Large Fields at Small Coupling

A tractable non-perturbative regime of QFT

François Gelis

December 19th, 2016

Institut de
Physique Théorique CEA/DRF SACLAY

Introduction

Heavy Ion Collisions

- Very high multiplicity (~ 20000 produced particles)
- Most of them rather soft ($\mathrm{P} \lesssim 2 \mathrm{GeV}$)

INITIAL STATE AND PARTON DISTRIBUTIONS

- Factorization : (partonic cross-section) \otimes (parton distribution) Applicable to high momentum rare processes

INITIAL STATE AND PARTON DISTRIBUTIONS

- Factorization : (partonic cross-section) \otimes (parton distribution) Applicable to high momentum rare processes
- Underlying event : cannot be calculated in this framework

InITIAL STATE AND PARTON DISTRIBUTIONS

- Factorization : (partonic cross-section) \otimes (parton distribution) Applicable to high momentum rare processes
- Underlying event : cannot be calculated in this framework
- In a Heavy Ion Collision, this is the most interesting part...

Effective description by an external source

Snapshot of the constituents by color currents :

$$
S \equiv \int d^{4} x\left(-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+J^{\mu}(x) A_{\mu}(x)\right)
$$

- Time dilation: static current
- Many constituents: J^{μ} large
- Current conservation:

$$
\left[\mathcal{D}_{\mu}, J^{\mu}\right]=0
$$

Quantum Field Theories

with (Strong) Sources

TEXtBOOK CASE : WEAK SOURCE REGIME $(\mathrm{g} \mathrm{J} \ll 1)$

Gluon multiplicity : Poisson distribution

$$
P(n)=\frac{\bar{N}^{n} e^{-\bar{N}}}{n!} \quad \frac{d \bar{N}}{d^{3} p} \sim|\widetilde{J}(p)|^{2}
$$

- Exactly solvable when $\mathrm{g} \mathrm{J} \rightarrow 0$
- No interaction after production
- No thermalization

POWER COUNTING

Order of magnitude of connected graphs

- $\mathrm{gJ} \gtrsim 1$: strong source regime
\Rightarrow Non-perturbative dependence on g J
-What happens when $\mathrm{g} \mathrm{J} \gtrsim 1$?
- Non-trivial correlations?
- Thermalization?

FULLY SPECIFIED FINAL STATES: THERE BE DRAGONS...

MORE MODEST GOAL : INCLUSIVE OBSERVABLES

Mean gluon multiplicity

$$
\left.\frac{\mathrm{d} \bar{N}}{\mathrm{~d}^{3} \mathbf{p}}\right|_{\mathrm{LO}} \sim|\tilde{\mathcal{A}}(\mathbf{p})|^{2}
$$

$$
\underbrace{\left[\mathcal{D}_{\mu}, \mathcal{F}^{\mu \nu}\right]=J^{\nu}}_{\text {Yang-Mills eq. }} \quad \lim _{\mathrm{t} \rightarrow-\infty} \mathcal{A}=0
$$

- Sum of connected graphs (vacuum graphs cancel)
- Expressible in terms of the classical field with retarded boundary conditions

$$
\bar{N}_{\mathrm{LO}}=0-\boldsymbol{\otimes}-0
$$

INCLUSIVE OBSERVABLES: GENERIC FEATURES

- Inclusive measurement :
- Average of an observable over all final states
- No constraint on the final state
- No boundary condition for the fields at $t=+\infty$
- Retarded = Causal evolution
- Numerically straightforward

Leading Order

Inclusive observable at order \hbar^{0}

Leading Order

Inclusive observable at order \hbar^{0}

$\xrightarrow{\text { space }}$

How to calculate the Next to Leading Order?

Inclusive observable at order \hbar^{1}

How to calculate the Next to Leading Order ?

Step 1: generalize to an arbitrary initial field at $t=-\infty$

How to calculate the Next to Leading Order?

Step 2: add one loop

How to Calculate the Next to Leading Order?

Step 3: view the loop as an operator acting on $\mathcal{O}_{\text {LO }}$

Next to Leading Order

Remarks

- $\Gamma(x, y)$ is universal, and known analytically :

$$
\Gamma(x, y)=\int \frac{d^{3} p}{(2 \pi)^{3} 2 E_{p}} e^{i p \cdot(x-y)}
$$

- LO contains NLO (in a somewhat obfuscated way...)
- Applications :
- Renormalization Group evolution of the effective theory
- Study of thermalization

Another take on LO contains NLO: Moyal equation

- Liouville-von Neumann equation : $i \hbar \frac{\partial \widehat{\rho}_{\tau}}{\partial \tau}=\left[\widehat{H}, \widehat{\rho}_{\tau}\right]$
- Wigner transform : $W_{\tau}(x, p) \equiv \int \mathrm{ds} \mathrm{e}^{\mathrm{ip} \cdot \mathbf{s}}\left\langle x+\frac{\mathbf{s}}{2}\right| \hat{\rho}_{\tau}\left|x-\frac{\mathbf{s}}{2}\right\rangle$
- LvN equation is equivalent to Moyal equation

$$
\begin{aligned}
\frac{\partial W_{\tau}}{\partial \tau} & =\mathcal{H}(x, p) \frac{2}{i \hbar} \sin \left(\frac{i \hbar}{2}\left(\overleftarrow{\partial}_{p} \vec{\partial}_{x}-\overleftarrow{\partial}_{x} \vec{\partial}_{p}\right)\right) W_{\tau}(x, p) \\
& =\underbrace{\left\{\mathcal{H}, W_{\tau}\right\}}_{\text {Poisson bracket }}+\mathcal{O}\left(\hbar^{2}\right)
\end{aligned}
$$

- At $\mathcal{O}(\hbar)$, the evolution is still classical (the \hbar^{1} corrections come from the quantum nature of the initial state)

What happens if the

classical dynamics is chaotic ?

INSTABILITIES

- The derivatives $\delta \Theta_{\mathrm{LO}} / \delta \mathcal{A}_{\text {in }}$ are large if the classical solutions have instabilities (they measure the sensitivity to the initial condition)
- This behaviour is ubiquitous in field theory:
- Scalar field with a ϕ^{4} interaction : parametric resonance
- Yang-Mills theory : Weibel instability
- Consequence : $\mathcal{O}_{\text {nlo }}$ growths (exponentially) with time, and eventually becomes larger than $\mathcal{O}_{\text {Lo }}$
\Longrightarrow breakdown of the perturbative expansion

IMPROVED POWER COUNTING

- For an unstable mode:

$$
\boldsymbol{\alpha}(x) \underset{x^{0} \rightarrow+\infty}{\sim} e^{\mu x^{0}} \quad(\mu=\text { Lyapunov exponent })
$$

IMPROVED POWER COUNTING

- For an unstable mode:

$$
\boldsymbol{\alpha}(x) \underset{x^{0} \rightarrow+\infty}{\sim} e^{\mu x^{0}} \quad(\mu=\text { Lyapunov exponent })
$$

IMPROVED POWER COUNTING

- For an unstable mode:

$$
\alpha(x) \underset{x^{0} \rightarrow+\infty}{\sim} e^{\mu x^{0}} \quad(\mu=\text { Lyapunov exponent })
$$

- $\mathcal{O}_{\text {NLO }} \sim e^{2 \mu t}$
- At order n, there are terms $\sim e^{2 n \mu t}$

RESUMMATION OF THE LEADING TERMS

Resummation

$$
\mathcal{O}_{\text {RESUM }} \equiv \exp \left[\frac{\hbar}{2} \int \mathrm{~d}^{3} x \mathrm{~d}^{3} \boldsymbol{y} \Gamma(\boldsymbol{x}, \boldsymbol{y}) \frac{\delta}{\delta \mathcal{A}_{\text {in }}(\boldsymbol{x})} \frac{\delta}{\delta \mathcal{A}_{\text {in }}(\mathbf{y})}\right] \mathcal{O}_{\mathrm{LO}}
$$

$\mathcal{O}_{\text {RESUM }}=\mathcal{O}_{\mathrm{LO}}+\mathcal{O}_{\text {NLO }}+$ subset of all higher orders

Leading terms : CLassical Statistical Approximation

$$
\underbrace{\exp [\frac{\hbar}{2} \int_{\boldsymbol{x}, \mathbf{y}} \underbrace{\Gamma_{2}(x, y) \frac{\delta}{\delta \mathcal{A}_{\mathrm{in}}(\mathbf{x})} \frac{\delta}{\delta \mathcal{A}_{\mathrm{in}}(\mathbf{y})}}_{" \text { Laplacian" }}]}_{\text {Diffusion operator on the classical phase-space }} \mathcal{O}_{\mathrm{LO}}\left[\mathcal{A}_{\mathrm{in}}\right]
$$

$$
=\int[D a] \exp \left[-\frac{1}{2 \hbar} \int_{x, y} a(x) \Gamma_{2}^{-1}(x, y) a(y)\right] \mathcal{O}_{\mathrm{LO}}\left[\mathcal{A}_{\mathrm{in}}+a\right]
$$

- In this resummation, the observable is obtained as an average over classical fields with fluctuating initial conditions
- The exponentiation of the 1-loop result promotes the classical vacuum $\mathcal{A}_{\text {in }} \equiv 0$ into the coherent quantum state $\left|0_{\text {in }}\right\rangle$

Numerical implementation

HAMILTONIAN LATTICE FORMALISM

- Discrete space, continuous time
- Hamilton equations :

Space
 $$
\Rightarrow \text { 3D cubic lattice }
$$

$$
\begin{aligned}
& \partial_{\mathrm{t}} \mathcal{A}=\mathcal{E} \\
& \partial_{\mathrm{t}} \mathcal{E}=\mathrm{F}(\mathcal{A})
\end{aligned}
$$

- Yang-Mills case :

Use link variables instead of \mathcal{A} to preserve residual gauge symmetry

DISCRETIZATION OF THE EXPANDING VOLUME

- Comoving coordinates: τ, η, x_{\perp}
- Only a small volume is simulated + periodic boundary conditions

THERMALIZATION

- Unstable modes grow very quickly
- Other modes are filled later
- Possibility to form a Bose-Einstein condensate
- Asymptotic distribution: classical equilibrium $\mathrm{T}(\omega-\mu)^{-1}-\frac{1}{2}$

PRESSURE ISOTROPIZATION

- At early times, P_{L} drops much faster than P_{T} (redshifting of the longitudinal momenta due to the expansion)
- Drastic change of behavior when the expansion rate becomes smaller than the growth rate of the unstability
- Eventually, isotropic pressure tensor : $P_{L} \approx P_{T}$

PRESSURE ISOTROPIZATION

- At early times, P_{L} drops much faster than P_{T}

Thank you !

What if... we wanted to

calculate exclusive quantities?

EXCLUSIVE OBSERVABLES

- Exclusive measurement :
- Select specific final states
- Boundary condition on the fields

$$
\text { at } t=+\infty
$$

- Feynman propagator
= Non causal evolution
- Numerically untractable

POINT-AND-SHOOT PROBLEM

Differential equation with mixed boundary conditions

$$
\ddot{y}=f(y, \dot{y}) \quad, \quad y(0)=a, \quad y(1)=b
$$

POINT-AND-SHOOT PROBLEM

Differential equation with mixed boundary conditions

$$
\ddot{y}=f(y, \dot{y}) \quad, \quad y(0)=a, \quad y(1)=b
$$

POINT-AND-SHOOT PROBLEM

Differential equation with mixed boundary conditions

$$
\ddot{y}=f(y, \dot{y}) \quad, \quad y(0)=a, \quad y(1)=b
$$

POINT-AND-SHOOT PROBLEM

Differential equation with mixed boundary conditions

$$
\ddot{y}=f(y, \dot{y}) \quad, \quad y(0)=a, \quad y(1)=b
$$

POINT-AND-SHOOT PROBLEM

Differential equation with mixed boundary conditions

$$
\ddot{y}=f(y, \dot{y}) \quad, \quad y(0)=a, \quad y(1)=b
$$

POINT-AND-SHOOT PROBLEM

Differential equation with mixed boundary conditions

$$
\ddot{y}=f(y, \dot{y}) \quad, \quad y(0)=a, \quad y(1)=b
$$

POINT-AND-SHOOT PROBLEM

Differential equation with mixed boundary conditions

$$
\ddot{y}=f(y, \dot{y}) \quad, \quad y(0)=a, \quad y(1)=b
$$

POINT-AND-SHOOT PROBLEM

Differential equation with mixed boundary conditions

$$
\ddot{y}=f(y, \dot{y}) \quad, \quad y(0)=a, \quad y(1)=b
$$

Chaotic nonlinear case

POINT-AND-SHOOT PROBLEM

Differential equation with mixed boundary conditions

$$
\ddot{y}=f(y, \dot{y}) \quad, \quad y(0)=a, \quad y(1)=b
$$

Chaotic nonlinear case

