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From atoms to nuclei, to quarks and gluons

10−10 m : atom (99.98% of the mass is in the nucleus)

François Gelis The initial stages of HIC 1/86 Zakopane, June 2014
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From atoms to nuclei, to quarks and gluons

< 10−15 m : quarks + gluons

François Gelis The initial stages of HIC 1/86 Zakopane, June 2014
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Quarks and gluons

Strong interactions : Quantum Chromo-Dynamics

• Matter : quarks ; Interaction carriers : gluons

a

i

j

∼ g (ta)ij
a

b

c

∼ g (Ta)bc

• i, j : quark colors ; a, b, c : gluon colors

• (ta)ij : 3× 3 SU(3) matrix ; (Ta)bc : 8× 8 SU(3) matrix

Lagrangian

L = −
1

4
F2 +

∑
f

ψf(i/D−mf)ψf

• Free parameters : quark masses mf, scale ΛQCD
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Asymptotic freedom

Running coupling : αs = g
2/4π

αs(E) =
2πNc

(11Nc − 2Nf) log(E/Λ
QCD

)

α
S
(M

Z
)=0.1182±0.0027

JADE

OPAL (preliminary)

ALEPH

JADE
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Color confinement

• The quark-antiquark potential increases linearly with distance
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Color confinement

• In nature, we do not see free quarks and gluons (the closest we
have to actual quarks and gluons are jets)

• Instead, we see hadrons (quark-gluon bound states):
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What can be said about hadronic and nuclear collisions in terms
of the underlying quarks and gluons degrees of freedom?
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strong fields classical dynamics

gluons & quarks out of eq.
viscous hydro

gluons & quarks in eq.

hadrons kinetic theory

freeze out
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Stages of a nucleus-nucleus collision

François Gelis The initial stages of HIC 7/86 Zakopane, June 2014
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Stages of a nucleus-nucleus collision

z 

t

strong fields classical dynamics

gluons & quarks out of eq.
viscous hydro

gluons & quarks in eq.

hadrons kinetic theory

freeze out

Lecture I

• Lecture I : Nucleon at high energy, Color Glass Condensate
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Stages of a nucleus-nucleus collision
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t

strong fields classical dynamics

gluons & quarks out of eq.
viscous hydro

gluons & quarks in eq.

hadrons kinetic theory

freeze out

Lecture I

Lecture II

• Lecture I : Nucleon at high energy, Color Glass Condensate

• Lecture II : Collision, Factorization at high energy
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Stages of a nucleus-nucleus collision

z 

t

strong fields classical dynamics

gluons & quarks out of eq.
viscous hydro

gluons & quarks in eq.

hadrons kinetic theory

freeze out

Lecture I

Lecture II

Lecture III

• Lecture I : Nucleon at high energy, Color Glass Condensate

• Lecture II : Collision, Factorization at high energy

• Lecture III : Evolution after the collision
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Terminology

• Weakly coupled : g� 1

• Strongly coupled : g� 1

• Weakly interacting : gA� 1 g2f(p)� 1

(2→ 2)� (2→ 3), (3→ 2), · · ·

• Strongly interacting : gA ∼ 1 g2f(p) ∼ 1

(2→ 2) ∼ (2→ 3) ∼ (3→ 2) ∼ · · ·

François Gelis The initial stages of HIC 9/86 Zakopane, June 2014
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Terminology

• Weakly coupled : g� 1

• Strongly coupled : g� 1

• Weakly interacting : gA� 1 g2f(p)� 1

(2→ 2)� (2→ 3), (3→ 2), · · ·

• Strongly interacting : gA ∼ 1 g2f(p) ∼ 1

(2→ 2) ∼ (2→ 3) ∼ (3→ 2) ∼ · · ·

Strongly coupled ⇒ Strongly interacting

Weakly coupled 6⇒ Weakly interacting
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Parton model
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Hadronic spectrum

• In nature, we do not see free quarks and gluons (the closest we
have to actual quarks and gluons are jets)

• Instead, we see hadrons (quark-gluon bound states):

• The hadron spectrum is uniquely given by ΛQCD ,mf

• But this dependence is non-perturbative (it can now be obtained
fairly accurately by lattice simulations)
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Nuclear spectrum

• But nuclear spectroscopy is at the moment out of reach of lattice
QCD, even for the lightest nuclei

François Gelis The initial stages of HIC 11/86 Zakopane, June 2014
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Nuclear spectrum

• But nuclear spectroscopy is at the moment out of reach of lattice
QCD, even for the lightest nuclei

Fortunately, we do not need to know all this in
order to describe hadronic/nuclear collisions
in Quantum–Chromodynamics...

François Gelis The initial stages of HIC 11/86 Zakopane, June 2014
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• A nucleon at rest is a very complicated object...
• Contains valence quarks + fluctuations at all space-time scales

smaller than its own size
• Only the fluctuations that are longer lived than the external probe

participate in the interaction process
• Interactions are very complicated if the constituents of the

nucleon have a non trivial dynamics over time-scales comparable
to those of the probe

François Gelis The initial stages of HIC 12/86 Zakopane, June 2014
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• Dilation of all internal time-scales for a high energy nucleon
• Interactions among constituents now take place over time-scales

that are longer than the characteristic time-scale of the probe
B the constituents behave as if they were free
B the reaction sees a snapshot of the nucleon internals

• Many fluctuations live long enough to be seen by the probe. The
nucleon appears denser at high energy (it contains more gluons)

François Gelis The initial stages of HIC 12/86 Zakopane, June 2014
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What do we need in order to describe a hadronic collision?

• Provide a snapshot of the two projectiles

• Flavor and color of each parton

• Transverse position and momentum

• Since these properties are not know event-by-event, one should
aim at a probabilistic description of the parton content of the
projectiles

François Gelis The initial stages of HIC 13/86 Zakopane, June 2014
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Why is this non trivial?

• In quantum mechanics, the transition probability from some
hadronic states to the final state is expressed as :

transition probability
from hadrons to X

≡
∣∣∣∑ Amplitudes

h1h2 → X

∣∣∣2

• The parton model assumes that we may be able to write it as :

transition probability
from hadrons to X

≡
∑

partons
{q,g}

probability to find
{q, g} in {h1, h2}

⊗
∣∣∣∑ Amplitudes

{q, g}→ X

∣∣∣2

• This property is known as factorization. It can be justified in
QCD, and it is a consequence of the separation between the
timescale of confinement and the collision timescale

François Gelis The initial stages of HIC 14/86 Zakopane, June 2014
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Parton distributions – and possible complications at small x

François Gelis The initial stages of HIC 15/86 Zakopane, June 2014
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Parton distributions – and possible complications at small x

Large x : dilute, dominated by single parton scattering

François Gelis The initial stages of HIC 15/86 Zakopane, June 2014
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Parton distributions – and possible complications at small x

Small x : dense, multi-parton interactions become likely

François Gelis The initial stages of HIC 15/86 Zakopane, June 2014
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Small x data displayed differently... (Geometrical scaling)

• Small x data (x ≤ 10−2) displayed against τ ≡ log(x0.32Q2) :

­9 ­6 ­3 0 3 6

τ

10­4

10­3

10­2

10­1
σ

γ
* p

 (
m

b
)

H1

ZEUS

E665

NMC
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Gluon Saturation
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Parton evolution under boosts

B at low energy, only valence quarks are present in the hadron wave
function

François Gelis The initial stages of HIC 17/86 Zakopane, June 2014
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Parton evolution under boosts

B when energy increases, new partons are emitted

B the emission probability is αs
∫
dx
x

∼ αsln(1x ), with x the longitudinal
momentum fraction of the gluon
B at small-x (i.e. high energy), these logs need to be resummed

François Gelis The initial stages of HIC 17/86 Zakopane, June 2014
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Parton evolution under boosts

B as long as the density of constituents remains small, the evolution
is linear: the number of partons produced at a given step is proportional to
the number of partons at the previous step

François Gelis The initial stages of HIC 17/86 Zakopane, June 2014
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Parton evolution under boosts

B eventually, the partons start overlapping in phase-space

François Gelis The initial stages of HIC 17/86 Zakopane, June 2014
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Parton evolution under boosts

B parton recombination becomes favorable
B after this point, the evolution is non-linear:
the number of partons created at a given step depends non-linearly on the
number of partons present previously
Balitsky (1996), Kovchegov (1996,2000)
Jalilian-Marian, Kovner, Leonidov, Weigert (1997,1999)
Iancu, Leonidov, McLerran (2001)
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Saturation criterion [Gribov, Levin, Ryskin (1983)]

αsQ
−2︸ ︷︷ ︸

σgg→g
× A−2/3xG(x,Q2)︸ ︷︷ ︸

surface density

≥ 1

Q2 ≤ Q2s ≡
αsxG(x,Q

2
s)

A2/3︸ ︷︷ ︸
saturation momentum

∼ A1/3x−0.3
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Saturation domain

log(Q 2)

log(x -1)

Λ
QCD

Saturation
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Saturation domain
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Saturation domain
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Saturation domain
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Saturation domain
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Saturation

LHC

Large Y
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Saturation domain

• At LHC, x ∼ 10−3–10−4 (for bulk
particle production at mid-rapidity)

• Q2s(A ∼ 200) ≈ 2–4 GeV2
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Color Glass
Condensate
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Degrees of freedom and their interplay

y

+yprojyobs

• p2⊥ ∼ Q2s ∼ ΛQCD e
λ(yproj−y) , pz ∼ Qs e

y−yobs

• Fast partons : frozen dynamics, negligible p⊥ ⇒ classical current

• Slow partons : evolve with time ⇒ gauge fields

François Gelis The initial stages of HIC 21/86 Zakopane, June 2014
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Degrees of freedom and their interplay

y

+yprojyobs +ycut

sourcesfields

• p2⊥ ∼ Q2s ∼ ΛQCD e
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Degrees of freedom and their interplay

y

+yprojyobs

J
µ
 = ρ δ

µ+

W[ρ]

+ycut

sourcesfields
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y−yobs
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Degrees of freedom and their interplay

y

+yprojyobs

-
1

4
F

µν
Fµν + A µ J

µ

J
µ
 = ρ δ

µ+

W[ρ]

+ycut

sourcesfields

• p2⊥ ∼ Q2s ∼ ΛQCD e
λ(yproj−y) , pz ∼ Qs e

y−yobs

• Fast partons : frozen dynamics, negligible p⊥ ⇒ classical current

• Slow partons : evolve with time ⇒ gauge fields
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Semantics

• Color : quarks and gluons are colored

• Glass : the system has degrees of freedom whose timescale is
much larger than the typical timescales for interaction processes.
Moreover, these degrees of freedom are stochastic variables, like
in “spin glasses” for instance

• Condensate : the soft degrees of freedom are as densely
packed as they can (the density remains finite, of order α−1

s , due
to the interactions between gluons)

François Gelis The initial stages of HIC 22/86 Zakopane, June 2014
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Target average

• Expectation values can be written as :

〈O〉 =
∫
[Dρ] W[ρ] O[ρ]

• In this formalism, the Y dependence of the expectation value 〈O〉
must come from the probability density W[ρ]

François Gelis The initial stages of HIC 23/86 Zakopane, June 2014
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Cancellation of the cutoff dependence

y

+yprojyobs

J
µ
 = ρ δ

µ+

Wyproj - ycut
[ρ]

+ycut

sourcesfields

• The cutoff ycut is arbitrary and should not affect the result
• The probability distribution W[ρ] changes with the cutoff

• Loop corrections are also ycut-dependent and cancel the cutoff
dependence coming from W[ρ], to all orders (αsycut)

n (Leading Log)

François Gelis The initial stages of HIC 24/86 Zakopane, June 2014
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Cancellation of the cutoff dependence

y

+yprojyobs

ycut  from

the loops

J
µ
 = ρ δ

µ+

Wyproj - ycut
[ρ]

+ycut

sourcesfields

• The cutoff ycut is arbitrary and should not affect the result
• The probability distribution W[ρ] changes with the cutoff
• Loop corrections are also ycut-dependent and cancel the cutoff

dependence coming from W[ρ], to all orders (αsycut)
n (Leading Log)
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JIMWLK evolution equation

Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner

∂W
Y
[ρ]

∂Y
=
1

2

∫
~x⊥,~y⊥

δ

δρa(~x⊥)
χab(~x⊥, ~y⊥)

δ

δρb(~y⊥)︸ ︷︷ ︸
H (JIMWLK Hamiltonian)

W
Y
[ρ]

with

χab(~x⊥, ~y⊥) ≡
αs

4π3

∫
d2~z⊥

(~x⊥ − ~z⊥) · (~y⊥ − ~z⊥)

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
[(
1 − Ũ†(~x⊥)Ũ(~z⊥)

)(
1 − Ũ†(~z⊥)Ũ(~y⊥)

)]
ab

• Ũ is a Wilson line in the adjoint representation (exponential of the
gauge field A+ such that ∇2

⊥A
+ = −ρ)

François Gelis The initial stages of HIC 25/86 Zakopane, June 2014
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JIMWLK evolution equation

• Sketch of a derivation : exploit the frame independence in order
to write :

〈O〉
Y
=

∫
[Dρ] W0[ρ] OY [ρ]︸ ︷︷ ︸

Balitsky-Kovchegov description

=

∫
[Dρ] W

Y
[ρ] O0[ρ]︸ ︷︷ ︸

CGC description

• Calculate the 1-loop correction to some generic observable,
and extract the terms in αs Y

• Universality : the evolution of W
Y
[ρ] does not depend on the

observable one is considering

François Gelis The initial stages of HIC 26/86 Zakopane, June 2014
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Mean-field approximation : Balitsky-Kovchegov equation

∂ T (~x⊥, ~y⊥)

∂Y
=
αsNc

2π2

∫
d2~z⊥

(~x⊥ − ~y⊥)
2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
{
T (~x⊥,~z⊥) + T (~z⊥, ~y⊥) − T (~x⊥, ~y⊥) − T (~x⊥,~z⊥)T (~z⊥, ~y⊥)

}

T (~x⊥, ~y⊥) ≡ 1−
1

Nc
TrU(~x⊥)U†(~y⊥)

• T is small in the dilute regime, and grows when x decreases

• The r.h.s. vanishes when T reaches 1, and the growth stops

• Both T = 0 and T = 1 are fixed points of this equation

• T = ε : r.h.s.> 0 ⇒ T = 0 is unstable
• T = 1 − ε : r.h.s.> 0 ⇒ T = 1 is stable

François Gelis The initial stages of HIC 27/86 Zakopane, June 2014
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Initial condition : McLerran–Venugopalan model

• The JIMWLK equation must be completed by an initial condition,
given at some moderate x0

• As with DGLAP, the initial condition is non-perturbative

• The McLerran-Venugopalan model is often used as an initial
condition at moderate x0 for a large nucleus :

z

• partons distributed randomly

• many partons in a small tube

• no correlations at different ~x⊥

• The MV model assumes that the density of color charges ρ(~x⊥)
has a Gaussian distribution :

Wx0 [ρ] = exp
[
−

∫
d2~x⊥

ρa(~x⊥)ρa(~x⊥)

2µ2(~x⊥)

]

François Gelis The initial stages of HIC 28/86 Zakopane, June 2014
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z 

t

strong fields classical dynamics

gluons & quarks out of eq.
viscous hydro

gluons & quarks in eq.

hadrons kinetic theory

freeze out

Lecture I

Lecture II

Lecture III

• Lecture I : Nucleon at high energy, Color Glass Condensate

• Lecture II : Collision, Factorization at high energy

• Lecture III : Evolution after the collision
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CGC at LO
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CGC and Nucleus-Nucleus collisions

?

L = −
1

4
FµνF

µν + (Jµ1 + Jµ2︸ ︷︷ ︸
Jµ

)Aµ

• Given the sources ρ1,2 in each projectile, how do we calculate
observables? Is there some kind of perturbative expansion?

• Loop corrections and factorization?

François Gelis The initial stages of HIC 30/86 Zakopane, June 2014
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Saturation : strong sources and strong fields

• Dilute regime : one parton in each projectile interact

• Dense regime : multiparton processes become crucial

(+ pileup of many partonic scatterings in each AA collision)

François Gelis The initial stages of HIC 31/86 Zakopane, June 2014
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Power counting

• In the saturated regime, the sources are of order 1/g (because〈
ρρ
〉
∼ occupation number ∼ 1/αs)

The order of each connected subdiagram is

1

g2
g# produced gluons g2(# loops)

François Gelis The initial stages of HIC 32/86 Zakopane, June 2014
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Power counting

• Example : gluon spectrum :

dN1

d3~p
=
1

g2

[
c0 + c1 g

2 + c2 g
4 + · · ·

]
• The coefficients c0, c1, · · · are themselves series that resum all

orders in (gρ
1,2

)n. For instance,

c0 =

∞∑
n=0

c0,n (gρ
1,2

)n

• At Leading Order, we want to calculate the full c0/g2 contribution
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Inclusive observables

• Average gluon multiplicity ∼ 1/g2 � 1

• Probability of a given final state ∼ exp(−1/g2)� 1

=⇒ not very useful

• Inclusive observables :
average of some quantity over all possible final states〈

O
〉
≡
∑

all final
states f

P(AA→ f) O[f]

Schwinger-Keldysh formalism : technique to perform the sum
over final states without computing the individual transition
probabilities P(AA→ f)
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Schwinger-Keldysh formalism

f

Time-ordered
perturbation theory :

G++(p) =
i

p2 + iε
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Schwinger-Keldysh formalism

f

Time-ordered
perturbation theory :

G++(p) =
i

p2 + iε

Anti time-ordered
perturbation theory :

G−−(p) =
−i

p2 − iε
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Schwinger-Keldysh formalism

f

Time-ordered
perturbation theory :

G++(p) =
i

p2 + iε

Anti time-ordered
perturbation theory :

G−−(p) =
−i

p2 − iε

Schwinger-Keldysh formalism :

• Accross the cut : G+−(p) ≡ 2π θ(−p0) δ(p2)
• Draw all the graphs AA→ AA that have a given order in g2

• Sum over all the possibilities of assigning the labels + and − to
the internal vertices
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Schwinger-Keldysh formalism

• Schwinger-Keldysh formalism ⇐⇒ Cutkosky’s cutting rules

• The generating functional Z[j+, j−] of the Schwinger-Keldysh
formalism can be obtained from the generating functional Z[j] of
time-ordered perturbation theory :

Z[j+, j−] = exp
[∫
d4xd4y G0+−(x, y)�x�y

δ2

δj+(x)δj−(y)

]
Z[j+]Z

∗[j−]

• Physical sources : j+ = j−

• G++ +G−− = G+− +G−+

• G++ −G+− = G−+ −G−− = G
R

(retarded propagator)
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Inclusive observables at Leading Order

• The Leading Order is the sum of all the tree diagrams
The sum over the ± labels turns all propagators into retarded
Expressible in terms of classical solutions of Yang-Mills
equations :

DµF
µν = Jν1 + Jν2

• Boundary conditions : lim
x0→−∞Aµ(x) = 0

(WARNING : this is not true for exclusive observables!)

Components of the energy-momentum tensor at LO :

T00
LO

=
1

2

[
E2 + B2︸ ︷︷ ︸
class. fields

]
T0i

LO
=
[
E× B

]i
T ij

LO
=
δij

2

[
E2 + B2

]
−
[
EiEj + BiBj

]
François Gelis The initial stages of HIC 37/86 Zakopane, June 2014



François Gelis

38

Retarded classical fields

This sum of trees obeys :

�A+U′(A) = J , lim
x0→−∞A(x) = 0

• Perturbative expansion (illustrated here for U(A) ∝ A3) :

• Built with retarded propagators

• Classical fields resum the full series of tree diagrams
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Retarded classical fields

This sum of trees obeys :

�A+U′(A) = J , lim
x0→−∞A(x) = 0

• Perturbative expansion (illustrated here for U(A) ∝ A3) :

+
1

2

• Built with retarded propagators
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1

2

1
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Retarded classical fields

This sum of trees obeys :

�A+U′(A) = J , lim
x0→−∞A(x) = 0

• Perturbative expansion (illustrated here for U(A) ∝ A3) :

+ + + +
1

2

1

2

1

2

1

8

• Built with retarded propagators

• Classical fields resum the full series of tree diagrams
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Space-time evolution of the classical field

[Kovner, McLerran, Weigert (1995)]
[Krasnitz, Venugopalan (1999)] [Lappi (2003)]

• Sources located on the light-cone :

Jµ = δµ+ ρ1(x
−, x⊥)︸ ︷︷ ︸

∼δ(x−)

+δµ− ρ2(x
+, x⊥)︸ ︷︷ ︸

∼δ(x+)

z

t

0

21

3

• Region 0 : Aµ = 0

• Regions 1,2 : Aµ depends only
on ρ1 or ρ2
(known analytically)

• Region 3 : Aµ = radiated field
known analytically at τ = 0+

numerical solution for τ > 0
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Hamiltonian Lattice QCD

• Choose a variable that you call “time”
(τ =

√
t2 − z2 in a high energy collision)

• Conjuguate momenta : E ≡ ∂L
∂(∂τA) . Hamiltonian : H = EA− L

• Discretize space on a 3-dim cubic lattice :
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Hamiltonian Lattice QCD

• Naively, one may think of putting the gauge potential Ai on the
nodes of the lattice. Problem : this breaks the gauge invariance
by terms proportional to the lattice spacing

• Wilson formulation : introduce a link variable

Ui(x) ≡ P exp i g
∫x+̂ı

x

ds Ai(s)

that lives on the edge between the nodes x and x+ı̂.
Under a gauge transformation, it transforms as

Ui(x) → Ω(x)Ui(x)Ω
†(x + ı̂) x x+µ̂

Uµ(x)

• The Aτ potential should live on the nodes (but in practice, one
ignores it altogether by choosing the Aτ = 0 gauge)

• The electrical fields Ei live on the nodes of the lattice
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Hamiltonian Lattice QCD

• Hamiltonian in Aτ = 0 gauge :

H =
∑
~x;i

Ei(x)Ei(x)

2
−
6

g2

∑
~x;ij

1−
1

3
Re Tr (Ui(x)Uj(x+ ı̂)U

†
i(x+ ̂)U

†
j(x)︸ ︷︷ ︸

plaquette at the point ~x in the ij plane

)

Properties :

• Invariant under the residual gauge
transformations that preserve Aτ = 0 (i.e.
time independent gauge transformations)

• Hamilton equations ⇔ lattice classical
Yang-Mills equations

x x+µ̂

x+ν̂

• The Hamilton equations on the lattice form a (large) set of
ordinary differential equations, that can be solved with the
leapfrog algorithm
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Field lines at τ� Q−1
s : Glasma flux tubes

[McLerran, Lappi (2006)]

Q
S

-1

• Seed for the long range rapidity correlations (ridge)
[Dumitru, FG, McLerran, Venugopalan (2008)]
[Dusling, FG, Lappi, Venugopalan (2009)]
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Field lines at τ� Q−1
s : Glasma flux tubes

[McLerran, Lappi (2006)]

Q
S

-1

• Seed for the long range rapidity correlations (ridge)
[Dumitru, FG, McLerran, Venugopalan (2008)]
[Dusling, FG, Lappi, Venugopalan (2009)]

[Dumitru, Nara, Petreska (2013)]
[Dumitru, Lappi, Nara (2014)]

Q
S

-1
W ≡

〈
P exp ig

∫
γ
dxiAi

〉
W ∼ exp(−Area) for Area×Q2s & 1⇒ magnetic flux bundled
in domains of area ∼ Q−2

s
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Inclusive gluon spectrum at LO

• The gluon spectrum at LO is given by :

dN1

dYd2~p⊥

∣∣∣∣
LO

=
1

16π3

∫
x,y

eip·(x−y) �x�y
∑
λ

εµλε
ν
λ Aµ(x)Aν(y)

Inclusive multigluon spectra at Leading Order

dNn

d3p1 · · ·d3pn

∣∣∣∣
LO

=
dN1

d3p1

∣∣∣∣
LO

× · · · × dN1

d3pn

∣∣∣∣
LO
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Single gluon spectrum at LO

sΛ/Tk
0 1 2 3 4 5 6

T
k2

)d
N
/d

2
R

π
1
/(

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

KNV I

KNV II

Lappi

• Lattice artifacts at large momentum
(they do not affect much the overall number of gluons)

• Important softening at small k⊥ compared to pQCD (saturation)
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Gluon yield

Gluon multiplicity (in a symmetric collision)

dNgluons

dy
∼

∫
d2b

Q2s(b)

αs

• The energy dependence of the multiplicity is inherited from that
of the saturation momentum :

Q2s ∼ x
−0.3 ∼ s0.15
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Next–to–
Leading Order
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Why is the LO insufficient ?

• Naive perturbative expansion :

dN

d3~p
=
1

g2

[
c0 + c1 g

2 + c2 g
4 + · · ·

]
Note : so far, we have seen how to compute c0

• Problem : c1,2,··· contain powers of the cutoff ycut :

c1 = c10 + c11 ycut

c2 = c20 + c21 ycut + c22 y
2
cut︸ ︷︷ ︸

Leading Log terms

• These terms are unphysical. However, they are universal and
can be absorbed into the distributions W[ρ1,2]
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Inclusive observables at Next to Leading Order

[FG, Lappi, Venugopalan (2007–2008)]

• Observables at NLO can be obtained from the LO by “fiddling”
with the initial condition of the classical field :

ONLO =

[
1

2

∫
u,v

Γ2(u, v)
∂

∂Ainit(u)

∂

∂Ainit(v)
+

∫
u

α(u)
∂

∂Ainit(u)

]
OLO

• NLO : the time evolution remains classical;
h̄ only enters in the initial condition

• NNLO : h̄ starts appearing in the time evolution itself

• NOT true for exclusive observables

• This formula is the basis for proving the factorization of the W[ρ]
and their universality (at Leading Log)
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Leading Log corrections to the gluon spectrum

• By keeping only the terms that contain the cutoff :

1

2

∫
u,v

Γ2(u, v)
∂

∂Ainit(u)

∂

∂Ainit(v)
+

∫
u

α(u)
∂

∂Ainit(u)
= y+cut H1+y

−
cut H2

H1,2 : JIMWLK Hamiltonians for the two nuclei

• Notes :

• the ycut terms do not mix the two nuclei ⇒ Factorization
• same operator in all inclusive observables ⇒ Universality
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Factorization

• By integrating over ρ1,2’s, one can absorb the ycut-dependent
terms into universal distributions W1,2[ρ1,2]

• H is a self-adjoint operator :∫
[Dρ]W

(
HO

)
=

∫
[Dρ]

(
HW

)
O

Single inclusive gluon spectrum at Leading Log accuracy

dN1

d3~p
=

Leading Log

∫ [
Dρ

1
Dρ

2

]
W1
[
ρ
1

]
W2
[
ρ
2

] dN1
d3~p

∣∣∣∣
LO︸ ︷︷ ︸

fixed ρ1,2

• Cutoff absorbed into the evolution of W1,2 with rapidity

∂W

∂y
= HW (JIMWLK equation)
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Handwaving argument for factorization

τcoll ∼ E
-1

• The duration of the collision is very short: τcoll ∼ E
−1

• The terms we want to resum are due to the radiation of soft gluons,
which takes a long time
B it must happen (long) before the collision

• The projectiles are not in causal contact before the impact
B the ycut-dependent terms are intrinsic properties of the projectiles,
independent of the measured observable
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Handwaving argument for factorization

τcoll ∼ E
-1

space-like interval

• The duration of the collision is very short: τcoll ∼ E
−1

• The terms we want to resum are due to the radiation of soft gluons,
which takes a long time
B it must happen (long) before the collision

• The projectiles are not in causal contact before the impact
B the ycut-dependent terms are intrinsic properties of the projectiles,
independent of the measured observable
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Multi-gluon correlations at Leading Log

• The previous factorization can be extended to multi-particle
inclusive spectra :

dNn

d3~p1 · · ·d3~pn
=

Leading Log

=

∫ [
Dρ

1
Dρ

2

]
W1
[
ρ
1

]
W2
[
ρ
2

] dN1

d3~p1
· · · dN1
d3~pn

∣∣∣∣
LO

• At Leading Log accuracy, all the rapidity correlations come from
the evolution of the distributions W[ρ1,2]

B they are a property of the pre-collision initial state

• Predicts long range (∆y ∼ α−1
s ) correlations in rapidity
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Ridge correlations
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2-particle correlations in AA collisions

[STAR Collaboration, RHIC]

• Long range rapidity correlation

• Narrow correlation in azimuthal angle

• Narrow jet-like correlation near ∆y = ∆ϕ = 0
François Gelis The initial stages of HIC 53/86 Zakopane, June 2014



François Gelis

54

Probing early times with rapidity correlations

detection (∼1 m/c)

freeze out (∼10 fm/c)

latest correlation

A
B

z 

t

• By causality, long range rapidity correlations are sensitive to the
dynamics of the system at early times :

τcorrelation ≤ τfreeze out e
−|∆y|/2
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2-hadron correlations from color flux tubes

• η-independent fields lead to long range correlations :

• Particles emitted by different flux tubes are not correlated
B (RQs)

−2 sets the strength of the correlation

• At early times, the correlation is flat in ∆ϕ

The collimation in ∆ϕ is produced later by radial flow
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R

Q
S

-1
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2-hadron correlations from color flux tubes

• η-independent fields lead to long range correlations :

v
r

• Particles emitted by different flux tubes are not correlated
B (RQs)

−2 sets the strength of the correlation

• At early times, the correlation is flat in ∆ϕ

The collimation in ∆ϕ is produced later by radial flow
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Centrality dependence
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radial boost model 

STAR preliminary 

• Main effect : increase of the radial flow velocity with the centrality
of the collision
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Rapidity dependence

Estimate at LHC energy

0.0
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d
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Pb+Pb at LHC
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z 

t

strong fields classical dynamics

gluons & quarks out of eq.
viscous hydro

gluons & quarks in eq.

hadrons kinetic theory

freeze out

Lecture I

Lecture II

Lecture III

• Lecture I : Nucleon at high energy, Color Glass Condensate

• Lecture II : Collision, Factorization at high energy

• Lecture III : Evolution after the collision
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Post collision evolution



Pre-Hydro

Hydro

time

P
L / PT

τ0

-1

+1
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GOAL : smooth matching to Hydrodynamics

• The pre-hydro model should bring the system to a
situation that hydrodynamics can handle

• Pre-hydro and hydro should agree over some range of
time ⇒ no τ0 dependence

• NOTE : the anisotropic hydro model of Ryblewski,
Strickland et al. may help for a matching at small τ0
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Conditions for hydrodynamics

• The initial P
L
/P
T

should not be too small
(for the stability of hydro codes)

• The ratio η/s should be small enough
(for an efficient transfer from spatial to momentum anisotropy)
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Shear viscosity at weak and strong coupling (in equilibrium)

Weak coupling QCD result [Arnold, Moore, Yaffe (2000)]

η

s
≈ 5.1

g4 ln
(
2.4
g

)

g

η / s

1 / 4π

AdS/CFT duality

perturbation theory
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Is there another possibility?

From kinetic theory :

η

s
∼

mean free path
de Broglie wavelength

• (de Broglie wavelength)−1 ∼ Q

• (mean free path)−1 ∼ g4Q−2︸ ︷︷ ︸
cross section

×
∫
k

fk︸ ︷︷ ︸
density

(1+ fk)︸ ︷︷ ︸
Bose

enhancement

If g� 1 but fk ∼ g−2 (weakly coupled, but strongly interacting)

η

s
∼ g0 (even w/o quasiparticles, B ∼ Q2

g
has the same effect)

[Asakawa, Bass, Mueller (2006)]
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Competition between Expansion and Isotropization

τ1

τ2
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CGC at LO : strong pressure anisotropy at all times

P
L

rises to positive values, but
never becomes comparable to P

T

When E ‖ B :
P
T
= ε, P

L
= −ε
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CGC at LO : unsatisfactory matching to hydrodynamics

LO

CGC

Hydro

time

P
L / PT

τ0

-1

+1
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CGC at LO : unsatisfactory matching to hydrodynamics

LO

CGC

Hydro

time

P
L / PT

τ0

-1

+1Matching to hydro :

• Compute Tµν from CGC
• Find time-like eigenvector : uµTµν = εuν

• Get pressure from some equation of state P = f(ε)

• Get viscous stress as difference between full and ideal Tµν

“CGC initial conditions” very often means :

• ε = T00 from CGC (or a CGC-inspired model)
• Initial flow neglected, Viscous stress = 0

NOTE : glasma fields start to flow at τ ∼ Q−1
s :

[Krasnitz, Nara, Venugopalan (2002)] [Chen, Fries (2013)]
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CGC at NLO : instabilities

[Mrowczynski (1988), Romatschke, Strickland (2003), Arnold, Lenaghan,
Moore (2003), Rebhan, Romatschke, Strickland (2005), Arnold, Lenaghan,
Moore, Yaffe (2005), Romatschke, Rebhan (2006), Bodeker, Rummukainen
(2007), Fujii, Itakura (2008),...,Attems, Rebhan, Strickland (2012),
Fukushima (2013)]
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CGC at NLO : instabilities

[Mrowczynski (1988), Romatschke, Strickland (2003), Arnold, Lenaghan,
Moore (2003), Rebhan, Romatschke, Strickland (2005), Arnold, Lenaghan,
Moore, Yaffe (2005), Romatschke, Rebhan (2006), Bodeker, Rummukainen
(2007), Fujii, Itakura (2008),...,Attems, Rebhan, Strickland (2012),
Fukushima (2013)]
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CGC at NLO : instabilities

[Mrowczynski (1988), Romatschke, Strickland (2003), Arnold, Lenaghan,
Moore (2003), Rebhan, Romatschke, Strickland (2005), Arnold, Lenaghan,
Moore, Yaffe (2005), Romatschke, Rebhan (2006), Bodeker, Rummukainen
(2007), Fujii, Itakura (2008),...,Attems, Rebhan, Strickland (2012),
Fukushima (2013)]

LO

NLO

CGC

Hydro

time

P
L / PT

τ0

-1

+1

NOTE : This is a cartoon! This NLO
calculation has not been done yet.
But the technology for doing it exists
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Example of pathologies in fixed order calculations (scalar theory)

LO
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time

PLO εLO

• Small correction to the energy density
(protected by energy conservation)

• Secular divergence in the pressure
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Example of pathologies in fixed order calculations (scalar theory)

LO + NLO
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• Small correction to the energy density
(protected by energy conservation)

• Secular divergence in the pressure
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Improved CGC power counting

Loop ∼ g2 , e
√
µτ for each field perturbation

u

T
µν
(x)

vΓ
2
(u,v)

• 1 loop : (ge
√
µτ)2

• 2 disconnected loops :
(ge
√
µτ)4

• 2 nested loops : g(ge
√
µτ)3

B subleading

Leading terms at τmax

• All disconnected loops to all orders
B exponentiation of the 1-loop result
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Improved CGC power counting

Loop ∼ g2 , e
√
µτ for each field perturbation

T
µν
(x)

Γ3(u,v,w)

• 1 loop : (ge
√
µτ)2

• 2 disconnected loops :
(ge
√
µτ)4

• 2 nested loops : g(ge
√
µτ)3

B subleading

Leading terms at τmax

• All disconnected loops to all orders
B exponentiation of the 1-loop result
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• We need the operator :

exp

[
1

2

∫
u,v

Γ2(u, v)
∂

∂Ainit(u)

∂

∂Ainit(v)
+

∫
u

α(u)
∂

∂Ainit(u)

]

One can prove that

e
α
2
∂2x f(x) =

+∞∫
−∞

dz
e−z

2/2α

√
2πα

f(x+ z)
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Resummation of the leading secular terms

Tµν
resummed

=

∫
[Da] exp

[
−
1

2

∫
u,v

a(u)Γ−12 (u, v)a(v)

]
Tµν

LO
[Ainit + a]

• There is a unique choice of the variance Γ2 such that

Tµνresummed = Tµν
LO

+ Tµν
NLO

+ · · ·

• This resummation collects all the terms with the worst time
behavior

• Equivalent to Gaussian fluctuations of the initial field
+ classical time evolution

• At Qsτ0 � 1 : Ainit ∼ Qs/g , a ∼ Qs
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Resummation of the leading secular terms

Tµν
resummed

=

∫
[Da] exp

[
−
1

2

∫
u,v

a(u)Γ−12 (u, v)a(v)

]
Tµν

LO
[Ainit + a]

• There is a unique choice of the variance Γ2 such that

Tµνresummed = Tµν
LO

+ Tµν
NLO

+ · · ·

• This resummation collects all the terms with the worst time
behavior

• Equivalent to Gaussian fluctuations of the initial field
+ classical time evolution

• At Qsτ0 � 1 : Ainit ∼ Qs/g , a ∼ Qs
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Main steps

1. Determine the 2-point function Γ2(u, v) that defines the
Gaussian fluctuations, for the initial time Qsτ0 of interest
Note : this is an initial value problem, whose outcome is uniquely
determined by the state of the system at x0 = −∞, and depends
on the history of the system from x0 = −∞ to τ = τ0
Problem solvable only if the fluctuations are weak, aµ � Qs/g

Qsτ0 � 1 necessary for the fluctuations to be Gaussian

2. Solve the classical Yang-Mills equations from τ0 to τf
Note : the problem as a whole is boost invariant, but individual field
configurations are not =⇒ 3+1 dimensions necessary

3. Do a Monte-Carlo sampling of the fluctuating initial conditions
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Discretization of the expanding volume

x

y

η

L

L
N

a⊥aη

• Comoving coordinates : τ, η, x⊥

• Only a sub-volume is simulated
+ periodic boundary conditions

• L2 ×N lattice

η = const

τ = const
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Gaussian spectrum of fluctuations [Epelbaum, FG (2013)]

Expression of the variance (from 1-loop considerations)

Γ2(u, v) =

∫
modes k

ak(u)a
∗
k(v)[

DρD
ρδνµ −DµD

ν + igFµ
ν
]
aµk = 0 , lim

x0→−∞ak(x) ∼ eik·x

z

t

0

21

3

0. Aµ = 0, trivial

1,2. Aµ = pure gauge, analytical solution

3. Aµ non-perturbative⇒ expansion in Qsτ

• aµk(τ, η, x⊥) known analytically at
Qsτ� 1, in the gauge aτ = 0

François Gelis The initial stages of HIC 73/86 Zakopane, June 2014



François Gelis

74

• At the moment, two implementations of this
method, but discrepancy in the results
regarding the behavior of P

L
/P

T
...
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Classical Statistical
Approximation
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Classical Statistical Approximation (CSA)

• Classical time evolution

• Quantum fluctuations in the initial conditions

• Dynamics fully non-linear ⇒ no unbounded growth
• Individual classical trajectories may be chaotic ⇒ a small initial

ensemble can span a large phase space volume
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CSA in Quantum Mechanics

• Consider the von Neumann equation for the density operator :

∂ρ̂τ

∂τ
= ih̄

[
Ĥ, ρ̂τ

]
(1)

• Introduce the Wigner transforms :

Wτ(x,p) ≡
∫
ds eip·s

〈
x+

s

2

∣∣ρ̂τ∣∣x− s
2

〉
H(x,p) ≡

∫
ds eip·s

〈
x+

s

2

∣∣Ĥ∣∣x− s
2

〉
(classical Hamiltonian)

• (1) is equivalent to

∂Wτ

∂τ
= H(x,p)

2

ih̄
sin
(
ih̄

2

( ←
∂p

→
∂x −

←
∂x

→
∂p

))
Wτ(x,p)

=
{
H,Wτ

}︸ ︷︷ ︸
Poisson bracket

+O(h̄2)

François Gelis The initial stages of HIC 76/86 Zakopane, June 2014



François Gelis

77

CSA in Quantum Mechanics

• Approximating the right hand side by the Poisson bracket⇐⇒ classical time evolution instead of quantum
=⇒ O(h̄2) error

• In addition : h̄ dependence in the initial state
Uncertainty principle, ∆x · ∆p ≥ h̄
=⇒ the Wigner distribution Wτ=0(x,p) must have a width & h̄

• All the O(h̄) effects can be accounted for by a Gaussian initial
distribution Wτ=0(x,p)
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CSA from the path integral

〈
O
〉
=

∫ [
Dφ+Dφ−

]
O
[
φ±
]
ei(S[φ+]−S[φ−])

• φ+ = field in the amplitude
• φ− = field in the conjugate amplitude
• φ+ − φ− = quantum interference

• Introduce : φ1 ≡ φ+ − φ−, φ2 ≡ 1
2
(φ+ + φ−)

S[φ+] − S[φ−] = φ1 ·
δS[φ2]

δφ2
+ terms cubic in φ1

• Strong field regime : φ± large, but φ+ − φ− small
Neglect the terms cubic in φ1
Dφ1 → classical Euler-Lagrange equation for φ2

• The only remaining fluctuations are in the initial condition for φ2

François Gelis The initial stages of HIC 78/86 Zakopane, June 2014



François Gelis

79

CSA from perturbation theory

• Start from Schwinger-Keldysh perturbation theory

• Rotate from the basis φ± to the basis φ1,2

• New perturbative rules :

• Propagators G12, G21 and G22 (G11 = 0)

• Vertices 1222 and 1112

• CSA : drop the 1112 vertex
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Non renormalizability of the CSA

• CSA 6= underlying theory at 2-loops and beyond

• Sources of fluctuations of the initial fields :

G22(p) ∼
(
f0(p) +

1

2

)
δ(p2)

quasiparticles←↩ ↪→ vacuum fluctuations

• Vacuum fluctuations make the CSA non-renormalizable.
Example of problematic graph :

Im 1 2
2 1
2 2

2 2

= −
g4

1024π3

(
Λ2

UV
−
2

3
p2
)

• With only quasiparticle-induced fluctuations :
• Finite if f0(p) falls faster than p−1

• Super-renormalizable if f0(p) ∼ p−1 [Aarts, Smit (1997)]
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Cutoff dependence at late time
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• Sweet range : ΛUV ∼ (3 − 6)×Q
• But no continuum limit
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Occupation in the zero mode for various UV cutoffs
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Bose-Einstein
condensation



François Gelis

82

Overpopulated CGC initial conditions

CGC initial conditions

ε0 ∼
Q4s
αs

n0 ∼
Q3s
αs

(nε−3/4)0 ∼ α
−1/4
s

Equilibrium state

ε ∼ T4 n ∼ T3 nε−3/4 ∼ 1

• The excess of gluons can be eliminated in two ways :

• via inelastic processes 3→ 2

• by condensation on the zero mode
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Bose-Einstein condensation (in a scalar field theory)
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• Start with an overpopulated initial condition, with an empty zero mode

• Very quickly, the zero mode becomes highly occupied
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Volume dependence
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f(k) =
1

eβ(ωk−µ) − 1
+ n0δ(k) =⇒ f(0) ∝ V = L3
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Evolution of the condensate
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• Formation time almost independent of the coupling
• Condensate lifetime much longer than its formation time
• Smaller amplitude and faster decay at large coupling
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Summary
and Outlook
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Summary

• Gluon saturation and recombination
• prevents the gluon occupation number to go above 1/αs
• prevents violations of unitarity in scattering amplitudes

• Two equivalent descriptions
• Balitsky-Kovchegov :

Non-linear evolution equation for specific matrix elements
The non-linear terms lead to the dynamical generation of
geometrical scaling
Applicable to collisions between a saturated and a dilute projectile

• Color Glass Condensate :
The color fields of the target evolve with rapidity
More suitable to collisions of two saturated projectiles

• Isotropization, Thermalization
• Instabilities require the resummation of additional contributions
• Possibility of the formation of a Bose-Einstein condensate
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