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From atoms to nuclei, to quarks and gluons

10−10 m : atom (99.98% of the mass is in the nucleus)
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From atoms to nuclei, to quarks and gluons

< 10−15 m : quarks + gluons
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Quarks and gluons

Strong interactions : Quantum Chromo-Dynamics

• Matter : quarks ; Interaction carriers : gluons

a

i

j

∼ g (ta)ij
a

b

c

∼ g (Ta)bc

• i, j : quark colors ; a, b, c : gluon colors

• (ta)ij : 3× 3 SU(3) matrix ; (Ta)bc : 8× 8 SU(3) matrix

Lagrangian

L = −
1

4
F2 +

∑
f

ψf(i/D−mf)ψf

• Free parameters : quark masses mf, scale ΛQCD
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Asymptotic freedom

Running coupling : αs = g
2/4π

αs(E) =
2πNc

(11Nc − 2Nf) log(E/Λ
QCD

)

α
S
(M

Z
)=0.1182±0.0027
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Color confinement

• The quark-antiquark potential increases linearly with distance
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Color confinement

• In nature, we do not see free quarks and gluons (the closest we
have to actual quarks and gluons are jets)

• Instead, we see hadrons (quark-gluon bound states):
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Debye screening at high density

V(r) = 
exp( - r / rdebye )

r
r

• In a dense environment, color charges are screened by their
neighbours

• The Coulomb potential decreases exponentially beyond the
Debye radius rdebye

• Bound states larger than rdebye cannot survive
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Deconfinement transition
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4

3 flavour
2+1 flavour

2 flavour
pure gauge

• Fast increase of the pressure :
• at T ∼ 270 MeV, if there are only gluons
• at T ∼ 150–170 MeV, depending on the number of light quarks
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QCD phase diagram

Quark−Gluon

hadronic
phase Color superconductor

plasma

Temperature

Nuclei Neutron stars

Net Baryon
Density
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QGP in the early universe

Quark−Gluon

hadronic
phase Color superconductor

plasma

Temperature

Nuclei Neutron stars

Net Baryon
Density

Early Universe
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QGP in the early universe
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Heavy ion collisions

Quark−Gluon

hadronic
phase Color superconductor

plasma

Temperature

Nuclei Neutron stars

Net Baryon
Density

Heavy Ion Collision
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Experimental facilities : RHIC and LHC
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Heavy ion collision at the LHC
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z 

t

What can be said about hadronic and nuclear collisions in terms
of the underlying quarks and gluons degrees of freedom?
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strong fields classical dynamics

gluons & quarks out of eq. viscous hydro

gluons & quarks in eq. ideal hydro

hadrons kinetic theory

freeze out
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Stages of a nucleus-nucleus collision
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Stages of a nucleus-nucleus collision

z 

t

strong fields classical fields

gluons & quarks out of eq. viscous hydro

gluons & quarks in eq.
hydrodynamics

hadrons in eq.

freeze out

Lecture I

• Lecture I : Parton model, Gluon saturation
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Stages of a nucleus-nucleus collision

z 

t

strong fields classical fields

gluons & quarks out of eq. viscous hydro

gluons & quarks in eq.
hydrodynamics

hadrons in eq.

freeze out

Lecture I

Lecture II

• Lecture I : Parton model, Gluon saturation

• Lecture II : Color Glass Condensate, Factorization
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Stages of a nucleus-nucleus collision

z 

t

strong fields classical fields

gluons & quarks out of eq. viscous hydro

gluons & quarks in eq.
hydrodynamics

hadrons in eq.

freeze out

Lecture I

Lecture II

Lecture III

• Lecture I : Parton model, Gluon saturation

• Lecture II : Color Glass Condensate, Factorization

• Lecture III : Instabilities, Thermalization
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Parton model
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Hadronic spectrum

• In nature, we do not see free quarks and gluons (the closest we
have to actual quarks and gluons are jets)

• Instead, we see hadrons (quark-gluon bound states):

• The hadron spectrum is uniquely given by ΛQCD ,mf

• But this dependence is non-perturbative (it can now be obtained
fairly accurately by lattice simulations)
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Nuclear spectrum

• But nuclear spectroscopy is out of reach of lattice QCD, even for
the lightest nuclei
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Do we need to know all this in order to
describe hadronic/nuclear collisions in

Quantum–Chromodynamics?
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Do we need to know all this in order to
describe hadronic/nuclear collisions in

Quantum–Chromodynamics?

NO !
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• A nucleon at rest is a very complicated object...
• Contains valence quarks + fluctuations at all space-time scales

smaller than its own size
• Only the fluctuations that are longer lived than the external probe

participate in the interaction process
• Interactions are very complicated if the constituents of the

nucleon have a non trivial dynamics over time-scales comparable
to those of the probe
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• Dilation of all internal time-scales for a high energy nucleon
• Interactions among constituents now take place over time-scales

that are longer than the characteristic time-scale of the probe
B the constituents behave as if they were free
B the reaction sees a snapshot of the nucleon internals

• Many fluctuations live long enough to be seen by the probe. The
nucleon appears denser at high energy (it contains more gluons)
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What do we need in order to describe a hadronic collision?

• Provide a snapshot of the two projectiles

• Flavor and color of each parton

• Transverse position and momentum

• Since these properties are not know event-by-event, one should
aim at a probabilistic description of the parton content of the
projectiles
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Why is this non trivial?

• In quantum mechanics, the transition probability from some
hadronic states to the final state is expressed as :

transition probability
from hadrons to X

≡
∣∣∣∑ Amplitudes

h1h2 → X

∣∣∣2

• The parton model assumes that we may be able to write it as :

transition probability
from hadrons to X

≡
∑

partons
{q,g}

probability to find
{q, g} in {h1, h2}

⊗
∣∣∣∑ Amplitudes

{q, g}→ X

∣∣∣2

• This property is known as factorization. It can be justified in
QCD, and it is a consequence of the separation between the
timescale of confinement and the collision timescale
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Deep Inelastic
Scattering
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Introduction to DIS

• Basic idea : smash a well known probe on a nucleon or nucleus
in order to try to figure out what is inside...

• Photons are very well suited for that purpose because their
interactions are well understood

• Deep Inelastic Scattering : collision between an electron and a
nucleon or nucleus, by exchange of a virtual photon

• Variant : collision with a neutrino, by exchange of Z0,W±
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Kinematical variables

k
k’

P

θ

q





X

• Note : the virtual photon is space-like: q2 ≤ 0
• Other invariants of the reaction :

ν ≡ P · q s ≡ (P + k)2

M2

X
≡ (P + q)2 = m2

N
+ 2ν + q2

• One uses commonly : Q2 ≡ −q2 and x ≡ Q2/2ν
• In general M2

X
≥ m2

N
, and we have : 0 ≤ x ≤ 1

(x = 1 corresponds to the case of elastic scattering)
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DIS cross-section

• The inclusive cross-section can be written as :

E′
dσe−N

d3~k
′ =

1

32π3(s −m2
N
)

e2

q4
4π LµνWµν

where Wµν is the hadronic tensor, defined as:

4π Wµν ≡
∑

states X

∫
[dΦ

X
](2π)4δ(P+ q− PX)

×
〈〈
N(P)

∣∣Jν(0)∣∣X〉〈X∣∣Jµ(0)∣∣N(P)
〉〉

spin

4π Wµν =

∫
d4y eiq·y

〈〈
N(P)

∣∣Jν(y) Jµ(0)∣∣N(P)
〉〉

spin

Wµν contains all the informations about the properties of the nucleon
under consideration that are relevant to the interaction with the photon

François Gelis Color Glass Condensate 25/140 Schleching, February 2014



François Gelis

26

Structure functions

For interactions with a photon :

Wµν = −F1

(
gµν −

qµqν

q2

)
+
F2

ν

(
Pµ − qµ

P · q
q2

)(
Pν − qν

P · q
q2

)

• DIS cross-section in the nucleon rest frame :

dσe−N
dE′dΩ

=
α2em

4m
N
E2 sin4(θ/2)

[
2 sin2(θ/2)F1 +

m2
N

ν
cos2(θ/2)F2

]

where Ω is the solid angle of the scattered electron

• Note: F1 is proportional to the interaction cross-section between
the nucleon and a transverse photon
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Bjorken scaling

• Bjorken scaling : F2 depends very weakly on Q2

SLAC

x

F
2
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Longitudinal structure function

• F
L
≡ F2 − 2xF1 is quite smaller than F2 :

F2

FL

FL vs. F2 for Q2 = 20 GeV2

x
10.10.010.0011e-04

2

1.5

1

0.5

0
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Analogy with the e- mu- cross-section

• In terms of F1 and F2, the DIS cross-section reads:

dσe−N
dE′dΩ

=
α2em

4m
N
E2 sin4 θ

2

[
2F1 sin2

θ

2
+
m2
N

ν
F2 cos2

θ

2

]

• Compare with the e−µ− cross-section:

dσe−µ−

dE′dΩ
=

α2emδ(1 − x)

4mµE2 sin4 θ
2

[
sin2

θ

2
+
m2µ
ν

cos2
θ

2

]

• If the constituents of the nucleon that interact in the DIS process
were spin 1/2 point-like particles, we would have:

2F1 =
m
N

mc
δ(1 − xc) , F2 =

mc

m
N

δ(1 − xc)

where mc is some effective mass for the constituent (comparable
to m

N
because it is trapped inside the nucleon) and

xc ≡ Q2/2q · pc with pµc the momentum of the constituent
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Analogy with the e- mu- cross-section

• If pµc = x
F
Pµ, then xc = x/xF , and:

2F1 ∼ δ(x − xF) , F2 ∼ δ(x − xF)

• The structure functions F1 and F2 would therefore not depend on
Q2, but only on x

• Conclusion : Bjorken scaling could be explained if the
constituents of the nucleon that are probed in DIS are spin 1/2
point-like particles

The variable x measured in DIS would have to be identified with
the fraction of momentum carried by the struck constituent
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Pre-QCD parton model

• The historical parton model describes the nucleon as a collection
of point-like fermions, called partons

• A parton of type i, carrying the fraction x
F

of the nucleon momentum,
gives the following contribution to the hadronic tensor :

4πWµν
i =

∫
d4p′

(2π)4
2π δ(p′2) (2π)4 δ(xFP+ q− p′)

×
〈〈
x
F
P
∣∣Jµ(0)∣∣p′〉〈p′∣∣Jν(0)∣∣x

F
P
〉〉

spin

For the scattering on a spin 1/2 elementary constituent, one has:

4πWµν
i = 2π xFδ(xF − x) e2i

×
[
−

(
gµν −

qµqν

q2

)
+
2xF
P · q

(
Pµ − qµ

P · q
q2

)(
Pν − qν

P · q
q2

)]
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Pre-QCD parton model

• The historical parton model describes the nucleon as a collection
of point-like fermions, called partons

• A parton of type i, carrying the fraction x
F

of the nucleon momentum,
gives the following contribution to the hadronic tensor :

4πWµν
i =

∫
d4p′

(2π)4
2π δ(p′2) (2π)4 δ(xFP+ q− p′)

×
〈〈
x
F
P
∣∣Jµ(0)∣∣p′〉〈p′∣∣Jν(0)∣∣x

F
P
〉〉

spin

For the scattering on a spin 1/2 elementary constituent, one has:

4πWµν
i = 2π xFδ(xF − x) e2i

×
[
−

(
gµν −

qµqν

q2

)
+
2xF
P · q

(
Pµ − qµ

P · q
q2

)(
Pν − qν

P · q
q2

)]
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Pre-QCD parton model

• If there are fi(xF)dxF partons of type i with a momentum fraction
between x

F
and x

F
+ dx

F
, we have

Wµν =
∑
i

∫1
0

dx
F

x
F

fi(xF)W
µν
i , F1 =

1

2

∑
i

e2i fi(x) , F2 = 2xF1

• Callan-Gross relation : F2 = 2xF1
• Consequence of spin 1/2 point-like partons
• Exercise : for spin 0 partons, show that

Wµν
i ∝ (2x

F
Pµ + qµ)(2x

F
Pν + qν) and F1 = 0

• Caveats and puzzles :
• The parton model assumes that partons are free inside the

nucleon. How does this work in a strongly bound state ?
• One would like to have a field theoretical description of what is

going on, including the effect of interactions, quantum fluctuations...
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What have we learned from QCD?

• Asymptotic freedom + time dilation in a high energy hadron
explain why the partons appear as almost free at large Q2

• QCD loop corrections lead to violations of Bjorken scaling, that
are visible as a Q2 dependence of the structure functions.
Physically, 1/Q is the spatial resolution at which the hadron is
probed

• Parton distributions are non-perturbative in QCD, but their Q2

and x dependence are governed by equations that are
perturbative (DGLAP, BFKL)

• One can prove that the parton distributions are universal, i.e. are
the same in all inclusive processes
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DIS results for F2 and DGLAP fit at NLO :
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NNLO parton distributions – and possible caveats
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NNLO parton distributions – and possible caveats

Large x : dilute, dominated by single parton scattering
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NNLO parton distributions – and possible caveats

Small x : dense, multi-parton interactions become likely
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Small x data displayed differently... (Geometrical scaling)

• Small x data (x ≤ 10−2) displayed against τ ≡ log(x0.32Q2) :

9 6 3 0 3 6

τ

104

103

102

101
σ

γ
* p

 (
m

b
)

H1

ZEUS

E665

NMC
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Eikonal Scattering
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DIS off a highly boosted target

• Note : cross-sections are Lorentz invariant, but the microscopic
interpretation may be frame dependent
Some useful insight can be gained with a frame in which the
target proton has a large P3 momentum

• All the proton internal time scales are Lorentz dilated : its
constituents appear frozen to the incoming virtual photon
(they behave as if they have a mass ∝ P3)

• In the limit P3 →∞, the interactions with such a constituent are
equivalent to the interactions with its radiated field

Ea , Ba
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Setup

• Consider the scattering amplitude off an external potential :
Sβα ≡

〈
βout

∣∣αin
〉
=
〈
βin
∣∣U(+∞,−∞)

∣∣αin
〉

where U(+∞,−∞) is the evolution operator from t = −∞ to t = +∞
U(+∞,−∞) = T exp

[
i

∫
d4x Lint(φin(x))

]
Note : Lint contains the self-interactions of the fields and their
interactions with the external potential

• We want to calculate its high energy limit (eikonal limit):

S
(∞)
βα ≡ lim

ω→+∞
〈
βin
∣∣e−iωK3U(+∞,−∞) e+iωK

3 ∣∣αin
〉︸ ︷︷ ︸

boosted state

where K3 is the generator of boosts in the +z direction
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Eikonal scattering in a nutshell

• In a scattering at high energy, the collision time goes to zero as
E−1

• With scalar interactions, this implies a decrease of the scattering
amplitude as E−1

• With vectorial interactions, this decrease is compensated by the
growth of the components J0,3 of the vector current

B the eikonal approximation gives the finite limit of the scattering
amplitude in the case of vectorial interactions when E→ +∞
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Light-cone coordinates

• Light-cone coordinates are defined by choosing a privileged axis
(generally the z axis) along which particles have a large
momentum. Then, for any 4-vector aµ, one defines :

a+ ≡ a0 + a3√
2

, a− ≡ a0 − a3√
2

a1,2 unchanged. Notation : ~a⊥ ≡ (a1, a2)

• Some useful formulas :

x · y = x+y− + x−y+ − ~x⊥ · ~y⊥
d4x = dx+dx−d2~x⊥

� = 2∂+∂− − ~∇
2

⊥ Notation : ∂+ ≡ ∂

∂x−
, ∂− ≡ ∂

∂x+
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Light-cone coordinates

• The Dalembertian is bilinear in the derivatives ∂+, ∂−

• The metric tensor is non diagonal :

gµν = gµν =


0 0 0 1
0 −1 0 0
0 0 −1 0
1 0 0 0



z

t
x

+
x

_

x +
 =

 0 x
_  =

 0
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Action of K− (K− = −K3)

eiωK
−

P− e−iωK
−

= e−ωP−

eiωK
−

P+ e−iωK
−

= e+ωP+

eiωK
−

Pj e−iωK
−

= Pj

• Simple rescaling of the various operators. This suggests that the
light-cone framework is simpler in order to study processes involving
highly boosted particles

• These relations play an essential role in the eikonal approximation
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Eikonal limit

• Consider an external vector potential, that couples via
eAµ(x)J

µ(x) (Jµ is the Noether current associated to some
conserved charge.) Assume that the external potential is non-zero
only in a finite range in x+, x+ ∈ [−L,+L]

Action of K− on states and operators

e−iωK
−∣∣~p · · · in〉 = ∣∣(eωp+, ~p⊥) · · · in〉

e−iωK
−

a†in(q)e
iωK−

= a†in(e
ωq+, e−ωq−, ~q⊥)

eiωK
−

φin(x)e
−iωK−

= φin(e
−ωx+, eωx−,~x⊥)
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Eikonal limit

• Split the S matrix U(+∞,−∞) into three factors :

U(+∞,−∞) = U(+∞,+L)×U(+L,−L)×U(−L,−∞)

Upon application of K−, this becomes :

eiωK
−

U(+∞,−∞)e−iωK
−

= eiωK
−

U(+∞,+L)e−iωK−

×eiωK
−

U(+L,−L)e−iωK
−

eiωK
−

U(−L,−∞)e−iωK
−

• The external potential Aµ(x) is unaffected by K−

Action of K− on Jµ(x)

eiωK
−

Ji(x)e−iωK
−

= Ji(e−ωx+, eωx−,~x⊥)

eiωK
−

J−(x)e−iωK
−

= e−ω J−(e−ωx+, eωx−,~x⊥)

eiωK
−

J+(x)e−iωK
−

= eω J+(e−ωx+, eωx−,~x⊥)
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Eikonal limit

• The factors U(+∞,+L) and U(−L,−∞) do not contain the
external potential. In order to deal with these factors, it is
sufficient to change variables : e−ωx+ → x+, eωx− → x−.
This leads to :

lim
ω→+∞ eiωK

−

U(+∞,+L)e−iωK−

= U0(+∞, 0)
lim

ω→+∞ eiωK
−

U(−L,−∞)e−iωK
−

= U0(0,−∞)

where U0 is the same as U, but with the self-interactions only
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Eikonal limit

• Therefore, in the limit ω→ +∞, we have :

lim
ω→+∞ eiωK

−

U(+L,−L)e−iωK
−

= exp
[
ie

∫
d2~x⊥χ(~x⊥)ρ(~x⊥)

]

with


χ(~x⊥) ≡

∫
dx+ A−(x+, 0,~x⊥)

ρ(~x⊥) ≡
∫
dx− J+(0, x−,~x⊥)

• The high-energy limit of the scattering amplitude is :

S
(∞)
βα =

〈
βin
∣∣U0(+∞, 0) exp

[
ie

∫
~x⊥

χ(~x⊥)ρ(~x⊥)
]
U0(0,−∞)

∣∣αin
〉

• Only the − component of the vector potential matters
• The self-interactions and the interactions with the external potential

are factorized B parton model
• This is an exact result in the limit ω→ +∞
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Eikonal limit

• For each intermediate state
〈
δin
∣∣ ≡ 〈{k+i ,~ki⊥}∣∣, define the

corresponding light-cone wave function by :

Ψδα({k
+
i ,~xi⊥}) ≡

∏
i

∫
d2~ki⊥
(2π)2

e−i
~ki⊥·~xi⊥

〈
δin
∣∣U(0,−∞)

∣∣αin
〉

• Each charged particle going through the external field acquires a
phase proportional to its charge (antiparticles get an opposite
phase) :

Ψδα({k
+
i ,~xi⊥}) −→ Ψδα({k

+
i ,~xi⊥})

∏
i

Ui(~x⊥)

Ui(~x⊥) ≡ T+ exp
[
ig
i

∫
dx+ A

−
a (x

+, 0,~x⊥)t
a
]
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Eikonal limit

• The number and the nature of the particles is unchanged under
the action of the eikonal operator. In terms of the transverse
coordinates, we simply have〈
γin
∣∣eig ∫

ρχ
∣∣δin
〉
= δ

NN′

∏
i

[
4πk+i δ(k

+
i − k+′i )δ(~xi⊥ − ~x′i⊥)URi (

~xi⊥)
]

where U
R
(~x⊥) is a Wilson line operator, in the representation R

appropriate for the particle going through the target

• Therefore, the high energy scattering amplitude can be written
as :

S
(∞)
βα =

∑
δ

∫ [∏
i∈δ

dΦi

]
Ψ†δβ({k

+
i ,~xi⊥})

[∏
i∈δ

U
Ri

(~xi⊥)
]
Ψδα({k

+
i ,~xi⊥})
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DIS in the
Eikonal limit
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Differential DIS cross-section

• Differential photon-target cross-section (γ∗T → qq+ X) :

dσγ∗T =
d3k

(2π)22Ek

d3p

(2π)32Ep

1

2q−
2πδ(q− − k− − p−)

×〈Mµ(q|k,p)Mν∗(q|k,p)〉 εµ(Q) ε∗ν(Q) ,

• k,p : momenta of the quark and antiquark
• q : momentum of the virtual photon
• εµ(Q) : polarization vector
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Total inclusive cross-section

• If we integrate out the final quark and antiquark, we get :

σγ∗T =

∫1
0

dz

∫
d2~r⊥ |ψ(q|z,~r⊥)|

2
σdipole(~r⊥)

with

σdipole(~r⊥) ≡
2

Nc

∫
d2~X⊥ Tr

〈
1 −U(~X⊥ +

~r⊥
2
)U†(~X⊥ −

~r⊥
2
)

〉
and ψ for the light-cone wave function for a photon that splits into a
quark-antiquark intermediate state.
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Dipole cross-section

• Computing F2 requires to know the dipole amplitude

〈T (~x⊥, ~y⊥)〉Y ≡
1

Nc
Tr
〈
1−U(~x⊥)U

†(~y⊥)
〉

as a function of dipole size and rapidity

• This object is often presented in the form of the dipole
cross-section :

σdip(~r⊥, Y) ≡ 2
∫
d2~b

〈
T (~b−

~r⊥
2
, ~b+

~r⊥
2
)

〉
Y
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Golec-Biernat–Wusthoff model

• GBW modeled the dipole cross-section as a Gaussian, with an
energy dependence entirely contained in Qsσdip(~r⊥, Y) = σ0

[
1− e−Qs(Y)

2r2⊥/4
]

Q2s(Y) = Q
2
0 e
λ(Y−Y0)

• The exponential form in σdip is inspired of Glauber scattering

• The fit parameters are σ0, Q0, λ and possibly an effective quark
mass in the photon wave-function

• Quite good for all small-x HERA data, with some problems at
large Q2
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State of the art : AAMQS model

• GBW model used only as initial condition

• Evolution with running coupling BK equation

Comparison with HERA data
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Summary of Lecture I
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DIS results for F2 (DGLAP equation at NLO)
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Small x data displayed differently... (Geometrical scaling)

• Small x data (x ≤ 10−2) displayed against τ ≡ log(x0.32Q2) :

9 6 3 0 3 6

τ

104

103

102

101
σ

γ
* p

 (
m

b
)

H1

ZEUS

E665

NMC
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DIS cross-section in the eikonal limit

σγ∗T (x,Q
2) =

∫1
0

dz

∫
d2~r⊥

∣∣ψ(Q2|z,~r⊥)∣∣2 σdipole(x,~r⊥)

• Golec-Biernat–Wusthoff model :

σdip(x,~r⊥) = σ0
[
1 − e−Q

2
s(x)r

2
⊥/4
]

Q2s(x) = Q
2
0 (x/x0)

λ

• State of the art : AAMQS model
• The GBW model is used as

input at x0 ≈ 10−2
• Smaller x’s are obtained from

the Balitsky-Kovchegov equation
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BFKL equation
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Scattering of a dipole

• Take a virtual photon as initial and final state. At lowest order, the
scattering amplitude can be written as :

∝
∣∣∣Ψ(0)(~x⊥, ~y⊥)

∣∣∣2tr
[
U(~x⊥)U

†(~y⊥)
]

• It turns out that 1-loop corrections to this contribution are
enhanced by αslog(p+), which can be large when the quark or
antiquark has a large p+

• In the gauge A+ = 0, the emission of a gluon of momentum k by
a quark can be written as :

= 2gta
~ελ · ~k⊥
k2⊥
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Scattering of a dipole

• The following diagrams must be evaluated :

+ h.c.

• When connecting two gluons, one must use :∑
λ

~εiλ~ε
j
λ = −gij
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Virtual corrections

• Consider first the loop corrections inside the wavefunction of the
incoming or outgoing dipole

Example

=
∣∣∣Ψ(0)(~x⊥, ~y⊥)

∣∣∣2tr
[
tataU(~x⊥)U

†(~y⊥)
]

×− 2αs

∫
dk+

k+

∫
d2~z⊥
(2π)2

(~x⊥ − ~z⊥) · (~x⊥ − ~z⊥)

(~x⊥ − ~z⊥)2(~x⊥ − ~z⊥)2

Reminder : tata = (N2c − 1)/2Nc (denoted C
F
)
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Virtual corrections

• The sum of all virtual corrections is :

−
C
F
αs

π2

∫
dk+

k+

∫
d2~z⊥

(~x⊥ − ~y⊥)
2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
∣∣∣Ψ(0)(~x⊥, ~y⊥)

∣∣∣2tr
[
U(~x⊥)U

†(~y⊥)
]

• The integral over k+ is divergent. It should have an upper bound
at p+ :

∫p+ dk+

k+
= ln(p+) = Y

BWhen Y is large, αsY may not be small,and these corrections
should be resummed
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Real corrections

• There are also real corrections, for which the state that interacts
with the target has an extra gluon

Example

=
∣∣∣Ψ(0)(~x⊥, ~y⊥)

∣∣∣2tr
[
taU(~x⊥)t

bU†(~y⊥)
]

×4αs
∫
dk+

k+

∫
d2~z⊥
(2π)2

Ũab(~z⊥)
(~x⊥ − ~z⊥) · (~x⊥ − ~z⊥)

(~x⊥ − ~z⊥)2(~x⊥ − ~z⊥)2

(Ũab(~z⊥) is a Wilson line in the adjoint representation)

• In order to simplify the color structure, use :

taŨab(~z⊥) = U(~z⊥)t
bU†(~z⊥)

• + the SU(Nc) Fierz identity :

tbijt
b
kl =

1

2
δilδjk −

1

2Nc
δijδkl
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Evolution equation

• Denote : S(~x⊥, ~y⊥) ≡
1

Nc
tr
[
U(~x⊥)U

†(~y⊥)
]

• The full LO + NLO scattering amplitude reads :

Nc

∣∣∣Ψ(0)(~x⊥, ~y⊥)
∣∣∣2[S(~x⊥, ~y⊥) − αsNcY

2π2

∫
d2~z⊥

(~x⊥ − ~y⊥)
2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
{
S(~x⊥, ~y⊥) − S(~x⊥,~z⊥)S(~z⊥, ~y⊥)

}]

∂S(~x⊥, ~y⊥)

∂Y
= −

αsNc

2π2

∫
d2~z⊥

(~x⊥ − ~y⊥)
2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
{
S(~x⊥, ~y⊥) − S(~x⊥,~z⊥)S(~z⊥, ~y⊥)

}
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BFKL equation

Kuraev, Lipatov, Fadin (1977), Balitsky, Lipatov (1978)

• Write S(~x⊥, ~y⊥) ≡ 1− T (~x⊥, ~y⊥) and assume that we are in the
dilute regime, so that the scattering amplitude T is small

Drop the terms that are non-linear in T

BFKL equation in coordinate space

∂ T (~x⊥, ~y⊥)

∂Y
=
αsNc

2π2

∫
d2~z⊥

(~x⊥ − ~y⊥)
2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
{
T (~x⊥,~z⊥) + T (~z⊥, ~y⊥) − T (~x⊥, ~y⊥)

}
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Gluon Saturation
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Unitarity problem

• The mapping T → αsNc
∫
z
· · · T has a positive eigenvalue ω

• Solutions of the BFKL equation grow exponentially as exp(ωY)
when Y → +∞ B violation of unitarity...

• In perturbation theory, the forward scattering amplitude between
a small dipole and a target made of gluons reads :

T (~x⊥, ~y⊥) ∝ |~x⊥ − ~y⊥|
2 xG(x, |~x⊥ − ~y⊥|

−2)

where Y ≡ ln(1/x)

• Therefore, the exponential behavior of T is related to the
increase of the gluon distribution at small x

T ∼ eωY ←→ xG(x,Q2) ∼
1

xω
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Parton evolution under boosts

B at low energy, only valence quarks are present in the hadron wave
function
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Parton evolution under boosts

B when energy increases, new partons are emitted

B the emission probability is αs
∫
dx
x

∼ αsln(1x ), with x the longitudinal
momentum fraction of the gluon
B at small-x (i.e. high energy), these logs need to be resummed

François Gelis Color Glass Condensate 65/140 Schleching, February 2014



François Gelis

65

Parton evolution under boosts

B as long as the density of constituents remains small, the evolution
is linear: the number of partons produced at a given step is proportional to
the number of partons at the previous step
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Parton evolution under boosts

B eventually, the partons start overlapping in phase-space
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Parton evolution under boosts

B parton recombination becomes favorable
B after this point, the evolution is non-linear:
the number of partons created at a given step depends non-linearly on the
number of partons present previously
Balitsky (1996), Kovchegov (1996,2000)
Jalilian-Marian, Kovner, Leonidov, Weigert (1997,1999)
Iancu, Leonidov, McLerran (2001)
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Saturation domain
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Saturation domain

Saturation criterion [Gribov, Levin, Ryskin (1983)]

αsQ
−2︸ ︷︷ ︸

σgg→g
× A−2/3xG(x,Q2)︸ ︷︷ ︸

surface density

≥ 1

Q2 ≤ Q2s ≡
αsxG(x,Q

2
s)

A2/3︸ ︷︷ ︸
saturation momentum

∼ A1/3x−0.3
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Balitsky-Kovchegov
equation
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Non-linear evolution equation

• The first evolution equation we derived has the non-linear effects
due to recombination :

∂ T (~x⊥, ~y⊥)

∂Y
=
αsNc

2π2

∫
d2~z⊥

(~x⊥ − ~y⊥)
2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
{
T (~x⊥,~z⊥) + T (~z⊥, ~y⊥) − T (~x⊥, ~y⊥) − T (~x⊥,~z⊥)T (~z⊥, ~y⊥)

}
(Balitsky-Kovchegov equation)

• The r.h.s. vanishes when T reaches 1, and the growth stops. The
non-linear term lets both dipoles interact after the splitting of the
original dipole

• Both T = 0 and T = 1 are fixed points of this equation

• T = ε : r.h.s.> 0 ⇒ T = 0 is unstable
• T = 1 − ε : r.h.s.> 0 ⇒ T = 1 is stable
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Caveats

• So far, we have studied the scattering amplitude between a color
dipole and a “god given” patch of color field. This is too crude to
describe any realistic situation

• One can describe Deep Inelastic Scattering as an interaction
between a dipole and the target, but for that we need to improve
the treatment of the target

• An experimentally measured cross-section is an average over
many collisions, and the target fields fluctuate event-by-event :

T → 〈T 〉
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Balitsky hierarchy

• Because of this average over the target configurations, the
evolution equation we have derived should be written as :

∂ 〈T (~x⊥, ~y⊥)〉
∂Y

=
αsNc

2π2

∫
d2~z⊥

(~x⊥ − ~y⊥)
2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
{
〈T (~x⊥,~z⊥)〉 + 〈T (~z⊥, ~y⊥)〉 − 〈T (~x⊥, ~y⊥)〉 − 〈T (~x⊥,~z⊥)T (~z⊥, ~y⊥)〉

}
• As one can see, the equation is no longer a closed equation,

since the equation for 〈T 〉 depends on a new object, 〈T T 〉

• One can derive an evolution equation for 〈T T 〉. Its right hand
side contains objects with six Wilson lines

• There is in fact an infinite hierarchy of nested evolution equations,
whose generic structure is

∂
〈
(UU†)n

〉
∂Y

=

∫
· · ·
〈
(UU†)n

〉
⊕
〈
(UU†)n+1

〉
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BK equation as a mean-field approximation

• In the large Nc approximation, the equations of the Balitsky
hierarchy can be rewritten in terms of the dipole operator
T ≡ tr(UU†) only. But they still contain averages like 〈Tn〉

• In order to truncate the hierarchy of equations, one may assume
a mean field approximation

〈T T 〉 ≈ 〈T 〉 〈T 〉

• This approximation gives for 〈T 〉 the same evolution equation as
the one we had for a fixed configuration of the target
(Balitsky-Kovchegov equation)
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Geometrical Scaling
from BK evolution
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Analogy with reaction-diffusion processes

Munier, Peschanski (2003,2004)

• Assume translation and rotation invariance, and define :

N(Y, k⊥) ≡ 2π
∫
d2~x⊥ e

i~k⊥·~x⊥
〈T (0,~x⊥)〉

Y

x2⊥

• From the Balitsky-Kovchegov equation for 〈T 〉
Y

, we obtain the
following equation for N :

∂N(Y, k⊥)

∂Y
=
αsNc

π

[
χ(−∂L)N(Y, k⊥) −N

2(Y, k⊥)
]

with

L ≡ ln(k2/k20)

χ(γ) ≡ 2ψ(1) − ψ(γ) − ψ(1 − γ)

ψ(z) ≡ d ln Γ(z)
dz
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Analogy with reaction-diffusion processes

• Expand the function χ(γ) to second order (diffusion
approximation) around its minimum γ = 1/2

• Introduce new variables :

t ∼ Y

z ∼ L +
αsNc

2π
χ′′(1/2) Y

• The equation for N becomes :

∂tN = ∂2zN +N −N2

(known as the Fisher-Kolmogorov-Petrov-Piscounov equation)
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Analogy with reaction-diffusion processes

• Interpretation : this equation is typical for all the diffusive systems
subject to a reaction A←→ A+A

• ∂2zN : diffusion term (the quantity under consideration can hop from
a site to the neighboring sites)

• +N : gain term corresponding to A→ A +A

• −N2 : loss term corresponding to A +A→ A

• Note : this equation has two fixed points :
• N = 0 : unstable
• N = 1 : stable

• The stable fixed point at N = 1 exists only if one keeps the loss
term. One would not have it from the BFKL equation
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Traveling waves

• Assume an initial condition N(t0, z) that goes smoothly from 1 at
z = −∞ to 0 at z = +∞, and behaves like exp(−βz) when z� 1

N(t,z)

z

• The solution of the F-KPP equation is known to behave like a
traveling wave at asymptotic times :

N(t, z) ∼
t→+∞ N(z− v(t))

with v(t) ≈ 2t− 3 ln(t)/2
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Geometrical scaling in DIS

Iancu, Itakura, McLerran (2002)
Mueller, Triantafyllopoulos (2002)
Munier, Peschanski (2003)

• Going back to the original variables, one gets :

N(Y, k⊥) = N (k⊥/Qs(Y))

with
Q2s(Y) = k

2
0 Y

− 3
2(1−γ̄) eαsχ

′′( 1
2
)( 1
2
−γ̄)Y

• Going from N(Y, k⊥) to 〈T (0,~x⊥)〉
Y

, we obtain :

〈T (0,~x⊥)〉
Y
= T (Qs(Y)x⊥)
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Geometrical scaling in DIS

• Reminder : γ∗p cross-section expressed in terms of T :

σγ∗p(Y,Q
2) = 2 σ0

∫
d2~x⊥

∫1
0

dz
∣∣∣ψ(z, x⊥, Q2)∣∣∣2 〈T (0,~x⊥)〉

Y

• If one neglects the quark masses in ψ, the scaling property of
〈T 〉

Y
imply that σγ∗p depends only on the ratio Q2/Q2s(Y), rather

than on Q2 and Y separately
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F2(x,Q
2) σγ∗p(log(Q2/Q2s(x)))
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DIS and other elementary reactions

• Reactions involving a hadron or nucleus and an “elementary”
projectile (γ∗, q or g) are fairly straightforward to study

Deep Inelastic Scattering is the archetype of all these processes

• These processes play a role in the study of proton-nucleus
collisions, where the proton is described as a dilute beam of
quarks and gluons
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Nucleus-nucleus collisions ?

• What about collisions where the two projectiles are equally
dense?

• It would be nice to have a formalism that allows one to treat the
two projectiles on the same footing :

?

• Conjecture (for the Leading Order):
• Before the collision, the two projectiles are described by their own

color field, like in DIS
• After the collision (i.e. in the forward light-cone), there is a color

field that obeys Yang-Mills equations, and whose boundary
condition on the light-cone is given by the fields of the incoming
nuclei
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Nucleus-nucleus collisions ?

• Can we set up a framework where this can be justified ?

Note : this new formalism should lead to the same results for
DIS, not something completely different...

• Can we include all the multiple scattering corrections ?

• How do we compute observables for two saturated objects ?

• Can we compute and resum all the large logs of 1/x1,2 ?
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Introduction to the Color Glass Condensate

• The BK equation, can be viewed as a projectile-centric
description of a collision process. The rapidity evolution comes
from the dressing of the projectile as it is boosted

• One may see the Color Glass Condensate as a description of the
same physics from the point of view of the target

In this target-centric description, the projectile does not change,
but the color fields of the target depend on the rapidity
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Degrees of freedom and their interplay

McLerran, Venugopalan (1994)
Iancu, Leonidov, McLerran (2001)

• The fast partons (k+ > Λ) are frozen by time dilation
B described as static color sources on the light-cone :

Jµ = δµ+ρ(x−,~x⊥) (0 < x− < 1/Λ+)

• The color sources ρ are random, and described by a probability
distribution WΛ[ρ]

• Slow partons (k+ < Λ) may evolve during the collision
B treated as standard gauge fields
B eikonal coupling to the current Jµ : JµAµ

S = −
1

4

∫
FµνF

µν︸ ︷︷ ︸
SYM

+

∫
JµAµ︸ ︷︷ ︸

fast partons
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Semantics

McLerran (2000)

• Color : pretty much obvious...

• Glass : the system has degrees of freedom whose timescale is
much larger than the typical timescales for interaction processes.
Moreover, these degrees of freedom are stochastic variables, like
in “spin glasses” for instance

• Condensate : the soft degrees of freedom are as densely
packed as they can (the density remains finite, of order α−1

s , due
to the interactions between gluons)
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Target average

• The averaged dipole amplitude 〈T 〉 studied in the
Balitsky-Kovchegov approach can be written as :

〈T (~x⊥, ~y⊥)〉 =
∫
[Dρ] W

Y
[ρ]

[
1 −

1

Nc
tr(U(~x⊥)U†(~y⊥))

]

• The Y dependence of the expectation value 〈T 〉 comes from the
Y dependence of W

Y
[ρ]
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JIMWLK evolution equation

Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner

∂W
Y
[ρ]

∂Y
=
1

2

∫
~x⊥,~y⊥

δ

δρa(~x⊥)
χab(~x⊥, ~y⊥)

δ

δρb(~y⊥)︸ ︷︷ ︸
H (JIMWLK Hamiltonian)

W
Y
[ρ]

with

χab(~x⊥, ~y⊥) ≡
αs

4π3

∫
d2~z⊥

(~x⊥ − ~z⊥) · (~y⊥ − ~z⊥)

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
[(
1 − Ũ†(~x⊥)Ũ(~z⊥)

)(
1 − Ũ†(~z⊥)Ũ(~y⊥)

)]
ab

• Ũ is a Wilson line in the adjoint representation, that exponentiates the
gauge field A+ such that∇2⊥A+ = −ρ
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JIMWLK evolution equation

• Sketch of a derivation : exploit the frame independence in order
to write :

〈O〉
Y
=

∫
[Dρ] W0[ρ] OY [ρ]︸ ︷︷ ︸

Balitsky-Kovchegov description

=

∫
[Dρ] W

Y
[ρ] O0[ρ]︸ ︷︷ ︸

CGC description

• Universality : the evolution of W
Y
[ρ] does not depend on the

observable one is considering
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Initial condition : McLerran–Venugopalan model

• The JIMWLK equation must be completed by an initial condition,
given at some moderate x0

• As with DGLAP, the initial condition is non-perturbative

• The McLerran-Venugopalan model is often used as an initial
condition at moderate x0 for a large nucleus :

z

• partons distributed randomly

• many partons in a small tube

• no correlations at different ~x⊥

• The MV model assumes that the density of color charges ρ(~x⊥)
has a Gaussian distribution :

Wx0 [ρ] = exp
[
−

∫
d2~x⊥

ρa(~x⊥)ρa(~x⊥)

2µ2(~x⊥)

]
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CGC applied to DIS



François Gelis

88

Inclusive DIS at Leading Order

• CGC effective theory with cutoff at the scale Λ−
0 :

k
-

P
-

Λ
-

0

fields sources

• At Leading Order, DIS can be seen as the interaction between
the target and a qq̄ fluctuation of the virtual photon :
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Inclusive DIS at Leading Order

• Forward dipole amplitude at leading order:

T LO(~x⊥, ~y⊥) = 1−
1

Nc
tr (U(~x⊥)U†(~y⊥)︸ ︷︷ ︸

Wilson lines

)

U(~x⊥) = P exp ig
∫1/xP−

dz+ A−(z+,~x⊥)

[Dµ,F
µν] = δν− ρ(x+,~x⊥)

B at LO, the scattering amplitude on a saturated target is
entirely given by classical fields

• Note: the qq̄ pair couples only to the sources up to the
longitudinal coordinate z+ . (xP−)−1. The other sources are too
slow to be seen by the probe
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Inclusive DIS at NLO

• Consider now quantum corrections to the previous result,
restricted to modes with Λ−

1 < k
− < Λ−

0 (the upper bound
prevents double-counting with the sources):

k
-

P
-

Λ
-

0
Λ

-

1

fields sources

• At NLO, the qq̄ dipole must be corrected by a gluon, e.g. :
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Inclusive DIS at NLO

k
-

P
-

Λ
-

0
Λ

-

1

fields sources

δT
NLO

T
LO

• At leading log accuracy, the contribution of the quantum modes
in that strip is :

δT NLO(~x⊥, ~y⊥) = ln
(
Λ−
0

Λ−
1

)
H T LO(~x⊥, ~y⊥)
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Inclusive DIS at NLO

• These NLO corrections can be absorbed in the LO result,〈
T LO + δT NLO

〉
Λ−
0

=
〈
T LO

〉
Λ−
1

provided one defines a new effective theory with a lower cutoff
Λ−
1 and an extended distribution of sources WΛ−

1
[ρ]:

k
-

P
-

Λ
-

1
Λ

-

0

fields sources

T
LO

WΛ−
1
≡
[
1+ ln

(
Λ−
0

Λ−
1

)
H
]
WΛ−

0

(JIMWLK equation for a small change in the cutoff)
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Inclusive DIS at Leading Log

• Iterate the previous process to integrate out all the slow field
modes at leading log accuracy:

Inclusive DIS at Leading Log accuracy

σγ∗T =

∫1
0

dz

∫
d2~r⊥|ψ(q|z,~r⊥)|

2
σdipole(x,~r⊥)

σdipole(x,~r⊥) ≡ 2

∫
d2~X⊥

∫ [
Dρ
]
WxP− [ρ] T LO(~x⊥, ~y⊥)

• One does not need to evolve down to Λ− → 0: the DIS amplitude
becomes independent of Λ− when Λ− . xP−

k
-

P
-

xP
-

Λ
-

Λ
-

0
Λ

-

1

fields sources
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Summary of Lecture II
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Projectile-centric description : Balitsky-Kovchegov equation

T (x⊥,y⊥) ≡ 1 −
1

Nc
tr (U(x⊥)U†(y⊥))

∂ 〈T 〉
∂Y

∼ αs

∫
· · ·
[
〈T 〉 − 〈TT 〉︸ ︷︷ ︸

≈〈T〉〈T〉

]

• preserves unitarity

• dynamical geometrical scaling

• input: model for 〈T 〉 at the initial Y0 :
Golec-Biernat-Wusthof,
McLerran-Venugopalan,...

• basis of the “hybrid” description in
hadron-hadron reactions :

• projectile 1 : dilute parton beam
• projectile 2 : saturated
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Target-centric description : Color Glass Condensate

• Color source distribution ρ(x⊥) in the target

⇓
• Color field Aµ given by Yang-Mills equations : [Dµ,Fµν] = δν−ρ

⇓
• Observable O evaluated on this field configuration

⇓
• Expectation value obtained by averaging over ρ :

〈O〉 =
∫
[Dρ(x⊥)]WY

[ρ] O[ρ]

• Rapidity evolution : ∂WY
∂Y

= HW
Y

(JIMWLK equation)
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CGC description of
A-A collisions at LO
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CGC and Nucleus-Nucleus collisions

?

L = −
1

4
FµνF

µν + (Jµ1 + Jµ2︸ ︷︷ ︸
Jµ

)Aµ

• Given the sources ρ1,2 in each projectile, how do we calculate
observables? Is there some kind of perturbative expansion?

• Loop corrections and factorization?
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Main difficulty : bookkeeping

• Dilute regime : one parton in each projectile interact

• Dense regime : multiparton processes become crucial

(+ pileup of many partonic scatterings in each AA collision)
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Power counting

• In the saturated regime, the sources are of order 1/g (because〈
ρρ
〉
∼ occupation number ∼ 1/αs)

The order of each connected subdiagram is

1

g2
g# produced gluons g2(# loops)
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Power counting

• Example : gluon spectrum :

dN1

d3~p
=
1

g2

[
c0 + c1 g

2 + c2 g
4 + · · ·

]
• The coefficients c0, c1, · · · are themselves series that resum all

orders in (gρ
1,2

)n. For instance,

c0 =

∞∑
n=0

c0,n (gρ
1,2

)n

• At Leading Order, we want to calculate the full c0/g2 contribution
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Inclusive gluon spectra at LO

• The gluon spectrum at LO is given by :

dN1

dYd2~p⊥

∣∣∣∣
LO

=
1

16π3

∫
x,y

eip·(x−y) �x�y
∑
λ

εµλε
ν
λ Aµ(x)Aν(y)

where Aµ(x) is the classical solution such that limx0→−∞ Aµ(x) = 0

Classical Yang-Mills equations

[Dµ,F
µν] = Jν1 + Jν2

Inclusive multigluon spectra at Leading Order

dNn

d3p1 · · ·d3pn

∣∣∣∣
LO

=
dN1

d3p1

∣∣∣∣
LO

× · · · × dN1

d3pn

∣∣∣∣
LO
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Retarded classical fields

This sum of trees obeys :

�A+U′(A) = J , lim
x0→−∞A(x) = 0

• Perturbative expansion (illustrated here for U(A) ∝ A3) :

• Built with retarded propagators

• Classical fields resum the full series of tree diagrams
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+ + + +
1

2

1

2

1

2

1

8
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Space-time evolution of the classical field in AA collisions

• Sources located on the light-cone:

Jµ = δµ+ ρ1(x
−, x⊥)︸ ︷︷ ︸

∼δ(x−)

+δµ− ρ2(x
+, x⊥)︸ ︷︷ ︸

∼δ(x+)

z

t

0

21

3

• Region 0 : Aµ = 0

• Regions 1,2 : Aµ depends
only on ρ1 or ρ2
(known analytically)

• Region 3 : Aµ = radiated field
after the collision, only known
numerically
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z

t
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easyeasy
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Single gluon spectrum at LO

sΛ/Tk
0 1 2 3 4 5 6

T
k2

)d
N
/d

2
R

π
1
/(

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

KNV I

KNV II

Lappi

• Lattice artifacts at large momentum
(they do not affect much the overall number of gluons)

• Important softening at small k⊥ compared to pQCD (saturation)
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Initial color fields

Lappi, McLerran (2006) (Semantics : Glasma ≡ Glas[s - plas]ma)

• Before the collision, the chromo-~E and ~B fields are localized in
two sheets transverse to the beam axis

• Immediately after the collision, the chromo-~E and ~B fields have
become longitudinal :

Ez = ig
[
Ai1,A

i
2

]
, Bz = igεij

[
Ai1,A

j
2

]

0 0.5 1 1.5 2

g
2
µτ

0

0.2

0.4

0.6

0.8

[(
g
2
µ

)4
/g

2
]

B
z

2

E
z

2

B
T

2

E
T

2
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Energy momentum tensor at LO
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Energy momentum tensor at LO

Tµν for longitudinal ~E and ~B

Tµν
LO

(τ = 0+) = diag (ε, ε, ε,−ε)

B far from ideal hydrodynamics

François Gelis Color Glass Condensate 105/140 Schleching, February 2014



François Gelis

105

Next–to–
Leading Order



François Gelis

106

Why is the LO insufficient ?

• Naive perturbative expansion :

dN

d3~p
=
1

g2

[
c0 + c1 g

2 + c2 g
4 + · · ·

]
Note : so far, we have seen how to compute c0

• Problem : c1,2,··· contain logarithms of the cutoffs Λ± :

c1 = c10 + c11 lnΛ±

c2 = c20 + c21 lnΛ± + c22 ln2Λ±︸ ︷︷ ︸
Leading Log terms

• Theses logs are unphysical. However, they are universal and can
be absorbed into the distributions W[ρ1,2]
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Leading Log corrections to the gluon spectrum

• By keeping only the terms that contain logarithms of the cutoff,
the NLO result can be written as :

dN

d3~p

∣∣∣∣
NLO

=
Leading Log

[
log
(
Λ+
)
H1 + log

(
Λ−
)
H2

] dN

d3~p

∣∣∣∣
LO

H1,2 : JIMWLK Hamiltonians for the two nuclei

• Note : the logs do not mix the two nuclei ⇒ Factorization
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Factorization of the logarithms

• By integrating over ρ1,2’s, one can absorb the logarithms into
universal distributions W1,2[ρ1,2]

• H is a self-adjoint operator :∫
[Dρ]W

(
HO

)
=

∫
[Dρ]

(
HW

)
O

Single inclusive gluon spectrum at Leading Log accuracy

dN1

d3~p
=

Leading Log

∫ [
Dρ

1
Dρ

2

]
W1
[
ρ
1

]
W2
[
ρ
2

] dN1
d3~p

∣∣∣∣
LO︸ ︷︷ ︸

fixed ρ1,2

• Logs absorbed into the evolution of W1,2 with the scales

Λ
∂W

∂Λ
= HW (JIMWLK equation)
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Handwaving argument for factorization

τcoll ∼ E
-1

• The duration of the collision is very short: τcoll ∼ E
−1

• The logarithms we want to resum are due to the radiation of soft gluons,
which takes a long time
B it must happen (long) before the collision

• The projectiles are not in causal contact before the impact
B the logarithms are intrinsic properties of the projectiles, independent
of the measured observable
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Handwaving argument for factorization

τcoll ∼ E
-1

space-like interval

• The duration of the collision is very short: τcoll ∼ E
−1

• The logarithms we want to resum are due to the radiation of soft gluons,
which takes a long time
B it must happen (long) before the collision

• The projectiles are not in causal contact before the impact
B the logarithms are intrinsic properties of the projectiles, independent
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Multi-gluon correlations at Leading Log

• The previous factorization can be extended to multi-particle
inclusive spectra :

dNn

d3~p1 · · ·d3~pn
=

Leading Log

=

∫ [
Dρ

1
Dρ

2

]
W1
[
ρ
1

]
W2
[
ρ
2

] dN1

d3~p1
· · · dN1
d3~pn

∣∣∣∣
LO

• At Leading Log accuracy, all the rapidity correlations come from
the evolution of the distributions W[ρ1,2]

B they are a property of the pre-collision initial state

• Predicts long range (∆y ∼ α−1
s ) correlations in rapidity
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Ridge correlations
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2-particle correlations in AA collisions

[STAR Collaboration, RHIC]

• Long range rapidity correlation

• Narrow correlation in azimuthal angle

• Narrow jet-like correlation near ∆y = ∆ϕ = 0
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Probing early times with rapidity correlations

detection (∼1 m/c)

freeze out (∼10 fm/c)

latest correlation

A
B

z 

t

• By causality, long range rapidity correlations are sensitive to the
dynamics of the system at early times :

τcorrelation ≤ τfreeze out e
−|∆y|/2
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Color field at early time
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Color field at early time

Q
S

-1

• The field lines form tubes of transverse size ∼ Q−1
s

• Rapidity correlation length : ∆η ∼ α−1
s

François Gelis Color Glass Condensate 113/140 Schleching, February 2014



François Gelis

114

2-hadron correlations from color flux tubes

• η-independent fields lead to long range correlations :

• Particles emitted by different flux tubes are not correlated
B (RQs)

−2 sets the strength of the correlation

• At early times, the correlation is flat in ∆ϕ

The collimation in ∆ϕ is produced later by radial flow
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R

Q
S
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2-hadron correlations from color flux tubes

• η-independent fields lead to long range correlations :

v
r

• Particles emitted by different flux tubes are not correlated
B (RQs)

−2 sets the strength of the correlation

• At early times, the correlation is flat in ∆ϕ

The collimation in ∆ϕ is produced later by radial flow
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Centrality dependence
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radial boost model 

STAR preliminary 

• Main effect : increase of the radial flow velocity with the centrality
of the collision
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Rapidity dependence

Estimate at LHC energy
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High multiplicity proton-proton collisions at the LHC

• Similar effect visible for high multiplicity p-p collisions,
in an intermediate p⊥ window

• Much weaker than in AA collisions
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Possible origin of the angular correlation

• The long range rapidity correlations invoked in A-A collisions are
also present in p-p collisions

• Whether there is a sufficient amount of radial flow to induce the
azimuthal collimation is unknown

• less particles are produced
• the system freezes out much earlier

• There is however an “intrinsic” angular correlation, that exists in
the absence of flow (it was there in A-A collisions as well, but
neglected because it is a small effect)
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Intrinsic angular correlations

• 2-gluon inclusive spectrum before the average over ρ1,2:

p

q

B this contribution dominates the 2-gluon spectrum in the
regime where the parton densities are large

B the average over ρ1,2 amounts to connecting the red and
green lines in all the possible ways (pairwise if the sources have
Gaussian distributions)
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Intrinsic angular correlations

• Trivial connection (no correlation) :

p

q
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Intrinsic angular correlations

• Non-trivial connection with correlations at ∆ϕ < π
2

:

p

q

k

k

q-k

p-k

B Momentum assignment of the unintegrated gluon
distributions:

[φ1(k⊥)]
2
φ2(|p⊥ − k⊥|) φ2(|q⊥ − k⊥|)
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Intrinsic angular correlations

• In the saturation regime, unintegrated gluon distributions are
peaked near Qs:

QsHx=10
-2
L=1.5 GeV

QsHx=10
-4
L=1.9 GeV

QsHx=10
-5
L=2.4 GeV

1 10 100
kT
2

0.5

1.0

1.5

2.0

2.5

3.0

UGD

• The presence of this peak is what correlates the directions of ~p⊥
and ~q⊥ around ∆φ = 0 when we perform the integration over ~k⊥
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Intrinsic angular correlations

k

• |~k⊥| ∼ Qs

• |~p⊥ − ~k⊥| ∼ |~q⊥ − ~k⊥| ∼ Qs

• If the momenta are smaller than the width of the distributions, there is no
significant angular correlation

Similarly, for large momenta there is no correlation because the main
contribution does not come from the peak of the distributions anymore
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Intrinsic angular correlations

k

−kp

q

• |~k⊥| ∼ Qs
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Intrinsic angular correlations

• The effect is maximal for intermediate p⊥, q⊥ ∼ Qs:
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Towards thermalization...
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Energy momentum tensor at LO

François Gelis Color Glass Condensate 125/140 Schleching, February 2014



Q
S

-1

François Gelis

125

Energy momentum tensor at LO

When ~E ‖ ~B, the energy momentum tensor is

Tµν
LO

= diag (ε, ε, ε,−ε)

(Tµν = 1
4
gµν FλσFλσ − FµλFνλ)

François Gelis Color Glass Condensate 125/140 Schleching, February 2014



François Gelis

126

Competition between Expansion and Isotropization

τ1

τ2
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Weibel instabilities for small perturbations
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Weibel instabilities for small perturbations

• The perturbations that alter the classical field in loop corrections
diverge with time, like exp

√
µτ (µ ∼ Qs)

• Some components of Tµν have secular divergences when
evaluated beyond tree level
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Example of pathologies in fixed order calculations (scalar theory)

LO
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PLO εLO

• Small correction to the energy density
(protected by energy conservation)

• Secular divergence in the pressure
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Example of pathologies in fixed order calculations (scalar theory)

LO + NLO
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• Small correction to the energy density
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• Secular divergence in the pressure
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Improved power counting

Loop ∼ g2 , e
√
µτ for each field perturbation

u

T
µν
(x)

vΓ
2
(u,v)

• 1 loop : (ge
√
µτ)2

• 2 disconnected loops :
(ge
√
µτ)4

• 2 nested loops : g(ge
√
µτ)3

B subleading

Leading terms at τmax

• All disconnected loops to all orders
B exponentiation of the 1-loop result
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Improved power counting

Loop ∼ g2 , e
√
µτ for each field perturbation

T
µν
(x)

Γ3(u,v,w)

• 1 loop : (ge
√
µτ)2

• 2 disconnected loops :
(ge
√
µτ)4

• 2 nested loops : g(ge
√
µτ)3

B subleading

Leading terms at τmax

• All disconnected loops to all orders
B exponentiation of the 1-loop result
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Resummation of the leading secular terms

Tµν
resummed

=

∫
[Da] exp

[
−
1

2

∫
u,v

a(u)Γ−12 (u, v)a(v)

]
Tµν

LO
[Ainit + a]

• There is a unique choice of the variance Γ2 such that

Tµνresummed = Tµν
LO

+ Tµν
NLO

+ · · ·

• This resummation collects all the terms with the worst time
behavior

• Equivalent to Gaussian fluctuations of the initial field
+ classical time evolution

• At Qsτ0 � 1 : Ainit ∼ Qs/g , a ∼ Qs

François Gelis Color Glass Condensate 130/140 Schleching, February 2014



François Gelis

130

Resummation of the leading secular terms

Tµν
resummed

=

∫
[Da] exp

[
−
1

2

∫
u,v

a(u)Γ−12 (u, v)a(v)

]
Tµν

LO
[Ainit + a]

• There is a unique choice of the variance Γ2 such that

Tµνresummed = Tµν
LO

+ Tµν
NLO

+ · · ·

• This resummation collects all the terms with the worst time
behavior

• Equivalent to Gaussian fluctuations of the initial field
+ classical time evolution

• At Qsτ0 � 1 : Ainit ∼ Qs/g , a ∼ Qs

François Gelis Color Glass Condensate 130/140 Schleching, February 2014



François Gelis

131

Main steps

1. Determine the 2-point function Γ2(u, v) that defines the
Gaussian fluctuations, for the initial time Qsτ0 of interest
Note : this is an initial value problem, whose outcome is uniquely
determined by the state of the system at x0 = −∞, and depends
on the history of the system from x0 = −∞ to τ = τ0
Problem solvable only if the fluctuations are weak, aµ � Qs/g

Qsτ0 � 1 necessary for the fluctuations to be Gaussian

2. Solve the classical Yang-Mills equations from τ0 to τf
Note : the problem as a whole is boost invariant, but individual field
configurations are not =⇒ 3+1 dimensions necessary

3. Do a Monte-Carlo sampling of the fluctuating initial conditions
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Discretization of the expanding volume

x

y

η

L

L
N

a⊥aη

• Comoving coordinates : τ, η, x⊥

• Only a sub-volume is simulated
+ periodic boundary conditions

• L2 ×N lattice

η = const

τ = const
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Gaussian spectrum of fluctuations

Expression of the variance (from 1-loop considerations)

Γ2(u, v) =

∫
modes k

ak(u)a
∗
k(v)[

DρD
ρδνµ −DµD

ν + igFµ
ν
]
aµk = 0 , lim

x0→−∞ak(x) ∼ eik·x

z

t

0

21

3

0. Aµ = 0, trivial

1,2. Aµ = pure gauge, analytical solution

3. Aµ non-perturbative⇒ expansion in Qsτ

• We need the fluctuations in
Fock-Schwinger gauge
x+a− + x−a+ = 0
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Time evolution of P
T
/ε and P

L
/ε (64× 64× 128 lattice)

g = 0.1 (Nconfs = 200)
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Time evolution of P
T
/ε and P

L
/ε (64× 64× 128 lattice)

g = 0.5 (Nconfs = 2000)
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Bose-Einstein
condensation
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Overpopulated CGC initial conditions

CGC initial conditions

ε0 ∼
Q4s
αs

n0 ∼
Q3s
αs

(nε−3/4)0 ∼ α
−1/4
s

Equilibrium state

ε ∼ T4 n ∼ T3 nε−3/4 ∼ 1

• The excess of gluons can be eliminated in two ways :

• via inelastic processes 3→ 2 (rather slow at weak coupling)
• by condensation on the zero mode
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Bose-Einstein condensation (in a scalar field theory)
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• Start with an overpopulated initial condition, with an empty zero mode

• Very quickly, the zero mode becomes highly occupied
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Volume dependence
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L = 20 L = 30 L = 40

f(k) =
1

eβ(ωk−µ) − 1
+ n0δ(k) =⇒ f(0) ∝ V = L3
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Evolution of the condensate
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• Formation time almost independent of the coupling
• Condensate lifetime much longer than its formation time
• Smaller amplitude and faster decay at large coupling
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Summary
and Outlook
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Summary

• Gluon saturation and recombination
• prevents the gluon occupation number to go above 1/αs
• prevents violations of unitarity in scattering amplitudes

• Two equivalent descriptions
• Balitsky-Kovchegov :

Non-linear evolution equation for specific matrix elements
The non-linear terms lead to the dynamical generation of
geometrical scaling
Applicable to collisions between a saturated and a dilute projectile

• Color Glass Condensate :
The color fields of the target evolve with rapidity
More suitable to collisions of two saturated projectiles

• Isotropization, Thermalization
• Instabilities require the resummation of additional contributions
• Possibility of the formation of a Bose-Einstein condensate
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Semantics

• Weakly coupled : g� 1

• Weakly interacting : gA� 1 g2f(p)� 1

(2→ 2)� (2→ 3), (3→ 2), · · ·

• Strongly interacting : gA ∼ 1 g2f(p) ∼ 1

(2→ 2) ∼ (2→ 3) ∼ (3→ 2) ∼ · · ·

No well defined quasi-particles

CGC = weakly coupled, but strongly interacting effective theory
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