Isotropization in Heavy Ion Collisions at High Energy

McGill University, Montreal, April 2014

T. Epelbaum, FG :
 arXiv:1307.1765
 arXiv:1307.2214

François Gelis
IPhT, Saclay
Outline

1. The surprising success of relativistic hydrodynamics
2. Color Glass Condensate in heavy ion collisions
3. Initial stages of heavy ion collisions
4. Non Renormalizability issues
Relativistic hydrodynamics
Stages of a nucleus-nucleus collision

François Gelis

Isotropization in Heavy Ion Collisions

McGill University, Montreal, April 2014
Stages of a nucleus-nucleus collision

Well described as a fluid expanding into vacuum according to relativistic hydrodynamics
Evidence for hydrodynamical behavior
Evidence for hydrodynamical behavior

Francois Gelis

Francois Gelis

Isotropization in Heavy Ion Collisions

McGill University, Montreal, April 2014
Evidence for hydrodynamical behavior

François Gelis

Isotropization in Heavy Ion Collisions 2/51

McGill University, Montreal, April 2014
Evidence for hydrodynamical behavior
Evidence for hydrodynamical behavior
Evidence for hydrodynamical behavior
Evidence for hydrodynamical behavior

François Gelis

Isotropization in Heavy Ion Collisions

McGill University, Montreal, April 2014
Evidence for hydrodynamical behavior

Impressive agreement, but: What makes hydrodynamics work so well?

- Near isotropic pressure tensor (in the local rest frame)
- Not too far from equilibrium
- Low viscosity

Where does this come from in pQCD...?
What is hydrodynamics?

- Hydrodynamics is a macroscopic description based on energy-momentum conservation:

\[\partial_\mu T^{\mu\nu} = 0 \]

True in any quantum field theory
But does not provide a closed set of equations to fully describe the evolution of the system (4 equations, while \(T^{\mu\nu} \) has 10 independent components)
What is hydrodynamics?

- Hydrodynamics is a macroscopic description based on energy-momentum conservation:

\[\partial_\mu T^{\mu \nu} = 0 \]

True in any quantum field theory
But does not provide a closed set of equations to fully describe the evolution of the system (4 equations, while \(T^{\mu \nu} \) has 10 independent components)

- Additional assumption: at macroscopic scales, \(T^{\mu \nu} \) is expressible in terms of \(\epsilon \) (energy density), \(P \) (pressure) and \(u^{\mu} \) (fluid velocity field)

- For a frictionless fluid: \(T^{\mu \nu}_{\text{ideal}} = (\epsilon + P) u^{\mu} u^{\nu} - P g^{\mu \nu} \)
What is hydrodynamics?

- Hydrodynamics is a macroscopic description based on energy-momentum conservation:
 \[\partial_\mu T^{\mu\nu} = 0 \]

True in any quantum field theory
But does not provide a closed set of equations to fully describe the evolution of the system (4 equations, while \(T^{\mu\nu} \) has 10 independent components)

- Additional assumption: at macroscopic scales, \(T^{\mu\nu} \) is expressible in terms of \(\epsilon \) (energy density), \(P \) (pressure) and \(u^\mu \) (fluid velocity field)
- For a frictionless fluid:
 \[T^{\mu\nu}_{\text{ideal}} = (\epsilon + P) u^\mu u^\nu - P g^{\mu\nu} \]
- In general:
 \[T^{\mu\nu} = T^{\mu\nu}_{\text{ideal}} \oplus \eta \nabla^\mu u^\nu \oplus \zeta (\nabla_\rho u^\rho) \oplus \cdots \]
What is hydrodynamics?

- Hydrodynamics is a macroscopic description based on energy-momentum conservation:
 \[\partial_\mu T^{\mu\nu} = 0 \]
 True in any quantum field theory
 But does not provide a closed set of equations to fully describe the evolution of the system (4 equations, while \(T^{\mu\nu} \) has 10 independent components)

- Additional assumption: at macroscopic scales, \(T^{\mu\nu} \) is expressible in terms of \(\epsilon \) (energy density), \(P \) (pressure) and \(u^\mu \) (fluid velocity field)
- For a frictionless fluid:
 \[T^{\mu\nu}_{\text{ideal}} = (\epsilon + P) u^\mu u^\nu - P g^{\mu\nu} \]
- In general:
 \[T^{\mu\nu} = T^{\mu\nu}_{\text{ideal}} \oplus \eta \nabla^\mu u^\nu \oplus \zeta (\nabla_\rho u^\rho) \oplus \cdots \]
- Microscopic inputs:
 \(\epsilon = f(P) \) (EoS), \(\eta, \zeta, \cdots \) (transport coeff.)
Why is it hard to justify in QCD?

Just after the collision, $T^{\mu \nu}$ is far from ideal

\[
\begin{align*}
T^{\mu \nu}_{\text{QCD rest frame}} &= \begin{pmatrix} \epsilon & \epsilon \\ \epsilon & -\epsilon \end{pmatrix} \\
T^{\mu \nu}_{\text{ideal rest frame}} &= \begin{pmatrix} \frac{\epsilon}{3} & \frac{\epsilon}{3} \\ \frac{\epsilon}{3} & \frac{\epsilon}{3} \end{pmatrix}
\end{align*}
\]

\Rightarrow Very large deviation from ideal hydro at early times

- Can a QCD-based model explain how $T^{\mu \nu}$ evolves to the hydrodynamical form?
- There should be an overlap between this model and hydrodynamics, so that the final results do not depend on the time τ_0 at which one switches over to hydrodynamics.
Why is it hard to justify in QCD?

Large shear viscosity at weak coupling in QCD

\[\frac{\eta}{s} = \frac{5.12}{g^4 \ln\left(\frac{2.42}{g}\right)} \]

\[
\eta / s
\]

\[g \]

\[1 / 4\pi \]

perturbation theory

AdS/CFT duality
Color Glass Condensate
What do we need to know about nuclei?

Nucleus at rest

- At low energy: valence quarks
Parton distributions in a nucleon

\[Q^2 = 10 \text{ GeV}^2 \]
What do we need to know about nuclei?

Slightly boosted nucleus

- At low energy: valence quarks
- At higher energy:
 - Lorenz contraction of longitudinal sizes
 - Time dilation \Rightarrow slowing down of the internal dynamics
 - Gluons start becoming important

François Gelis
Isotropization in Heavy Ion Collisions
McGill University, Montreal, April 2014
What do we need to know about nuclei?

High energy nucleus

- At low energy: valence quarks
- At higher energy:
 - Lorenz contraction of longitudinal sizes
 - Time dilation \Rightarrow slowing down of the internal dynamics
 - Gluons start becoming important
- At very high energy: gluons dominate
Main difficulty: How to treat collisions involving a large number of partons?
Multiple scatterings and gluon recombination

- **Dilute regime**: one parton in each projectile interact
 - single parton distributions, standard perturbation theory
Dense regime: multiparton processes become crucial

- gluon recombinations are important (saturation)
- multi-parton distributions
- alternative approach: treat the gluons in the projectiles as external currents

\[\mathcal{L} = -\frac{1}{4} F^2 + A \cdot (J_1 + J_2) \]

(gluons only, field \(A \) for \(k^+ < \Lambda \), classical source \(J \) for \(k^+ > \Lambda \))
Color Glass Condensate

CGC = effective theory of small x gluons

- The fast partons ($k^+ > \Lambda^+$) are frozen by time dilation
 \triangleright described as static color sources on the light-cone:

 \[
 J^\mu = \delta^{\mu+} \rho(x^-, \vec{x}_\perp) \quad (0 < x^- < 1/\Lambda^+)
 \]

- The color sources ρ are random, and described by a probability distribution $W_{\Lambda^+}[\rho]$

- Slow partons ($k^+ < \Lambda^+$) cannot be considered static over the time-scales of the collision process
 \triangleright must be treated as standard gauge fields
 \triangleright eikonal coupling to the current $J^\mu : A_\mu J^\mu$
Terminology

- **Weakly coupled**: \(g \ll 1 \)

- **Weakly interacting**: \(gA \ll 1 \quad g^2f(p) \ll 1 \)

 \[(2 \rightarrow 2) \gg (2 \rightarrow 3), (3 \rightarrow 2), \cdots \]

- **Strongly interacting**: \(gA \sim 1 \quad g^2f(p) \sim 1 \)

 \[(2 \rightarrow 2) \sim (2 \rightarrow 3) \sim (3 \rightarrow 2) \sim \cdots \]

 No well defined quasi-particles

CGC = weakly coupled, but strongly interacting effective theory
Power counting

- CGC effective theory with cutoff at the scale Λ_0:

 $\begin{align*}
 \cdots \quad \text{fields} \quad \rightarrow \quad \Lambda_0^- \quad \leftarrow \quad \text{sources} \quad \rightarrow \quad k^- \quad P^-
 \end{align*}$

$$S = -\frac{1}{4} \int F_{\mu \nu} F^{\mu \nu} + \int \left(J_1^\mu + J_2^\mu \right) A_\mu$$

S_{YM} fast partons

- Expansion in g^2 in the saturated regime:

 $$T^{\mu \nu} \sim \frac{1}{g^2} \left[c_0 + c_1 g^2 + c_2 g^4 + \cdots \right]$$
Power counting

In the saturated regime: \(J^\mu \sim g^{-1} \)

\[
g^{-2} \ g \ \text{# of external legs} \ \ g^2 \times (\text{# of loops})
\]

- No dependence on the number of sources \(J^\mu \)
 - infinite number of graphs at each order
Leading Order in g^2: tree diagrams

- The Leading Order is the sum of all the tree diagrams.

Observables can be expressed in terms of classical solutions of Yang-Mills equations:

$$\mathcal{D}_\mu \mathcal{F}^{\mu\nu} = J_1^\nu + J_2^\nu$$

- Boundary conditions for inclusive observables:

$$\lim_{\chi^0 \to -\infty} \mathcal{A}^\mu(\chi) = 0$$

Example: 00 component of the energy-momentum tensor

$$T_{LO}^{00} = \frac{1}{2} \left[\mathcal{E}^2 + \mathcal{B}^2 \right]$$

class. fields
Next to Leading Order in g^2: 1-loop diagrams

Getting the NLO from tree graphs...

$$\mathcal{O}_{\text{NLO}} = \left[\frac{1}{2} \int_{u, v} \Gamma_2(u, v) \, T_u \, T_v + \int_{u} \alpha(u) \, T_u \right] \mathcal{O}_{\text{LO}}$$

- T is the generator of the shifts of the initial value of the field:

$$T_u \sim \frac{\partial}{\partial A_{\text{init}}}$$

$$\exp \left[\int_{u} \alpha_u \, T_u \right] \mathcal{O} \left[\overbrace{\mathcal{A}_{\tau}(A_{\text{init}})}^{\text{class. field at } \tau} \right] = \mathcal{O} \left[\mathcal{A}_{\tau}(A_{\text{init}} + \alpha) \right]$$
Shift operator T – Definition

Equations of motion for a field \mathcal{A} and a small perturbation α

$$\Box \mathcal{A} + V'(\mathcal{A}) = J$$
$$[\Box + V''(\mathcal{A})] \alpha = 0$$

- Getting the perturbation by shifting the initial condition of \mathcal{A} at one point:

$$\alpha(x) = \int_u \alpha_u T_u \mathcal{A}(x)$$
Shift operator \mathcal{T} – Definition

Equations of motion for a field \mathcal{A} and a small perturbation α

\[
\Box \mathcal{A} + V'(\mathcal{A}) = J \\
[\Box + V''(\mathcal{A})] \alpha = 0
\]

- Getting the perturbation by shifting the initial condition of \mathcal{A} at one point:

\[
\alpha(x) = \int \alpha_u \mathcal{T}_u \mathcal{A}(x)
\]
Shift operator $\mathbb{T} –$ Definition

Equations of motion for a field \mathcal{A} and a small perturbation α

$$\Box \mathcal{A} + V'(\mathcal{A}) = J$$
$$[\Box + V''(\mathcal{A})] \alpha = 0$$

• Getting the perturbation by shifting the initial condition of \mathcal{A} at one point:

$$\alpha(x) = \int_u \alpha_u \mathbb{T}_u \mathcal{A}(x)$$

• A loop is obtained by shifting the initial condition of \mathcal{A} at two points
Formulation of QM in the classical phase-space

- To make the connection with classical mechanics, it is useful to use Moyal’s formulation of QM in terms of classical variables

- Dual formulation of QM:

<table>
<thead>
<tr>
<th>Density</th>
<th>$\hat{\rho}$</th>
<th>$W(Q, P)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evolution</td>
<td>$\partial_t \hat{\rho} + i[\hat{H}, \hat{\rho}] = 0$</td>
<td>$\partial_t W + {{W, H} = 0$</td>
</tr>
<tr>
<td>States</td>
<td>coherent state</td>
<td>Gaussian of width \hbar</td>
</tr>
</tbody>
</table>
Moyal bracket and expansion in \hbar

- $\{\{A, B\}\}$ is the Wigner transform of the commutator $[\hat{A}, \hat{B}]$

\[
\{\{A, B\}\} = \frac{2}{\hbar} A(Q, P) \sin \left(\frac{\hbar}{2} (\nabla_Q \nabla_P - \nabla_P \nabla_Q) \right) B(Q, P)
\]

- Quantum deformation of the Poisson bracket:

\[
\{\{A, B\}\} = \{A, B\} + \mathcal{O}(\hbar^2)
\]

 Poisson bracket

- LO: $\mathcal{O}(\hbar^0)$
 - Moyal equation \implies Liouville equation
 - Initial state \implies δ-function in (Q, P)

- NLO: $\mathcal{O}(\hbar^1)$
 - Moyal equation \implies Liouville equation
 - Initial state \implies Gaussian of width \hbar
Initial state logarithms

- In the CGC, upper cutoff on the loop momentum: \(k^{\pm} < \Lambda \), to avoid double counting with the sources \(\gamma_{1,2} \)

\[\Gamma_{\gamma_{1,2}}(u, v) \mathbb{T}_u \mathbb{T}_v + \int \alpha(u) \mathbb{T}_u = \]

\[= \log(\Lambda^+) \mathcal{H}_1 + \log(\Lambda^-) \mathcal{H}_2 + \text{terms w/o logs} \]

\[\mathcal{H}_{1,2} = \text{JIMWLK Hamiltonians of the two nuclei} \]

- No mixing between the logs of the two nuclei

- Since the LO \(\leftrightarrow \) NLO relationship is the same for all inclusive observables, these logs have a universal structure
Factorization of the logarithms

Inclusive observables at Leading Log accuracy

\[
\langle \mathcal{O} \rangle_{\text{Leading Log}} = \int \left[D\rho_1 \, D\rho_2 \right] W_1[\rho_1] \, W_2[\rho_2] \, O_{\text{LO}}[\rho_1, \rho_2]
\]

fixed $\rho_{1,2}$

- Logs absorbed into the scale evolution of $W_{1,2}$

 \[
 \Lambda \frac{dW}{d\Lambda} = H W \quad \text{(JIMWLK equation)}
 \]

- Universality: the same W's for all inclusive observables
Initial Stages of Heavy Ion Collisions
Energy momentum tensor of the initial classical field
Energy momentum tensor of the initial classical field

\[T_{\mu \nu} \] for longitudinal \(\vec{E} \) and \(\vec{B} \)

\[T_{\text{LO}}^{\mu \nu} (\tau = 0^+) = \text{diag} \left(\epsilon, \epsilon, \epsilon, -\epsilon \right) \]

▷ very anisotropic + negative longitudinal pressure
Competition between Expansion and Isotropization
Weibel instabilities for small perturbations

\[c_0 + c_1 \exp(0.427 \sqrt{g^2 \mu \tau}) \]

\[c_0 + c_1 \exp(0.00544 g^2 \mu \tau) \]

[Romatschke, Venugopalan (2005)]
Weibel instabilities for small perturbations

- The perturbations that alter the classical field in loop corrections diverge with time, like $\exp \sqrt{\mu \tau}$ ($\mu \sim Q_s$)

- Some components of $T^{\mu \nu}$ have secular divergences when evaluated beyond tree level

$\begin{align*}
\text{max} & \quad 1e-10 \\
& \quad 1e-11 \\
& \quad 1e-12 \\
& \quad 1e-13 \\
0 & \quad 500 \quad 1000 \quad 1500 \quad 2000 \quad 2500 \quad 3000 \quad 3500
\end{align*}$

[Romatschke, Venugopalan (2005)]
Example of pathologies in fixed order calculations (scalar theory)

- Small correction to the energy density (protected by energy conservation)
- Secular divergence in the pressure
Example of pathologies in fixed order calculations (scalar theory)

- Small correction to the energy density (protected by energy conservation)
- Secular divergence in the pressure
Improved power counting and resummation

\[\text{Loop} \sim g^2 \quad , \quad \mathcal{T} \sim e^{\sqrt{\mu \tau}} \]

- 1 loop: \((ge^{\sqrt{\mu \tau}})^2\)
- 2 disconnected loops: \((ge^{\sqrt{\mu \tau}})^4\)
- 2 entangled loops: \(g(ge^{\sqrt{\mu \tau}})^3\)
- All disconnected loops to all orders
- Exponentiation of the 1-loop result
Improved power counting and resummation

\[\text{Loop} \sim g^2, \quad \mathcal{T} \sim e^{\sqrt{\mu \tau}} \]

- 1 loop:
 \[(ge^{\sqrt{\mu \tau}})^2 \]

- 2 disconnected loops:
 \[(ge^{\sqrt{\mu \tau}})^4 \]
Improved power counting and resummation

\[\text{Loop} \sim g^2, \quad \mathcal{T} \sim e^{\sqrt{\mu \tau}} \]

- 1 loop:
 \[(ge^{\sqrt{\mu \tau}})^2 \]

- 2 disconnected loops:
 \[(ge^{\sqrt{\mu \tau}})^4 \]

- 2 entangled loops:
 \[g(ge^{\sqrt{\mu \tau}})^3 \quad \triangleright \quad \text{subleading} \]

Leading terms

- All disconnected loops to all orders
 \[\triangleright \quad \text{exponentiation of the 1-loop result} \]
Resummation of the leading secular terms

\[T_{\mu \nu}^{\text{resummed}} = \exp \left[\frac{1}{2} \int_{u, v} \Gamma_2(u, v) T_u T_v \right] T_{\mu \nu}^{\text{LO}} [A_{\text{init}}] \]

\[= T_{\mu \nu}^{\text{LO}} + T_{\mu \nu}^{\text{NLO}} + T_{\mu \nu}^{\text{NNLO}} + \ldots \]

- The exponentiation of the 1-loop result collects all the terms with the worst time behavior
\[e^{\frac{\alpha}{2} \frac{\partial^2}{\partial x^2}} f(x) = \int_{-\infty}^{+\infty} dz \frac{e^{-z^2/2\alpha}}{\sqrt{2\pi\alpha}} f(x + z) \]
Resummation of the leading secular terms

\[T_{\text{resummed}}^{\mu\nu} = \exp \left[\frac{1}{2} \int_{u, v} \Gamma_2(u, v) T_u T_v \right] T_{\text{LO}}^{\mu\nu}[A_{\text{init}}] \]

\[= \int [D a] \exp \left[- \frac{1}{2} \int_{u, v} a(u) \Gamma_2^{-1}(u, v) a(v) \right] T_{\text{LO}}^{\mu\nu}[A_{\text{init}} + a] \]

- The exponentiation of the 1-loop result collects all the terms with the worst time behavior
- Equivalent to Gaussian fluctuations of the initial field + classical time evolution

- At \(Q_s \tau_0 \ll 1 \) : \(A_{\text{init}} \sim Q_s/g \), \(a \sim Q_s \)
Note: Classical field + Fluctuations = Coherent state

- This Gaussian distribution of initial fields is the Wigner distribution of a **coherent state** $|\mathcal{A}\rangle$

Coherent states are the “most classical quantum states”

Their Wigner distribution has the minimal support permitted by the uncertainty principle ($O(\hbar)$ for each mode)

- $|\mathcal{A}\rangle$ is not an eigenstate of the full Hamiltonian
 - decoherence via interactions
What needs to be done?

Main steps

1. Determine the 2-point function $\Gamma_2(u, v)$ that defines the Gaussian fluctuations, for the initial time τ_0 of interest.
 Note: this is an initial value problem, whose outcome is uniquely determined by the state of the system at $x^0 = -\infty$, and depends on the history of the system from $x^0 = -\infty$ to $\tau = \tau_0$.
 Problem solvable only if the fluctuations are weak, $a^\mu \ll Q_s/g$
 $Q_s\tau_0 \ll 1$ necessary for the fluctuations to be Gaussian.

2. Solve the classical Yang-Mills equations from τ_0 to τ_f.
 Note: the problem as a whole is boost invariant, but individual field configurations are not \Rightarrow 3+1 dimensions necessary.

3. Do a Monte-Carlo sampling of the fluctuating initial conditions.
Discretization of the expanding volume

- Comoving coordinates: τ, η, x_\perp
- Only a sub-volume is simulated + periodic boundary conditions
- $L^2 \times N$ lattice
Gaussian spectrum of fluctuations

Expression of the variance (from 1-loop considerations)

\[
\Gamma_2(u, v) = \int \text{modes } k \ a_k(u) a_k^*(v)
\]

\[
\left[D_\rho D^\rho \delta_\mu^\nu - D_\mu D^\nu + ig F_\mu^\nu \right] a_k^\mu = 0 , \ \lim_{x^0 \to -\infty} a_k(x) \sim e^{ik \cdot x}
\]

0. \(A^\mu = 0 \), trivial
1,2. \(A^\mu = \) pure gauge, analytical solution
3. \(A^\mu \) non-perturbative
 \[\Rightarrow \text{ expansion in } Q_s \tau \]
 - We need the fluctuations in Fock-Schwinger gauge
 \[x^+ a^- + x^- a^+ = 0 \]
 - Delicate light-cone crossings, since \(F^{\mu \nu} = \infty \) there
Mode functions for given quantum numbers: $\nu, k_{\perp}, \lambda, c$

\[
\begin{align*}
\alpha^i &= \beta^{+i} + \beta^{-i} \\
\alpha^\eta &= \mathcal{D}^i \left(\frac{\beta^{+i}}{2+i\nu} - \frac{\beta^{-i}}{2-i\nu} \right) \\
e^i &= -i\nu \left(\beta^{+i} - \beta^{-i} \right) \\
e^\eta &= -\mathcal{D}^i \left(\beta^{+i} - \beta^{-i} \right)
\end{align*}
\]

\[
\begin{align*}
\beta^{+i} &\equiv e^{\frac{\pi\nu}{2}} \Gamma(-i\nu) e^{i\nu\eta} \mathcal{U}^\dagger_1(x_{\perp}) \int_{p_{\perp}} e^{ip_{\perp} \cdot x_{\perp}} \mathcal{\tilde{U}}_1(p_{\perp} + k_{\perp}) \left(\frac{p_{\perp}^2 \tau}{2k_{\perp}} \right)^{i\nu} \left(\delta^{ij} - 2\frac{p^i_{\perp} p^j_{\perp}}{p_{\perp}^2} \right) e^j_{\lambda} \\
\beta^{-i} &\equiv e^{-\frac{\pi\nu}{2}} \Gamma(i\nu) e^{i\nu\eta} \mathcal{U}^\dagger_2(x_{\perp}) \int_{p_{\perp}} e^{ip_{\perp} \cdot x_{\perp}} \mathcal{\tilde{U}}_2(p_{\perp} + k_{\perp}) \left(\frac{p_{\perp}^2 \tau}{2k_{\perp}} \right)^{-i\nu} \left(\delta^{ij} - 2\frac{p^i_{\perp} p^j_{\perp}}{p_{\perp}^2} \right) e^j_{\lambda}
\end{align*}
\]

- Linearized EOM and Gauss’ law satisfied up to terms of order $(Q_s \tau)^2$
- Fock-Schwinger gauge condition $(a^\tau = e^\tau = 0)$
- Evolved from plane waves in the remote past
Computational cost

Initial Conditions

- Naive:
 \[N \log(N) \times L^4 \log(L) \times N_{\text{confs}} \]

- Better algorithm:
 \[N \log(N) \times L^4 \times (\log(L) + N_{\text{confs}}) \]

Time evolution

\[N \times L^2 \times N_{\text{confs}} \times N_{\text{time steps}} \]

Useful statistics (at fixed \(L, N \))

\[\sqrt{N_{\text{confs}}} \sim \frac{g^2}{(a_\perp a_\eta)^2} \]
Ultraviolet subtractions

- Fixed spacing in η
 $\Lambda_z \sim \tau^{-1}$

Bare ϵ and P_L diverge as τ^{-2} when $\tau \to 0^+$
Ultraviolet subtractions

- Fixed spacing in η
 \[\Lambda_z \sim \tau^{-1} \]

Bare ϵ and P_L diverge as τ^{-2} when $\tau \to 0^+$

- Zero point energy $\sim \Lambda_\perp^2 \Lambda_z^2$:
 Subtracted by redoing the calculation with the sources turned off
Ultraviolet subtractions

- Fixed spacing in η
 $\iff \Lambda_z \sim \tau^{-1}$

Bare ϵ and P_L diverge as τ^{-2} when $\tau \to 0^+$

- Zero point energy $\sim \Lambda^2_{_{\perp}} \Lambda^2_z$:
 Subtract by redoing the calculation with the sources turned off

- Subleading divergences $\sim \Lambda^2_z$ in ϵ and P_L:
 Exist only at finite \perp lattice spacing (not in the continuum)
 Same counterterm in ϵ and P_L to preserve $T^{\mu}_{\mu} = 0$
 Must be of the form $A \times \tau^{-2}$ to preserve Bjorken’s law
 At the moment, not calculated from first principles $\Rightarrow \Lambda$ fitted
Time evolution of P_T/ϵ and P_L/ϵ (64 × 64 × 128 lattice)

$g = 0.1$ ($N_{\text{conf}} = 200$)
Time evolution of P_T/ϵ and P_L/ϵ (64 × 64 × 128 lattice)

g = 0.5 \ (N_{\text{conf}} = 2000)
Non Renormalizability
Schwinger-Keldysh formalism in the R/A basis

Schwinger-Keldysh propagators

\[
\begin{align*}
G^0_{++}(p) &= \frac{i}{p^2 + i\epsilon}, \\
G^0_{+-}(p) &= 2\pi \theta(-p^0)\delta(p^2), \\
G^0_{-+}(p) &= \frac{-i}{p^2 - i\epsilon}, \\
G^0_{--}(p) &= 2\pi \theta(p^0)\delta(p^2)
\end{align*}
\]

- Define a new basis by “rotating” the propagators:

\[
G^0_{\alpha\beta} \equiv \sum_{\epsilon, \epsilon' = \pm} \Omega_{\alpha\epsilon} \Omega_{\beta\epsilon'} G^0_{\epsilon\epsilon'}
\]

with

\[
\Omega_{\alpha\epsilon} \equiv \begin{pmatrix} 1 & -1 \\ 1/2 & 1/2 \end{pmatrix}
\]

New propagators

\[
G^0_{\alpha\beta} = \begin{pmatrix} 0 & G^0_A \\ G^0_R & G^0_S \end{pmatrix} \equiv \pi \delta(p^2)
\]
Classical Statistical Approximation

New vertices

\[\Gamma_{1111} = \Gamma_{1122} = \Gamma_{2222} = 0 \]
\[\Gamma_{1222} = -ig^2, \quad \Gamma_{1112} = -ig^2/4 \]

- Classical statistical approximation: drop the \(\Gamma_{1112} \) vertex
- Only a subset of the graphs of the full theory
- Same ultraviolet superficial power counting
Ultraviolet divergences

\[
\left[\Sigma_{11} \right]^{1 \text{ loop}}_{\text{CSA}} = 0 , \quad \left[\Sigma_{22} \right]^{1 \text{ loop}}_{\text{CSA}} = \frac{2}{2} \frac{1}{2} = 0
\]

\[
\left[\Sigma_{12} \right]^{1 \text{ loop}}_{\text{CSA}} = \frac{2}{1} \frac{2}{2} = \frac{g^2 \Lambda_{\text{UV}}^2}{16\pi^2} \quad \text{(usual mass renormalization)}
\]

\[
\left[\Gamma_{1112} \right]^{1 \text{ loop}}_{\text{CSA}} = \frac{1}{1} \frac{2}{2} \frac{1}{2} \frac{2}{2} = 0 , \quad \left[\Gamma_{1111} \right]^{1 \text{ loop}}_{\text{CSA}} = \left[\Gamma_{2222} \right]^{1 \text{ loop}}_{\text{CSA}} = 0
\]

\[
\left[\Gamma_{1222} \right]^{1 \text{ loop}}_{\text{CSA}} = \frac{2}{2} \frac{2}{1} \frac{1}{2} \frac{2}{2} \sim g^4 \log(\Lambda_{\text{UV}})
\]
Ultraviolet divergences, the weird stuff...

\[[\Gamma_{1122}]_{\text{CSA}}^{1 \text{ loop}} = \frac{ig^4}{64\pi} \left[\text{sign}(t) + \text{sign}(u) + 2\Lambda_{\text{UV}} \left(\frac{\theta(-t)}{|p_1 + p_3|} + \frac{\theta(-u)}{|p_1 + p_4|} \right) \right] \]

with \(t \equiv (p_1 + p_3)^2 \), \(u \equiv (p_1 + p_4)^2 \)

- No divergence if we keep the 1112 bare vertex
- UV divergence with no corresponding operator in the Lagrangian
- Stronger than the superficial power counting suggests
- Non-polynomial in the external momenta (i.e. non-local)

\[\Rightarrow \] the classical statistical approximation violates Weinberg’s theorem, and is not renormalizable
Unusual UV divergences in self-energies

$$\left[\Sigma_{11}(P) \right]_{\text{CSA}}^{\text{2 loop}} = \frac{1}{2} \frac{2}{2} \frac{2}{2} \frac{1}{2} = -\frac{i g^4}{1024 \pi^3} \left(\Lambda_{\text{UV}}^2 - \frac{2}{3} p^2 \right)$$

$$\text{Im} \left[\Sigma_{12}(P) \right]_{\text{CSA}}^{\text{2 loop}} = \frac{1}{2} \frac{2}{2} \frac{2}{1} \frac{2}{1} = -\frac{g^4}{1024 \pi^3} \left(\Lambda_{\text{UV}}^2 - \frac{2}{3} p^2 \right)$$

- Add a particle distribution $f(p)$ in the game, and compute the collision term for the Boltzmann equation:

$$c_p[f] = -\frac{i}{2 \omega_p} \left[\Sigma_{11}(P) + \left(f(p) + \frac{1}{2}\right) \left(\Sigma_{21}(P) - \Sigma_{12}(P)\right) \right]$$

$$\Rightarrow \text{fake scattering term} \sim g^4 f(p) \Lambda_{\text{UV}}^2 / \omega_p$$
UV cutoff dependence of the asymptotic distribution

- At late times, \(f(p) \approx \frac{T}{\omega_p - \mu} - \frac{1}{2} \), but \(T \) and \(\mu \) depend on \(\Lambda_{UV} \).

(points: classical statistical simulations, curves: Boltzmann eq.)
Full Quantum: \(f_1 f_2 (1 + f_3) (1 + f_4) - (1, 2 \leftrightarrow 3, 4) \)
Strict classical: $f_1 f_2 (f_3 + f_4) - (1, 2 \leftrightarrow 3, 4)$
Classical + vac. fluct. : \((f_1 + 1/2)(f_2 + 1/2)(1 + f_3 + f_4) - (1, 2 \leftrightarrow 3, 4)\)
In coordinate space:

\[L(x,y) \equiv \frac{g^4}{64\pi^3} \Lambda_{\text{UV}} |x - y| \delta((x_0 - y_0)^2 - (x - y)^2) \]

Can be generated by a Gaussian multiplicative noise term:

\[\Box \phi + g^2 \phi^3 + i\xi \phi = 0 \]

\[\langle \xi(x) \rangle = 0, \quad \langle \xi(x) \xi(y) \rangle = L(x,y) \]
Classical + divergent part of the missing graphs

- In coordinate space:
 \[L(x, y) = \frac{g^4}{64\pi^3} \frac{\Lambda_{\text{UV}}}{|x - y|} \delta((x^0 - y^0)^2 - (x - y)^2) \]

- Can be generated by a Gaussian multiplicative noise term:
 \[\Box \phi + \frac{g^2}{6} \phi^3 + i\xi \phi = 0 \]
 \[\langle \xi(x) \rangle = 0, \quad \langle \xi(x) \xi(y) \rangle = L(x, y) \]
Summary
Summary

• CGC calculation of the energy momentum tensor in a nucleus-nucleus collision, up to $Q_s \tau \lesssim 20$

• Method:
 • Classical statistical method
 • Initial Gaussian fluctuations: analytical, from a 1-loop calculation
 • Time evolution: numerical, 3+1d Yang-Mills equations on a lattice

• Accuracy:
 \[
 \langle 0_{\text{in}} | T^{\mu \nu}(\tau, x) | 0_{\text{in}} \rangle \text{ at LO + NLO + leading secular terms}
 \]

• Results:
 • Sizable longitudinal pressure ($P_L / P_T \sim 60\%$ for $g = 0.5$)
 • Typical timescale: $Q_s \tau \sim 2 - 3$
Extra Bits
Coherent vs Incoherent initial conditions

arXiv:1303.5650:
\[\langle A \rangle, \langle E \rangle = 0 \]
\[\langle A^2 \rangle \sim \frac{Q^2}{g^2}, \langle E^2 \rangle \sim \frac{Q^4}{g^2} \]

CGC:
\[\langle A \rangle \sim \frac{Q}{g}, \langle E \rangle \sim \frac{Q^2}{g} \]
\[\langle A^2 \rangle_c \sim Q^2, \langle E^2 \rangle_c \sim Q^4 \]
Microcanonical equilibration of an anharmonic oscillator

- The oscillation frequency depends on the initial condition.
Microcanonical equilibration of an anharmonic oscillator

- The oscillation frequency depends on the initial condition
- Because of QM, the initial ensemble is a set of width $\sim \hbar$
The oscillation frequency depends on the initial condition
Because of QM, the initial ensemble is a set of width $\sim \hbar$
This ensemble of initial configurations spreads in time
Microcanonical equilibration of an anharmonic oscillator

- The oscillation frequency depends on the initial condition
- Because of QM, the initial ensemble is a set of width $\sim \hbar$
- This ensemble of initial configurations spreads in time
Microcanonical equilibration of an anharmonic oscillator

- The oscillation frequency depends on the initial condition
- Because of QM, the initial ensemble is a set of width $\sim \hbar$
- This ensemble of initial configurations spreads in time
- At large times, the ensemble fills densely all the region allowed by energy conservation \Rightarrow microcanonical equilibrium
Quantum chaos

- **Central issue**: consider a Hamiltonian that leads to chaotic classical behavior; What happens when this system is quantized?

- Schrödinger’s equation is linear, and \hat{H} Hermitian:
 \[
 i\partial_t \Psi = \hat{H} \Psi
 \]

- Once we know the spectrum of the Hamiltonian $\{E_n, \Psi_n\}$, any wavefunction evolves as:
 \[
 \Psi(t) = \sum_n c_n e^{iE_n t} \Psi_n
 \]

 $E_n \in \mathbb{R} \Rightarrow$ nothing is unstable. *Where is the chaos in QM?*
Berry’s conjecture (1977)

- The complexity of the classical dynamics is hidden in the complexity of the high lying eigenfunctions.

- Berry’s conjecture: for most practical purposes, high lying eigenfunctions of classically chaotic systems behave as Gaussian random functions with 2-point correlations given by

\[
\left\langle \psi^* (X - \frac{S}{2}) \psi (X + \frac{S}{2}) \right\rangle = \int dP \: e^{iP \cdot S/\hbar} \delta [E - H(X, P)]
\]

- If this hypothesis is true, the Wigner distribution associated with the eigenfunction \(\psi_E \) is

\[
W(X, P) = \int ds \: e^{-iP \cdot S/\hbar} \psi_E^* (X - \frac{S}{2}) \psi_E (X + \frac{S}{2})
\]

\[
\sim \delta [E - H(X, P)]
\]

\[\Rightarrow \text{micro-canonical equilibrium for a single eigenstate}\]
Eigenstate thermalization hypothesis (Srednicki, 1994)

- If an energy eigenstate obeys Berry’s conjecture, then a measurement performed on that state will lead to the Bose-Einstein (or Fermi-Dirac) distribution for the single particle distribution.

- Generic states approach equilibrium via decoherence of their energy eigenstate components.