Γ−1
2 (x,y)a(y)

]
O

LO
[Ain + a]

• In this resummation, the observable is obtained as an average
over classical fields with fluctuating initial conditions

• The exponentiation of the 1-loop result promotes the classical
vacuum Ain ≡ 0 into the coherent quantum state

∣∣0in〉
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Numerical implementation

François Gelis, December 19th 2016 17



Hamiltonian lattice formalism

Space⇒ 3D cubic lattice

• Discrete space, continuous time
• Hamilton equations :

∂tA = E

∂tE = F(A)

• Yang-Mills case :
Use link variables instead of A to
preserve residual gauge symmetry

x x+µ̂

Uµ(x)
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Discretization of the expanding volume

x

y

η

L

L
N

a⊥aη

• Comoving coordinates : τ, η, x⊥

• Only a small volume is simulated
+ periodic boundary conditions

η = const

τ = const
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Thermalization
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• Unstable modes grow
very quickly

• Other modes are
filled later

• Possibility to form a
Bose-Einstein
condensate

• Asymptotic
distribution: classical
equilibrium
T(ω − µ)−1 − 1

2
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Pressure isotropization

×10
-3

×10
-2

×10
-1

×10
0

×10
1
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 τ

2P
T
 + P

L

ε

P
T

P
L

• At early times, P
L
drops

much faster than P
T

(redshifting of the
longitudinal momenta
due to the expansion)

• Drastic change of
behavior when the
expansion rate becomes
smaller than the growth
rate of the unstability

• Eventually, isotropic
pressure tensor :
P

L
≈ P

T
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• At early times, P
L
drops

much faster than P
T

(redshifting of the
longitudinal momenta
due to the expansion)

• Drastic change of
behavior when the
expansion rate becomes
smaller than the growth
rate of the unstability

• Eventually, isotropic
pressure tensor :
P

L
≈ P

T

Pros :

• Straightforward implementation
• Manifest residual gauge symmetry

Caveats :

• Non renormalizable approximation
• Sensitive to the UV cutoff
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Thank you !!
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What if... we wanted to

calculate exclusive quantities?
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Exclusive observables

Feynman propagator

space

time

• Exclusive measurement :
• Select specific final states
• Boundary condition on the fields
at t = +∞

• Feynman propagator
= Non causal evolution

• Numerically untractable
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Point-and-shoot problem

Differential equation with mixed boundary conditions

ÿ = f(y, ẏ) , y(0) = a , y(1) = b

Gentle nonlinear case

1

t

y

0 1

a

b
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ÿ = f(y, ẏ) , y(0) = a , y(1) = b

Gentle nonlinear case

1

2

3

4

t

y

0 1

a

b

François Gelis, December 19th 2016 23



Point-and-shoot problem

Differential equation with mixed boundary conditions
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