How quantum fields start to flow in Heavy Ion Collisions

University of Cape Town, April 2013

François Gelis IPhT, Saclay

Outline

(1) Heavy Ion Collisions
(2) Thermalization: a brief history
(3) Semi-Classical methods in high energy collisions
(4) Thermalization in QFT

Heavy Ion Collisions

From atoms to nuclei, to quarks and gluons
$10^{-10} \mathrm{~m}$: atom (99.98% of the mass is in the nucleus)

From atoms to nuclei, to quarks and gluons
$<10^{-15} \mathrm{~m}$: quarks + gluons

Quarks and gluons

Strong interactions : Quantum Chromo-Dynamics

- Matter : quarks ; Interaction carriers : gluons

- \mathfrak{i}, j : quark colors ; a, b, c : gluon colors
- $\left(\mathrm{t}^{\mathrm{a}}\right)_{\mathrm{ij}}: 3 \times 3 \mathrm{SU}(3)$ matrix ; $\left(\mathrm{T}^{\mathrm{a}}\right)_{\mathrm{bc}}: 8 \times 8 \mathrm{SU}(3)$ matrix

Lagrangian

$$
\mathcal{L}=-\frac{1}{4} F^{2}+\sum_{f} \bar{\psi}_{f}\left(i D-m_{f}\right) \psi_{f}
$$

- Free parameters : quark masses m_{f}, scale $\Lambda_{\text {ect }}$

Asymptotic freedom

Running coupling: $\quad \alpha_{s}=g^{2} / 4 \pi$

$$
\alpha_{s}(E)=\frac{2 \pi N_{c}}{\left(11 N_{c}-2 N_{f}\right) \log \left(E / \Lambda_{\mathrm{QCD}}\right)}
$$

Color confinement

- The quark-antiquark potential increases linearly with distance

Color confinement

- In nature, we do not see free quarks and gluons (the closest we have to actual quarks and gluons are jets)
- Instead, we see hadrons (quark-gluon bound states):

Debye screening at high density

- In a dense environment, color charges are screened by their neighbours
- The Coulomb potential decreases exponentially beyond the Debye radius $r_{\text {debye }}$
- Bound states larger than $\mathrm{r}_{\text {debye }}$ cannot survive

Deconfinement transition

- Fast increase of the pressure :
- at T ~ 270 MeV , if there are only gluons
- at $\mathrm{T} \sim 150-170 \mathrm{MeV}$, depending on the number of light quarks

QCD phase diagram

QGP in the early universe

QGP in the early universe

Heavy ion collisions

Experimental facilities : RHIC and LHC

Heavy ion collision at the LHC

From measured hadrons back to QCD...

Goal : from the final state particles (hadrons), understand the microscopic dynamics of the quarks and gluons

Stages of a nucleus-nucleus collision

Stages of a nucleus-nucleus collision

- Well described as a fluid expanding into vacuum according to relativistic hydrodynamics

Evidence for hydrodynamical behavior

Evidence for hydrodynamical behavior

Thermalization : A brief history

The second law of thermodynamics

- Thermodynamics is a big success of 19th century physics
- The 1 st law is easy to understand from the underlying dynamics, since it just states that energy is conserved, provided one does the bookkeeping correctly
- But the 2nd law, about the increase of entropy in closed systems, had remained rather elusive from the point of view of mechanics

Main issue : Newtonian mechanics is time-reversible and does not impose a preferred direction to the flow of time

Various concepts of equilibrium

- Kinetic equilibration : the single particle distribution in a closed system with many constituents is the Boltzmann distribution
- Micro-canonical equilibration : all the micro-states that have the same energy are equiprobable (assuming no other knowledge about the system)
- Ergodicity : for a measurement that lasts long enough, another interesting question is whether a generic phase-space trajectory covers uniformly the entire energy surface

Boltzmann equation, H theorem Poincaré recurrence theorem

Boltzmann equation (1872)

- The Boltzmann equation describes the evolution of the 1-particle distribution of point-like objects that collide at short distance :

$$
\left[\partial_{t}+\vec{v}_{p} \cdot \vec{\nabla}_{x}\right] f(\mathrm{t}, \vec{x}, \vec{p})=\mathcal{C}_{p}[f]
$$

\triangleright the functional $\mathcal{C}_{p}[f]$ is the collision term :

$$
\begin{gathered}
\mathcal{C}_{p}[f]=\frac{1}{2 E_{p}} \int \frac{d^{3} \overrightarrow{\mathbf{p}}^{\prime}}{(2 \pi)^{3} 2 \mathrm{E}_{p^{\prime}}} \int \frac{d^{3} \overrightarrow{\mathbf{k}}}{(2 \pi)^{3} 2 \mathrm{E}_{\mathbf{k}}} \int \frac{d^{3} \vec{k}^{\prime}}{(2 \pi)^{3} 2 \mathrm{E}_{\mathbf{k}^{\prime}}}(2 \pi)^{4} \delta\left(p+k-p^{\prime}-k^{\prime}\right) \\
\times\left[f\left(X, \overrightarrow{\mathbf{p}}^{\prime}\right) f\left(X, \vec{k}^{\prime}\right)-f(X, \overrightarrow{\mathbf{p}}) f(X, \vec{k})\right]|\mathcal{M}|^{2}
\end{gathered}
$$

- Elementary collisions are reversible ($A \rightarrow B$ and $B \rightarrow A$ have the same cross-section)

H theorem (1872)

- Entropy density and flux :

$$
\begin{aligned}
s(X) & \equiv-\int \frac{d^{3} \overrightarrow{\mathbf{p}}}{(2 \pi)^{3}} f(X, \overrightarrow{\mathbf{p}}) \log f(X, \overrightarrow{\mathbf{p}}) \\
\overrightarrow{\mathrm{J}}_{s}(X) & \equiv-\int \frac{d^{3} \overrightarrow{\mathbf{p}}}{(2 \pi)^{3}} \overrightarrow{\boldsymbol{v}}_{\mathbf{p}} f(X, \overrightarrow{\mathbf{p}}) \log f(X, \overrightarrow{\mathbf{p}})
\end{aligned}
$$

H theorem

$$
\partial_{t} s+\vec{\nabla}_{x} \cdot \overrightarrow{\mathrm{~J}}_{s}=\sigma
$$

- $\sigma \geq 0$ for any distribution $f(X, \overrightarrow{\mathbf{p}})$
- $\sigma=0$ when $f(X, \overrightarrow{\mathbf{p}})=\exp \left(-\beta E_{p}\right)$

Poincaré recurrence theorem (1880)

- Liouville theorem : the volume in phase-space is conserved under a conservative Hamiltonian flow
- Phase-space trajectories do not intersect
- Poincaré recurrence theorem : any dynamical system whose conserved energy surface has a finite measure will return arbitrarily close to its initial condition

- Surround the phase-space point by a small sphere that sweeps through phase-space

Poincaré recurrence theorem (1880)

- Liouville theorem : the volume in phase-space is conserved under a conservative Hamiltonian flow
- Phase-space trajectories do not intersect
- Poincaré recurrence theorem : any dynamical system whose conserved energy surface has a finite measure will return arbitrarily close to its initial condition

- Surround the phase-space point by a small sphere that sweeps through phase-space
- The phase-space tube cannot shrink nor cross itself. Eventually it will fill all the available volume
- It must connect with its starting point in a finite time

Note : the accessible phase-space volume of a system with many degrees of freedom is LARGE \Rightarrow very large recurrence time

Poincaré recurrence theorem (1880)

- Liouville theorem : the volume in phase-space is conserved under a conservative Hamiltonian flow
- Phase-space trajectories do not intersect
- Poincaré recurrence theorem : any dynamical system whose conserved energy surface has a finite measure will return arbitrarily close to its initial condition

- Surround the phase-space point by a small sphere that sweeps through phase-space
- The phase-space tube cannot shrink nor cross itself. Eventually it will fill all the available volume
- It must connect with its starting point in a finite time

Note : the accessible phase-space volume of a system with many degrees of freedom is LARGE \Rightarrow very large recurrence time

Poincaré recurrence theorem (1880)

- Liouville theorem : the volume in phase-space is conserved under a conservative Hamiltonian flow
- Phase-space trajectories do not intersect
- Poincaré recurrence theorem : any dynamical system whose conserved energy surface has a finite measure will return arbitrarily close to its initial condition

- Surround the phase-space point by a small sphere that sweeps through phase-space
- The phase-space tube cannot shrink nor cross itself. Eventually it will fill all the available volume
- It must connect with its starting point in a finite time

Note : the accessible phase-space volume of a system with many degrees of freedom is LARGE \Rightarrow very large recurrence time

Chaos, KAM theorem

Generic dynamical system

- Generic system with N degrees of freedom:
- Phase-space : 2 N dimensional
- Constant energy surface : 2 N - 1 dimensional
- Does a typical trajectory span most of the allowed domain?

Integrable systems: N independent conserved quantities

- Accessible phase-space : N dimensional torus
- The constant energy surface is foliated into invariant tori, and the motion is quasi-periodic on these tori
- classical integrable systems never thermalize

Integrable systems: N independent conserved quantities

- Accessible phase-space : N dimensional torus
- The constant energy surface is foliated into invariant tori, and the motion is quasi-periodic on these tori
- classical integrable systems never thermalize
- What happens if we perturb an integrable system? Does the accessible phase-space become immediately $2 \mathrm{~N}-1$ dimensional?

Kolmogorov-Arnold-Moser theorem
(1954,1963) : Not completely : many invariant tori survive, with chaotic domains in between ($2 \mathrm{~N}-1$ dimensional)

Toy example of two coupled oscillators

$$
H \equiv \frac{1}{2}\left(\dot{X}^{2}+\dot{Y}^{2}\right)+\frac{1}{24}\left(X^{4}+Y^{4}+6 X^{2} Y^{2}\right)+\frac{1}{2} K^{2} Y^{2}
$$

- Integrable for $K=0$ (H separable in the variables $X \pm Y$)
- Chaotic at moderate $K>0$ (and regular again at large K)
- Phase-space section $\dot{X} \equiv 0$, at fixed H :

QM, Quantum chaos

Berry's conjecture

Formulation of QM in the classical phase-space

- Quantum Mechanics introduces a natural smearing due to the uncertainty principle. To make the connection with classical mechanics, it is useful to use Moyal's formulation of QM in terms of classical variables
- Dual formulation of QM :

Density	$\hat{\rho}$		W(Q, P)
Evolution	$\partial_{t} \hat{\rho}+\mathfrak{i}[\hat{H}, \hat{\rho}]=0$	Weyl-Wigner	$\partial_{\mathrm{t}} W+\{\{\mathrm{W}, \mathrm{H}\}\}=0$
Initial condition	coherent state		Gaussian in Q, P

- Moyal bracket : $\{\{\cdot, \cdot\}\}=\underbrace{\{\cdot \cdot \cdot\}}_{\text {Poisson bracket }}+\mathcal{O}\left(\hbar^{2}\right)$

The Moyal equation becomes the Liouville equation in the classical limit $\hbar \rightarrow 0$

Microcanonical equilibration of an anharmonic oscillator

- The oscillation frequency depends on the initial condition

Microcanonical equilibration of an anharmonic oscillator

- The oscillation frequency depends on the initial condition
- Because of QM, the initial ensemble is a set of width $\sim \hbar$

Microcanonical equilibration of an anharmonic oscillator

- The oscillation frequency depends on the initial condition
- Because of QM, the initial ensemble is a set of width $\sim \hbar$
- This ensemble of initial configurations spreads in time

Microcanonical equilibration of an anharmonic oscillator

- The oscillation frequency depends on the initial condition
- Because of QM, the initial ensemble is a set of width $\sim \hbar$
- This ensemble of initial configurations spreads in time

Microcanonical equilibration of an anharmonic oscillator

- The oscillation frequency depends on the initial condition
- Because of QM, the initial ensemble is a set of width $\sim \hbar$
- This ensemble of initial configurations spreads in time
- At large times, the ensemble fills densely all the region allowed by energy conservation \Rightarrow microcanonical equilibrium even without a time average

Quantum chaos

- Central issue : consider a Hamiltonian that leads to chaotic classical behavior; What happens when this system is quantized?
- Schrodinger's equation is linear :

$$
i \partial_{\mathrm{t}} \Psi=\widehat{\mathrm{H}} \Psi
$$

- Once we know the spectrum of the Hamiltonian $\left\{\mathrm{E}_{n}, \Psi_{n}\right\}$, any wavefunction evolves as :

$$
\Psi(t)=\sum_{n} c_{n} e^{i E_{n} t} \Psi_{n}
$$

$\mathrm{E}_{\mathrm{n}} \in \mathbb{R} \Rightarrow$ nothing is unstable. Where is the chaos?

Berry's conjecture (1977)

- The complexity of the classical dynamics translates in the complexity of the high lying eigenfunctions
- Berry's conjecture : for most practical purposes, high lying eigenfunctions of classically chaotic systems behave as Gaussian random functions with 2-point correlations given by

$$
\left\langle\Psi^{*}\left(\mathbf{X}-\frac{\mathbf{s}}{2}\right) \Psi\left(\mathbf{X}+\frac{\mathbf{s}}{2}\right)\right\rangle=\int \mathrm{d} \mathbf{P} e^{\mathrm{i} \mathbf{P} \cdot \mathbf{s} / \hbar} \delta[\mathrm{E}-\mathrm{H}(\mathbf{X}, \mathbf{P})]
$$

- Then, the Wigner distribution associated with the eigenfunction Ψ_{E} is

$$
\begin{aligned}
W(X, \mathbf{P}) & =\int \mathrm{d} \mathbf{s} \boldsymbol{e}^{-\mathrm{i} \mathbf{P} \cdot \mathbf{s} / \hbar} \Psi_{\mathrm{E}}^{*}\left(\mathbf{X}-\frac{\mathbf{s}}{2}\right) \Psi_{\mathrm{E}}\left(\mathbf{X}+\frac{\mathbf{s}}{2}\right) \\
& \sim \delta[\mathrm{E}-\mathrm{H}(\mathbf{X}, \mathbf{P})]
\end{aligned}
$$

\Rightarrow micro-canonical equilibrium for a single eigenstate

Semi-Classical Methods in High Energy Collisions

What do we need to know about nuclei?

Nucleus at rest

- At low energy : valence quarks

What do we need to know about nuclei?

Slightly boosted nucleus

- At low energy : valence quarks
- At higher energy :
- Lorenz contraction of longitudinal sizes
- Time dilation \triangleright slowing down of the internal dynamics
- Gluons start becoming important

What do we need to know about nuclei?

High energy nucleus

- At low energy : valence quarks
- At higher energy :
- Lorenz contraction of longitudinal sizes
- Time dilation \triangleright slowing down of the internal dynamics
- Gluons start becoming important
- At very high energy : gluons dominate

Multiple scatterings and gluon recombination

- Main difficulty: How to treat collisions involving a large number of partons?

Multiple scatterings and gluon recombination

- Dilute regime : one parton in each projectile interact
\triangleright single parton distributions, standard perturbation theory

Multiple scatterings and gluon recombination

- Dense regime : multiparton processes become crucial
\triangleright gluon recombinations are important (saturation)
\triangleright multi-parton distributions
\triangleright alternative approach : treat the gluons in the projectiles as external currents

$$
\mathcal{L}=-\frac{1}{4} F^{2}+A \cdot\left(J_{1}+J_{2}\right)
$$

(gluons only, field A for $\mathrm{k}^{+}<\Lambda$, classical source J for $\mathrm{k}^{+}>\Lambda$)

Color Glass Condensate

$C G C=$ effective theory of small x gluons

- The fast partons $\left(\mathrm{k}^{+}>\Lambda^{+}\right)$are frozen by time dilation \triangleright described as static color sources on the light-cone :

$$
J^{\mu}=\delta^{\mu+} \rho\left(x^{-}, \vec{x}_{\perp}\right) \quad\left(0<x^{-}<1 / \Lambda^{+}\right)
$$

- The color sources ρ are random, and described by a probability distribution $W_{\wedge+}[\rho]$
- Slow partons ($\mathrm{k}^{+}<\Lambda^{+}$) cannot be considered static over the time-scales of the collision process
\triangleright must be treated as standard gauge fields
\triangleright eikonal coupling to the current $J^{\mu}: A_{\mu} J^{\mu}$

Universality of the distribution $\mathrm{W}[\rho]$

$\bullet-\tau_{\text {coll }} \sim E^{-1}$

- The duration of the collision is very short: $\tau_{\text {coll }} \sim E^{-1}$

Universality of the distribution $\mathrm{W}[\rho]$

$\bullet-\tau_{\text {coll }} \sim E^{-1}$

- The duration of the collision is very short: $\tau_{\text {coll }} \sim E^{-1}$
- The evolution of the distribution $W[\rho]$ the radiation of soft gluons, which takes a long time
\triangleright it must happen (long) before the collision

Universality of the distribution $W[\rho]$

- $] \quad \tau_{\text {coll }} \sim \boldsymbol{E}^{-1}$

- The duration of the collision is very short: $\tau_{\text {coll }} \sim E^{-1}$
- The evolution of the distribution $W[\rho]$ the radiation of soft gluons, which takes a long time
\triangleright it must happen (long) before the collision
- The projectiles are not in causal contact before the impact \triangleright the distributions are intrinsic properties of the projectiles, independent of the measured observable

Power counting

- CGC effective theory with cutoff at the scale Λ_{0} :

$$
\mathcal{S}=\underbrace{-\frac{1}{4} \int \mathrm{~F}_{\mu \nu} \mathrm{F}^{\mu \nu}}_{\delta_{\mathrm{YM}}}+\int \underbrace{\left(J_{1}^{\mu}+\mathrm{J}_{2}^{\mu}\right)}_{\text {fast partons }} A_{\mu}
$$

- Expansion in g^{2} in the saturated regime:

$$
\mathrm{T}^{\mu \nu} \sim \frac{1}{\mathrm{~g}^{2}}\left[\mathrm{c}_{0}+\mathrm{c}_{1} \mathrm{~g}^{2}+\mathrm{c}_{2} \mathrm{~g}^{4}+\cdots\right]
$$

Leading Order in g^{2} : tree diagrams

- The saturated regime corresponds to sources of order $\mathrm{J} \sim \mathcal{O}\left(\mathrm{g}^{-1}\right)$
- The Leading Order is the sum of all the tree diagrams

Observables can be expressed in terms of classical solutions of Yang-Mills equations (QCD analogue of Maxwell's equations) :

$$
\mathcal{D}_{\mu} \mathcal{F}^{\mu \nu}=\mathrm{J}_{1}^{v}+\mathrm{J}_{2}^{v}
$$

- Boundary conditions for inclusive observables :

$$
\lim _{x^{0} \rightarrow-\infty} \mathcal{A}^{\mu}(x)=0
$$

Example : 00 component of the energy-momentum tensor

$$
\mathrm{T}_{\mathrm{LO}}^{00}=\frac{1}{2}[\underbrace{\varepsilon^{2}+\mathcal{B}^{2}}_{\text {class. fields }}]
$$

Next to Leading Order in g^{2} : 1-loop diagrams

Getting loops from trees...

$$
\mathcal{O}_{\mathrm{NLO}}=\left[\frac{1}{2} \int_{\mathbf{u}, \boldsymbol{v}} \mathrm{G}_{\boldsymbol{u} v} \mathbb{T}_{\mathbf{u}} \mathbb{T}_{\boldsymbol{v}}\right] \mathcal{O}_{\mathrm{LO}}
$$

- \mathbb{T} is the generator of the shifts of the initial value of the field :

$$
\begin{gathered}
\mathbb{T}_{\mathbf{u}} \sim \frac{\partial}{\partial \mathcal{A}_{\text {init }}} \\
\exp \left[\int_{\mathcal{u}} \alpha_{\mathfrak{u}} \mathbb{T}_{\mathfrak{u}}\right] \overbrace{\mathcal{O}[\overbrace{\mathcal{A}_{\tau}(\underbrace{\mathcal{A}_{\text {init }}}_{\text {init. value }})}^{\text {class. field at } \tau}]}=\mathcal{O}[\mathcal{A}_{\mathcal{T}}(\underbrace{\mathcal{A}_{\text {init }}+\alpha}_{\text {shifted init. value }})]
\end{gathered}
$$

Shift operator \mathbb{T} - Definition

Equations of motion for a field \mathcal{A} and a small perturbation α

$$
\begin{aligned}
\square \mathcal{A}+\mathrm{V}^{\prime}(\mathcal{A}) & =\mathrm{J} \\
{\left[\square+\mathrm{V}^{\prime \prime}(\mathcal{A})\right] \alpha } & =0
\end{aligned}
$$

- Getting the perturbation by shifting the initial
 condition of \mathcal{A} at one point :

$$
\boldsymbol{\alpha}(x)=\int_{\mathfrak{u}} \alpha_{\mathbf{u}} \mathbb{T}_{\mathbf{u}} \mathcal{A}(x)
$$

Shift operator \mathbb{T} - Definition

Equations of motion for a field \mathcal{A} and a small perturbation α

$$
\begin{aligned}
\square \mathcal{A}+\mathrm{V}^{\prime}(\mathcal{A}) & =\mathrm{J} \\
{\left[\square+\mathrm{V}^{\prime \prime}(\mathcal{A})\right] \alpha } & =0
\end{aligned}
$$

- Getting the perturbation by shifting the initial
 condition of \mathcal{A} at one point :

$$
\boldsymbol{\alpha}(x)=\int_{\mathfrak{u}} \alpha_{\mathbf{u}} \mathbb{T}_{\mathbf{u}} \mathcal{A}(x)
$$

Shift operator \mathbb{T} - Definition

Equations of motion for a field \mathcal{A} and a small perturbation α

$$
\begin{aligned}
\square \mathcal{A}+\mathrm{V}^{\prime}(\mathcal{A}) & =\mathrm{J} \\
{\left[\square+\mathrm{V}^{\prime \prime}(\mathcal{A})\right] \alpha } & =0
\end{aligned}
$$

- Getting the perturbation by shifting the initial
 condition of \mathcal{A} at one point :

$$
\boldsymbol{\alpha}(x)=\int_{\mathbf{u}} \alpha_{u} \mathbb{T}_{\mathbf{u}} \mathcal{A}(x)
$$

- A loop is obtained by shifting the initial condition of \mathcal{A} at two points

Thermalization in QFT

Energy momentum tensor of the initial classical field

Energy momentum tensor of the initial classical field

$T^{\mu \nu}$ for longitudinal \vec{E} and \vec{B}

$$
\mathrm{T}_{\mathrm{LO}}^{\mu \gamma}\left(\tau=0^{+}\right)=\operatorname{diag}(\epsilon, \epsilon, \epsilon,-\epsilon)
$$

\triangleright very anisotropic + negative longitudinal pressure!

Weibel instabilities for small perturbations

Weibel instabilities for small perturbations

- The perturbations that alter the classical field in loop corrections diverge with time, like $\exp \sqrt{\mu \tau}$
- Some components of $T^{\mu \nu}$ have secular divergences when evaluated beyond tree level

Example of pathologies in fixed order calculations

Leading Order

- Oscillating pressure at LO : no equation of state

Example of pathologies in fixed order calculations

Leading + Next-to-Leading Orders

- Oscillating pressure at LO : no equation of state
- Small correction to the energy density (protected by energy conservation)
- Secular divergence in the pressure

Resummation of the leading secular terms

$$
\begin{aligned}
\mathrm{T}_{\text {resummed }}^{\mu \nu} & =\exp \left[\frac{1}{2} \int_{\mathbf{u}, \boldsymbol{v}} \mathbf{G}_{\mathbf{u v}} \mathbb{T}_{\mathbf{u}} \mathbb{T}_{\boldsymbol{v}}\right] \mathrm{T}_{\mathrm{Lo}}^{\mu \nu}\left[\mathcal{A}_{\text {init }}\right] \\
& =\underbrace{\mathrm{T}_{\mathrm{LO}}^{\mu \nu}+\mathrm{T}_{\text {NLO }}^{\mu \nu}}_{\text {in full }}+\underbrace{T_{\text {NLLO }}^{\mu \nu}+\cdots}_{\text {partially }}
\end{aligned}
$$

- The exponentiation of the 1-loop result collects all the terms with the worst time behavior

Resummation of the leading secular terms

$$
\begin{aligned}
\mathrm{T}_{\text {resummed }}^{\mu v} & =\exp \left[\frac{1}{2} \int_{\mathbf{u}, \boldsymbol{v}} \mathbf{G}_{\mathbf{u v}} \mathbb{T}_{\mathbf{u}} \mathbb{T}_{\boldsymbol{v}}\right] \mathrm{T}_{\mathrm{Lo}}^{\mu v}\left[\mathcal{A}_{\text {init }}\right] \\
& =\int[\mathrm{D} \chi] \exp \left[-\frac{1}{2} \int_{\mathbf{u}, \boldsymbol{v}} \chi(u) \mathbf{G}_{\mathbf{u v}}^{-1} \chi(v)\right] \mathrm{T}_{\mathrm{Lo}}^{\mu v}\left[\mathcal{A}_{\text {init }}+\chi\right]
\end{aligned}
$$

- The exponentiation of the 1-loop result collects all the terms with the worst time behavior
- The evolution remains classical, with a Gaussian average over initial conditions

Classical field + Fluctuations = Coherent state

- This Gaussian distribution of initial fields is the Wigner representation of a coherent state $|\mathcal{A}\rangle$

Coherent states are the "most classical quantum states" (their wavefunction has the minimal extent permitted by the uncertainty principle, shared equally in \mathbf{X} and P)

- $|\mathcal{A}\rangle$ is not an eigenstate of the Hamiltonian
\triangleright decoherence via interactions

Analogous (but simpler) scalar toy model

ϕ^{4} field theory coupled to a source

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\alpha} \phi\right)^{2}-\frac{\mathrm{g}^{2}}{4!} \phi^{4}+\mathrm{J} \phi
$$

$$
\text { Strong external source: } J \propto \frac{Q^{3}}{g}
$$

- In 3+1-dim, g is dimensionless, and the only scale is Q
- This theory has unstable modes (parametric resonance)
- Two setups have been studied :
- Fixed volume system (equation of state, thermalization)
- Longitudinally expanding system (isotropization)

Equation of State

Thermalization

Resummed energy momentum tensor

- No secular divergence in the resummed pressure
- The pressure relaxes to the equilibrium equation of state

Occupation number

- Resonant peak at early times
- Late times : classical equilibrium with a chemical potential
- $\mu \approx m+$ excess at $k=0$: Bose-Einstein condensation?

Bose-Einstein

Condensation?

Volume dependence of the zero mode

$$
f(k)=\frac{1}{e^{\beta\left(\omega_{k}-\mu\right)}-1}+n_{0} \delta(k) \Longrightarrow f(0) \propto V=L^{3}
$$

Evolution of the condensate

- Formation time almost independent of the coupling
- Condensate lifetime much longer than its formation time

Isotropization

(in an expanding system)

Discretization of the expanding volume

- Comoving coordinates : τ, η, x_{\perp}
- Only a small volume is simulated + periodic boundary conditions
- $\mathrm{L}^{2} \times \mathrm{N}$ lattice with $\mathrm{L} \sim 30-50, \mathrm{~N} \sim 300-600$

Isotropization

- At early times, P_{L} drops much faster than P_{T} (redshifting of the longitudinal momenta due to the expansion)
- Drastic change of behavior when the expansion rate becomes smaller than the growth rate of the unstability
- Eventually, isotropic pressure tensor : $\mathrm{P}_{\mathrm{L}} \approx \mathrm{P}_{\mathrm{T}}$

Effective shear viscosity

$$
P_{\mathrm{T}}=\frac{\epsilon}{3}+\frac{2}{3} \frac{\eta}{\mathrm{~s}} \frac{\mathrm{~s}}{\tau} \quad, \quad \mathrm{P}_{\mathrm{L}}=\frac{\epsilon}{3}-\frac{4}{3} \frac{\eta}{\mathrm{~s}} \frac{\mathrm{~s}}{\tau} \quad, \quad \mathrm{~s} \approx \epsilon^{3 / 4}
$$

Comparison with $1^{\text {st }}$ order hydrodynamics

- Faster relaxation than in hydrodynamics
- Hydrodynamics works well once $\mathrm{P}_{\mathrm{L}} \approx \mathrm{P}_{\mathrm{T}}$

Summary

Summary and outlook

BUT : so far, all numerical studies done for a toy scalar model

What's next?

- generalizable to QCD
- gauge invariant formulation
- computationally expensive (\sim [scalar case $] \times 3 \times\left(\mathrm{N}_{\mathrm{c}}^{2}-1\right)$)

