Isotropization in Heavy Ion Collisions at High Energy

McGill University, Montreal, April 2014

T. Epelbaum, FG : arXiv:1307.1765 arXiv:1307.2214

> François Gelis IPhT, Saclay

Outline

- **1** The surprising success of relativistic hydrodynamics
- **2** Color Glass Condensate in heavy ion collisions
- Initial stages of heavy ion collisions
- A Non Renormalizability issues

Relativistic hydrodynamics

Stages of a nucleus-nucleus collision

Stages of a nucleus-nucleus collision

 Well described as a fluid expanding into vacuum according to relativistic hydrodynamics

François Gelis

Isotropization in Heavy Ion Collisions 2

2/51

McGill University, Montreal, April 2014

François Gelis

Isotropization in Heavy Ion Collisions

2/51

McGill University, Montreal, April 2014

François Gelis

Isotropization in Heavy Ion Collisions

2/51

• Hydrodynamics is a macroscopic description based on energy-momentum conservation :

$$\partial_{\mu}T^{\mu\nu} = 0$$

True in any quantum field theory

But does not provide a closed set of equations to fully describe the evolution of the system (4 equations, while $T^{\mu\nu}$ has 10 independent components)

• Hydrodynamics is a macroscopic description based on energy-momentum conservation :

$$\partial_{\mu}T^{\mu\nu} = 0$$

True in any quantum field theory

But does not provide a closed set of equations to fully describe the evolution of the system (4 equations, while $T^{\mu\nu}$ has 10 independent components)

- Additional assumption : at macroscopic scales, $T^{\mu\nu}$ is expressible in terms of ε (energy density), P (pressure) and u^{μ} (fluid velocity field)
- For a frictionless fluid : $T^{\mu\nu}_{ideal} = (\varepsilon + P) \, u^{\mu} u^{\nu} P \, g^{\mu\nu}$

• Hydrodynamics is a macroscopic description based on energy-momentum conservation :

$$\partial_{\mu}T^{\mu\nu} = 0$$

True in any quantum field theory

But does not provide a closed set of equations to fully describe the evolution of the system (4 equations, while $T^{\mu\nu}$ has 10 independent components)

- Additional assumption : at macroscopic scales, $T^{\mu\nu}$ is expressible in terms of ε (energy density), P (pressure) and u^{μ} (fluid velocity field)
- For a frictionless fluid : $T^{\mu\nu}_{ideal} = (\varepsilon + P) \, u^{\mu} u^{\nu} P \, g^{\mu\nu}$
- In general : $T^{\mu\nu} = T^{\mu\nu}_{ideal} \oplus \eta \nabla^{\mu} u^{\nu} \oplus \zeta (\nabla_{\rho} u^{\rho}) \oplus \cdots$

• Hydrodynamics is a macroscopic description based on energy-momentum conservation :

$$\partial_{\mu}T^{\mu\nu} = 0$$

True in any quantum field theory

But does not provide a closed set of equations to fully describe the evolution of the system (4 equations, while $T^{\mu\nu}$ has 10 independent components)

- Additional assumption : at macroscopic scales, $T^{\mu\nu}$ is expressible in terms of ε (energy density), P (pressure) and u^{μ} (fluid velocity field)
- For a frictionless fluid : $T^{\mu\nu}_{ideal} = (\varepsilon + P) \, u^{\mu} u^{\nu} P \, g^{\mu\nu}$
- In general : $T^{\mu\nu} = T^{\mu\nu}_{ideal} \oplus \eta \nabla^{\mu} u^{\nu} \oplus \zeta (\nabla_{\rho} u^{\rho}) \oplus \cdots$
- Microscopic inputs : $\epsilon = f(P)$ (EoS), η, ζ, \cdots (transport coeff.)

Why is it hard to justify in QCD?

- Can a QCD-based model explain how T^{μν} evolves to the hydrodynamical form?
- There should be an overlap between this model and hydrodynamics, so that the final results do not depend on the time τ_0 at which one switches over to hydrodynamics

Why is it hard to justify in QCD?

cea

Large shear viscosity at weak coupling in QCD

$$\frac{\eta}{s} = \frac{5.12}{g^4 \ln\left(\frac{2.42}{g}\right)}$$

François Gelis

Isotropization in Heavy Ion Collisions 5/3

Color Glass Condensate

What do we need to know about nuclei?

• At low energy : valence quarks

François Gelis

Isotropization in Heavy Ion Collisions 6

6/51

McGill University, Montreal, April 2014

Parton distributions in a nucleon

What do we need to know about nuclei?

Slightly boosted nucleus

- At low energy : valence guarks
- At higher energy :
 - Lorenz contraction of longitudinal sizes
 - Time dilation > slowing down of the internal dynamics
 - Gluons start becoming important

- At low energy : valence guarks
- At higher energy :
 - Lorenz contraction of longitudinal sizes
 - Time dilation > slowing down of the internal dynamics
 - Gluons start becoming important
- At very high energy : gluons dominate

Multiple scatterings and gluon recombination

 Main difficulty: How to treat collisions involving a large number of partons?

Multiple scatterings and gluon recombination

Dilute regime : one parton in each projectile interact
 single parton distributions, standard perturbation theory

Multiple scatterings and gluon recombination

• Dense regime : multiparton processes become crucial

> gluon recombinations are important (saturation)

> multi-parton distributions

 \rhd alternative approach : treat the gluons in the projectiles as external currents

$$\mathcal{L} = -\frac{1}{4}\mathbf{F}^2 + \mathbf{A} \cdot (\mathbf{J}_1 + \mathbf{J}_2)$$

(gluons only, field A for $k^+ < \Lambda$, classical source J for $k^+ > \Lambda$)

François Gelis

Isotropization in Heavy Ion Collisions

9/51

McGill University, Montreal, April 2014

Color Glass Condensate

CGC = effective theory of small x gluons

• The fast partons $(k^+ > \Lambda^+)$ are frozen by time dilation described as static color sources on the light-cone :

> $\mathbf{J}^{\mu} = \delta^{\mu +} \rho(\mathbf{x}^{-}, \vec{\mathbf{x}}_{\perp})$ $(0 < x^{-} < 1/\Lambda^{+})$

- The color sources ρ are random, and described by a probability distribution $W_{\Lambda^+}[\rho]$
- Slow partons ($k^+ < \Lambda^+$) cannot be considered static over the time-scales of the collision process

b must be treated as standard gauge fields

 \triangleright eikonal coupling to the current J^{μ} : $A_{\mu}J^{\mu}$

Terminology

• Weakly coupled : $g \ll 1$

• Weakly interacting : $gA \ll 1$ $g^2 f(\mathbf{p}) \ll 1$ $(2 \rightarrow 2) \gg (2 \rightarrow 3), (3 \rightarrow 2), \cdots$

• Strongly interacting : $gA \sim 1$ $g^2f(p) \sim 1$

 $(2 \rightarrow 2) \sim (2 \rightarrow 3) \sim (3 \rightarrow 2) \sim \cdots$

No well defined quasi-particles

CGC = weakly coupled, but strongly interacting effective theory

Power counting

• CGC effective theory with cutoff at the scale Λ_0 :

• Expansion in g² in the saturated regime:

$$T^{\mu\nu} \sim \frac{1}{g^2} \left[c_0 + c_1 \ g^2 + c_2 \ g^4 + \cdots \right]$$

Power counting

In the saturated regime: $J^{\mu} \sim g^{-1}$

$$g^{-2} g^{\# \text{ of external legs }} g^{2 \times (\# \text{ of loops})}$$

- No dependence on the number of sources $J^{\boldsymbol{\mu}}$
 - \triangleright infinite number of graphs at each order

Leading Order in g² : tree diagrams

- cea
- The Leading Order is the sum of all the tree diagrams
 Observables can be expressed in terms of classical solutions of Yang-Mills equations :

$$\mathcal{D}_{\mu}\mathcal{F}^{\mu\nu} = J_1^{\nu} + J_2^{\nu}$$

· Boundary conditions for inclusive observables :

$$\lim_{x^{\mathfrak{o}} \to -\infty} \mathcal{A}^{\mu}(x) = 0$$

Example : 00 component of the energy-momentum tensor

$$T_{\rm LO}^{00} = \frac{1}{2} \left[\underbrace{\mathcal{E}^2 + \mathcal{B}^2}_{\text{class. fields}} \right]$$

François Gelis

14/51

Next to Leading Order in g² : 1-loop diagrams

Getting the NLO from tree graphs...

$$\mathcal{O}_{\rm NLO} = \left[\frac{1}{2}\int_{\mathbf{u},\mathbf{v}} \mathbf{\Gamma}_{2}(\mathbf{u},\mathbf{v}) \,\mathbb{T}_{\mathbf{u}} \mathbb{T}_{\mathbf{v}} + \int_{\mathbf{u}} \boldsymbol{\alpha}(\mathbf{u}) \,\mathbb{T}_{\mathbf{u}}\right] \,\mathcal{O}_{\rm LO}$$

• \mathbb{T} is the generator of the shifts of the initial value of the field :

$$\mathbb{T}_{\mathbf{u}} \sim \frac{\partial}{\partial \mathcal{A}_{\text{init}}}$$

$$\exp\left[\int_{\mathbf{u}} \boldsymbol{\alpha}_{\mathbf{u}} \mathbb{T}_{\mathbf{u}}\right] \stackrel{\text{class. field at } \tau}{\operatorname{O}\left[\overbrace{\mathcal{A}_{\tau}\left(\begin{array}{c}\mathcal{A}_{\text{init}}\\\text{init. value}\end{array}\right)}^{\text{class. field at } \tau}\right] = \operatorname{O}\left[\mathcal{A}_{\tau}\left(\begin{array}{c}\mathcal{A}_{\text{init}}+\boldsymbol{\alpha}\\\text{shifted init. value}\end{array}\right)\right]$$

François Gelis

Isotropization in Heavy Ion Collisions

15/51

McGill University, Montreal, April 2014

Equations of motion for a field ${\mathcal A}$ and a small perturbation α

$$\Box \mathcal{A} + V'(\mathcal{A}) = J$$
$$[\Box + V''(\mathcal{A})] \alpha = 0$$

• Getting the perturbation by shifting the initial condition of *A* at one point :

$$\alpha(x) = \int_{\mathbf{u}} \frac{\alpha_{\mathbf{u}}}{\mathbf{T}_{\mathbf{u}}} \, \mathcal{A}(x)$$

Equations of motion for a field ${\mathcal A}$ and a small perturbation α

$$\Box \mathcal{A} + V'(\mathcal{A}) = J$$
$$[\Box + V''(\mathcal{A})] \alpha = 0$$

• Getting the perturbation by shifting the initial condition of *A* at one point :

$$\alpha(x) = \int_{\mathbf{u}} \frac{\alpha_{\mathbf{u}}}{\mathbf{T}_{\mathbf{u}}} \, \mathcal{A}(x)$$

Equations of motion for a field ${\mathcal A}$ and a small perturbation α

$$\Box \mathcal{A} + V'(\mathcal{A}) = J$$
$$[\Box + V''(\mathcal{A})] \alpha = 0$$

• Getting the perturbation by shifting the initial condition of *A* at one point :

$$\alpha(x) = \int_{\mathbf{u}} \frac{\alpha_{\mathbf{u}}}{\mathbf{T}_{\mathbf{u}}} \, \mathcal{A}(x)$$

• A loop is obtained by shifting the initial condition of $\mathcal A$ at two points
Formulation of QM in the classical phase-space

- To make the connection with classical mechanics, it is useful to use Moyal's formulation of QM in terms of classical variables
- Dual formulation of QM :

Density	ρ̂		W(Q, P)
Evolution	$\vartheta_t \hat{\rho} + \mathfrak{i}[\widehat{H}, \hat{\rho}] = 0$	Weyl-Wigner	$\partial_t \mathbf{W} + \{\{\mathbf{W}, \mathbf{H}\}\} = 0$
States	coherent state		Gaussian of width ħ

Moyal bracket and expansion in ħ

• $\{\{A, B\}\}$ is the Wigner transform of the commutator $[\widehat{A}, \widehat{B}]$

$$\{\{A,B\}\} = \frac{2}{\hbar} A(Q,P) \sin\left(\frac{\hbar}{2}(\overleftarrow{\nabla}_{Q}\overrightarrow{\nabla}_{P} - \overleftarrow{\nabla}_{P}\overrightarrow{\nabla}_{Q})\right) B(Q,P)$$

Quantum deformation of the Poisson bracket :

$$\{\{A, B\}\} = \underbrace{\{A, B\}}_{\text{Poisson bracket}} + \mathcal{O}(\hbar^2)$$

Poisson bracket

- LO : 𝔅(ħ⁰)
 - Moyal equation \implies Liouville equation
 - Initial state $\implies \delta$ -function in (Q, P)
- NLO : 𝘕(ħ¹)
 - Moyal equation \implies Liouville equation
 - Initial state \implies Gaussian of width h

Initial state logarithms

In the CGC, upper cutoff on the loop momentum : k[±] < Λ, to avoid double counting with the sources J^v_{1,2}
 ⊳ logarithms of the cutoff

Central result for factorization at Leading Log

$$\begin{split} &\frac{1}{2} \int_{u,v} \Gamma_2(u,v) \, \mathbb{T}_u \mathbb{T}_v + \int_u \alpha(u) \, \mathbb{T}_u = \\ &= \log \left(\Lambda^+ \right) \, \mathfrak{H}_1 + \log \left(\Lambda^- \right) \, \mathfrak{H}_2 + \text{terms w/o logs} \end{split}$$

 $\mathcal{H}_{1,2} = \text{JIMWLK}$ Hamiltonians of the two nuclei

- No mixing between the logs of the two nuclei
- Since the LO ↔ NLO relationship is the same for all inclusive observables, these logs have a universal structure

François Gelis

19/51

Inclusive observables at Leading Log accuracy

$$\left\langle \boldsymbol{O} \right\rangle_{\text{Leading Log}} = \int \left[\boldsymbol{D} \boldsymbol{\rho}_1 \; \boldsymbol{D} \boldsymbol{\rho}_2 \right] W_1 \left[\boldsymbol{\rho}_1 \right] W_2 \left[\boldsymbol{\rho}_2 \right] \underbrace{ \boldsymbol{\mathcal{O}}_{\text{LO}} \left[\boldsymbol{\rho}_1, \boldsymbol{\rho}_2 \right]}_{\text{fixed } \boldsymbol{\rho}_{1,2}}$$

Logs absorbed into the scale evolution of W_{1,2}

$$\Lambda \frac{\partial W}{\partial \Lambda} = \mathcal{H} W$$
 (JIMWLK equation)

• Universality : the same W's for all inclusive observables

François Gelis

Isotropization in Heavy Ion Collisions 20

20/51

Initial Stages of Heavy Ion Collisions

Energy momentum tensor of the initial classical field

Energy momentum tensor of the initial classical field

François Gelis

Isotropization in Heavy Ion Collisions

22/51

Competition between Expansion and Isotropization

François Gelis

Isotropization in Heavy Ion Collisions

23/51

Weibel instabilities for small perturbations

Weibel instabilities for small perturbations

- The perturbations that alter the classical field in loop corrections diverge with time, like exp $\sqrt{\mu\tau}$ ($\mu \sim Q_s$)
- Some components of T^{μν} have secular divergences when evaluated beyond tree level

Example of pathologies in fixed order calculations (scalar theory)

Example of pathologies in fixed order calculations (scalar theory)

- Small correction to the energy density (protected by energy conservation)
- Secular divergence in the pressure

Improved power counting and resummation

cea

Improved power counting and resummation

cea

Improved power counting and resummation

cea

Leading terms

- All disconnected loops to all orders
 - \triangleright exponentiation of the 1-loop result

François Gelis

Isotropization in Heavy Ion Collisions

26/51

Resummation of the leading secular terms

 The exponentiation of the 1-loop result collects all the terms with the worst time behavior

$$e^{\frac{\alpha}{2}\partial_{x}^{2}} f(x) = \int_{-\infty}^{+\infty} dz \, \frac{e^{-z^{2}/2\alpha}}{\sqrt{2\pi\alpha}} f(x+z)$$

François Gelis

Resummation of the leading secular terms

$$T_{\text{resummed}}^{\mu\nu} = \exp\left[\frac{1}{2}\int_{u,v} \Gamma_2(u,v)\mathbb{T}_u\mathbb{T}_v\right] T_{\text{LO}}^{\mu\nu}[\mathcal{A}_{\text{init}}]$$
$$= \int [Da] \exp\left[-\frac{1}{2}\int_{u,v} a(u)\Gamma_2^{-1}(u,v)a(v)\right] T_{\text{LO}}^{\mu\nu}[\mathcal{A}_{\text{init}}+a]$$

- The exponentiation of the 1-loop result collects all the terms with the worst time behavior
- Equivalent to Gaussian fluctuations of the initial field
 + classical time evolution

• At
$$Q_s\tau_0\ll 1$$
 : $\mathcal{A}_{init}\sim Q_s/g$, $a\sim Q_s$

cea

- This Gaussian distribution of initial fields is the Wigner distribution of a coherent state $|\mathcal{A}\rangle$

Coherent states are the "most classical quantum states"

Their Wigner distribution has the minimal support permitted by the uncertainty principle (O(h) for each mode)

• $|\mathcal{A}\rangle$ is not an eigenstate of the full Hamiltonian > decoherence via interactions

What needs to be done?

cea

Main steps

1. Determine the 2-point function $\Gamma_2(\mathbf{u}, \mathbf{v})$ that defines the Gaussian fluctuations, for the initial time τ_0 of interest

Note : this is an initial value problem, whose outcome is uniquely determined by the state of the system at $x^0 = -\infty$, and depends on the history of the system from $x^0 = -\infty$ to $\tau = \tau_0$

Problem solvable only if the fluctuations are weak, $a^\mu \ll Q_s/g$

 $Q_{s}\tau_{0}\ll 1$ necessary for the fluctuations to be Gaussian

2. Solve the classical Yang-Mills equations from τ_0 to τ_f Note : the problem as a whole is boost invariant, but individual field configurations are not \implies 3+1 dimensions necessary

3. Do a Monte-Carlo sampling of the fluctuating initial conditions

Discretization of the expanding volume

- Comoving coordinates : τ, η, χ_{\perp}
- Only a sub-volume is simulated
 + periodic boundary conditions
- L² × N lattice

François Gelis

32/51

Gaussian spectrum of fluctuations

Expression of the variance (from 1-loop considerations)

$$\begin{split} \Gamma_2(u,v) &= \int_{\text{modes } k} a_k(u) a_k^*(v) \\ \left[\mathcal{D}_{\rho} \mathcal{D}^{\rho} \delta_{\mu}^{\nu} - \mathcal{D}_{\mu} \mathcal{D}^{\nu} + \text{ig } \mathcal{F}_{\mu}^{\nu} \right] a_k^{\mu} &= 0 \quad , \quad \lim_{x^0 \to -\infty} a_k(x) \sim e^{ik \cdot x} \end{split}$$

- **0.** $\mathcal{A}^{\mu} = 0$, trivial
- **1,2**. \mathcal{A}^{μ} = pure gauge, analytical solution
 - **3.** \mathcal{A}^{μ} non-perturbative
 - \Rightarrow expansion in $Q_s \tau$
 - We need the fluctuations in Fock-Schwinger gauge $x^+a^- + x^-a^+ = 0$
 - Delicate light-cone crossings, since $\mathcal{F}^{\mu\nu}=\infty$ there

François Gelis

33/51

Mode functions for given quantum numbers : $\nu, k_{\perp}, \lambda, c$

$$a^{i} = \beta^{+i} + \beta^{-i} \qquad a^{\eta} = \mathcal{D}^{i} \left(\frac{\beta^{+i}}{2 + i\nu} - \frac{\beta^{-i}}{2 - i\nu} \right)$$
$$e^{i} = -i\nu \left(\beta^{+i} - \beta^{-i} \right) \qquad e^{\eta} = -\mathcal{D}^{i} \left(\beta^{+i} - \beta^{-i} \right)$$

$$\begin{split} \beta^{+i} &\equiv e^{\frac{\pi\nu}{2}} \Gamma(-i\nu) e^{i\nu\eta} \, \mathfrak{U}_{1}^{\dagger}(\mathbf{x}_{\perp}) \int\limits_{\mathbf{p}_{\perp}} e^{i\mathbf{p}_{\perp}\cdot\mathbf{x}_{\perp}} \, \widetilde{\mathfrak{U}}_{1}(\mathbf{p}_{\perp}+\mathbf{k}_{\perp}) \left(\frac{p_{\perp}^{2}\tau}{2\mathbf{k}_{\perp}}\right)^{i\nu} \left(\delta^{ij}-2\frac{p_{\perp}^{i}p_{\perp}^{j}}{p_{\perp}^{2}}\right) \epsilon_{\lambda}^{j} \\ \beta^{-i} &\equiv e^{-\frac{\pi\nu}{2}} \Gamma(i\nu) e^{i\nu\eta} \, \mathfrak{U}_{2}^{\dagger}(\mathbf{x}_{\perp}) \int\limits_{\mathbf{p}_{\perp}} e^{i\mathbf{p}_{\perp}\cdot\mathbf{x}_{\perp}} \, \widetilde{\mathfrak{U}}_{2}(\mathbf{p}_{\perp}+\mathbf{k}_{\perp}) \left(\frac{p_{\perp}^{2}\tau}{2\mathbf{k}_{\perp}}\right)^{-i\nu} \left(\delta^{ij}-2\frac{p_{\perp}^{i}p_{\perp}^{j}}{p_{\perp}^{2}}\right) \epsilon_{\lambda}^{j} \end{split}$$

- Linearized EOM and Gauss' law satisfied up to terms of order $(Q_s \tau)^2$
- Fock-Schwinger gauge condition $(a^{\tau} = e^{\tau} = 0)$
- Evolved from plane waves in the remote past

Computational cost

Initial Conditions

• Naive :

 $N \log(N) \times L^4 \log(L) \times N_{\text{confs}}$

• Better algorithm :

 $N \log(N) \times L^4 \times (log(L) + N_{confs})$

Time evolution

$$N \times L^2 \times N_{\text{confs}} \times N_{\text{time steps}}$$

Useful statistics (at fixed L, N)

$$\sqrt{N_{confs}} \sim \frac{g^2}{(a_\perp a_\eta)^2}$$

Ultraviolet subtractions

cea

Bare ε and $\mathsf{P}_{_L}$ diverge as τ^{-2} when $\tau \to 0^+$

Ultraviolet subtractions

cea

• Fixed spacing in $\eta \iff \Lambda_z \sim \tau^{-1}$

Bare ε and $\mathsf{P}_{_L}$ diverge as τ^{-2} when $\tau \to 0^+$

• Zero point energy $\sim \Lambda_{\perp}^2 \Lambda_z^2$:

Subtracted by redoing the calculation with the sources turned off

Ultraviolet subtractions

cea

• Fixed spacing in $\eta \iff \Lambda_z \sim \tau^{-1}$

Bare ε and $\mathsf{P}_{_L}$ diverge as τ^{-2} when $\tau \to 0^+$

• Zero point energy $\sim \Lambda_{\perp}^2 \Lambda_z^2$:

Subtracted by redoing the calculation with the sources turned off

• Subleading divergences $\sim \Lambda_z^2$ in ε and $P_{_L}$:

Exist only at finite \perp lattice spacing (not in the continuum) Same counterterm in ε and P_L to preserve $T^{\mu}{}_{\mu} = 0$ Must be of the form $A \times \tau^{-2}$ to preserve Bjorken's law At the moment, not calculated from first principles $\Rightarrow A$ fitted

Time evolution of P_{T}/ϵ and P_{T}/ϵ (64 × 64 × 128 lattice)

François Gelis

Isotropization in Heavy Ion Collisions

Time evolution of P_{T}/ϵ and P_{T}/ϵ (64 × 64 × 128 lattice)

François Gelis

Isotropization in Heavy Ion Collisions

37/51

McGill University, Montreal, April 2014

cea

Non Renormalizability

cea

Schwinger-Keldysh propagators

$$\begin{split} G^{0}_{++}(p) &= \frac{i}{p^{2} + i\varepsilon} , \qquad \qquad G^{0}_{--}(p) = \frac{-i}{p^{2} - i\varepsilon} \\ G^{0}_{+-}(p) &= 2\pi\theta(-p^{0})\delta(p^{2}) , \qquad \qquad G^{0}_{-+}(p) = 2\pi\theta(p^{0})\delta(p^{2}) \end{split}$$

• Define a new basis by "rotating" the propagators :

$$\mathbb{G}^{0}_{\alpha\beta} \equiv \sum_{\varepsilon,\varepsilon'=\pm} \Omega_{\alpha\varepsilon} \Omega_{\beta\,\varepsilon'} G^{0}_{\varepsilon\,\varepsilon'} \qquad \text{with} \quad \Omega_{\alpha\varepsilon} \equiv \begin{pmatrix} 1 & -1 \\ 1/2 & 1/2 \end{pmatrix}$$

New propagators

$$\mathbb{G}^{0}_{\alpha\beta} = \begin{pmatrix} 0 & G^{0}_{\lambda} \\ G^{0}_{\kappa} & G^{0}_{s} \equiv \pi\delta(p^{2}) \end{pmatrix}$$

François Gelis

38/51

Classical Statistical Approximation

New vertices

$$\begin{split} &\Gamma_{1111}=\Gamma_{1122}=\Gamma_{2222}=0\\ &\Gamma_{1222}=-ig^2\;,\quad \Gamma_{1112}=-ig^2/4 \end{split}$$

- Classical statistical approximation : drop the Γ_{1112} vertex
- Only a subset of the graphs of the full theory
- Same ultraviolet superficial power counting

Francois Gelis

Isotropization in Heavy Ion Collisions

39/51

Ultraviolet divergences

François Gelis

lsotropization in Heavy Ion Collisions

40/51

Ultraviolet divergences, the weird stuff...

$$\begin{split} & \left[\Gamma_{1122}\right]_{CSA}^{1\ loop} = \frac{ig^4}{64\pi} \left[sign(t) + sign(u) + 2\Lambda_{uv} \left(\frac{\theta(-t)}{|p_1 + p_3|} + \frac{\theta(-u)}{|p_1 + p_4|} \right) \right] \\ & \text{with } t \equiv (p_1 + p_3)^2 \quad , \quad u \equiv (p_1 + p_4)^2 \end{split}$$

- No divergence if we keep the 1112 bare vertex
- UV divergence with no corresponding operator in the Lagrangian
- Stronger than the superficial power counting suggests
- Non-polynomial in the external momenta (i.e. non-local)

 \implies the classical statistical approximation violates Weinberg's theorem, and is not renormalizable

Unusual UV divergences in self-energies

$$\begin{bmatrix} \Sigma_{11}(P) \end{bmatrix}_{CSA}^{2 \text{ loop}} = \frac{1}{2} \underbrace{\frac{2}{2}}_{2} \underbrace{\frac{2}{2}}_{2} \underbrace{\frac{1}{2}}_{2} = -\frac{ig^{4}}{1024\pi^{3}} \left(\Lambda_{UV}^{2} - \frac{2}{3}p^{2} \right)$$
$$\operatorname{Im} \begin{bmatrix} \Sigma_{12}(P) \end{bmatrix}_{CSA}^{2 \text{ loop}} = \underbrace{\frac{1}{2}}_{2} \underbrace{\frac{2}{2}}_{2} \underbrace{\frac{2}{2}}_{2} \underbrace{\frac{2}{2}}_{2} = -\frac{g^{4}}{1024\pi^{3}} \left(\Lambda_{UV}^{2} - \frac{2}{3}p^{2} \right)$$

 Add a particle distribution f(p) in the game, and compute the collision term for the Boltzmann equation :

$$\mathfrak{C}_{\mathbf{p}}[f] = -\frac{\mathfrak{i}}{2\omega_{\mathbf{p}}} \left[\boldsymbol{\Sigma}_{11}(P) + \left(f(p) + \frac{1}{2} \right) \left(\boldsymbol{\Sigma}_{21}(P) - \boldsymbol{\Sigma}_{12}(P) \right) \right]$$

 $\implies \mbox{ fake scattering term} \sim \mbox{ }g^4 f(p) \Lambda_{\mbox{uv}}^2 / \omega_p$
UV cutoff dependence of the asymptotic distribution

• At late times,
$$f(\mathbf{p}) \approx \frac{T}{\omega_{\mathbf{p}} - \mu} - \frac{1}{2}$$
, but T and μ depend on $\Lambda_{_{UV}}$

(points : classical statistical simulations, curves : Boltzmann eq.)

Full Quantum : $f_1 f_2 (1 + f_3)(1 + f_4) - (1, 2 \leftrightarrow 3, 4)$

Strict classical : $f_1 f_2 (f_3 + f_4) - (1, 2 \leftrightarrow 3, 4)$

Classical + vac. fluct. : $(f_1 + 1/2)(f_2 + 1/2)(1 + f_3 + f_4) - (1, 2 \leftrightarrow 3, 4)$

• In coordinate space :

$$L(x, y) \equiv \frac{g^4}{64\pi^3} \frac{\Lambda_{uv}}{|x - y|} \,\delta((x^0 - y^0)^2 - (x - y)^2)$$

• Can be generated by a Gaussian multiplicative noise term :

$$\begin{split} \Box \phi + \frac{g^2}{6} \phi^3 + i\xi \phi &= 0 \\ \left< \xi(x) \right> &= 0 \ , \qquad \left< \xi(x)\xi(y) \right> = L(x,y) \end{split}$$

Summary

- CGC calculation of the energy momentum tensor in a nucleus-nucleus collision, up to $Q_s\tau \lesssim 20$
- Method :
 - Classical statistical method
 - Initial Gaussian fluctuations : analytical, from a 1-loop calculation
 - Time evolution : numerical, 3+1d Yang-Mills equations on a lattice
- Accuracy :

 $\left< 0_{in} \middle| T^{\mu\nu}(\tau, x) \middle| 0_{in} \right>$ at LO + NLO + leading secular terms

- Results :
 - Sizable longitudinal pressure $(P_L/P_T \sim 60\%$ for g = 0.5)
 - Typical timescale : $Q_s \tau \sim 2 3$

Coherent vs Incoherent initial conditions

François Gelis

Isotropization in Heavy Ion Collisions

47/51

McGill University, Montreal, April 2014

• The oscillation frequency depends on the initial condition

Francois Gelis

Isotropization in Heavy Ion Collisions

McGill University, Montreal, April 2014

- The oscillation frequency depends on the initial condition
- Because of QM, the initial ensemble is a set of width $\sim \hbar$

- The oscillation frequency depends on the initial condition
- Because of QM, the initial ensemble is a set of width $\sim \hbar$
- This ensemble of initial configurations spreads in time

- The oscillation frequency depends on the initial condition
- Because of QM, the initial ensemble is a set of width $\sim\hbar$
- This ensemble of initial configurations spreads in time

- The oscillation frequency depends on the initial condition
- Because of QM, the initial ensemble is a set of width $\sim \hbar$
- This ensemble of initial configurations spreads in time
- At large times, the ensemble fills densely all the region allowed by energy conservation ⇒ microcanonical equilibrium

Quantum chaos

- Central issue : consider a Hamiltonian that leads to chaotic classical behavior; What happens when this system is quantized?
- Schrodinger's equation is linear, and \widehat{H} Hermitian:

 $\mathfrak{i} \mathfrak{d}_\mathfrak{t} \Psi = \widehat{H} \, \Psi$

- Once we know the spectrum of the Hamiltonian $\{\mathsf{E}_n,\Psi_n\},$ any wavefunction evolves as :

$$\Psi(t) = \sum_{n} c_{n} e^{i E_{n} t} \Psi_{n}$$

 $E_n \in \mathbb{R} \Rightarrow$ nothing is unstable. Where is the chaos in QM ?

Berry's conjecture (1977)

- The complexity of the classical dynamics is hidden in the complexity of the high lying eigenfunctions
- Berry's conjecture : for most practical purposes, high lying eigenfunctions of classically chaotic systems behave as Gaussian random functions with 2-point correlations given by

$$\left\langle \Psi^*(\mathbf{X} - \frac{\mathbf{s}}{2})\Psi(\mathbf{X} + \frac{\mathbf{s}}{2}) \right\rangle = \int d\mathbf{P} \ \mathrm{e}^{\mathrm{i}\mathbf{P}\cdot\mathbf{s}/\hbar} \ \delta\left[\mathsf{E} - \mathsf{H}(\mathbf{X}, \mathbf{P})\right]$$

- If this hypothesis is true, the Wigner distribution associated with the eigenfunction $\Psi_{_{\rm E}}$ is

$$W(\mathbf{X}, \mathbf{P}) = \int d\mathbf{s} \ e^{-i\mathbf{P}\cdot\mathbf{s}/\hbar} \ \Psi_{\rm E}^*(\mathbf{X} - \frac{\mathbf{s}}{2}) \Psi_{\rm E}(\mathbf{X} + \frac{\mathbf{s}}{2})$$
$$\sim \delta \left[\mathsf{E} - \mathsf{H}(\mathbf{X}, \mathbf{P}) \right]$$

 \Rightarrow micro-canonical equilibrium for a single eigenstate

Eigenstate thermalization hypothesis (Srednicki, 1994)

- If an energy eigenstate obeys Berry's conjecture, then a measurement performed on that state will lead to the Bose-Einstein (or Fermi-Dirac) distribution for the single particle distribution
- Generic states approach equilibrium via decoherence of their energy eigenstate components