The Early Stages of Heavy Ion Collisions

YITP, October 2015

François Gelis IPhT, Saclay

Heavy ion collision at the LHC

Stages of a nucleus-nucleus collision

Stages of a nucleus-nucleus collision

• Well described as a nearly ideal fluid expanding into vacuum according to relativistic hydrodynamics

cea

• Hydrodynamics is a macroscopic description based on energy-momentum conservation :

$$\partial_{\mu}T^{\mu\nu} = 0$$

True in any quantum field theory

Not closed : 4 equations, 10 independent components in $T^{\mu\nu}$

• Hydrodynamics is a macroscopic description based on energy-momentum conservation :

$$\partial_{\mu}T^{\mu\nu} = 0$$

True in any quantum field theory

Not closed : 4 equations, 10 independent components in $T^{\mu\nu}$

- Additional assumption : at macroscopic scales, $T^{\mu\nu}$ is expressible in terms of ε (energy density), P (pressure) and u^{μ} (fluid velocity field)
- For a frictionless fluid : $T^{\mu\nu}_{ideal} = (\varepsilon + P) \, u^{\mu} u^{\nu} P \, g^{\mu\nu}$

cea

• Hydrodynamics is a macroscopic description based on energy-momentum conservation :

$$\partial_{\mu}T^{\mu\nu} = 0$$

True in any quantum field theory

Not closed : 4 equations, 10 independent components in $T^{\mu\nu}$

- Additional assumption : at macroscopic scales, $T^{\mu\nu}$ is expressible in terms of ε (energy density), P (pressure) and u^{μ} (fluid velocity field)
- For a frictionless fluid : $T^{\mu\nu}_{ideal} = (\varepsilon + P) \, u^{\mu} u^{\nu} P \, g^{\mu\nu}$

• In general :
$$T^{\mu\nu} = T^{\mu\nu}_{ideal} \oplus \eta \nabla^{\mu} \mathfrak{u}^{\nu} \oplus \zeta (\nabla_{\rho} \mathfrak{u}^{\rho}) \oplus \cdots$$

 $\Pi^{\,\mu\,\nu}\!\equiv$ deviation from ideal fluid

cea

• Hydrodynamics is a macroscopic description based on energy-momentum conservation :

$$\partial_{\mu}T^{\mu\nu} = 0$$

True in any quantum field theory

Not closed : 4 equations, 10 independent components in $T^{\mu\nu}$

- Additional assumption : at macroscopic scales, $T^{\mu\nu}$ is expressible in terms of ε (energy density), P (pressure) and u^{μ} (fluid velocity field)
- For a frictionless fluid : $T^{\mu\nu}_{ideal} = (\varepsilon + P) \, u^{\mu} u^{\nu} P \, g^{\mu\nu}$

• In general :
$$T^{\mu\nu} = T^{\mu\nu}_{ideal} \oplus \eta \nabla^{\mu} u^{\nu} \oplus \zeta (\nabla_{\rho} u^{\rho}) \oplus \cdots$$

 $\Pi^{\,\mu\,\nu}\!\equiv$ deviation from ideal fluid

• Microscopic inputs : $\epsilon = f(P)$ (EoS), η, ζ, \cdots (transport coeff.)

Conditions for hydrodynamics

- The difference between P_L and P_T should not be too large (for the expansion to make sense)
- The ratio η/s should be very small (fits require η/s ~ 0.1) (for an efficient transfer from spatial to momentum anisotropy)

Color Glass Condensate in Heavy Ion Collisions

Parton distributions in a nucleon

Parton distributions in a nucleon

Parton distributions in a nucleon

[McLerran, Venugopalan (1994)]

- $\bullet \ p_{\perp}^2 \sim Q_s^2 \sim \Lambda_{_{QCD}} \, e^{\lambda(y_{proj}-y)} \quad , \quad p_z \sim Q_s \, e^{y-y_{obs}}$
- Fast partons : frozen dynamics, negligible $p_{\perp} \Rightarrow classical sources$
- Slow partons : evolve with time \Rightarrow gauge fields

François Gelis

Degrees of freedom [McLerran, Venugopalan (1994)]

- $p_{\perp}^2 \sim Q_s^2 \sim \Lambda_{_{OCD}} e^{\lambda(y_{proj}-y)}$, $p_z \sim Q_s e^{y-y_{obs}}$
- Fast partons : frozen dynamics, negligible $p_{\perp} \Rightarrow$ classical sources
- Slow partons : evolve with time \Rightarrow gauge fields

François Gelis

October 2015

[McLerran, Venugopalan (1994)]

$$\bullet \ p_{\perp}^2 \sim Q_s^2 \sim \Lambda_{_{QCD}} \ e^{\lambda(y_{proj}-y)} \quad , \quad p_z \sim Q_s \ e^{y-y_{obs}}$$

- Fast partons : frozen dynamics, negligible $p_{\perp} \Rightarrow$ classical sources
- Slow partons : evolve with time \Rightarrow gauge fields

François Gelis

Cancellation of the cutoff dependence

- The cutoff y_{cut} is arbitrary and should not affect the result
- The probability density $W[\rho]$ changes with the cutoff
- Loop corrections cancel the cutoff dependence from $W[\rho]$

François Gelis

B-JIMWLK evolution equation

[Jalilian-Marian, Kovner, Leonidov, Weigert (1998)] [Balitsky (1996)] [lancu, Leonidov, McLerran (2001)]

- Mean field approx. (BK equation) : [Kovchegov (1999)]
- Langevin form of B-JIMWLK : [Blaizot, lancu, Weigert (2003)]
- First numerical solution : [Rummukainen, Weigert (2004)]

cea

[Jalilian-Marian, Kovner, Leonidov, Weigert (1998)] [Balitsky (1996)] [lancu, Leonidov, McLerran (2001)]

B-JIMW Recent developments :

Running coupling correction

[Lappi, Mäntysaari (2012)]

B-JIMWLK equation at Next to Leading Log [Kovner, Lublinsky, Mulian (2013)]

- Me [Caron-Huot (2013)][Balitsky, Chirilli (2013)]
- Langevin form of B-JIMWLK : [Blaizot, lancu, Weigert (2003)]
- First numerical solution : [Rummukainen, Weigert (2004)]

Power counting in the saturated regime

$$\mathcal{S} = \underbrace{-\frac{1}{4} \int F_{\mu\nu} F^{\mu\nu}}_{\text{slow gluons}} + \int \underbrace{(J_1^{\mu} + J_2^{\mu})}_{\text{fast partons}} A_{\mu}$$

In the saturated regime: $J^{\mu} \sim g^{-1}$

$$g^{-2} g^{\# \text{ of external gluons }} g^{2 \times (\# \text{ of loops})}$$

No dependence on the number of sources J^µ
 ▷ infinite number of graphs at each order in q²

Example : expansion of
$$T^{\mu\nu}$$
 in powers of g^2

$$T^{\mu\nu} \sim \frac{1}{g^2} \left[c_0 + c_1 \ g^2 + c_2 \ g^4 + \cdots \right]$$

cea

[FG, Venugopalan (2006)]

• The Leading Order is the sum of all the tree diagrams Expressible in terms of classical solutions of Yang-Mills equations :

$$\mathcal{D}_{\mu}\mathcal{F}^{\mu\nu} = J_1^{\nu} + J_2^{\nu}$$

• Boundary conditions : $\lim_{x^0 \to -\infty} \mathcal{A}^{\mu}(x) = 0$ (WARNING : this is not true for exclusive observables!)

Components of the energy-momentum tensor at LO :

$$\begin{split} T^{00}_{\scriptscriptstyle LO} &= \frac{1}{2} \big[\underbrace{\textbf{E}^2 + \textbf{B}^2}_{\scriptsize \text{class. fields}} \big] \qquad T^{0i}_{\scriptscriptstyle LO} &= \big[\textbf{E} \times \textbf{B} \big]^i \\ T^{ij}_{\scriptscriptstyle LO} &= \frac{\delta^{ij}}{2} \big[\textbf{E}^2 + \textbf{B}^2 \big] - \big[\textbf{E}^i \textbf{E}^j + \textbf{B}^i \textbf{B}^j \big] \end{split}$$

CGC at LO : unsatisfactory matching to hydrodynamics

Competition between Expansion and Isotropization

· CGC at LO is very close to free streaming

Does it get better at Next-to-Leading Order?

CGC at NLO : instabilities

[Mrowczynski (1988), Romatschke, Strickland (2003), Arnold, Lenaghan, Moore (2003), Rebhan, Romatschke, Strickland (2005), Arnold, Lenaghan, Moore, Yaffe (2005), Romatschke, Rebhan (2006), Bodeker, Rummukainen (2007), Fujii, Itakura (2008),...,**Attems, Rebhan, Strickland (2012)**, **Fukushima (2013)**]

CGC at NLO : instabilities

[Mrowczynski (1988), Romatschke, Strickland (2003), Arnold, Lenaghan,

Beyond NLO : Classical Statistical Approximation

Improved power counting and resummation

cea

Improved power counting and resummation

cea

Improved power counting and resummation

cea

Leading terms

- All disconnected loops to all orders
 - \triangleright exponentiation of the 1-loop result

Classical Statistical Approximation (CSA)

$$T_{\text{resummed}}^{\mu\nu} = \underbrace{T_{\text{LO}}^{\mu\nu} + T_{\text{NLO}}^{\mu\nu}}_{\text{in full}} + \underbrace{T_{\text{NNLO}}^{\mu\nu} + \cdots}_{\text{partially}}_{\text{partially}}$$
$$= \int [Da] \exp \left[-\frac{1}{2} \int_{u,v} a(u) \Gamma_2^{-1}(u,v) a(v) \right] T_{\text{LO}}^{\mu\nu} [\mathcal{A}_{\text{init}} + a]$$

- The exponentiation of the 1-loop result collects all the terms with the worst time behavior
- Equivalent to Gaussian fluctuations of the initial field + classical time evolution
- Note: This is the Wigner distribution of a coherent state

CSA in Quantum Mechanics

• Von Neumann equation for the density operator :

$$\frac{\partial \widehat{\rho}_{\tau}}{\partial \tau} = i\hbar \left[\widehat{H}, \widehat{\rho}_{\tau}\right]$$

• Wigner transform :

$$\begin{split} \mathcal{W}_{\tau}(\mathbf{x},\mathbf{p}) &\equiv \int ds \ e^{i\mathbf{p}\cdot s} \ \left\langle \mathbf{x} + \frac{s}{2} \middle| \widehat{\rho}_{\tau} \middle| \mathbf{x} - \frac{s}{2} \right\rangle \\ \mathcal{H}(\mathbf{x},\mathbf{p}) &\equiv \int ds \ e^{i\mathbf{p}\cdot s} \ \left\langle \mathbf{x} + \frac{s}{2} \middle| \widehat{H} \middle| \mathbf{x} - \frac{s}{2} \right\rangle \ \text{(classical Hamiltonian)} \end{split}$$

• Moyal equation (equivalent to Von Neumann) :

$$\frac{\partial W_{\tau}}{\partial \tau} = \mathcal{H}(\mathbf{x}, \mathbf{p}) \frac{2}{i\hbar} \sin\left(\frac{i\hbar}{2} \left(\overleftarrow{\partial}_{\mathbf{p}} \overrightarrow{\partial}_{\mathbf{x}} - \overleftarrow{\partial}_{\mathbf{x}} \overrightarrow{\partial}_{\mathbf{p}}\right)\right) W_{\tau}(\mathbf{x}, \mathbf{p})$$

$$= \underbrace{\{\mathcal{H}, W_{\tau}\}}_{\text{Poisson bracket}} + \mathcal{O}(\hbar^{2})$$

- Classical time evolution $\iff O(\hbar^2)$ error
- O(ħ¹) corrections come from the initial condition

François Gelis

CSA in Quantum Field Theory (I)

• From the Schwinger-Keldysh formalism, define new fields as:

$$\phi_1 \equiv \frac{1}{2}(\phi_+ + \phi_-)$$
 $\phi_2 \equiv \phi_+ - \phi_-$

- Vertices : $\phi_1^3 \phi_2 = \phi_1 \phi_2^3$ (odd terms in ϕ_2 only)
- ϕ_2 encodes quantum interferences

François Gelis

CSA : drop the vertex $\phi_1 \phi_2^3$

- No $\phi_1 \phi_2^3$ vertex \implies classical time evolution
- Differences with the original QFT start appearing at 2 loops
- · Equivalent to classical runs averaged over the initial conditions

Ensemble of initial classical fields

- This approximation does not specify the initial fields: controlled by the observable under consideration (e.g. $\langle 0_{in} | T^{\mu\nu} | 0_{in} \rangle$)
- Initial 2-point correlations encoded in G₁₁. Generically:

$$G_{11}(p) \sim \left(f_0(p) + \frac{1}{2}\right) \delta(p^2)$$
guasiparticles \longleftrightarrow vacuum ze

ightarrow vacuum zero point fluctuations

- The 1/2 generates the 1-loop quantum corrections
- Dropping the 1/2 : nothing quantum left

CSA_{vac} : vacuum fluctuations perturbed by CGC background

Ces

[Epelbaum, FG (2013)]

CGC at $\tau \ll Q_s^{-1}$ (1-loop accurate)

$$\begin{split} \left\langle \mathcal{A}^{\mu} \right\rangle &= \mathcal{A}_{Lo}^{\mu} \qquad \text{Var.} = \frac{1}{2} \int_{\text{modes } \mathbf{k}} a_{\mathbf{k}}(\mathbf{u}) a_{\mathbf{k}}^{*}(\mathbf{v}) \\ &\left[\mathcal{D}_{\rho} \mathcal{D}^{\rho} \delta_{\mu}^{\nu} - \mathcal{D}_{\mu} \mathcal{D}^{\nu} + ig \, \mathcal{F}_{\mu}^{\nu} \right] a_{\mathbf{k}}^{\mu} = \mathbf{0} \\ &\lim_{\mathbf{x}^{0} \to -\infty} a_{\mathbf{k}}(\mathbf{x}) = e^{i\mathbf{k} \cdot \mathbf{x}} \end{split}$$

CSA_{vac} : vacuum fluctuations perturbed by CGC background

cea

[Epelbaum, FG (2013)]

CSA_{vac} : vacuum fluctuations perturbed by CGC background

- Nearly constant $P_{_L}/P_{_T}$ for $Q_s\tau\gtrsim 2$

CSA_{part} : particles only, no quantum fluctuations

cea

[Berges, Boguslavski, Schlichting, Venugopalan (2013)]

Dense gas of free gluons

$$\langle \mathcal{A}^{\mu} \rangle = 0 \qquad \text{Var.} = \int_{\text{modes } \mathbf{k}} f_0(\mathbf{k}) \ \mathbf{a}_{\mathbf{k}}(\mathbf{u}) \mathbf{a}_{\mathbf{k}}^*(\mathbf{v}) \qquad \mathbf{a}_{\mathbf{k}}(\mathbf{x}) \equiv e^{i\mathbf{k}\cdot\mathbf{x}}$$
$$f_0(\mathbf{k}) \sim (n_0/g^2) \times \theta(Q - \sqrt{k_{\perp}^2 + \xi_0 k_z^2})$$

CSA_{part} : particles only, no quantum fluctuations

Same result for all g's

 Self-similar evolution with scaling laws consistent with the small angle scattering analysis of Baier, Mueller, Schiff, Son (2002) :

$$f(t, p_{\perp}, p_z) \sim \tau^{-2/3} f_s(\tau^0 p_{\perp}, \tau^{1/3} p_z) \qquad \frac{P_L}{P_\tau} \sim \tau^{-2/3}$$

François Gelis

Lessons from Kinetic Theory

CSA in Kinetic Theory

- Boltzmann equation for the elastic process $12 \rightarrow 34$:

$$\vartheta_t f_1 = \frac{1}{\omega_1} \int\limits_{2,3,4} \delta^{(4)} (P_1 + P_2 - P_3 - P_4) |\mathcal{M}_{12,34}|^2 \left[f_3 f_4 (1+f_1)(1+f_2) - f_1 f_2 (1+f_3)(1+f_4) \right]$$

• Kinetic analogue of CSApart : keep only the cubic terms in f

 $f_3f_4(1+f_1)(1+f_2)-f_1f_2(1+f_3)(1+f_4) \quad \rightarrow \quad f_3f_4(f_1+f_2)-f_1f_2(f_3+f_4)$

• Kinetic analogue of CSA_{vac} : from the cubic terms, do $f \rightarrow f + \frac{1}{2}$

 $\begin{array}{rcl} f_3f_4(1+f_1)(1+f_2)-f_1f_2(1+f_3)(1+f_4) & \rightarrow & (\frac{1}{2}+f_3)(\frac{1}{2}+f_4)(1+f_1+f_2) \\ & & -(\frac{1}{2}+f_1)(\frac{1}{2}+f_2)(1+f_3+f_4) \end{array} \end{array}$

• The Boltzmann equation can be used to assess the effect of these two approximations by comparing their solutions with that of the unapproximated equation

UV cutoff dependence of CSAvac

[Berges, Boguslavski, Schlichting, Venugopalan (2013)] [Epelbaum, FG, Tanji, Wu (2014)]

- CSA_{vac} is a nonrenormalizable approximation of the original QFT
- Dependence on the UV cutoff. Can also be seen in kinetic theory
- At late times, $f(p) = \frac{T}{\omega_p \mu} \frac{1}{2}$, but T and μ depend on $\Lambda_{_{UV}}$

François Gelis

Isotropization in HIC 26/29

October 2015

UV cutoff dependence of CSAvac

cea

[Berges, Boguslavski, Schlichting, Venugopalan (2013)] [Epelbaum, FG, Tanji, Wu (2014)]

- CSA_{vac} is a nonrenormalizable approximation of the original QFT
- Dependence on the UV cutoff. Can also be seen in kinetic theory
 - Strong cutoff dependence if $\Lambda_{uv} \gg$ physical scales
 - Mild sensitivity if $\Lambda_{u\,v} \sim [3-6] \times (\text{physical scales})$

François Gelis

Isotropization in HIC 26/29

October 2015

[Epelbaum, FG, Jeon, Moore, Wu (2015)]

• Kinetic version of CSApart :

$$\vartheta_t f_4 \sim g^4 \int_{123} \cdots \left[f_1 f_2 (f_3 + f_4) - f_3 f_4 (f_1 + f_2) \right] \\ + \cdots \left[f_1 f_2 - f_3 f_4 \right]$$

[Epelbaum, FG, Jeon, Moore, Wu (2015)]

• Kinetic version of CSApart :

$$\partial_t f_4 \sim g^4 \int \cdots \left[\frac{f_1 f_2 (f_3 + f_4) - f_3 f_4 (f_1 + f_2)}{123} + \cdots \left[\frac{f_1 f_2 - f_3 f_4}{123} \right]$$

- If the distribution becomes very anisotropic, trying to produce the particle 4 at large angle results in $f_3 \approx f_4 \approx 0 \implies$ nothing left
- The same argument applies also to any inelastic $n \to n'$ scattering

The CSA without vacuum fluctuations underestimates large angle scatterings when the distribution is anisotropic, and may lead to wrong conclusions regarding isotropization

cea

cea

cea

cea

cea

[Epelbaum, FG, Jeon, Moore, Wu (2015)]

François Gelis

cea

• At $g^2 N_c = 1/2$, the CSA_{part} approximation breaks down before $Q\tau = 5$, while naive estimates suggest that it is valid up to $Q\tau \approx \alpha_s^{-3/2} \approx 350$

Summary

- LO : no pressure isotropization, NLO : instabilities
- Resummation beyond NLO : Classical statistical approximation
- Two implementations... and two different results :
 - CSA_{vac} : vacuum-like CGC initial conditions roughly constant P_L/P_T , non-renormalizable approximation, very sensitive to UV cutoff
 - CSA_{part} : particle-like initial conditions universal classical attractor, P_L/P_T decreases forever, underestimates large angle scatterings, breaks long before reaching the attractor even for quite large η/s
- In the present situation, classical field simulations need to be corroborated and validated by other approaches
- Highly needed : ways to overcome the problems of the classical statistical approximation (Kinetic theory, 2-PI,...)