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?

• What happens when two protons/nuclei collide at high energy?

• Can it be calculated from first principles ?
(i.e. using Quantum-Chromodynamics)
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A proton contains more than three quarks...

B at low energy, mostly three valence quarks
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A proton contains more than three quarks...

B when energy increases, additional gluons are present
Note : these gluons come from q→ q + g quantum fluctuations,
and appear long-lived in the observer’s frame due to Lorentz time dilation
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A proton contains more than three quarks...

B as long as the density of constituents remains small, the evolution
is linear: the number of partons produced at a given step is proportional to
the number of partons at the previous step
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A proton contains more than three quarks...

B eventually, the partons start overlapping in phase-space
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A proton contains more than three quarks...

B parton recombination becomes favorable
B after this point, the evolution is non-linear:
the number of partons created at a given step depends non-linearly on the
number of partons present previously
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Degrees of freedom at various rapidities ( y ∼ ln(pz) )

y

+yprojyobs

McLerran-Venugopalan model :

• Fast partons : frozen dynamics, negligible p⊥ ⇒ classical current

• Slow partons : evolve with time ⇒ gauge fields
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Degrees of freedom at various rapidities ( y ∼ ln(pz) )

y

+yprojyobs +ycut

sourcesfields

McLerran-Venugopalan model :

• Fast partons : frozen dynamics, negligible p⊥ ⇒ classical current

• Slow partons : evolve with time ⇒ gauge fields
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Degrees of freedom at various rapidities ( y ∼ ln(pz) )

y

+yprojyobs

-
1

4
F

µν
Fµν + A µ J

µ

J
µ
 = ρ δ

µ+

W[ρ]

+ycut

sourcesfields

McLerran-Venugopalan model :

• Fast partons : frozen dynamics, negligible p⊥ ⇒ classical current

• Slow partons : evolve with time ⇒ gauge fields
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Cancellation of the cutoff dependence

y

+yprojyobs

J
µ
 = ρ δ

µ+

Wyproj - ycut
[ρ]

+ycut

sourcesfields

• The cutoff ycut is arbitrary and should not affect the result

• The probability distribution W[ρ] changes with the cutoff

• Loop corrections are also cutoff-dependent and cancel the cutoff
dependence coming from W[ρ]
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Cancellation of the cutoff dependence

y

+yprojyobs

ycut  from

the loops

J
µ
 = ρ δ

µ+

Wyproj - ycut
[ρ]

+ycut

sourcesfields
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?

Effective description

S ≡
∫
d4x

(
− 1
4
FµνFµν + JµA

µ
)
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Quantum Field Theory
with (Strong) Sources
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Scalar field toy model

All the peculiarities of quantum field theories coupled to an external
source can be studied on a simpler example:

Scalar field coupled to an external source

S ≡
∫
d4x

(
− 1
2
φ(�+m2)φ− g2

4! φ
4︸ ︷︷ ︸

U(φ)

+Jφ
)

• Assume the system starts at t = −∞ in the vacuum state

• For interesting things to happen, the source should be time
dependent

François Gelis, IPhT, Saclay Semi-classical methods in QFT 6/40 Groningen, October 2016



François Gelis, IPhT,
Saclay

7

Results in the non-interacting case ( g = 0 )

Particle production amplitudes:

〈
p1 · · ·pnout

∣∣0in
〉
= J̃(p1) · · · J̃(pn) exp

(
− 1
2

∫
d3p

(2π)22Ep

∣∣̃J(p)∣∣2)

• Multiplicity : Poisson distribution

P(n) =
N
n
e−N

n!
N =

∫
d3p

(2π)22Ep

∣∣̃J(p)∣∣2
• Notes:

• The final multiplicity grows without bounds at large J
• The typical field amplitude

〈
φ(x)

〉
is proportional to J

• Exclusive quantities (e.g. P(n)) contain a small factor exp(−N)
• Inclusive quantities (e.g. the moments of P(n)) are not suppressed
• No correlations between the produced particles
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A note on vacuum graphs

• In ordinary perturbation theory, one disregards disconnected
“vacuum” graphs, because their sum is a phase

• In the presence of a time dependent source, particles are
produced. Consider the following expression of unitarity:

1 =
∣∣〈0out

∣∣0in
〉∣∣2︸ ︷︷ ︸

<1

+
∑
α6=∅

∣∣〈αout
∣∣0in
〉∣∣2︸ ︷︷ ︸

6=0 if J6=0

• Therefore:

sum of vacuum graphs =
〈
0out
∣∣0in
〉
6= ei(real phase)

(they actually give the factor exp(−N) in the previous example)
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Power counting

• When interactions are present, the expansion in g can be
organized as a diagrammatic series

Order of magnitude of a connected graph

∼ gnE
−2︸ ︷︷ ︸

ext. lines

(h̄g2)nL︸ ︷︷ ︸
loops

(gJ)nj︸ ︷︷ ︸
sources

• Sources J & g−1 are strong (one cannot expand in powers of J)

• Tree diagrams give the classical contribution (h̄→ 0)
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Exclusive quantities and vacuum diagrams

Example of graph in the probability of producing 11 particles

• Quantities where the final state is fully specified are very hard to
calculate. Their diagrammatic expansion contains disconnected
“vacuum” graphs (the exp(−N) in the non-interacting case)
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Inclusive quantities

• Average particle multiplicity ∼ 1/g2 � 1

• Probability of a given final state ∼ exp(−1/g2)� 1

=⇒ not very useful

• Inclusive observables :
average of some quantity over all possible final states〈

O
〉
≡
∑

all final
states f

P(AA→ f) O[f]

Schwinger-Keldysh formalism : technique to perform the sum
over final states without computing the individual transition
probabilities P(AA→ f)
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Schwinger-Keldysh formalism

f

Time-ordered
perturbation theory :

G++(p) =
i

p2 + iε
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Schwinger-Keldysh formalism

f

Time-ordered
perturbation theory :

G++(p) =
i

p2 + iε

Anti time-ordered
perturbation theory :

G−−(p) =
−i

p2 − iε
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Schwinger-Keldysh formalism

f

Time-ordered
perturbation theory :

G++(p) =
i

p2 + iε

Anti time-ordered
perturbation theory :

G−−(p) =
−i

p2 − iε

Schwinger-Keldysh formalism :

• Across the cut : G+−(p) ≡ 2π θ(−p0) δ(p2)
• Final state sum : sum over all the assignments

of the labels + and − to vertices and sources
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Inclusive observables at Leading Order

• The Leading Order is given by a sum of tree diagrams

• The sum over the ± labels turns all propagators into retarded

G++ −G+− = G
R

• Expressible in terms of solutions of the classical equations of
motion :

(�+m2)ϕ+
g3

6
ϕ3︸ ︷︷ ︸

U′(ϕ)

= J

• Boundary conditions : lim
x0→−∞ϕ(x), ∂0ϕ(x) = 0

(WARNING : not true for exclusive observables ! )
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Inclusive observables at Leading Order

〈
OLO

〉
=

+ + + + + . . .=

• The propagators are retarded
• The valence of the vertices depends on the interaction term
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Inclusive observables at Next to Leading Order

〈
ONLO

〉
=

• Left : 1-loop correction to the classical field ϕ
• Right : 1-loop formed by connecting two classical fields

• The lines in the loops are dressed by the classical field ϕ :

= + + + + . . .
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Equal-time dressed propagators

• (Dressed) equal-time time-ordered propagators can be obtained
by stitching two (dressed) retarded propagators:

x 0

=

x 0

u0 = -∞

G++(x, y) =

∫
d3ud3v G

R
(x, u)

↔
∂u0 Γ2(u, v)

↔
∂v0 GA

(v, y)

• The “stitch” at t = −∞ is given by

Γ2(u, v) =
u v =

∫
d3p

(2π)32Ep
eip·(u−v)
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Classical field as a functional of its initial condition

Green’s formula

ϕ(x) =

∫
d4y G0

R
(x, y)

[
J(y) −U′(ϕ(y))

]
+

∫
u0=−∞ d

3u G0
R
(x, u)

↔
∂u0 ϕinit(u)

φ(x)

φ
init

(u)

J

u0 = -∞
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Dressed retarded propagator

φ(x)

φ
init

(u)

J

u0 = -∞
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Dressed retarded propagator

α(u)

J

u0 = -∞

G
R
(x, u) ∼

δϕ(x)

δϕinit(u)

• More precisely:∫
d3u

[
α(u)Tu

]
ϕ(x) =

∫
d3u G

R
(x, u)

↔
∂u0 α(u)

↓
Tu ≡ generator of shifts of the initial condition at point u
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Inclusive observables at Next to Leading Order

Link between LO and NLO

〈
ONLO

〉
=

[
h̄

2

∫
d3ud3v Γ2(u, v) TuTv︸ ︷︷ ︸

Laplace operator
on phase-space

]
OLO(ϕinit)

∣∣∣∣∣
ϕinit≡0

Γ2(u, v) =

∫
d3p

(2π)32Ep
eip·(u−v)

• Tu,v only act on the initial condition

• At NLO, the time evolution remains classical, and the h̄ correction
comes entirely from the initial state

• Quantum corrections to the time evolution arise at order h̄2
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Classical instabilities
Resummation
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Mode functions

• Define:
αk(x) ≡

∫
d3u

[
eik·uTu

]
ϕ(x)

[
�x +m

2 +
g2

2
ϕ2(x)︸ ︷︷ ︸

U ′′(ϕ)

]
αk(x) = 0

αk(x) →
x0→−∞ eik·x

The
{
αk

}
are a basis of the space of linearized perturbations

around the classical field ϕ(x)
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Instabilities

• When the classical equation of motion has unstable solutions,
some of the αk(x) have an unbounded growth when x0 → +∞

• This behaviour is common in field theory:

• Scalar field with a φ4 interaction : parametric resonance

• Yang-Mills theory : Weibel instability

• Consequence :
〈
ONLO

〉
growths (exponentially) with time, and

eventually becomes larger than
〈
OLO

〉
=⇒ breakdown of the perturbative expansion
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Example in a φ4 scalar theory
• Scalar field coupled to an

external source J(t)

• Source active for t < 0, then
the fields evolve under their
self-interactions

• Observables: energy density
(red) and pressure (green)
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Improved power counting

• For an unstable mode:

αk(x) ∼
x0→+∞ eµkx

0

(µk = Lyapunov exponent)

α
k
(u)

e µkt

J

u0 = -∞
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Improved power counting

• For an unstable mode:

αk(x) ∼
x0→+∞ eµkx

0

(µk = Lyapunov exponent)

α
k
(u)a

l
(u)

e (µk+µ l) t

J

u0 = -∞
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Improved power counting

• For an unstable mode:

αk(x) ∼
x0→+∞ eµkx

0

(µk = Lyapunov exponent)

α
k
(u)a

l
(u)

e (µk+µ l) t

J

u0 = -∞

• 1 loop : up to g2 h̄ e2µkt

• n loops : up to
(
g2 h̄ e2µkt

)n
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Leading terms

Resummation〈
Oresummed

〉
≡ exp

[
h̄

2

∫
d3ud3v Γ2(u, v) TuTv

] 〈
OLO

〉
By construction:〈

Oresummed
〉
=
〈
OLO

〉
+
〈
ONLO

〉
+ subset of all higher orders
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Leading terms : Classical Statistical Approximation

exp

[
h̄

2

∫
d3ud3v Γ2(u, v) TuTv︸ ︷︷ ︸

Laplacian

]
OLO(ϕinit)

=

∫ [
Da(u)

]
exp

[
−
1

2h̄

∫
u,v

a(u)Γ−12 (u, v)a(v)
]
OLO(ϕinit + a)

• In this resummation, the observable is obtained as an average
over classical fields with fluctuating initial conditions

• The variance of the fluctuations (h̄ Γ2) is prescribed by the NLO
• The exponentiation of the 1-loop result promotes the classical

vacuum ϕinit ≡ 0 into the coherent quantum state
∣∣0init

〉
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Generalizations

Coherent initial state

ϕinit 6= 0 ,
h̄

2
Γ2(u, v) =

h̄

2

∫
d3p

(2π)32Ep
eip·(u−v)

Initial state filled with a distribution of particles

ϕinit = 0 ,
h̄

2
Γ2(u, v) = h̄

∫
d3p

(2π)32Ep
eip·(u−v)

[ 1
2
+ f0(p)

]

1

2
⇐⇒ zero point fluctuations

f0(p) ⇐⇒ initial particle distribution
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More on the Classical
Statistical Approximation
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Quantum Mechanics
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CSA in Quantum Mechanics

• Consider the Liouville–von Neumann equation :

ih̄
∂ρ̂τ

∂τ
=
[
Ĥ, ρ̂τ

]
• Introduce the Wigner transforms :

Wτ(x,p) ≡
∫
ds eip·s

〈
x+

s

2

∣∣ρ̂τ∣∣x− s
2

〉
H(x,p) ≡

∫
ds eip·s

〈
x+

s

2

∣∣Ĥ∣∣x− s
2

〉
• LvN equation is equivalent to Moyal-Groenewold equation

∂Wτ

∂τ
= H(x,p)

2

ih̄
sin
(
ih̄

2

( ←
∂p

→
∂x −

←
∂x

→
∂p

))
Wτ(x,p)

=
{
H,Wτ

}︸ ︷︷ ︸
Poisson bracket

+O(h̄2)
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CSA in Quantum Mechanics

• Approximating the right hand side by the Poisson bracket⇐⇒ classical time evolution
=⇒ O(h̄2) error

• In addition : h̄ dependence in the initial state
Uncertainty principle, ∆x · ∆p ≥ h̄
=⇒ the Wigner distribution Wτ=0(x,p) must have a width & h̄

• All the O(h̄) effects can be accounted for by a Gaussian initial
distribution Wτ=0(x,p)
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Path Integral
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CSA from the Schwinger-Keldysh path integral

〈
O
〉
=

∫ [
Dφ+Dφ−

]
O
[
φ
]
ei(S[φ+]−S[φ−])

• φ+ = amplitude φ− = conjugate amplitude
• φ+ − φ− = quantum interference

• Introduce : φ1 ≡ φ+ − φ−, φ2 ≡ 1
2
(φ+ + φ−)

S[φ+] − S[φ−]︸ ︷︷ ︸
odd in φ1

= φ1 ·
δS[φ2]

δφ2
+ terms cubic in φ1

• Strong field regime : φ± large, but φ+ − φ− small
Neglect the terms cubic in φ1
Dφ1 → classical Euler-Lagrange equation for φ2

• The only remaining fluctuations are in the initial condition for φ2
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Perturbation Theory
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CSA in perturbation theory

• Start from Schwinger-Keldysh perturbation theory:

G++(p) =
i

p2 + iε
+ 2π f0(p)δ(p

2) G−−(p) =
[
G∗++(p)

]∗
G−+(p) = 2π (θ(p

0) + f0(p))δ(p
2) G+−(p) = G−+(−p)

Γ++++ = −ig2 Γ−−−− = +ig2

• Rotate from the basis φ± to the basis φ1,2

• New perturbative rules :

G21(p) =
i

p2 + ip0ε
G12(p) =

i

p2 − ip0ε

G22(p) = 2π (
1
2
+ f0(p))δ(p

2) G11(p) = 0

Γ1222 = −ig2 Γ1112 = − i
4
g2

• CSA : neglect the 1112 vertex
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Non renormalizability of the CSA

• CSA 6= underlying theory at 2-loops and beyond

• Vacuum fluctuations make the CSA non-renormalizable.
Example of problematic graph :

Im 1 2
2 1
2 2

2 2

= −
g4

1024π3

(
Λ2

UV
−
2

3
p2
)

=⇒ divergence in an operator not present in the Lagrangian
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Cutoff dependence at late time

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1  10  100

Λ
UV

 / Q

m = 0.5 Q    ε = Q4     n = 0.75 ε / m

|µ| / Q

T / Q

|µ| / Q   from [BBSV]

T / Q   from [BBSV]

• Weak cutoff dependence in the range : ΛUV ∼ (3− 6)× (physical scales)
• But : no continuum limit
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Occupation in the zero mode for various UV cutoffs
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Kinetic Theory
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From QFT to Kinetic Theory

Dyson-Schwinger
equations

→ Boltzmann
equation

: pµ∂µf = Cp[f]

• Schwinger-Keldysh expression of the collision term:

Cp[f] =
i

2

[
f(p)Σ−+(p) − (1+ f(p))Σ+−(p)

]

=⇒ Cp[f] =
g4

4Ep

∫
k

∫
p ′

∫
k ′
(2π)4δ(P + K− P ′ − K ′)

×
[
f(p ′)f(k ′)

(
1+ f(p)

)(
1+ f(k)

)
−f(p)f(k)

(
1+ f(p ′)

)(
1+ f(k ′)

)]
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Collision term in the semi-classical approximation

• Expression in the φ1,2 basis:

Cp[f] =
i

2

[
Σ11(p) +

(
1
2
+ f(p)

)(
Σ21(p) − Σ12(p)

)]
• Neglecting the 1112 vertex, the collision term becomes:

Cp[f] =
g4

4Ep

∫
k

∫
p ′

∫
k ′
(2π)4δ(P + K− P ′ − K ′)

×
[(
1
2
+ f(p ′)

)(
1
2
+ f(k ′)

)(
1+ f(p) + f(k)

)
−
(
1
2
+ f(p)

)(
1
2
+ f(k)

)(
1+ f(p ′) + f(k ′)

)]
• 1
2
, 1 : originate from the zero point occupancy

• Terms in f3 and f2 correct, but spurious f1 terms
• Obeys H-theorem, Fixed point: f(p) = T

Ep−µ − 1
2

• But : T, µ depend on the ultraviolet cutoff
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Should we keep or drop the vacuum 1/2 ?

or ?
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Should we keep or drop the vacuum 1/2 ?

• The 1/2’s are responsible for UV problems, but...

• They ensure that the collision term is correct at orders f3 and f2

(without them, one has a pure classical wave approximation)

• They are important in certain kinematic situations

• No f2 terms without the 1/2’s :

• If the distribution becomes very anisotropic,
trying to produce the particle 4 at large angle
results in f3 ≈ f4 ≈ 0 ⇒ nothing left

• f3 terms ⇔ stimulated emission : ineffective
to produce particles in empty regions of
phase-space
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Should we keep or drop the vacuum 1/2 ?

• The 1/2’s are responsible for UV problems, but...

• They ensure that the collision term is correct at orders f3 and f2

(without them, one has a pure classical wave approximation)

• They are important in certain kinematic situations

• No f2 terms without the 1/2’s :

∂tf4 ∼ g4
∫
123

· · ·
[
f1f2(f3 + f4) − f3f4(f1 + f2)

]
+ · · ·

[
f1f2 − f3f4

]

• If the distribution becomes very anisotropic,
trying to produce the particle 4 at large angle
results in f3 ≈ f4 ≈ 0 ⇒ nothing left

• f3 terms ⇔ stimulated emission : ineffective
to produce particles in empty regions of
phase-space
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Should we keep or drop the vacuum 1/2 ?

• The 1/2’s are responsible for UV problems, but...

• They ensure that the collision term is correct at orders f3 and f2

(without them, one has a pure classical wave approximation)

• They are important in certain kinematic situations

1

2

3

4

p
z

p
x

p
y

• No f2 terms without the 1/2’s :

∂tf4 ∼ g4
∫
123

· · ·
[
f1f2(f3 + f4) − f3f4(f1 + f2)

]
+ · · ·

[
f1f2 − f3f4

]
• If the distribution becomes very anisotropic,

trying to produce the particle 4 at large angle
results in f3 ≈ f4 ≈ 0 ⇒ nothing left

• f3 terms ⇔ stimulated emission : ineffective
to produce particles in empty regions of
phase-space
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Isotropization in a fixed box

10-2

10-1

0.1 0.2 0.3 1 2 3 4 10 20 30

(P
T
 /

 P
L)

 -
 1

Q t

Exact

Classical (without 1/2)

Semi-classical (with 1/2)
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Isotropization in a longitudinally expanding system

0.01

0.1

1 2 3 4 5 6 7 8 10 20 30 40 50 102

P
L 

/ 
P

T

Q τ

(Qτ)-2/3

classical         

Classical attractor

• Initial conditions:

f0(k) = (n0/g
2︸ ︷︷ ︸

f0

) θ(Q −
√
k2⊥ + ξ0 k2z)

• Without 1/2 : universal classical
behaviour (nothing depends on g2)
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Isotropization in a longitudinally expanding system
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P
L 

/ 
P

T

Q τ

(Qτ)-2/3

classical         

full : g2 = 100

Classical attractor

[η/s]eq=1.2f0=7

• With 1/2 : evolution depends on g2

• Gives a different P
L
/P

T
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Isotropization in a longitudinally expanding system

0.01
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1 2 3 4 5 6 7 8 10 20 30 40 50 102
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P

T

Q τ

(Qτ)-2/3

classical         

full : g2 = 100
45

Classical attractor

[η/s]eq=1.2

6.2

f0=7

16

• With 1/2 : evolution depends on g2

• Gives a very different P
L
/P

T

• Agreement with classical result
improves when g2 decreases
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Isotropization in a longitudinally expanding system
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Isotropization in a longitudinally expanding system
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Isotropization in a longitudinally expanding system
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Classical solution is an attrac-
tor when mean free path goes
to infinity
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Summary
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Beware of
semi-classical

approximations!

Thank you for your attention.
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Classical limit of the Bose-Einstein distribution

• Assume : [
ak, a

†
l

]
= ε (2π)32Ek δ(k− l)

• This leads to :

tr
(
e−βHa†kak

)
tr
(
e−βH

) = 2Ek × Volume× ε

eβεEk − 1

• In the limit ε→ 0,

ε

eβεEk − 1
≈ 1

βEk
−
ε

2
+ · · ·
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Kinetic theory results for gluons [Kurkela, Zhu (2015)]
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• At λ = g2Nc = 0.5, the classical approximation breaks down for Qτ & 2

The criterion f� 1 suggests that this approximation should be valid until
Qτ ≈ α

−3/2
s ≈ 350⇒ criterion too crude

François Gelis, IPhT, Saclay Semi-classical methods in QFT 40/40 Groningen, October 2016


	Introduction to high energy scattering in QCD
	Quantum field theory with strong sources
	Classical instabilities and resummation
	More on the classical statistical approximation

