How quantum fields start to flow in Heavy Ion Collisions

University of Cape Town, April 2013

François Gelis IPhT, Saclay

- **1** Heavy Ion Collisions
- **2** Thermalization: a brief history
- **3** Semi-Classical methods in high energy collisions
- **4** Thermalization in QFT

Heavy lon Collisions

From atoms to nuclei, to quarks and gluons

From atoms to nuclei, to quarks and gluons

Quarks and gluons

Strong interactions : Quantum Chromo-Dynamics

• Matter : quarks ; Interaction carriers : gluons

$$a_{\text{max}} \begin{pmatrix} j \\ i \end{pmatrix} \sim g(t^{\alpha})_{ij} \qquad a_{\text{max}} \begin{pmatrix} c \\ b \end{pmatrix} \sim g(T^{\alpha})_{bc}$$

- i, j : quark colors ; a, b, c : gluon colors
- $(t^{\alpha})_{ij}$: 3 × 3 SU(3) matrix ; $(T^{\alpha})_{bc}$: 8 × 8 SU(3) matrix

Lagrangian

$$\mathcal{L} = -\frac{1}{4}F^2 + \sum_{f} \overline{\psi}_{f}(i\not\!\!D - m_{f})\psi_{f}$$

• Free parameters : quark masses m_f , scale Λ_{ocd}

Asymptotic freedom

Running coupling : $\alpha_s = g^2/4\pi$ $\alpha_s(E) = \frac{2\pi N_c}{(11N_c - 2N_f)\log(E/\Lambda_{QCD})}$

Color confinement

• The quark-antiquark potential increases linearly with distance

Color confinement

- In nature, we do not see free quarks and gluons (the closest we have to actual quarks and gluons are jets)
- Instead, we see hadrons (quark-gluon bound states):

Debye screening at high density

- In a dense environment, color charges are screened by their neighbours
- The Coulomb potential decreases exponentially beyond the Debye radius r_{debye}
- Bound states larger than r_{debye} cannot survive

Deconfinement transition

- Fast increase of the pressure :
 - at T \sim 270 MeV, if there are only gluons
 - at T ~ 150–170 MeV, depending on the number of light quarks

QCD phase diagram

QGP in the early universe

QGP in the early universe

Heavy ion collisions

Temperature

Experimental facilities : RHIC and LHC

Heavy ion collision at the LHC

From measured hadrons back to QCD...

Goal : from the final state particles (hadrons), understand the microscopic dynamics of the quarks and gluons

Stages of a nucleus-nucleus collision

Stages of a nucleus-nucleus collision

 Well described as a fluid expanding into vacuum according to relativistic hydrodynamics

Thermalization : A brief history

The second law of thermodynamics

- The 1st law is easy to understand from the underlying dynamics, since it just states that energy is conserved, provided one does the bookkeeping correctly
- But the 2nd law, about the increase of entropy in closed systems, had remained rather elusive from the point of view of mechanics

Main issue : Newtonian mechanics is time-reversible and does not impose a preferred direction to the flow of time

Various concepts of equilibrium

- Kinetic equilibration : the single particle distribution in a closed system with many constituents is the Boltzmann distribution
- Micro-canonical equilibration : all the micro-states that have the same energy are equiprobable (assuming no other knowledge about the system)
- Ergodicity : for a measurement that lasts long enough, another interesting question is whether a generic phase-space trajectory covers uniformly the entire energy surface

Boltzmann equation, H theorem Poincaré recurrence theorem

Boltzmann equation (1872)

• The Boltzmann equation describes the evolution of the 1-particle distribution of point-like objects that collide at short distance :

$$\begin{bmatrix} \partial_{\mathbf{t}} + \vec{\mathbf{v}}_{\mathbf{p}} \cdot \vec{\nabla}_{\mathbf{x}} \end{bmatrix} \mathbf{f}(\mathbf{t}, \vec{\mathbf{x}}, \vec{\mathbf{p}}) = \mathcal{C}_{\mathbf{p}}[\mathbf{f}]$$

$$\triangleright \text{ the functional } \mathcal{C}_{\mathbf{p}}[\mathbf{f}] \text{ is the collision term :}$$

$$\overset{k}{\qquad} \mathcal{C}_{\mathbf{p}}[\mathbf{f}] = \frac{1}{2\mathsf{E}_{\mathbf{p}}} \int \frac{\mathrm{d}^{3}\vec{\mathbf{p}}'}{(2\pi)^{3}2\mathsf{E}_{\mathbf{p}'}} \int \frac{\mathrm{d}^{3}\vec{\mathbf{k}}}{(2\pi)^{3}2\mathsf{E}_{\mathbf{k}}} \int \frac{\mathrm{d}^{3}\vec{\mathbf{k}}'}{(2\pi)^{3}2\mathsf{E}_{\mathbf{k}'}} (2\pi)^{4} \delta(\mathbf{p}+\mathbf{k}-\mathbf{p}'-\mathbf{k}')$$

$$\times \begin{bmatrix} \mathbf{f}(\mathbf{X}, \vec{\mathbf{p}}')\mathbf{f}(\mathbf{X}, \vec{\mathbf{k}}') - \mathbf{f}(\mathbf{X}, \vec{\mathbf{p}})\mathbf{f}(\mathbf{X}, \vec{\mathbf{k}}) \end{bmatrix} \left| \mathcal{M} \right|^{2}$$

- Elementary collisions are reversible (A \rightarrow B and B \rightarrow A have the same cross-section)

H theorem (1872)

• Entropy density and flux :

$$s(X) \equiv -\int \frac{d^3 \vec{p}}{(2\pi)^3} f(X, \vec{p}) \log f(X, \vec{p})$$
$$\vec{J}_s(X) \equiv -\int \frac{d^3 \vec{p}}{(2\pi)^3} \vec{v}_p f(X, \vec{p}) \log f(X, \vec{p})$$

H theorem

$$\partial_{\mathbf{t}}\mathbf{s} + \vec{\nabla}_{\mathbf{x}} \cdot \vec{\mathbf{J}}_{\mathbf{s}} = \sigma$$

- $\sigma \ge 0$ for any distribution $f(X, \vec{p})$
- $\sigma = 0$ when $f(X, \vec{p}) = exp(-\beta E_p)$

Poincaré recurrence theorem (1880)

- cea
- Liouville theorem : the volume in phase-space is conserved under a conservative Hamiltonian flow
- Phase-space trajectories do not intersect
- Poincaré recurrence theorem : any dynamical system whose conserved energy surface has a finite measure will return arbitrarily close to its initial condition

 Surround the phase-space point by a small sphere that sweeps through phase-space

Poincaré recurrence theorem (1880)

- Liouville theorem : the volume in phase-space is conserved under a conservative Hamiltonian flow
- · Phase-space trajectories do not intersect
- Poincaré recurrence theorem : any dynamical system whose conserved energy surface has a finite measure will return arbitrarily close to its initial condition

- Surround the phase-space point by a small sphere that sweeps through phase-space
- The phase-space tube cannot shrink nor cross itself. Eventually it will fill all the available volume
- It must connect with its starting point in a finite time

Note : the accessible phase-space volume of a system with many degrees of freedom is LARGE $\,\Rightarrow\,$ very large recurrence time
Poincaré recurrence theorem (1880)

- Liouville theorem : the volume in phase-space is conserved under a conservative Hamiltonian flow
- · Phase-space trajectories do not intersect
- Poincaré recurrence theorem : any dynamical system whose conserved energy surface has a finite measure will return arbitrarily close to its initial condition

- Surround the phase-space point by a small sphere that sweeps through phase-space
- The phase-space tube cannot shrink nor cross itself. Eventually it will fill all the available volume
- It must connect with its starting point in a finite time

Note : the accessible phase-space volume of a system with many degrees of freedom is LARGE $\,\Rightarrow\,$ very large recurrence time

Poincaré recurrence theorem (1880)

- Liouville theorem : the volume in phase-space is conserved under a conservative Hamiltonian flow
- · Phase-space trajectories do not intersect
- Poincaré recurrence theorem : any dynamical system whose conserved energy surface has a finite measure will return arbitrarily close to its initial condition

- Surround the phase-space point by a small sphere that sweeps through phase-space
- The phase-space tube cannot shrink nor cross itself. Eventually it will fill all the available volume
- It must connect with its starting point in a finite time

Note : the accessible phase-space volume of a system with many degrees of freedom is LARGE $\,\Rightarrow\,$ very large recurrence time

Chaos, KAM theorem

Generic dynamical system

- Generic system with N degrees of freedom:
 - Phase-space : 2N dimensional
 - Constant energy surface : 2N 1 dimensional

• Does a typical trajectory span most of the allowed domain?

Integrable systems : N independent conserved quantities

- Accessible phase-space : N dimensional torus
- The constant energy surface is foliated into invariant tori, and the motion is quasi-periodic on these tori
- classical integrable systems never thermalize

Integrable systems : N independent conserved quantities

- Accessible phase-space : N dimensional torus
- The constant energy surface is foliated into invariant tori, and the motion is quasi-periodic on these tori
- classical integrable systems never thermalize

 What happens if we perturb an integrable system? Does the accessible phase-space become immediately 2N – 1 dimensional?

Kolmogorov-Arnold-Moser theorem (1954,1963): Not completely : many invariant tori survive, with chaotic domains in between (2N - 1 dimensional)

Toy example of two coupled oscillators

$$H \equiv \frac{1}{2}(\dot{X}^2 + \dot{Y}^2) + \frac{1}{24}(X^4 + Y^4 + 6X^2Y^2) + \frac{1}{2}K^2Y^2$$

- Integrable for K = 0 (H separable in the variables $X \pm Y$)
- Chaotic at moderate K > 0 (and regular again at large K)
- Phase-space section $\dot{X} \equiv 0$, at fixed H :

QM, Quantum chaos Berry's conjecture

Formulation of QM in the classical phase-space

- Quantum Mechanics introduces a natural smearing due to the uncertainty principle. To make the connection with classical mechanics, it is useful to use Moyal's formulation of QM in terms of classical variables
- Dual formulation of QM :

Density	ρ̂		W(Q, P)
Evolution	$\vartheta_t \hat{\rho} + \mathfrak{i}[\widehat{H}, \hat{\rho}] = 0$	Weyl-Wigner trans.	$\partial_t \mathbf{W} + \{\{\mathbf{W}, \mathbf{H}\}\} = 0$
Initial condition	coherent state		Gaussian in Q, P

• Moyal bracket : $\{\{\cdot,\cdot\}\} = \{\cdot,\cdot\} + \mathcal{O}(\hbar^2)$

Poisson bracket

The Moyal equation becomes the Liouville equation in the classical limit $\hbar \to 0$

• The oscillation frequency depends on the initial condition

- The oscillation frequency depends on the initial condition
- Because of QM, the initial ensemble is a set of width $\sim \hbar$

- The oscillation frequency depends on the initial condition
- Because of QM, the initial ensemble is a set of width $\sim \hbar$
- This ensemble of initial configurations spreads in time

- The oscillation frequency depends on the initial condition
- Because of QM, the initial ensemble is a set of width $\sim \hbar$
- This ensemble of initial configurations spreads in time

- The oscillation frequency depends on the initial condition
- Because of QM, the initial ensemble is a set of width $\sim \hbar$
- This ensemble of initial configurations spreads in time
- At large times, the ensemble fills densely all the region allowed by energy conservation ⇒ microcanonical equilibrium even without a time average

Quantum chaos

- Central issue : consider a Hamiltonian that leads to chaotic classical behavior; What happens when this system is quantized?
- Schrodinger's equation is linear :

$$i\partial_t \Psi = \widehat{H} \Psi$$

- Once we know the spectrum of the Hamiltonian $\{\mathsf{E}_n,\Psi_n\},$ any wavefunction evolves as :

$$\Psi(t) = \sum_{n} c_{n} e^{i E_{n} t} \Psi_{n}$$

 $E_n \in \mathbb{R} \Rightarrow$ nothing is unstable. Where is the chaos?

Berry's conjecture (1977)

• Berry's conjecture : for most practical purposes, high lying eigenfunctions of classically chaotic systems behave as Gaussian random functions with 2-point correlations given by

$$\left\langle \Psi^*(\mathbf{X} - \frac{\mathbf{s}}{2})\Psi(\mathbf{X} + \frac{\mathbf{s}}{2}) \right\rangle = \int d\mathbf{P} \ e^{i\mathbf{P}\cdot\mathbf{s}/\hbar} \ \delta\left[\mathsf{E} - \mathsf{H}(\mathbf{X}, \mathbf{P})\right]$$

- Then, the Wigner distribution associated with the eigenfunction $\Psi_{_{\rm E}}$ is

$$W(\mathbf{X}, \mathbf{P}) = \int d\mathbf{s} \ e^{-i\mathbf{P}\cdot\mathbf{s}/\hbar} \ \Psi_{\mathrm{E}}^{*}(\mathbf{X} - \frac{\mathbf{s}}{2}) \Psi_{\mathrm{E}}(\mathbf{X} + \frac{\mathbf{s}}{2})$$

~ $\delta \left[\mathrm{E} - \mathrm{H}(\mathbf{X}, \mathbf{P}) \right]$

 \Rightarrow micro-canonical equilibrium for a single eigenstate

Semi-Classical Methods in High Energy Collisions

What do we need to know about nuclei?

• At low energy : valence quarks

What do we need to know about nuclei?

Slightly boosted nucleus

- At low energy : valence quarks
- At higher energy :
 - Lorenz contraction of longitudinal sizes
 - Time dilation ▷ slowing down of the internal dynamics
 - Gluons start becoming important

What do we need to know about nuclei?

- At low energy : valence quarks
- At higher energy :
 - Lorenz contraction of longitudinal sizes
 - Time dilation ▷ slowing down of the internal dynamics
 - Gluons start becoming important
- At very high energy : gluons dominate

Multiple scatterings and gluon recombination

 Main difficulty: How to treat collisions involving a large number of partons?

Multiple scatterings and gluon recombination

Dilute regime : one parton in each projectile interact
 single parton distributions, standard perturbation theory

Multiple scatterings and gluon recombination

Dense regime : multiparton processes become crucial

> gluon recombinations are important (saturation)

> multi-parton distributions

 \rhd alternative approach : treat the gluons in the projectiles as external currents

$$\mathcal{L} = -\frac{1}{4}\mathbf{F}^2 + \mathbf{A} \cdot (\mathbf{J}_1 + \mathbf{J}_2)$$

(gluons only, field A for $k^+ < \Lambda$, classical source J for $k^+ > \Lambda$)

Color Glass Condensate

CGC = effective theory of small x gluons

The fast partons (k⁺ > Λ⁺) are frozen by time dilation
 ▷ described as static color sources on the light-cone :

 $J^{\mu} = \delta^{\mu +} \rho(\mathbf{x}^{-}, \vec{\mathbf{x}}_{\perp}) \qquad (0 < \mathbf{x}^{-} < 1/\Lambda^{+})$

- The color sources ρ are random, and described by a probability distribution $W_{\Lambda^+}[\rho]$
- Slow partons ($k^+ < \Lambda^+$) cannot be considered static over the time-scales of the collision process

> must be treated as standard gauge fields

 \triangleright eikonal coupling to the current J^{μ} : $A_{\mu}J^{\mu}$

Universality of the distribution $\mathcal{W}[\rho]$

- The duration of the collision is very short: $\tau_{coll} \sim E^{-1}$

Universality of the distribution $W[\rho]$

- The duration of the collision is very short: $\tau_{coll} \sim E^{-1}$
- The evolution of the distribution W[ρ] the radiation of soft gluons, which takes a long time
 it must happen (long) before the collision

Universality of the distribution $W[\rho]$

- The duration of the collision is very short: $\tau_{coll} \sim E^{-1}$
- The evolution of the distribution W[ρ] the radiation of soft gluons, which takes a long time
 ▷ it must happen (long) before the collision
- The projectiles are not in causal contact before the impact
 b the distributions are intrinsic properties of the projectiles, independent of the measured observable

Power counting

$$\mathcal{S} = \underbrace{-\frac{1}{4} \int F_{\mu\nu} F^{\mu\nu}}_{\mathcal{S}_{YM}} + \int \underbrace{(J_1^{\mu} + J_2^{\mu})}_{\text{fast partons}} A_{\mu}$$

• Expansion in g² in the saturated regime:

$$T^{\mu\nu} \sim \frac{1}{g^2} \left[c_0 + c_1 g^2 + c_2 g^4 + \cdots \right]$$

Leading Order in g² : tree diagrams

- The saturated regime corresponds to sources of order J ~ O(g⁻¹)
- The Leading Order is the sum of all the tree diagrams

Observables can be expressed in terms of classical solutions of Yang-Mills equations (QCD analogue of Maxwell's equations) :

$$\mathcal{D}_{\mu}\mathcal{F}^{\mu\nu} = J_1^{\nu} + J_2^{\nu}$$

· Boundary conditions for inclusive observables :

$$\lim_{x^{\mathfrak{o}}\to -\infty}\mathcal{A}^{\mu}(x)=0$$

Example : 00 component of the energy-momentum tensor

$$T_{\rm LO}^{00} = \frac{1}{2} \left[\underbrace{\mathcal{E}^2 + \mathcal{B}^2}_{\text{class. fields}} \right]$$

Next to Leading Order in g^2 : 1-loop diagrams

Getting loops from trees...

$$\mathfrak{O}_{\rm NLO} = \left[\frac{1}{2}\int_{\mathfrak{u},\mathfrak{v}} \mathbf{G}_{\mathfrak{u}\mathfrak{v}} \,\mathbb{T}_{\mathfrak{u}} \mathbb{T}_{\mathfrak{v}}\right] \,\mathfrak{O}_{\rm LO}$$

• \mathbb{T} is the generator of the shifts of the initial value of the field :

$$\mathbb{T}_{\mathbf{u}} \sim \frac{\partial}{\partial \mathcal{A}_{init}}$$

$$\exp\left[\int_{\mathbf{u}} \boldsymbol{\alpha}_{\mathbf{u}} \, \mathbb{T}_{\mathbf{u}}\right] \underbrace{\mathcal{O}}\left[\overbrace{\mathcal{A}_{\tau}(\underline{\mathcal{A}_{\text{init}}})}^{\text{class. field at } \tau}\right] = \underbrace{\mathcal{O}}_{\text{shifted init. value}} \left[\mathcal{A}_{\tau}(\underline{\mathcal{A}_{\text{init}} + \boldsymbol{\alpha}})\right]$$

Shift operator \mathbb{T} – Definition

Equations of motion for a field ${\mathcal A}$ and a small perturbation α

$$\Box \mathcal{A} + V'(\mathcal{A}) = J$$
$$[\Box + V''(\mathcal{A})] \alpha = 0$$

• Getting the perturbation by shifting the initial condition of *A* at one point :

$$\boldsymbol{\alpha}(x) = \int_{\mathbf{u}} \boldsymbol{\alpha}_{\mathbf{u}} \, \mathbb{T}_{\mathbf{u}} \, \boldsymbol{\mathcal{A}}(x)$$

Shift operator \mathbb{T} – Definition

Equations of motion for a field ${\mathcal A}$ and a small perturbation α

 $\Box \mathcal{A} + V'(\mathcal{A}) = J$ $[\Box + V''(\mathcal{A})] \alpha = 0$

• Getting the perturbation by shifting the initial condition of *A* at one point :

$$\alpha(x) = \int_{\mathbf{u}} \alpha_{\mathbf{u}} \, \mathbb{T}_{\mathbf{u}} \, \mathcal{A}(x)$$

Shift operator \mathbb{T} – Definition

Equations of motion for a field ${\mathcal A}$ and a small perturbation α

 $\Box \mathcal{A} + V'(\mathcal{A}) = J$ $[\Box + V''(\mathcal{A})] \alpha = 0$

• Getting the perturbation by shifting the initial condition of *A* at one point :

$$\alpha(x) = \int_{\mathbf{u}} \frac{\alpha_{\mathbf{u}}}{\mathbf{u}} \, \mathbb{T}_{\mathbf{u}} \, \mathcal{A}(x)$$

• A loop is obtained by shifting the initial condition of \mathcal{A} at two points

Thermalization in QFT

Energy momentum tensor of the initial classical field

Energy momentum tensor of the initial classical field

Weibel instabilities for small perturbations

Weibel instabilities for small perturbations

- The perturbations that alter the classical field in loop corrections diverge with time, like $\exp\sqrt{\mu\tau}$
- Some components of T^{μν} have secular divergences when evaluated beyond tree level

Example of pathologies in fixed order calculations

Oscillating pressure at LO : no equation of state

Example of pathologies in fixed order calculations

Leading + Next-to-Leading Orders

- Oscillating pressure at LO : no equation of state
- Small correction to the energy density (protected by energy conservation)
- Secular divergence in the pressure

Resummation of the leading secular terms

$$T_{\text{resummed}}^{\mu\nu} = \exp\left[\frac{1}{2}\int_{u,v} \mathbf{G}_{uv} \mathbb{T}_{u} \mathbb{T}_{v}\right] T_{Lo}^{\mu\nu}[\mathcal{A}_{init}]$$
$$= \underbrace{T_{Lo}^{\mu\nu} + T_{NLO}^{\mu\nu}}_{\text{in full}} + \underbrace{T_{NNLO}^{\mu\nu} + \cdots}_{\text{partially}}$$

 The exponentiation of the 1-loop result collects all the terms with the worst time behavior

Resummation of the leading secular terms

$$T_{\text{resummed}}^{\mu\nu} = \exp\left[\frac{1}{2}\int_{u,v} \mathbf{G}_{uv} \mathbb{T}_{u} \mathbb{T}_{v}\right] T_{\text{Lo}}^{\mu\nu}[\mathcal{A}_{\text{init}}]$$
$$= \int [D\chi] \exp\left[-\frac{1}{2}\int_{u,v} \chi(u) \mathbf{G}_{uv}^{-1} \chi(v)\right] T_{\text{Lo}}^{\mu\nu}[\mathcal{A}_{\text{init}} + \chi]$$

- The exponentiation of the 1-loop result collects all the terms with the worst time behavior
- The evolution remains classical, with a Gaussian average over initial conditions

- This Gaussian distribution of initial fields is the Wigner representation of a coherent state $\left|\mathcal{A}\right\rangle$

Coherent states are the "most classical quantum states" (their wavefunction has the minimal extent permitted by the uncertainty principle, shared equally in X and P)

• $|\mathcal{A}\rangle$ is not an eigenstate of the Hamiltonian > decoherence via interactions

Analogous (but simpler) scalar toy model

 φ^4 field theory coupled to a source

$$\mathcal{L} = \frac{1}{2} (\partial_{\alpha} \varphi)^2 - \frac{g^2}{4!} \varphi^4 + J \varphi$$

Strong external source: J
$$\propto \frac{Q^3}{g}$$

- In 3+1-dim, g is dimensionless, and the only scale is Q
- This theory has unstable modes (parametric resonance)
- Two setups have been studied :
 - Fixed volume system (equation of state, thermalization)
 - · Longitudinally expanding system (isotropization)

Equation of State Thermalization

Resummed energy momentum tensor

- No secular divergence in the resummed pressure
- The pressure relaxes to the equilibrium equation of state

Occupation number

- Resonant peak at early times
- · Late times : classical equilibrium with a chemical potential
- $\mu \approx m$ + excess at k = 0: Bose-Einstein condensation?

Bose-Einstein Condensation?

Volume dependence of the zero mode

$$f(\mathbf{k}) = \frac{I}{e^{\beta(\omega_{\mathbf{k}}-\mu)}-1} + n_0 \delta(\mathbf{k}) \implies f(0) \propto V = L^3$$

Evolution of the condensate

- Formation time almost independent of the coupling
- Condensate lifetime much longer than its formation time

Isotropization (in an expanding system)

Discretization of the expanding volume

- Comoving coordinates : τ, η, x_{\perp}
- Only a small volume is simulated
 + periodic boundary conditions
- $L^2 \times N$ lattice with $L \sim 30-50$, $N \sim 300-600$

Isotropization

- At early times, $P_{\rm L}$ drops much faster than $P_{\rm T}$ (redshifting of the longitudinal momenta due to the expansion)
- Drastic change of behavior when the expansion rate becomes smaller than the growth rate of the unstability
- Eventually, isotropic pressure tensor : $P_{_{\rm L}} \approx P_{_{\rm T}}$

Effective shear viscosity

$$P_{\tau} = \frac{\epsilon}{3} + \frac{2}{3} \frac{\eta}{s} \frac{s}{\tau}$$
, $P_{L} = \frac{\epsilon}{3} - \frac{4}{3} \frac{\eta}{s} \frac{s}{\tau}$, $s \approx \epsilon^{3/4}$

Comparison with 1st order hydrodynamics

- · Faster relaxation than in hydrodynamics
- Hydrodynamics works well once $P_{_L} \approx P_{_T}$

Summary and outlook

BUT : so far, all numerical studies done for a toy scalar model

What's next?

- generalizable to QCD
- gauge invariant formulation
- computationally expensive (\sim [scalar case] $\times 3 \times (N_c^2 1))$