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From atoms to nuclei, to quarks and gluons

107 m : atom (99.98% of the mass is in the nucleus)
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From atoms to nuclei, to quarks and gluons




Quarks and gluons

Strong interactions : Quantum Chromo-Dynamics

e Matter : quarks ; Interaction carriers : gluons

«~< < (%) «m{ - (T 3{

e i,j :quark colors ; a,b,c :gluon colors
o (t%)y :3 x 3 SU(B) matrix ; (T*)ve : 8 x 8 SU(3) matrix

Lagrangian

1 -
L= _ZFZ T ;wr(ﬂ‘) — me e

e Free parameters : quark masses my, scale A,
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Asymptotic freedom

Running coupling : «. = g°/4n
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Color confinement
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e The quark-antiquark potential increases linearly with distance



Color confinement

¢ In nature, we do not see free quarks and gluons (the closest we
have to actual quarks and gluons are jets)

¢ Instead, we see hadrons (quark-gluon bound states):
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Debye screening at high density

eG@)) ® V(r) = e"P(L;acb&)
g@gr/
oo

¢ |n a dense environment, color charges are screened by their
neighbours

e The Coulomb potential decreases exponentially beyond the
Debye radius rqchye

o Bound states larger than rgey. cannot survive
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Deconfinement transition

5t —
prT* Psa/T*

4 +

3 .

5| 3 flavour

2+1 flavour S

pure gauge

T [MeV]
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o Fast increase of the pressure :

e at T ~ 270 MeV, if there are only gluons
e at T ~ 150-170 MeV, depending on the number of light quarks
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QCD phase diagram
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QGP in the early universe
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QGP in the early universe

time

10+12 sec

10+2 sec

105 sec

10-10 sec|-

1032 sec

big bang
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Heavy ion collisions

Temperature

Nuclei Neutron stars

Heavy lon Collision
Quark-Gluon
plasma
hadronic
phase Color superconductor ~ Net Baryon
Y ~ } Density
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Experimental facilities : RHIC and LHC
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Heavy ion collision at the LHC

SOoT 0N o e

) e ,'u‘}zi
= ".f"', .
ST e F /}f/.m e

13/51



From measured hadrons back to QCD...

Goal : from the final state particles (hadrons), understand the
microscopic dynamics of the quarks and gluons
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Stages of a nucleus-nucleus collision

freeze out

hadrons — kinetic theory
gluons & quarks in eq. — ideal hydro

gluons & quarks out of eq. — viscous hydro

strong fields — classical dynamics

Z

15/51



Stages of a nucleus-nucleus collision

freeze out
hadrons — kinetic theory
gluons & quarks in eq. — ideal hydro

gluons & quarks out of eq. — viscous hydro

strong fields — classical dynamics

Z

o Well described as a fluid expanding into vacuum
according to relativistic hydrodynamics J
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Evidence for hydrodynamical behavior
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Evidence for hydrodynamical behavior
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Evidence for hydrodynamical behavior
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Evidence for hydrodynamical behavior

® Pb+Pb 2.76 A TeV: ALICE
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Evidence for hydrodynamical behavior
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Evidence for hydrodynamical behavior

® Pb+Pb 2.76 A TeV: ALICE
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Evidence for hydrodynamical behavior

® Pb+Pb 2.76 A TeV: ALICE
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Evidence for hydrodynamical behavior

® Pb+Pb 2.76 A TeV: ALICE (b) + ALICE ¢=0-5%,...,50-60%

Pb-Pb 2.76 TeV 10-20%
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Thermalization :
A brief history



The second law of thermodynamics

e Thermodynamics is a big success of 19th century physics

e The 1st law is easy to understand from the underlying dynamics,
since it just states that energy is conserved, provided one does
the bookkeeping correctly

e But the 2nd law, about the increase of entropy in closed systems,
had remained rather elusive from the point of view of mechanics

Main issue : Newtonian mechanics is time-reversible and does
not impose a preferred direction to the flow of time



Various concepts of equilibrium

o : the single particle distribution in a closed
system with many constituents is the Boltzmann distribution

o : all the micro-states that have the
same energy are equiprobable (assuming no other knowledge
about the system)

° : for a measurement that lasts long enough, another
interesting question is whether a generic phase-space trajectory
covers uniformly the entire energy surface
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Boltzmann equation, H theorem
Poincaré recurrence theorem



Boltzmann equation (1872)

e The

describes the evolution of
the 1-particle distribution of point-like objects that
collide at short distance :

[at + i - 6,(} £(t,%,P) = Cpf]

2\ o o> the functional C;, [f] is the collision term :
N o ‘f'—if a*p’ J K J K
P 2B, | (2m)32E, ) (2m)32Ex | (27)32E 4

(2m)*8(p+k—p'—K)

X [f(x,ﬁ’)f(x, K') — (X, B)F(X, '2)} ‘M‘Z

o Elementary collisions are reversible (A — B and
B — A have the same cross-section)
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H theorem (1872)

e Entropy density and flux :

3—)
sX) = = | 5B 1X,P) log X, )
— 3_’
T.X) = —Jéﬁ‘)’g By (X, B) log f(X, P)

H theorem

ats+6x'fs:0-

e o > 0 for any distribution f(X, p)

o 0= 0when f(X,p) = exp(—BEp)
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Poincaré recurrence theorem (1880)

o : the volume in phase-space is conserved
under a conservative Hamiltonian flow

¢ Phase-space trajectories do not intersect

o : any dynamical system whose
conserved energy surface has a finite measure will return
arbitrarily close to its initial condition

e Surround the phase-space point by a small
sphere that sweeps through phase-space

an
w WA
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Poincaré recurrence theorem (1880)

° : the volume in phase-space is conserved
under a conservative Hamiltonian flow

¢ Phase-space trajectories do not intersect

o : any dynamical system whose
conserved energy surface has a finite measure will return
arbitrarily close to its initial condition

e Surround the phase-space point by a small
sphere that sweeps through phase-space
e The phase-space tube cannot shrink nor

<> ) cross itself. Eventually it will fill all the

available volume

e |t must connect with its starting point in a
finite time

Note : the accessible phase-space volume of a system with many
degrees of freedom is LARGE = very large recurrence time
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Poincaré recurrence theorem (1880)

° : the volume in phase-space is conserved
under a conservative Hamiltonian flow

¢ Phase-space trajectories do not intersect

o : any dynamical system whose
conserved energy surface has a finite measure will return
arbitrarily close to its initial condition

e Surround the phase-space point by a small
sphere that sweeps through phase-space

A e The phase-space tube cannot shrink nor

) cross itself. Eventually it will fill all the
available volume

A\

e |t must connect with its starting point in a
finite time

Note : the accessible phase-space volume of a system with many
degrees of freedom is LARGE = very large recurrence time
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Chaos, KAM theorem



Generic dynamical system

e Generic system with N degrees of freedom:

e Phase-space : 2N dimensional
e Constant energy surface : 2N — 1 dimensional

e Does a typical trajectory span most of the allowed domain?
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Integrable systems : N independent conserved quantities

e Accessible phase-space : N dimensional torus

e The constant energy surface is foliated into
invariant tori, and the motion is quasi-periodic on
these tori

e classical integrable systems never thermalize
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Integrable systems : N independent conserved quantities

e Accessible phase-space : N dimensional torus

e The constant energy surface is foliated into
invariant tori, and the motion is quasi-periodic on
these tori

e classical integrable systems never thermalize

e What happens if we perturb an integrable
system? Does the accessible phase-space
become immediately 2N — 1 dimensional?

: Not completely : many invariant
tori survive, with chaotic domains in between
(2N — 1 dimensional)
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Toy example of two coupled oscillators

(X2 +Y%) Jr21—4(X4 +Y' 66X YY) +

1 22
H= —K
3 Y
e Integrable for K =0 (H separable in the variables X £ )
e Chaotic at moderate K > 0 (and regular again at large K)

e Phase-space section X = 0, at fixed H :

15

1
o5 |
1A
dv/dios |
-1

-15

KK EHEE
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QM, Quantum chaos
Berry’s conjecture



Formulation of QM in the classical phase-space

e Quantum Mechanics introduces a natural smearing due to the
uncertainty principle. To make the connection with classical
mechanics, it is useful to use Moyal’s formulation of QM in terms
of classical variables

e Dual formulation of QM :

p W(Q,P)

N Weyl-Wigner
WPp+iH,pl=0 — dIWH+{W,H} =0

trans.

coherent state Gaussian in Q, P

e Moyal bracket : {{,-}} = + OR?

{') }
~—
Poisson bracket
The Moyal equation becomes the Liouville equation in the

classical limith — 0
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Microcanonical equilibration of an anharmonic oscillator

an
Y

o Q

e The oscillation frequency depends on the initial condition
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Microcanonical equilibration of an anharmonic oscillator

e The oscillation frequency depends on the initial condition

e Because of QM, the initial ensemble is a set of width ~k
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Microcanonical equilibration of an anharmonic oscillator
|
\ \

\
\
!
T
]
/

/ Q

e The oscillation frequency depends on the initial condition
e Because of QM, the initial ensemble is a set of width ~h
¢ This ensemble of initial configurations spreads in time
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Microcanonical equilibration of an anharmonic oscillator

e The oscillation frequency depends on the initial condition
e Because of QM, the initial ensemble is a set of width ~h

¢ This ensemble of initial configurations spreads in time
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Microcanonical equilibration of an anharmonic oscillator

The oscillation frequency depends on the initial condition

Because of QM, the initial ensemble is a set of width ~k

This ensembile of initial configurations spreads in time

At large times, the ensemble fills densely all the region allowed
by energy conservation = microcanonical equilibrium even
without a time average
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Quantum chaos

e Central issue : consider a Hamiltonian that leads to chaotic
classical behavior; What happens when this system is
quantized?

e Schrodinger’s equation is linear :

.Y =HWY

e Once we know the spectrum of the Hamiltonian {E,,, ¥, }, any
wavefunction evolves as :

Y(t) = Z cn etfrty
n

E. € R = nothing is unstable. Where is the chaos?



Berry’s conjecture (1977)

e The complexity of the classical dynamics translates in the
complexity of the high lying eigenfunctions

o : for most practical purposes, high lying
eigenfunctions of classically chaotic systems behave as
Gaussian random functions with 2-point correlations given by

<xy*(x S+ §)> - JdP etP s/ §[E — H(X, P)]

2 2

e Then, the Wigner distribution associated with the eigenfunction
Yo is

E
S

S
Z)WE(X"_ 7)

W(X,P) = st e Py (X — >

~ B[E—H(X,P)]

= micro-canonical equilibrium for a single eigenstate
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Semi-Classical Methods
in High Energy Collisions



What do we need to know about nuclei?

Nucleus at rest

e Atlow energy : valence quarks



What do we need to know about nuclei?

Slightly boosted nucleus

e At low energy : valence quarks
e At higher energy :

e Lorenz contraction of longitudinal sizes
¢ Time dilation > slowing down of the internal dynamics
¢ Gluons start becoming important
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What do we need to know about nuclei?

High energy nucleus

e At low energy : valence quarks
e At higher energy :

e Lorenz contraction of longitudinal sizes
¢ Time dilation > slowing down of the internal dynamics
¢ Gluons start becoming important

e At very high energy : gluons dominate
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Multiple scatterings and gluon recombination

¢ Main difficulty: How to treat collisions involving a large number of
partons?
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Multiple scatterings and gluon recombination

o : one parton in each projectile interact
> single parton distributions, standard perturbation theory
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Multiple scatterings and gluon recombination

o : multiparton processes become crucial
> gluon recombinations are important (saturation)
> multi-parton distributions

> alternative approach : treat the gluons in the projectiles as external
currents

L=—P+A-(1+]2)

(gluons only, field A for k* < A, classical source | for k™ > A)
30/51



Color Glass Condensate

CGC = effective theory of small x gluons

e The fast partons (k™ > A™) are frozen by time dilation
> described as on the light-cone :

T = 8"t p(x, %1 ) 0<x <1/AM) J

e The color sources p are random, and described by a probability
distribution W + [p]

e Slow partons (k™ < A*) cannot be considered static over the
time-scales of the collision process

> must be treated as standard gauge fields
> eikonal coupling to the current J* : A J*
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Universality of the distribution W(p]

-1
.] Teoll ~ E

% r@

e The duration of the collision is very short: Te; ~ E~!
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Universality of the distribution Wp]

’
.] Teoll ~ E

e The duration of the collision is very short: Te; ~ E~!

e The evolution of the distribution W(p] the radiation of soft gluons,
which takes a long time
> it must happen (long) before the collision
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Universality of the distribution W/p]
‘]7 Teonl ~ E-l

space-like interval

e The duration of the collision is very short: Te; ~ E~!

e The evolution of the distribution W(p] the radiation of soft gluons,
which takes a long time
> it must happen (long) before the collision

e The projectiles are not in causal contact before the impact
> the distributions are intrinsic properties of the projectiles,
independent of the measured observable
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Power counting

e CGC effective theory with

,,,,,,,,,,,,,,,, fields ————><— sources —

A, P

1 1 L
sz—ZJF,WF”wJ JE+T8) Ay

~————— N———
Sym fast partons

 Expansion in g2 in the saturated regime:

1
T”V~? [co+c1 gz+cZg4+~~]
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Leading Order in g2 : tree diagrams
e The saturated regime corresponds to sources of order ] ~ 9(g~")

e The Leading Order is the sum of all the tree diagrams

Observables can be expressed in terms of classical solutions of
Yang-Mills equations (QCD analogue of Maxwell’s equations) :

DI =] +13

¢ Boundary conditions for inclusive observables :

lim A"(x)=0

x0——00

Example : 00 component of the energy-momentum tensor

w-iss

class. fields
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Next to Leading Order in g2 : 1-loop diagrams

Getting loops from trees...

1
Ono = [2 J Guv ’]I‘uTV} Oe

u,v

o T is the generator of the shifts of the initial value of the field :

0
a‘Ainit

Ty

class. field at T
— ;
exp J Xu Tu O [ AT( Ainil ” =0 [-A’T( Ainil + )}
- ~—~ N—_———

init. value shifted init. value
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Shift operator T — Definition

Equations of motion for a field A and a small perturbation o

OA+V/(A) = ]
O+ V"(A)] «

e Getting the perturbation by shifting the initial
A®) condition of A at one point :

x(x) =J oy Ty A(x)
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Shift operator T — Definition

Equations of motion for a field A and a small perturbation o

OA+V/(A) = ]
O+ V"(A)] «

e Getting the perturbation by shifting the initial
a(x) condition of A at one point :

x(x) =J oy Ty A(x)
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Shift operator T — Definition

Equations of motion for a field A and a small perturbation o

OA+V/(A) = ]
O+ V'(A)] «

e Getting the perturbation by shifting the initial
condition of A at one point :

a(x) =J oy Ty A(x)

e Aloop is obtained by shifting the initial
condition of A at two points
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Thermalization
in QFT



Energy momentum tensor of the initial classical field
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Energy momentum tensor of the initial classical field

MA___A

T for longitudinal E and B

THY(t = 0") = diag (¢, €, €, —€)

>> very anisotropic + negative longitudinal pressure!
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Weibel instabilities for small perturbations

0.0001 T I T I T I T I T T T

le-05H — ¢ ¢, Exp(0.427 Sqrt(g” 1 7))
1e-06H ¢ +c, Exp(0.00544 ¢” 1 1) -
le-07fF

le-08F

le-09F

le-10F

max 172 ™/ g4 u3 L

le-11F

le-12 [Romatschke, Venugopalan (2005)]

16'13 1 I 1 I 1 I 1 I 1 I 1 I 1 ]
0 500 1000 1500 2000 2500 3000 3500

2
gut

38/51



Weibel instabilities for small perturbations

00001 T I T I T I T I T T I T
16-05h — i Fn(0 497 Sart(o? n o LJ
e The perturbations that alter the classical field in loop corrections

diverge with time, like exp \/ut

e Some components of THY have secular divergences when
evaluated beyond tree level

% le-10
le-11

le-12 [Romatschke, Venugopalan (2005)]

16'13 1 I 1 I 1 I 1 I 1 I 1 I 1
0 500 1000 1500 2000 2500 3000 3500

2
gut
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Example of pathologies in fixed order calculations

Leading Order

L

time

flo

e Oscillating pressure at LO : no equation of state
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Example of pathologies in fixed order calculations

Leading + Next-to-Leading Orders

,u T
= i

-20 0 20 40 60 80
time

PLosno — 0.0

e Oscillating pressure at LO : no equation of state

e Small correction to the energy density
(protected by energy conservation)

e Secular divergence in the pressure
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Resummation of the leading secular terms

1
™™ = exp|= J G.,T,T,

resummed 2

u,v

TY [Ainid]

NLO NNLO

= TLFSV+TW+TFW oo
—_—— —

in full partially

e The exponentiation of the 1-loop result collects all the terms with
the worst time behavior
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Resummation of the leading secular terms

wv

resummed

TEY [Ainid

2

u,v

exp [] J' G,.,T,T,

2

u,v

J[Dx] exp

- ]Jx(u)Gu\lX(Vj‘| THY [Ainic + X

e The exponentiation of the 1-loop result collects all the terms with
the worst time behavior

e The evolution remains classical, with a Gaussian average over
initial conditions
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Classical field + Fluctuations = Coherent state

e This Gaussian distribution of initial fields is the Wigner
representation of a coherent state |A)

Coherent states are the “most classical quantum states”

(their wavefunction has the minimal extent permitted by the
uncertainty principle, shared equally in X and P)

o |A> is not an eigenstate of the Hamiltonian
>> decoherence via interactions
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Analogous (but simpler) scalar toy model

¢* field theory coupled to a source

£ = Low) = Lot 410
P 41

3
Strong external source: | %

¢ In 3+1-dim, g is dimensionless, and the only scale is Q
e This theory has unstable modes (parametric resonance)

¢ Two setups have been studied :

¢ Fixed volume system (equation of state, thermalization)
¢ Longitudinally expanding system (isotropization)
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Equation of State

Thermalization



Resummed energy momentum tensor

0.5

-0.5

PtPytPy —— |

-15 .
10 100 1000

10000

¢ No secular divergence in the resummed pressure

e The pressure relaxes to the equilibrium equation of state
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Occupation number

10*

10°

102 2NN
H
|
|

Q‘
™ |

10° L Tf‘“"
| |
10" “‘ "
||
| 2
10? il e
0 05 1

e Resonant peak at early times
e Late times : classical equilibrium with a chemical potential

e u~m + excess at k =0 : Bose-Einstein condensation?
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Bose-Einstein
Condensation?



Volume dependence of the zero mode

L=20 ——L=30 L=40 —

e 7
2 /4

\

time

f(k) = ———— + nod(k) = f(0) xV =13
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Evolution of the condensate

20° lattice , 256 configurations , V/(¢) = g?6%/4!

e
NN

"
® & o =

102 10° 10* 10°
time

e Formation time almost independent of the coupling

e Condensate lifetime much longer than its formation time

46/51



Isotropization

(in an expanding system)



Discretization of the expanding volume

L

T = const
e Comoving coordinates : t,n,x 1 F

e Only a small volume is simulated
+ periodic boundary conditions

e 2 x N lattice with L ~ 30 — 50, N ~ 300 — 600
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Isotropization
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e At early times, P, drops much faster than P.. (redshifting of the
longitudinal momenta due to the expansion)

e Drastic change of behavior when the expansion rate becomes smaller
than the growth rate of the unstability

e Eventually, isotropic pressure tensor : P, ~ P,

48/51



Effective shear viscosity

100

10
= \\'\
1 effective 1/s —— M
perturbation theory W
AdS/CFT bound [N
0.1
0 50 100 150 200 250 300
T
€ 2ns e 4ns 3/4
Pr=sds== g PrEs=s=c ; s~ e
3 3sT 3 3sT

49/51



Comparison with 1% order hydrodynamics

(:f

Boggg,
5550,

.o

o Cecen,,

o Faster relaxation than in hydrodynamics

¢ Hydrodynamics works well once P, ~ P_.
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Summary



Summary and outlook

Coherent state (t = 0T)

\

Equation of State

)

Isotropic stress tensor

BEC ? [l

Kinetic equilibrium Hydrodynamics
!

Chemical equilibrium

BUT : so far, all numerical studies done for a toy scalar model

What’s next?
e generalizable to QCD
e gauge invariant formulation
e computationally expensive ( ~ [scalar case] x3 x (N2 — 1))
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