François Gelis

QCD in Heavy-ion collisions

RPP 2012, Montpellier

François Gelis
IPhT, Saclay
Deconfinement
QCD reminder
Deconfinement transition

Heavy ion collisions
Heavy Ion Collisions
Effective descriptions

Transport theory
Kinetic theory
Hydrodynamics

Gluon saturation
Why small-x gluons matter
Gluon saturation

Perturbative QCD

Lattice QCD
Partition function
Lattice QCD

AdS/CFT
Gauge-gravity duality
Viscosity in N=4 SYM
Limitations

Summary
Asymptotic freedom

- Running coupling: \(\alpha_s = g^2 / 4\pi \)

\[
\alpha_s(r) = \frac{2\pi N_c}{(11N_c - 2N_f) \log(1/r\Lambda_{QCD})}
\]
• The quark potential increases linearly with distance
Color confinement

- In nature, we do not see free quarks and gluons (the closest we have to actual quarks and gluons are jets).
- Instead, we see hadrons (quark-gluon bound states):

- The hadron spectrum is uniquely given by Λ_{QCD}, m_f.
- But this dependence is non-perturbative (it can now be obtained fairly accurately by lattice simulations).
1. Deconfinement
 - QCD reminder
 - Deconfinement transition

2. Heavy ion collisions

3. Transport theory

4. Gluon saturation

5. Perturbative QCD

6. Lattice QCD

7. AdS/CFT
Debye screening

- In a dense medium, color charges are screened by their neighbors.
- The interaction potential decreases exponentially beyond the Debye radius r_{debye}.
- Hadrons whose radius is larger than r_{debye} cannot bind.

\[V(r) = \exp\left(\frac{-r}{r_{\text{debye}}}
ight) \]

\[V(r) = \frac{\exp(\frac{-r}{r_{\text{debye}}})}{r} \]
Debye screening

- In lattice calculations, one sees the $q\bar{q}$ potential flatten at long distance as T increases.
Deconfinement transition

- Rapid increase of the pressure:
 - at $T \sim 270$ MeV, with gluons only
 - at $T \sim 150$ to 180 MeV, with light quarks

\uparrow interpreted as the increase in the number of degrees of freedom due to the liberation of quarks and gluons
QCD phase diagram

Deconfinement
QCD reminder
Deconfinement transition

Heavy ion collisions
Heavy Ion Collisions
Effective descriptions

Transport theory
Kinetic theory
Hydrodynamics

Gluon saturation
Why small-x gluons matter
Gluon saturation

Perturbative QCD
Lattice QCD
Partition function
Lattice QCD

AdS/CFT
Gauge-gravity duality
Viscosity in N=4 SYM
Limitations

Summary
QGP in the early universe

- Temperature
- Early Universe
- Hadronic phase
- Color superconductor
- Quark-Gluon plasma
- Net Baryon Density

- Nuclei
- Neutron stars

- Limitations
- Summary

- QCD reminder
- Deconfinement transition
- Heavy ion collisions
- Effective descriptions
- Transport theory
- Kinetic theory
- Hydrodynamics
- Gluon saturation
- Why small-x gluons matter
- Gluon saturation
- Perturbative QCD
- Lattice QCD
- Partition function
- Lattice QCD
- AdS/CFT
- Gauge-gravity duality
- Viscosity in N=4 SYM
- Limitations
QGP in the early universe

- 10^{-32} sec: end of inflation
- 10^{-10} sec: EW transition
- 10^{-5} sec: confinement
- 10^2 sec: nucleosynthesis
- 10^{12} sec: first atoms

- big bang
- end of inflation
- EW transition
- confinement
- nucleosynthesis
- first atoms

- time
Deconfinement

Heavy ion collisions

Gluon saturation

Perturbative QCD

Lattice QCD

AdS/CFT
Heavy ion collisions

Temperature

Heavy Ion Collision

Quark–Gluon plasma

hadronic phase

Net Baryon Density

Nuclei Neutron stars

Perturbative QCD

Lattice QCD

AdS/CFT

Partition function

Gauge-gravity duality

Viscosity in N=4 SYM

Summary
What would we like to learn?

i. Parameters of the transition: T_c, ϵ_c

ii. Equation of state of nuclear matter

iii. Transport properties of nuclear matter

iv. Do some hadrons survive in the QGP?

v. Formation of the QGP and thermalization
What we must get out of the way first...

- Unfortunately, heavy ion collisions also depend on a number of other trivial facts:

 i. Lead nuclei are approximately spherical

 ii. Their diameter is about 12 fermis

 iii. They contain \(A \approx 200 \) nucleons

 iv. The positions of these nucleons fluctuate

- These properties have all an incidence on observables
- None of them is interesting from the point of view of QCD
- We need ways to make observables independent of these trivial aspects of nuclear physics
Deconfinement

Heavy ion collisions

Effective descriptions

Transport theory

Gluon saturation

Perturbative QCD

Lattice QCD

AdS/CFT
The multiple facets of QCD in Heavy Ion Collisions

- Except for the production of hard objects (jets, heavy quarks, direct photons) at the impact of the two nuclei, we have to deal with strong interactions in a non-perturbative regime.

 NOTE: non-perturbative ≠ strongly coupled!!

- Treated with a range of effective descriptions (semi-classical methods, hydrodynamics, kinetic theory) that are more or less closely related to QCD, but always require some QCD input.
The multiple facets of QCD in Heavy Ion Collisions

- The simple formulation of QCD is deceptive: Ab initio calculations are very difficult, and feasible only for a handful of questions
- In many instances, it is more efficient to use an effective theory in which inessential degrees of freedom have been integrated out.
The multiple facets of QCD in Heavy Ion Collisions

- The simple formulation of QCD is deceptive: Ab initio calculations are very difficult, and feasible only for a handful of questions
- In many instances, it is more efficient to use an effective theory in which inessential degrees of freedom have been integrated out

Perturbative QCD
- Weak coupling
- Hard probes

Lattice QCD
- Deconfinement
- Equation of State

Transport
- Boltzmann eqn.
- Hydrodynamics

AdS/CFT
- Strong Coupling

Gluon saturation
- Initial conditions
- Thermalization

Viscosity in N=4 SYM

Summary
Transport models

• In many cases, the description of the system can be done at a scale large enough for the microscopic details to become irrelevant:
 • Kinetic theory
 • Hydrodynamics

• To a large extent, the evolution of the system is driven by conservation laws (energy, momentum, baryon number...)

• The microscopic dynamics is relegated into a handful of quantities that enter in these mesoscopic descriptions
1 Deconfinement

2 Heavy ion collisions

3 Transport theory
 Kinetic theory
 Hydrodynamics

4 Gluon saturation

5 Perturbative QCD

6 Lattice QCD

7 AdS/CFT
Kinetic theory
Kinetic theory

- The system is described by a particle distribution

\[f(t, \vec{x}, \vec{p}) = \frac{dN}{d^3\vec{x}d^3\vec{p}} \]

(in most cases, this distribution is spin and color averaged)

- The evolution of \(f \) is driven by the interactions between these particles

- The only QCD input is a set of cross-sections
The Boltzmann equation describes the evolution of a distribution of particles that undergo short range collisions:

\[
\left[\partial_t + \vec{v}_p \cdot \vec{\nabla}_x \right] f(t, \vec{x}, \vec{p}) = C_p[f] \quad \text{with} \quad \vec{v}_p \equiv \frac{\vec{p}}{E_p}
\]

Elementary 2-body collision:
Boltzmann equation

- For $2 \rightarrow 2$ collisions, the collision term reads:

\[
C_p[f] = \frac{1}{2E_p} \int \frac{d^3 \vec{p}'}{(2\pi)^3 2E_p'} \int \frac{d^3 \vec{k}}{(2\pi)^3 2E_k} \int \frac{d^3 \vec{k}'}{(2\pi)^3 2E_{k'}} (2\pi)^4 \delta(p + k - p' - k')
\]

\[
E, \vec{p} \text{ conservation}
\]

\[
\times \left[f(\vec{p}') f(\vec{k}') (1 + f(\vec{p})) (1 + f(\vec{k})) - f(\vec{p}) f(\vec{k}) (1 + f(\vec{k}')) (1 + f(\vec{p}')) \right] \left| M \right|^2
\]

\text{micro-reversibility, detailed balance}

\text{QCD}

- Most of the equation relies on conservation laws and general principles of statistical physics. Only the cross-section depends on QCD

Inputs

i. Cross-sections

ii. Initial condition $f(t_0, \vec{x}, \vec{p})$
1 Deconfinement

2 Heavy ion collisions

3 Transport theory
 Kinetic theory
 Hydrodynamics

4 Gluon saturation

5 Perturbative QCD

6 Lattice QCD

7 AdS/CFT
Hydrodynamics

gluons & quarks in eq. \rightarrow ideal hydro

gluons & quarks out of eq. \rightarrow viscous hydro
Hydrodynamics: limit of kinetic theory when $\ell_{mfp} \to 0$

Equations of hydrodynamics (conservation laws)

$$\partial_\mu T^{\mu\nu} = 0 \quad , \quad \partial_\mu J^\mu_B = 0$$

Assumptions and inputs

i. Near equilibrium form of $T^{\mu\nu}$:

$$T^{\mu\nu} = (p + \epsilon) v^\mu v^\nu - p g^{\mu\nu} \oplus (\eta, \zeta) \partial v \oplus \cdots$$

ideals hydro

viscous terms

ii. Equation of State: $p = f(\epsilon)$

iii. Transport coefficients: η, ζ, \cdots

iv. Initial condition for ϵ and \vec{v} at some t_0
Gluon saturation

\[\text{strong fields} \rightarrow \text{semi-classical} \]
Deconfinement

Heavy ion collisions

Transport theory

Gluon saturation
Why small-x gluons matter
Gluon saturation

Perturbative QCD

Lattice QCD

AdS/CFT
The partons that are relevant for the process under consideration carry the longitudinal momentum fractions:

\[x_{1,2} = \frac{P_\perp}{\sqrt{s}} e^{\pm Y} \]

- \(P_\perp \sim 1 \text{ GeV} \)
- \(x \sim 10^{-2} \) at RHIC (\(\sqrt{s} = 200 \text{ GeV} \))
- \(x \sim 10^{-3} \) at the LHC (\(\sqrt{s} = 2.76 \text{ TeV} \))

\(\triangleright \) partons at small \(x \) are the most important
Growth of the gluon distribution at small x

Parton distributions at small x

- Gluons dominate at any $x \leq 10^{-1}$
1 Deconfinement

2 Heavy ion collisions

3 Transport theory

4 **Gluon saturation**
 Why small-x gluons matter
 Gluon saturation

5 Perturbative QCD

6 Lattice QCD

7 AdS/CFT
• Main difficulty: How to treat collisions involving a large number of partons?
Multiple scatterings and gluon recombination

- **Dilute regime**: one parton in each projectile interact
 - large Q^2, no small-x effects
 - usual PDFs + DGLAP evolution
Multiple scatterings and gluon recombination

- **Dense regime**: multiparton processes become crucial
 - gluon recombinations are important (saturation)
 - multi-parton distributions + JIMWLK evolution
 - new techniques are required (Color Glass Condensate):

\[
\mathcal{L} = -\frac{1}{4} F^2 + J \cdot A
\]

(gluons only, field \(A \) for \(k^+ < \Lambda \), classical source \(J \) for \(k^+ > \Lambda \))
Color Glass Condensate effective theory

- Power counting:
 - \(J \sim g^{-1} \) in the saturated regime
 - Each \(g^2 \) order gets contributions from an infinite set of graphs
 - LO: all tree graphs, classical fields
 - NLO: one loop, small field fluctuations over a classical background

- Applications:
 - Initial conditions for hydrodynamics
 - Study of thermalization

- Main issue: the \(g^2 \) expansion is not uniform in time
 - Secular divergences

[▷ see T. Epelbaum’s talk]
Jet quenching

- The basis of perturbative QCD is asymptotic freedom
- pQCD is the tool of choice for computing the production of hard objects (high p_\perp jets, direct photons, heavy quarks)
- In heavy ion collisions, a new challenge for QCD is the study of the propagation of a hard object in a dense quark-gluon medium

[▷ Y. Mehtar-Tani’s talk]
Deconfinement

Heavy ion collisions

Transport theory

Gluon saturation

Perturbative QCD

Lattice QCD

Partition function

Lattice QCD

AdS/CFT

Deconfinement

QCD reminder

Deconfinement transition

Heavy ion collisions

Heavy Ion Collisions

Effective descriptions

Transport theory

Kinetic theory

Hydrodynamics

Gluon saturation

Why small-x gluons matter

Gluon saturation

Perturbative QCD

Lattice QCD

Partition function

Lattice QCD

AdS/CFT

Gauge-gravity duality

Viscosity in N=4 SYM

Limitations

Summary
Partition function

- Partition function:

\[Z \equiv \text{Tr} \left(e^{-\beta H} \right) = \int [\mathcal{D}A^\mu \mathcal{D}\overline{\psi} \mathcal{D}\psi] \ e^{-S_E [A^\mu, \overline{\psi}, \psi]} \]

- \(S_E \) is the Euclidean action, with imaginary time in \([0, \beta = 1/T]\). The Matsubara formalism provides a way to do perturbative calculations at finite \(T \)

- \(Z \) knows everything about the QGP thermodynamics:

\[E = -\frac{\partial Z}{\partial \beta} \]
\[S = \beta E + \ln(Z) \]
\[F = E - TS = -\frac{1}{\beta} \ln(Z) \]
1 Deconfinement
2 Heavy ion collisions
3 Transport theory
4 Gluon saturation
5 Perturbative QCD
6 Lattice QCD
 Partition function
 Lattice QCD
7 AdS/CFT
Lattice QCD

- **Lattice QCD**: discretize space-time, and approximate the functional integration by a Monte-Carlo sampling

- **“Sign problem”**:
 - does not work for “real time” correlation functions
 - limited to static properties of the QGP (thermodynamics)
 - does not work with a baryon chemical potential

- Light quarks with realistic masses are computationally expensive
1 Deconfinement

2 Heavy ion collisions

3 Transport theory

4 Gluon saturation

5 Perturbative QCD

6 Lattice QCD

7 AdS/CFT
 Gauge-gravity duality
 Viscosity in N=4 SYM
 Limitations
Viscosity at weak coupling

- It all started with the observation that hydrodynamics reproduces well the data provided one uses a very small viscosity.
- The shear viscosity has been calculated in QCD at weak coupling ($g \to 0$), and it is quite large:

\[
\frac{\eta}{s} = \frac{5.12}{g^4 \ln \left(\frac{2.42}{g}\right)}
\]

Viscosity at weak coupling
AdS/CFT duality at T=0

- Maximally super-symmetric $SU(N)$ Yang-Mills theories in the limit $g^2N \to +\infty$ are dual to classical super-gravity on an AdS$_5 \times S_5$ manifold with metric

$$ds^2 = \frac{R^2}{z^2}(-dt^2 + d\vec{x}^2 + dz^2) + R^2 d\Omega_5^2$$

we live here... (at $z=0$)

- If an operator \mathcal{O} of our world is coupled on the boundary to a field φ_0 that extends in the bulk, the duality states that:

$$e^{-S_{\text{cl}}[\phi]} = \langle e^{\int_{\text{boundary}} \mathcal{O} \varphi_0} \rangle$$

- The right hand side is a generating functional for the correlators of operators \mathcal{O} in the 4-dim gauge theory
- The left hand side is calculable in the gravity dual (solve the classical EOM for ϕ with the boundary condition φ_0)
AdS/CFT duality at high T

- At finite temperature T:

 $$-dt^2 + dz^2 \rightarrow -f(z)dt^2 + dz^2/f(z) \quad \text{with} \quad f(z) = 1 - (\pi z T)^4$$

- $f(z) = 0$ at $z = 1/\pi T \Rightarrow$ black hole horizon

- Ordinary particles in 4-dimensions are the end points of strings living in the bulk. Thermal effects occur when a string gets close to the BH horizon
Viscosity in SUSY Yang-Mills

- In SYM at $g^2 N \to \infty$, one gets $\eta/s = 1/4\pi$
- Conjecture: $1/4\pi$ is the lowest possible value for η/s
Deconfinement QCD reminder

Deconfinement transition

Heavy ion collisions

Heavy Ion Collisions

Effective descriptions

Transport theory

Kinetic theory

Hydrodynamics

Gluon saturation

Why small-x gluons matter

Gluon saturation

Perturbative QCD

Gauge-gravity duality

Viscosity in N=4 SYM

Limitations

Summary
Importance of scale violations near T_c

- Is the QGP at $T/T_c \sim 2 - 3$ really strongly coupled? For quantities such as the entropy, perturbative techniques (+resummations) lead to sensible results in this region.

![Graph](image)

- At $T < 3T_c$, the coupling may indeed be strong, but scale violations make AdS/CFT unreliable.
Summary

• QCD in heavy ion collisions displays a very rich spectrum of phenomena

• Ab initio methods (lattice) are practical only for certain quantities

• The consequence of this is the diversity of tools and techniques that have been developed to study various aspects of strong interactions in heavy ion collisions

• QCD also plays a role in providing inputs into a number of effective descriptions such as kinetic theory and hydrodynamics