Isotropization in Heavy Ion Collisions at High Energy

Yukawa Institute of Theoretical Physics, Kyoto, December 2013

T. Epelbaum, FG : arXiv:1307.1765 arXiv:1307.2214

> François Gelis IPhT, Saclay

1 CGC description of heavy ion collisions

2 Isotropization in Heavy Ion Collisions

Stages of a nucleus-nucleus collision

Stages of a nucleus-nucleus collision

 Well described as a fluid expanding into vacuum according to relativistic hydrodynamics

François Gelis

François Gelis

Isotropization in Heavy Ion Collisions 2/28

François Gelis

Isotropization in Heavy Ion Collisions 2/28

François Gelis

Isotropization in Heavy Ion Collisions 2/28

Isotropization in Heavy Ion Collisions 2/28

CGC Description of Heavy Ion Collisions

What do we need to know about nuclei?

• At low energy : valence quarks

François Gelis

Isotropization in Heavy Ion Collisions 3/28

What do we need to know about nuclei?

Slightly boosted nucleus

- At low energy : valence quarks
- At higher energy :
 - Lorenz contraction of longitudinal sizes
 - Time dilation ▷ slowing down of the internal dynamics
 - Gluons start becoming important

- At low energy : valence quarks
- At higher energy :
 - Lorenz contraction of longitudinal sizes
 - Time dilation ▷ slowing down of the internal dynamics
 - Gluons start becoming important
- At very high energy : gluons dominate

François Gelis

Multiple scatterings and gluon recombination

Main difficulty: How to treat collisions involving a large number of • partons?

Francois Gelis

Isotropization in Heavy Ion Collisions

Multiple scatterings and gluon recombination

Dilute regime : one parton in each projectile interact
 single parton distributions, standard perturbation theory

Multiple scatterings and gluon recombination

Dense regime : multiparton processes become crucial

 \triangleright gluon recombinations are important (saturation)

> multi-parton distributions

> alternative approach : treat the gluons in the projectiles as external currents

$$\mathcal{L} = -\frac{1}{4}\mathbf{F}^2 + \mathbf{A} \cdot (\mathbf{J}_1 + \mathbf{J}_2)$$

(gluons only, field A for $k^+ < \Lambda$, classical source J for $k^+ > \Lambda$)

Francois Gelis

Isotropization in Heavy Ion Collisions

4/28

Color Glass Condensate

CGC = effective theory of small x gluons

The fast partons (k⁺ > Λ⁺) are frozen by time dilation
 ▷ described as static color sources on the light-cone :

 $J^{\mu} = \delta^{\mu +} \rho(x^{-}, \vec{x}_{\perp}) \qquad (0 < x^{-} < 1/\Lambda^{+})$

- The color sources ρ are random, and described by a probability distribution $W_{\Lambda^+}[\rho]$
- Slow partons $(k^+ < \Lambda^+)$ cannot be considered static over the time-scales of the collision process

 \triangleright must be treated as standard gauge fields

 \rhd eikonal coupling to the current J^{μ} : $\textbf{A}_{\mu}J^{\mu}$

Semantics

• Weakly coupled : $g \ll 1$

• Weakly interacting : $gA \ll 1$ $g^2 f(\mathbf{p}) \ll 1$

 $(2 \rightarrow 2) \gg (2 \rightarrow 3), (3 \rightarrow 2), \cdots$

• Strongly interacting : $g\mathcal{A} \sim 1$ $g^2 f(p) \sim 1$

 $(2 \rightarrow 2) \sim (2 \rightarrow 3) \sim (3 \rightarrow 2) \sim \cdots$

No well defined quasi-particles

CGC = weakly coupled, but strongly interacting effective theory

François Gelis

Isotropization in Heavy Ion Collisions 6/

6/28

Power counting

CGC effective theory with cutoff at the scale Λ₀ :

$$S = \underbrace{-\frac{1}{4} \int F_{\mu\nu} F^{\mu\nu}}_{S_{YM}} + \int \underbrace{(J_1^{\mu} + J_2^{\mu})}_{\text{fast partons}} A_{\mu}$$

• Expansion in g² in the saturated regime:

$$T^{\mu\nu} \sim \frac{1}{g^2} \left[c_0 + c_1 \ g^2 + c_2 \ g^4 + \cdots \right]$$

François Gelis

Power counting

In the saturated regime: $J^{\mu} \sim g^{-1}$

 $g^{-2} \ g^{\text{\# of external legs}} \ g^{2 \times (\text{\# of loops})}$

- No dependence on the number of sources $J^{\boldsymbol{\mu}}$
 - \triangleright infinite number of graphs at each order

François Gelis

Leading Order in g² : tree diagrams

- cea
- The Leading Order is the sum of all the tree diagrams
 Observables can be expressed in terms of classical solutions of Yang-Mills equations :

$$\mathcal{D}_{\mu}\mathcal{F}^{\mu\nu} = J_1^{\nu} + J_2^{\nu}$$

· Boundary conditions for inclusive observables :

$$\lim_{x^0\to-\infty}\mathcal{A}^{\mu}(x)=0$$

Example : 00 component of the energy-momentum tensor

$$T_{\rm LO}^{\rm OO} = \frac{1}{2} \left[\underbrace{\mathcal{E}^2 + \mathcal{B}^2}_{\text{class, fields}} \right]$$

François Gelis

Isotropization in Heavy Ion Collisions 9/28

Next to Leading Order in g² : 1-loop diagrams

Getting the NLO from tree graphs...

$$\mathcal{O}_{\rm NLO} = \left[\frac{1}{2}\int_{\mathbf{u},\mathbf{v}} \mathbf{\Gamma}_2(\mathbf{u},\mathbf{v}) \,\mathbb{T}_{\mathbf{u}} \mathbb{T}_{\mathbf{v}} + \int_{\mathbf{u}} \boldsymbol{\alpha}(\mathbf{u}) \,\mathbb{T}_{\mathbf{u}}\right] \,\mathcal{O}_{\rm LO}$$

• \mathbb{T} is the generator of the shifts of the initial value of the field :

$$\mathbb{T}_{\mathbf{u}} \sim \frac{\partial}{\partial \mathcal{A}_{init}}$$

$$\exp\left[\int_{\mathbf{u}} \boldsymbol{\alpha}_{\mathbf{u}} \mathbb{T}_{\mathbf{u}}\right] \underbrace{\mathcal{O}}\left[\overbrace{\mathcal{A}_{\tau}(\underbrace{\mathcal{A}_{\text{init}}}_{\text{init. value}})\right] = \underbrace{\mathcal{O}}\left[\mathcal{A}_{\tau}(\underbrace{\mathcal{A}_{\text{init}} + \boldsymbol{\alpha}}_{\text{shifted init. value}})\right]$$

François Gelis

Isotropization in Heavy Ion Collisions 10/28

Equations of motion for a field ${\mathcal A}$ and a small perturbation α

$$\Box \mathcal{A} + V'(\mathcal{A}) = J$$
$$[\Box + V''(\mathcal{A})] \alpha = 0$$

• Getting the perturbation by shifting the initial condition of *A* at one point :

$$\alpha(x) = \int_{\mathbf{u}} \frac{\alpha_{\mathbf{u}}}{\mathbf{T}_{\mathbf{u}}} \, \mathcal{A}(x)$$

Equations of motion for a field ${\mathcal A}$ and a small perturbation α

$$\Box \mathcal{A} + V'(\mathcal{A}) = J$$
$$[\Box + V''(\mathcal{A})] \alpha = 0$$

• Getting the perturbation by shifting the initial condition of *A* at one point :

$$\alpha(x) = \int_{\mathbf{u}} \alpha_{\mathbf{u}} \, \mathbb{T}_{\mathbf{u}} \, \mathcal{A}(x)$$

Equations of motion for a field ${\mathcal A}$ and a small perturbation α

$$\Box \mathcal{A} + V'(\mathcal{A}) = J$$
$$[\Box + V''(\mathcal{A})] \alpha = 0$$

• Getting the perturbation by shifting the initial condition of *A* at one point :

$$\alpha(x) = \int_{\mathbf{u}} \frac{\alpha_{\mathbf{u}}}{\mathbf{T}_{\mathbf{u}}} \, \mathcal{A}(x)$$

• A loop is obtained by shifting the initial condition of $\mathcal A$ at two points

Initial state logarithms

In the CGC, upper cutoff on the loop momentum : k[±] < Λ, to avoid double counting with the sources J^v_{1,2}
 ⊳ logarithms of the cutoff

Central result for factorization at Leading Log

$$\begin{split} &\frac{1}{2} \int_{u,v} \Gamma_2(u,v) \, \mathbb{T}_u \mathbb{T}_v + \int_u \alpha(u) \, \mathbb{T}_u = \\ &= \log \left(\Lambda^+ \right) \, \mathcal{H}_1 + \log \left(\Lambda^- \right) \, \mathcal{H}_2 + \text{terms w/o logs} \end{split}$$

 $\mathcal{H}_{1,2} = \text{JIMWLK}$ Hamiltonians of the two nuclei

- No mixing between the logs of the two nuclei
- Since the LO ↔ NLO relationship is the same for all inclusive observables, these logs have a universal structure

François Gelis

Isotropization in Heavy Ion Collisions 1

12/28

Inclusive observables at Leading Log accuracy

$$\left\langle \boldsymbol{\varTheta}\right\rangle_{\text{Leading Log}} = \int \left[\boldsymbol{D}\rho_1 \ \boldsymbol{D}\rho_2 \right] W_1 \left[\rho_1\right] W_2 \left[\rho_2\right] \underbrace{\boldsymbol{\varTheta}_{\text{Lo}}[\rho_1,\rho_2]}_{\text{fixed }\rho_{1,2}}$$

Logs absorbed into the scale evolution of W_{1,2}

$$\Lambda \frac{\partial W}{\partial \Lambda} = \mathcal{H} W$$
 (JIMWLK equation)

Universality : the same W's for all inclusive observables

Francois Gelis

Isotropization in Heavy Ion Collisions

13/28

Isotropization in Heavy Ion Collisions

Energy momentum tensor of the initial classical field

Energy momentum tensor of the initial classical field

Competition between Expansion and Isotropization

François Gelis

Isotropization in Heavy Ion Collisions 15/28

Weibel instabilities for small perturbations

François Gelis

Weibel instabilities for small perturbations

- The perturbations that alter the classical field in loop corrections diverge with time, like $exp \sqrt{\mu\tau}$ ($\mu \sim Q_s$)
- Some components of T^{µν} have secular divergences when evaluated beyond tree level

Example of pathologies in fixed order calculations (scalar theory)

Example of pathologies in fixed order calculations (scalar theory)

- Small correction to the energy density (protected by energy conservation)
- Secular divergence in the pressure

François Gelis

Improved power counting and resummation

cea

Improved power counting and resummation

cea

Improved power counting and resummation

cea

Leading terms

- All disconnected loops to all orders
 - \triangleright exponentiation of the 1-loop result

François Gelis

Isotropization in Heavy Ion Collisions

18/28

Resummation of the leading secular terms

 The exponentiation of the 1-loop result collects all the terms with the worst time behavior

Resummation of the leading secular terms

$$T_{\text{resummed}}^{\mu\nu} = \exp\left[\frac{1}{2}\int_{u,v} \Gamma_2(u,v)\mathbb{T}_u\mathbb{T}_v\right] T_{\text{Lo}}^{\mu\nu}[\mathcal{A}_{\text{init}}]$$
$$= \int [Da] \exp\left[-\frac{1}{2}\int_{u,v} a(u)\Gamma_2^{-1}(u,v)a(v)\right] T_{\text{Lo}}^{\mu\nu}[\mathcal{A}_{\text{init}}+a]$$

- The exponentiation of the 1-loop result collects all the terms with the worst time behavior
- Equivalent to Gaussian fluctuations of the initial field + classical time evolution

• At
$$Q_s \tau_0 \ll 1$$
: $\mathcal{A}_{init} \sim Q_s/g$, $a \sim Q_s$

François Gelis

Isotropization in Heavy Ion Collisions 19/28

cea

- This Gaussian distribution of initial fields is the Wigner distribution of a coherent state $|\mathcal{A}\rangle$

Coherent states are the "most classical quantum states"

Their Wigner distribution has the minimal support permitted by the uncertainty principle ($\mathfrak{O}(\hbar)$ for each mode)

• $|\mathcal{A}\rangle$ is not an eigenstate of the full Hamiltonian > decoherence via interactions

What needs to be done?

Main steps

Determine the 2-point function Γ₂(**u**, *ν*) that defines the Gaussian fluctuations, for the initial time Q_sτ₀ of interest Note : this is an initial value problem, whose outcome is uniquely determined by the state of the system at x⁰ = -∞, and depends on the history of the system from x⁰ = -∞ to τ = τ₀
 Problem solvable only if the fluctuations are weak, a^μ ≪ Q_s/g

 $Q_{\rm s}\tau_0 \ll 1$ necessary for the fluctuations to be Gaussian

2. Solve the classical Yang-Mills equations from τ_0 to τ_f Note : the problem as a whole is boost invariant, but individual field configurations are not \implies 3+1 dimensions necessary

3. Do a Monte-Carlo sampling of the fluctuating initial conditions

François Gelis

Discretization of the expanding volume

- Comoving coordinates : τ, η, x_⊥
- · Only a sub-volume is simulated + periodic boundary conditions
- L² × N lattice

Gaussian spectrum of fluctuations

Expression of the variance (from 1-loop considerations)

$$\begin{split} & \Gamma_2(u,v) = \int_{\text{modes } k} a_k(u) a_k^*(v) \\ & \left[\mathcal{D}_\rho \mathcal{D}^\rho \delta_\mu^\nu - \mathcal{D}_\mu \mathcal{D}^\nu + \text{ig } \mathcal{F}_\mu^{\ \nu} \right] a_k^\mu = 0 \quad , \quad \lim_{x^0 \to -\infty} a_k(x) \sim e^{ik \cdot x} \end{split}$$

- **0.** $\mathcal{A}^{\mu} = 0$, trivial
- **1,2**. A^{μ} = pure gauge, analytical solution
 - 3. \mathcal{A}^{μ} non-perturbative
 - $\Rightarrow \text{ expansion in } Q_s \tau$
 - We need the fluctuations in Fock-Schwinger gauge $x^+a^- + x^-a^+ = 0$
 - Delicate light-cone crossings, since $\mathcal{F}^{\mu\nu}=\infty$ there

Mode functions for given quantum numbers : $\nu, k_{\perp}, \lambda, c$

$$a^{i} = \beta^{+i} + \beta^{-i} \qquad a^{\eta} = \mathcal{D}^{i} \left(\frac{\beta^{+i}}{2 + i\nu} - \frac{\beta^{-i}}{2 - i\nu} \right)$$
$$e^{i} = -i\nu \left(\beta^{+i} - \beta^{-i} \right) \qquad e^{\eta} = -\mathcal{D}^{i} \left(\beta^{+i} - \beta^{-i} \right)$$

$$\begin{split} \beta^{+i} &\equiv e^{\frac{\pi\nu}{2}} \Gamma(-i\nu) e^{i\nu\eta} \, \mathfrak{U}_{1}^{\dagger}(\mathbf{x}_{\perp}) \int\limits_{\mathbf{p}_{\perp}} e^{i\mathbf{p}_{\perp}\cdot\mathbf{x}_{\perp}} \, \widetilde{\mathfrak{U}}_{1}(\mathbf{p}_{\perp}+\mathbf{k}_{\perp}) \left(\frac{p_{\perp}^{2}\tau}{2\mathbf{k}_{\perp}}\right)^{i\nu} \left(\delta^{ij}-2\frac{p_{\perp}^{i}p_{\perp}^{j}}{p_{\perp}^{2}}\right) \epsilon_{\lambda}^{j} \\ \beta^{-i} &\equiv e^{-\frac{\pi\nu}{2}} \Gamma(i\nu) e^{i\nu\eta} \, \mathfrak{U}_{2}^{\dagger}(\mathbf{x}_{\perp}) \int\limits_{\mathbf{p}_{\perp}} e^{i\mathbf{p}_{\perp}\cdot\mathbf{x}_{\perp}} \, \widetilde{\mathfrak{U}}_{2}(\mathbf{p}_{\perp}+\mathbf{k}_{\perp}) \left(\frac{p_{\perp}^{2}\tau}{2\mathbf{k}_{\perp}}\right)^{-i\nu} \left(\delta^{ij}-2\frac{p_{\perp}^{i}p_{\perp}^{j}}{p_{\perp}^{2}}\right) \epsilon_{\lambda}^{j} \end{split}$$

- Linearized EOM and Gauss' law satisfied up to terms of order $(Q_s \tau)^2$
- Fock-Schwinger gauge condition ($a^{\tau} = e^{\tau} = 0$)
- Evolved from plane waves in the remote past

François Gelis

Isotropization in Heavy Ion Collisions 24/28

Computational cost

Initial Conditions

• Naive :

 $N\log(N) \times L^4 \log(L) \times N_{confs}$

• Better algorithm :

 $N \log(N) \times L^4 \times (log(L) + N_{confs})$

Time evolution

$$N \times L^2 \times N_{\text{confs}} \times N_{\text{time steps}}$$

Useful statistics (at fixed volume)

$$\sqrt{N_{confs}} \sim \frac{g^2}{(a_\perp a_\eta)^2}$$

François Gelis

Isotropization in Heavy Ion Collisions 25/28

Ultraviolet subtractions

cea

Bare ε and $\mathsf{P}_{_L}$ diverge as τ^{-2} when $\tau \to 0^+$

Ultraviolet subtractions

cea

• Fixed spacing in η $\iff \Lambda_z \sim \tau^{-1}$

Bare ε and $P_{_L}$ diverge as τ^{-2} when $\tau \to 0^+$

• Zero point energy $\sim \Lambda_{\perp}^2 \Lambda_z^2$:

Subtracted by redoing the calculation with the sources turned off

Ultraviolet subtractions

cea

• Fixed spacing in $\eta \iff \Lambda_z \sim \tau^{-1}$

Bare ε and $P_{_L}$ diverge as τ^{-2} when $\tau \to 0^+$

• Zero point energy $\sim \Lambda_{\perp}^2 \Lambda_z^2$:

Subtracted by redoing the calculation with the sources turned off

• Subleading divergences $\sim \Lambda_z^2$ in ε and $P_{_L}$:

Exist only at finite \perp lattice spacing (not in the continuum) Same counterterm in ε and P_L to preserve $T^{\mu}{}_{\mu} = 0$ Must be of the form $A \times \tau^{-2}$ to preserve Bjorken's law At the moment, not calculated from first principles $\Rightarrow A$ fitted

François Gelis

Time evolution of P_{T}/ϵ and P_{T}/ϵ (64 × 64 × 128 lattice)

François Gelis

Isotropization in Heavy Ion Collisions 27/28

Kyoto, December 2013

cea

Time evolution of P_{T}/ϵ and P_{T}/ϵ (64 × 64 × 128 lattice)

François Gelis

Isotropization in Heavy Ion Collisions 27/28

Summary

- CGC calculation of the energy momentum tensor in a nucleus-nucleus collision, up to $Q_s\tau \lesssim 20$
- Method :
 - Classical statistical method
 - Initial Gaussian fluctuations : analytical, from a 1-loop calculation
 - Time evolution : numerical, 3+1d Yang-Mills equations on a lattice
- Accuracy :

 $\left< 0_{in} \middle| \mathsf{T}^{\mu\nu}(\tau, \textbf{x}) \middle| 0_{in} \right>$ at LO + NLO + leading secular terms

- Results :
 - Sizeable longitudinal pressure (P $_{_{\rm I}}$ /P $_{_{\rm T}}$ $\sim 60\%$ for g=0.5)
 - Typical timescale : $Q_s \tau \sim 2 3$