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High Energy
Scattering in QCD



> 2

e What happens when two protons/nuclei collide at high energy?

e Can it be calculated from first principles ?
(i.e. using Quantum-Chromodynamics)
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A proton contains more than three quarks...

> at low energy, mostly three valence quarks
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A proton contains more than three quarks...
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> when energy increases, additional gluons are present

Note : these gluons come from q — q + g quantum fluctuations,
and appear long-lived in the observer’s frame due to Lorentz time dilation
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A proton contains more than three quarks...
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> as long as the density of constituents remains small, the evolution
is linear:
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A proton contains more than three quarks...
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> eventually, the partons start overlapping in phase-space
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A proton contains more than three quarks...
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> parton recombination becomes favorable
> after this point, the evolution is non-linear:
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Degrees of freedom at various rapidities (y ~ In(p.))

Yobs +Yproj

McLerran-Venugopalan model :
e Fast partons : frozen dynamics, negligible p, = classical current
e Slow partons : evolve with time = gauge fields
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Degrees of freedom at various rapidities (y ~ In(p.))
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Degrees of freedom at various rapidities (y ~In(p.))
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Degrees of freedom at various rapidities (y ~1In(p.))

fields sources
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Degrees of freedom at various rapidities (y ~1In(p.))

fields sources
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McLerran-Venugopalan model :
e Fast partons : frozen dynamics, negligible p, = classical current
e Slow partons : evolve with time = gauge fields
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Cancellation of the cutoff dependence

fields sources

Yobs +ycm +y]’7l‘0j

e The cutoff y. is arbitrary and should not affect the result
e The probability distribution W[p] changes with the cutoff
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Cancellation of the cutoff dependence

fields sources

1

You from
the loops :
Yobs +ycm +y]’7l‘0j

e The cutoff y. is arbitrary and should not affect the result
e The probability distribution W[p] changes with the cutoff

e | oop corrections are also cutoff-dependent and cancel the cutoff
dependence coming from W{p]
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Effective description

S = Jd“x (= IP¥YFuy + JuA¥)
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Quantum Field Theory
with (Strong) Sources



Scalar field toy model

All the peculiarities of quantum field theories coupled to an external
source can be studied on a simpler example:

Scalar field coupled to an external source

$=[dx (= 1o(0+m2)d— o'+
atx (-4 i )

e Assume the system starts at t = —oo in the vacuum state

o For interesting things to happen, the source should be time
dependent
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Results in the non-interacting case (g=20)

Particle production amplitudes:

~ ~ a3 ~
<p] t 'pnout|0in> = ](p1) e J(pn) €Xp (7 %J (ZTE)ZIZ)EP U(‘p)‘z)

o Multiplicity : Poisson distribution

N'e ™ EPp g2
P(n) N*Jmmp)’
¢ Notes:
e The final multiplicity grows without bounds at large |
The typical field amplitude {¢$(x)) is proportional to J
Exclusive quantities (e.g. P(n)) contain a small factor exp(—N)

Inclusive quantities (e.g. the moments of P(n)) are not suppressed
No correlations between the produced particles
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A note on vacuum graphs

¢ In ordinary perturbation theory, one disregards disconnected
“vacuum” graphs, because their sum is a phase

¢ In the presence of a time dependent source, particles are
produced. Consider the following expression of unitarity:

1= [ (Oout| 0>+ 3 | (otout| O |

H it 40

<1
e Therefore:

sum of vacuum graphs = (Ogy|0;y ) # €' ("3 Phase)

(they actually give the factor exp(—N) in the previous example)
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Power counting

o When interactions are present, the expansion in g can be
organized as a diagrammatic series

Order of magnitude of a connected graph

-] 2 P
~ gte (g™ (gh)™
ext. lines  loops sources

e Sources ] > g~ are strong (one cannot expand in powers of J)

e Tree diagrams give the classical contribution (R — 0)
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Exclusive quantities and vacuum diagrams

Example of graph in the probability of producing 11 particles

P
c R

—e
—e

¢ Quantities where the final state is fully specified are very hard to
calculate. Their diagrammatic expansion contains disconnected

“vacuum” graphs (the exp(—N) in the non-interacting case)
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Inclusive quantities

o Average particle multiplicity ~ 1/g% > 1

e Probability of a given final state ~ exp(—1/g?) < 1

— not very useful

e Inclusive observables :
average of some quantity over all possible final states

(0)y= )  PAA = f) Ol

all final
states

Schwinger-Keldysh formalism : technique to perform the sum

over final states without computing the individual transition
probabilities P(AA — f)
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Schwinger-Keldysh formalism

Time-ordered
perturbation theory :

i

G =—
++(p) P2+ ic
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Schwinger-Keldysh formalism

Time-ordered Anti time-ordered
perturbation theory : perturbation theory :

i —i

G =—
++(p) P2t ic
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Schwinger-Keldysh formalism

Time-ordered Anti time-ordered
perturbation theory : perturbation theory :

i —i

G =—
++(p) P2t ic

Schwinger-Keldysh formalism :

e Across the cut : G, _(p) =2m0(—p°) 8(p?)

e Final state sum : sum over all the assignments
of the labels + and — to vertices and sources
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Inclusive observables at Leading Order

The Leading Order is given by a sum of tree diagrams

The sum over the + labels turns all propagators into retarded

Gir — G- =G,

Expressible in terms of solutions of the classical equations of

motion : 5
(@ +m?*)e + %@3 =]
W—/

U (¢)

Boundary conditions :  lim ¢(x),90@(x) =0

x0 ——o00

(WARNING : not true for exclusive observables !)
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Inclusive observables at Leading Order

!

The propagators are retarded
The valence of the vertices depends on the interaction term
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Inclusive observables at Next to Leading Order

o Left: 1-loop correction to the classical field ¢
¢ Right : 1-loop formed by connecting two classical fields

e The lines in the loops are dressed by the classical field ¢ :

B Sy e v ol
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Equal-time dressed propagators

o (Dressed) equal-time time-ordered propagators can be obtained
by stitching two (dressed) retarded propagators:

3 3 — —
G o) :jd 1By @b B i) Boe @, )

e The “stitch” at t = —co is given by

u v d3p

_ — ip-(u—v)
I (u,v) = TNy T T J(Z7‘E)32Ep e’
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Classical field as a functional of its initial condition

Green’s formula

o) = [d'y 6200y) [1v) ~ Ulew)

+J d3u GOR(x,u) (guo @init(1)
ud=—co

O(x)

(pinil(u)
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Dressed retarded propagator

0(x)

q)iml(u)
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Dressed retarded propagator

J
- ou) e
dp(x)
G, (xu) ~ ————
(1) dPinic(u)
e More precisely:
Jd3u [cx(u)’]l’u} ©(x) :Jd3u G, (x,u) 3uo o(u)

1
T, = generator of shifts of the initial condition at point u
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Inclusive observables at Next to Leading Order

Link between LO and NLO

R
(Ogo) = l J d3uddv Tr(u,v) T,T,
N——— —/

2 OLO ( (pinit)

Laplace operator Pinie=0

on phase-space
d3p

otp(u—v)
(2m)32E,

I (u,v) :J

e T, - only act on the initial condition

e At NLO, the time evolution remains classical, and the i correction
comes entirely from the initial state

o Quantum corrections to the time evolution arise at order h”
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Classical instabilities
Resummation



Mode functions

e Define:
ax(x) = Jd3u {eik'“']I‘u} ©(x)

2
[+ m?+ L0200 | anc(x) =0
| —
u(¢)
ax(x) —  etx
x0——oc0o

The {ock} are a basis of the space of linearized perturbations
around the classical field ¢(x)
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Instabilities

e When the classical equation of motion has unstable solutions,
some of the oy (x) have an unbounded growth when x° — +oco

e This behaviour is common in field theory:

e Scalar field with a ¢* interaction : parametric resonance

¢ Yang-Mills theory : Weibel instability

 Consequence : (O,,,) growths (exponentially) with time, and
eventually becomes larger than (O, )

= breakdown of the perturbative expansion
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Example in a ¢* scalar theory

e Scalar field coupled to an %
external source J(t) 0

e Source active for t < 0, then  *r j
the fields evolve under their 0
self-interactions

e Observables: energy density
(red) and pressure (green) *

time

Po o
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Example in a ¢* scalar theory

e Scalar field coupled to an ©

external source J(t) 2
e Source active for t < 0, then  *f

the fields evolve under their o %

self-interactions

e Observables: energy density

(red) and pressure (green) *

Po

time

€0

40
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Improved power counting

e For an unstable mode:

o (x) ~  emex’ (ux = Lyapunov exponent)

x0—+o00

e Ml

O u’ = -o0

o, (1)
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Improved power counting

e For an unstable mode:

ox(x) ~ erwx’ (ux = Lyapunov exponent)

x0—+o00

(L

u’ = -co

a;_('u ) o, (1)
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Improved power counting

e For an unstable mode:

ox(x) ~ erwx’ (ux = Lyapunov exponent)

x0—+o00

& ()1

u’ = -co

a;_('u ) o, (1)

e 1loop :uptog?h e?Hxt
o nloops : up to (g% h e2rkt)™
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Leading terms

Resummation

h
<Oresummed> = exp [— J d3ud3v r(u,v) T,T,

(O0)

2

By construction:
<oresummed> = <OLO> + <ONLO> + subset of all hlgher orders
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Leading terms : Classical Statistical Approximation

h
exp [2 J d3ud3v rz (u, V) TU’EV OLO((pinit)
——— —

Laplacian

:J'[Da(uﬂ exp {—;—ﬁL a(u)l"zl(u,v)a(v)} 0,0 (Pinit + @)

v

¢ |n this resummation, the observable is obtained as an average
over classical fields with fluctuating initial conditions

e The variance of the fluctuations (R T',) is prescribed by the NLO

e The exponentiation of the 1-loop result promotes the classical
vacuum @i, = 0 into the coherent quantum state \Omn>
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Generalizations

Coherent initial state

h h dp
- _ - _ ip-(u—v)
Qinit # 0 ) 2 rZ (U, V) 2 J (27-[)32]:—])

Initial state filled with a distribution of particles

R dp 1
S x =R| —— PV | 4t
Dinit 0 ) 2 I"z(u,v) ﬁj (27T)32Ep e [ 2 + 0(p):|

3 <= zero point fluctuations

fo(p) <= initial particle distribution
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More on the Classical
Statistical Approximation



Quantum Mechanics



CSA in Quantum Mechanics

o Consider the Liouville—von Neumann equation :

. 0p oo
ih 6’: = [H, pT]
e Introduce the Wigner transforms :
— ip-s S|~ S
We(x,p) = ste <x+§]pT|x—§>
Hx,p) = st etPs <x+%]ﬁ|x—§>

e LvN equation is equivalent to Moyal-Groenewold equation

oW, 2 . ih  « — — =
ot = J'C(X,p) 1771 sin 7( ap 0x — axap )) WT(X)p)
= {H,W:} +O(R%)

Poisson bracket
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CSA in Quantum Mechanics

o Approximating the right hand side by the Poisson bracket
<= classical time evolution
— O(R?) error

¢ |n addition : i dependence in the initial state
Uncertainty principle, Ax - Ap >h
= the Wigner distribution W._o(x, p) must have a width > 1

o All the O(R) effects can be accounted for by a Gaussian initial
distribution W._o(x, p)
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Path Integral



CSA from the Schwinger-Keldysh path integral

<O> _ J [Dd)Jde),] o[d)] et (Sld1=S[d 1)

o ¢, =amplitude ¢_ = conjugate amplitude
e d, — d_ = quantum interference

e Introduce : o1 = b — b, d2 = T (b4 + )

Sld ] —Slp_]1=d1- 68,[(1)21 + terms cubic in ¢
—_— [Jop)

odd in ¢,

e Strong field regime : ¢ large, but ¢ — d_ small
Neglect the terms cubic in ¢
Dd; — classical Euler-Lagrange equation for ¢
e The only remaining fluctuations are in the initial condition for ¢,
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Perturbation Theory



CSA in perturbation theory

o Start from Schwinger-Keldysh perturbation theory:

Goil(p )fﬁum( P8P G—(p) = [G1.(P)]

G+ (p) =2m(8(p°) + fo(p))8(p*) G+ (p) =G +(—p)

Mhir = 71.'92 [ = Jri92
o Rotate from the basis ¢ to the basis ¢
o New perturbative rules :
i i

G21(p) = o 4 Giz2(p) = o — e

Gaz2(p) = 27t (L + fo(p))3(p?) Gn(p)=0

.2 i 2
222 =—ig lM112 =—39

o CSA : neglect the 1112 vertex
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Non renormalizability of the CSA

e CSA # underlying theory at 2-loops and beyond

e Vacuum fluctuations make the CSA non-renormalizable.
Example of problematic graph :

mad N, __ ¢ (AZ _sz)

) 710243 v 3

= divergence in an operator not present in the Lagrangian
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Cutoff dependence at late time

m=05Q €=Q* n=0.75¢e/m
10000 /
1000 /
100
10 |
m]
o U]/ Q —
1

T/Q

0.1 lul/Q from[BBSV] ©O

T/Q from[BBSV] 0O

0.01

)

e Weak cutoff dependence in the range : A, ~ (3 —6) x (physical scales)
e But : no continuum limit

Fragois Gelis, IPRT, Saclay Semi-classical methods iv QFT 32/40 Groningen, October 2016



Occupation in the zero mode for various UV cutoffs

10°

0 20 40 60 80 100 1000
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Kinetic Theory



From QFT to Kinetic Theory

Dyson-Schwinger . Boltzmann

I =
equations equation PHOuf = Cplf] J

e Schwinger-Keldysh expression of the collision term:

Cplfl = 5 [f(P)E—+ () = (1 + FP) T (p)]

2

@ = Cp 4EPJJ Jk,(271)46(P+K—P’—K’)

x [f(p/)f(k )(1+£(p)) (1 + (k)
—~£(p)f(K) (1 + F(p")) (1 + (k")
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Collision term in the semi-classical approximation

o Expression in the ¢ , basis:

i

Cplf] >

[Zn(pJ + (3 +£(p) (221 (p) — Z12(P))]

Neglecting the 1112 vertex, the collision term becomes:

g4

Gl = 2,
P

JJ J (27)*5(P + K — P’ —K')
kJdprJx’
» [(% +1(p") (3 + £(K)) (1 + f(p) + (k)

—(X +(p)) (3 + () (1 +f(p') + f(k’))}

‘j, 1 : originate from the zero point occupancy

Terms in f3 and f2 correct, but spurious f' terms

Obeys H-theorem, Fixed point: f(p) = ¢~ — 3

But : T, 1 depend on the ultraviolet cutoff
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Should we keep or drop the vacuum 1/2 ?
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Should we keep or drop the vacuum 1/2 ?

e The 1/2’s are responsible for UV problems, but...

e They ensure that the collision term is correct at orders 3 and 2
(without them, one has a pure classical wave approximation)

e They are important in certain kinematic situations

Fragois Gelis, IPRT, Sacl Semi-classical methods iv QFT 36/40 Growingen, October 2016
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Should we keep or drop the vacuum 1/2 ?

e The 1/2’s are responsible for UV problems, but...

e They ensure that the collision term is correct at orders 3 and 2
(without them, one has a pure classical wave approximation)

e They are important in certain kinematic situations

e No 2 terms without the 1/2’s :

0tfsa ~ 94 J [ﬁfz(fs + fa) — f3f4(fy +f2)]
123 + . [f]fz 7f3f4]

Fragois Gelis, IPRT, Sacl Semi-classical methods iv QFT 36/40 Groningen, October 2016
Ay ¢



Should we keep or drop the vacuum 1/2 ?

e The 1/2’s are responsible for UV problems, but...

e They ensure that the collision term is correct at orders 3 and 2
(without them, one has a pure classical wave approximation)

e They are important in certain kinematic situations

e No 2 terms without the 1/2’s :

A difs ~ 94J~~-[f‘rf7(‘f#fr)?f3ﬁ{+ﬂ>—h'}]
123 4 ... [frir—f3fa]
..//'4p

s 1. o |[f the distribution becomes very anisotropic,
rd Jﬁ trying to produce the particle 4 at large angle
peo results in f3 ~ f4 ~ 0 = nothing left

o 3 terms & stimulated emission : ineffective
to produce particles in empty regions of
phase-space

5
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Isotropization in a fixed box

101
—
=
o
=
<
Exact e
Classical (without 1/2) s
102 |- | semi-classical (with 1/2) e
L L I | L L L I | L L L
0.1 0.2 0.3 1 2 3 4 10 20 30
Qt
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Isotropization in a longitudinally expanding system

e |nijtial conditions:

fo(k) = (no/g”) 8(Q — 1/k3 + &0 k2)
N——
fo
e Without 1/2 : universal classical
0.1 behaviour (nothing depends on g?)
(QT)-Z/B
classical -—

0.01 |- .

1 2 3 45678110 20 30 405011"102

QT
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Isotropization in a longitudinally expanding system

e With 1/2 : evolution depends on g*

0.1
e Gives a different P, /P

&
=
o
(QT)-Z/B
classical -—
full : g2 = 100
0.01 |- b
1 1 1 1 | T 1 1 1 1 FE——
1 2 3 4 5678 10 20 30 40 50 102
QT
28/40 Grovingen, October 2016
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Isotropization in a longitudinally expanding system

e With 1/2 : evolution depends on g*

& e Gives a very different P, /P,

* Tom=TE e Agreement with classical result
e - improves when g* decreases
full : g2 = 100

0.01 | 4 =
1 1 1 1 | I 1 1 1 1 P
1 2 3 4567810 20 30 40 50 102
QT
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Isotropization in a longitudinally expanding system

T T T T T T T T T T T T
fo=7..[n/sleq=1.2
) A_.——-#'—I'G"—_-—G-Z-
0.1 | e
& . 100 25
= et
(QT)-2/3
classical -—
full : g2 = 100 ==
0.01 | B —
L -
1 1 1 1 1 11 1 1 1 1 1
1 2 3 4 5678 10 20 30 4050 102

QT
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Isotropization in a longitudinally expanding system
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Isotropization in a longitudinally expanding system

M
Classical solution is an attrac-
&1y tor when mean free path goes
& to infinity
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Summary



Beware of

semi-classical
approximations!

Thank you for your attention.



Classical limit of the Bose-Einstein distribution

e Assume :
[ax, af] = e (2m)32Ex 8(k —1)

e This leads to :

tr (e’BHaLak)

- (e—BH) = 2E x Volume x

ePeBr —1

e |n the limit ¢ — 0,

13 1

€
eBeEr 1 “BEk_§+"’
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Kinetic theory results for gluons [Kurkela, Zhu (2015)]

SIO(jllllll T T IIIIII| T T

Ll |||||u,|,|_|:

\U

Anisotropy: P/P,
1 ||||u,|] LM

0.1
Occupancy: <pAf>/<p>

e At A = g°N. = 0.5, the classical approximation breaks down for Qt > 2

The criterion f > 1 suggests that this approximation should be valid until
Qt ~ a5/ ~ 350 = criterion too crude
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