

Heavy-ion collisions and QCD: the big picture

Quark Matter 2011, Annecy

François Gelis IPhT, Saclay

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening Deconfinement transition Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

1

Outline

François Gelis

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

1 QCD primer

2 Deconfinement

3 QCD in heavy ion collisions

Perturbative QCD

5 QCD at finite T, Lattice QCD

6 Color Glass Condensate

7 AdS/CFT

Asymptotic freedom
Color confinement

- Deconfinement
- **3 QCD** in heavy ion collisions
- Perturbative QCD
- QCD at finite T, Lattice QCD
- **6** Color Glass Condensate

QCD primer

Building blocks

Asymptotic freedom Color confinement

Deconfinement

Debye screening Deconfinement transition Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Strong interactions: Quantum Chromo-Dynamics

Matter: quarks; Interaction carriers: gluons

- i, j : quark colors ; a, b, c : gluon colors
- $(t^a)_{ii} : 3 \times 3 \text{ SU}(3) \text{ matrix} ; (T^a)_{bc} : 8 \times 8 \text{ SU}(3) \text{ matrix}$

Lagrangian

$$\mathcal{L} = -\frac{1}{4} F^2 + \sum_{f} \overline{\psi}_f (i \cancel{D} - m_f) \psi_f$$

• Free parameters : quark masses m_f , scale Λ_{occ}

QCD primer

Building blocks

Asymptotic freedom Color confinement

Deconfinement

Debve screening Deconfinement transition Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function Lattice QCD

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

3

QCD primer Building blocks

Asymptotic freedom
Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

traiçois Geli

QCD primer

Building blocks

Asymptotic freedom

Color confinement

- Deconfinement
- QCD in heavy ion collisions
- Perturbative QCD
- QCD at finite T, Lattice QCD
- 6 Color Glass Condensate
- AdS/CFT

• Running coupling : $\alpha_s = g^2/4\pi$

$$\alpha_s(r) = \frac{2\pi N_c}{(11N_c - \frac{2N_f}{}) \log(1/r\Lambda_{_{QCD}})}$$

 The effective charge seen at large distance is screened by fermionic fluctuations (as in QED)

QCD primer Building blocks

Asymptotic freedom

Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

4

QCD primer Building blocks

Asymptotic freedom

Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function

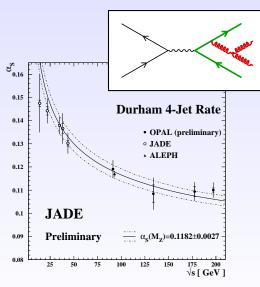
CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary


• Running coupling : $\alpha_s = g^2/4\pi$

$$\alpha_s(r) = \frac{2\pi N_c}{(11N_c - 2N_f)\log(1/r\Lambda_{_{QCD}})}$$

- The effective charge seen at large distance is screened by fermionic fluctuations (as in QED)
- But gluonic vacuum fluctuations produce an anti-screening (because of the non-abelian nature of their interactions)
- As long as $N_f < 11N_c/2 = 16.5$, the gluons win...

Asymptotic freedom

François Gelis

QCD primer Building blocks

Asymptotic freedom

Color confinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function Lattice QCD

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

5

Building blocks Asymptotic freedom

Color confinement

Deconfinement

QCD in heavy ion collisions

Perturbative QCD

QCD at finite T, Lattice QCD

6 Color Glass Condensate

AdS/CFT

QCD primer Building blocks

Building blocks Asymptotic freedom

Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

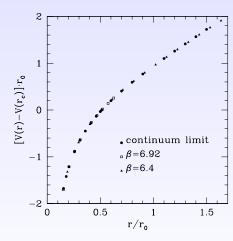
QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function


CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Color confinement

The quark potential increases linearly with distance

François Gelis

QCD primer Building blocks

Building blocks Asymptotic freedom

Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

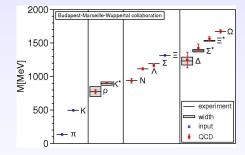
Perturbative QCD

Lattice QCD

Partition function Lattice QCD

CGC

Why small-x gluons matter Gluon saturation Saturation domain


AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

6

- In nature, we do not see free quarks and gluons (the closest we have to actual quarks and gluons are jets)
- Instead, we see hadrons (quark-gluon bound states):

- The hadron spectrum is uniquely given by Λ_{ocn} , m_f
- But this dependence is non-pertubative (it can now be obtained fairly accurately by lattice simulations)

QCD primer

Building blocks Asymptotic freedom Color confinement

Deconfinement

Debve screening Deconfinement transition Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function Lattice QCD

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

QCD primer

œ

2 Deconfinement

Debye screening

Deconfinement transition Phase diagram

- **3 QCD** in heavy ion collisions
- Perturbative QCD
- QCD at finite T, Lattice QCD
- Color Glass Condensate

QCD primer Building blocks

Asymptotic freedom
Color confinement

Deconfinement

Debye screening

Deconfinement transition Phase diagram

i naso diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

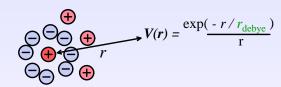
Perturbative QCD

Lattice QCD

Partition function

CGC

Why small-x gluons matter Gluon saturation Saturation domain


AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

AdS/CFT

Debye screening

- In a dense medium, color charges are screened by their neighbours
- The interaction potential decreases exponentially beyond the Debye radius r_{debve}
- Hadrons whose radius is larger than $r_{\text{\tiny debve}}$ cannot bind

François Gelis

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening

Deconfinement transition Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

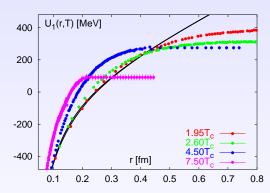
Perturbative QCD

Lattice QCD

Partition function Lattice QCD

CGC

Why small-x gluons matter Gluon saturation Saturation domain


AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

В

Debye screening

• In lattice calculations, one sees the $q\bar{q}$ potential flatten at long distance as T increases

Francois Gelis

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening

Deconfinement transition Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function Lattice QCD

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

QCD primer

œ

2 Deconfinement

Debye screening

Deconfinement transition

Phase diagram

QCD in heavy ion collisions

Perturbative QCD

QCD at finite T, Lattice QCD

6 Color Glass Condensate

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening

Deconfinement transition

Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

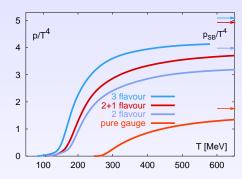
Perturbative QCD

Lattice QCD

Partition function

CGC

Why small-x gluons matter Gluon saturation Saturation domain


AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

AdS/CFT

Deconfinement transition

- · Rapid increase of the pressure :
 - at T ~ 270 MeV, with gluons only
 - at T ~ 150 to 180 MeV, with light quarks

ightharpoonup interpreted as the increase in the number of degrees of freedom due to the liberation of quarks and gluons

François Gelis

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening

Deconfinement transition

Phase diagram

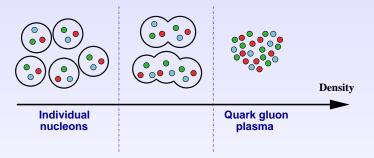
QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function Lattice QCD


CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Deconfinement transition

- When the nucleon density increases, they merge, enabling quarks and gluons to hop freely from a nucleon to its neighbors
- This phenomenon extends to the whole volume when the phase transition ends
- Note: if the transition is first order, it goes through a mixed phase containing a mixture of nucleons and plasma

François Gelis

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening

Deconfinement transition

Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function Lattice QCD

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

QCD primer

œ

Deconfinement

Debye screening
Deconfinement transition

Phase diagram

- **3 QCD** in heavy ion collisions
- Perturbative QCD
- QCD at finite T, Lattice QCD
- Color Glass Condensate

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening

Deconfinement transition

Phase diagram

QCD in HIC

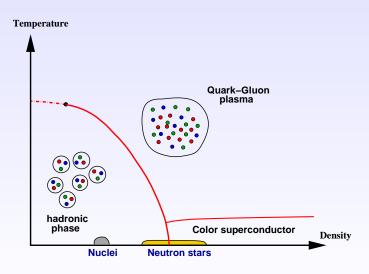
Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function Lattice QCD

CGC


Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

QCD phase diagram

Francois Gelis

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening

Deconfinement transition

Phase diagram

QCD in HIC

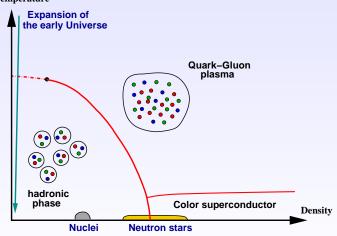
Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function Lattice QCD

CGC


Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

QGP in the early universe

Temperature

Francois Gelis

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening

Deconfinement transition

Phase diagram

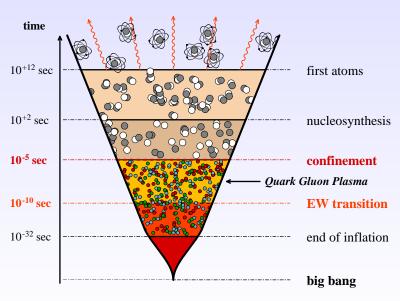
QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function Lattice QCD


CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

QGP in the early universe

François Gelis

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening

Deconfinement transition

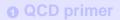
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD


Partition function Lattice QCD

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

- Deconfinement
- QCD in heavy ion collisions Heavy Ion Collisions

Effective descriptions
Transport models

- Perturbative QCD
- **3** QCD at finite T, Lattice QCD
- 6 Color Glass Condensate

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions

Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

AdS/CFT

Heavy ion collisions

François Gelis

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

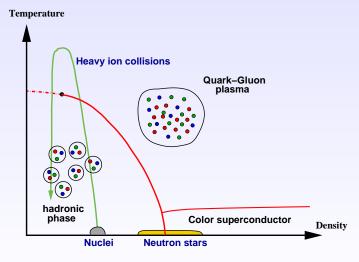
QCD in HIC

Heavy Ion Collisions Effective descriptions

Transport models

Perturbative QCD

Lattice QCD


Partition function Lattice QCD

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

What would we like to learn?

- François Gelis
- QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function Lattice QCD

CGC

Why small-x gluons matter Gluon saturation

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

- i. Establish the existence of a phase transition
- ii. Parameters of the transition: T_c , ϵ_c
- iii. Equation of state of nuclear matter
- iv. Transport properties of nuclear matter
- v. Do some hadrons survive in the QGP?
- vi. Dynamics of the collision, evolution at early time, formation of the QGP and thermalization

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions

Transport models

Perturbative QCD

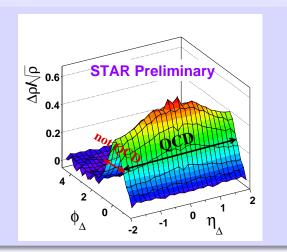
Lattice QCD Partition function

Partition function Lattice QCD

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT


Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

Unfortunately, heavy ion collisions also depend on a

- number of other trivial facts:
- i. Lead nuclei are approximately spherical
- ii. Their diameter is about 12 fermis
- iii. They contain $A \approx 200$ nucleons
- iv. The positions of these nucleons fluctuate
 - These properties have all an incidence on observables
 - None of them is interesting from the point of view of QCD
 - We need ways to make observables independent of these trivial aspects of nuclear physics

Example: 2-hadron correlations (aka "the ridge")

- Long range correlation in Δη (rapidity)
- Narrow correlation in $\Delta \varphi$ (azimuthal angle)

François Gelis

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

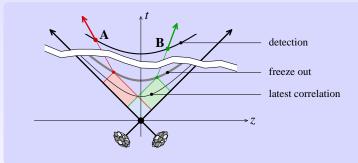
Heavy Ion Collisions Effective descriptions

Transport models

Perturbative QCD

Lattice QCD Partition function

Partition function Lattice QCD


CGC

Why small-x gluons matter Gluon saturation

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Long range rapidity correlations

Long range rapidity correlations are created early

From causality, the latest time at which a correlation between two particles can be created is :

$$t_{
m correlation} \leq t_{
m freeze~out}~e^{-\frac{1}{2}|y_A - y_B|}$$

With $t_{\text{freeze out}} = 10 \text{ fm/c}$, $|y_A - y_B| = 6$: $t_{\text{correlation}} \le 0.5 \text{ fm/c}$

François Gelis

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions

Transport models

Perturbative QCD

Lattice QCD

Partition function Lattice QCD

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

- QCD primer
- Deconfinement
- **3** QCD in heavy ion collisions

Heavy Ion Collisions

Effective descriptions

Transport models

- Perturbative QCD
- QCD at finite T, Lattice QCD
- Color Glass Condensate

AdS/CFT

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions

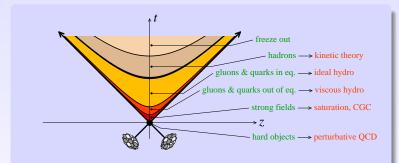
Transport models

Perturbative OCD

Perturbative QCL

Lattice QCD Partition function

Lattice QCD


CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

The multiple facets of QCD in HIC

- Except for the production of hard objects (jets, heavy quarks, direct photons) at the impact of the two nuclei, we have to deal with strong interactions in a non-perturbative regime NOTE: non-perturbative ≠ strongly coupled!!!
- One treats these situations with a range of effective descriptions (CGC, hydrodynamics, kinetic theory) that are more or less closely related to QCD, but always require some QCD input

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening Deconfinement transition Phase diagram

QCD in HIC

Heavy Ion Collisions

Effective descriptions

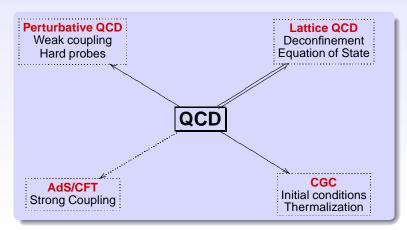
Transport models

Perturbative QCD

Lattice QCD

Partition function Lattice QCD

CGC


Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

The multiple facets of QCD in HIC

- The simple formulation of QCD is deceptive: Ab initio calculations are very difficult, and feasible only for a handful of questions
- In many instances, it is more efficient to use an effective theory in which inessential degrees of freedom have been integrated out

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening Deconfinement transition Phase diagram

QCD in HIC

Heavy Ion Collisions

Effective descriptions

Transport models

Perturbative QCD

Lattice QCD

Partition function Lattice QCD

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

- QCD primer Building blocks

Asymptotic freedom Color confinement Deconfinement Debve screening

Deconfinement transition Phase diagram

QCD in HIC Heavy Ion Collisions Effective descriptions

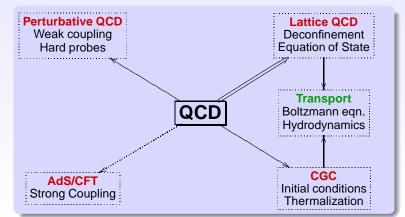
Transport models

Perturbative QCD

Lattice QCD

Partition function Lattice QCD

CGC


Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

 The simple formulation of QCD is deceptive: Ab initio calculations are very difficult, and feasible only for a handful of questions

In many instances, it is more efficient to use an effective theory in which inessential degrees of freedom have been integrated out

Deconfinement

3 QCD in heavy ion collisions

Transport models

- Perturbative QCD
- QCD at finite T. Lattice QCD
- Color Glass Condensate

QCD primer

Building blocks Asymptotic freedom Color confinement

Deconfinement

Debve screening Deconfinement transition Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions

Transport models

Perturbative OCD

Lattice QCD

Partition function Lattice QCD

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

AdS/CFT

Transport models

In many cases, the description of the system can be done at a scale large enough for the microscopic details to become irrelevant:

- · Kinetic theory
- Hydrodynamics
- To a large extent, the evolution of the system is driven by conservations laws (energy, momentum, baryon number...)
- The microscopic dynamics is relegated into a handful of quantities that enter in these mesoscopic descriptions

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening Deconfinement transition Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions

Transport models

Perturbative QCD

Lattice QCD Partition function

Lattice QCD

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Kinetic theory

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions

Transport models

Perturbative QCD

Lattice QCD

Partition function

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

The system is described by a particle distribution

$$f(t, \vec{\boldsymbol{x}}, \vec{\boldsymbol{\rho}}) = \frac{dN}{d^3 \vec{\boldsymbol{x}} d^3 \vec{\boldsymbol{\rho}}}$$

(in most cases, this distribution is spin and color averaged)

- The evolution of *f* is driven by the interactions between these particles
- The only QCD input is a set of cross-sections

Boltzmann equation

 The Boltzmann equation describes the evolution of a distribution of particles that undergo short range collisions

$$\left[\partial_t + \vec{\boldsymbol{v}}_{\boldsymbol{p}} \cdot \vec{\nabla}_{\boldsymbol{x}}\right] \boldsymbol{f}(t, \vec{\boldsymbol{x}}, \vec{\boldsymbol{p}}) = \underbrace{\mathcal{C}_{\boldsymbol{p}}[\boldsymbol{f}]}_{\text{collisions}} \quad \text{with } \vec{\boldsymbol{v}}_{\boldsymbol{p}} \equiv \frac{\vec{\boldsymbol{p}}}{E_{\boldsymbol{p}}}$$

• Elementary 2-body collision :

François Gelis

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions

Transport models

Perturbative QCD

Lattice QCD

Partition function Lattice QCD

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

$$\mathfrak{C}_{\pmb{\rho}}[\pmb{f}] = \frac{1}{2E_{\pmb{\rho}}} \int \frac{d^3 \vec{\pmb{\rho}}'}{(2\pi)^3 2E_{\pmb{\rho}'}} \int \frac{d^3 \vec{\pmb{k}}}{(2\pi)^3 2E_{\pmb{k}}} \int \frac{d^3 \vec{\pmb{k}}'}{(2\pi)^3 2E_{\pmb{k}'}} \underbrace{(2\pi)^4 \delta(p + k - p' - k')}_{\textit{\textit{E}}, \vec{\textit{\textit{p}}} \text{ conservation}}$$

$$\times \left[f(\vec{\boldsymbol{p}}') f(\vec{\boldsymbol{k}}') (1 + f(\vec{\boldsymbol{p}})) (1 + f(\vec{\boldsymbol{k}})) - f(\vec{\boldsymbol{p}}) f(\vec{\boldsymbol{k}}) (1 + f(\vec{\boldsymbol{k}}')) (1 + f(\vec{\boldsymbol{p}}')) \right] \underbrace{- f(\vec{\boldsymbol{p}}) f(\vec{\boldsymbol{k}}) (1 + f(\vec{\boldsymbol{k}}')) (1 + f(\vec{\boldsymbol{p}}'))}_{\text{micro-reversibility, detailed balance}} \right] \underbrace{\left| \mathcal{M} \right|^2}_{\text{QCD}}$$

Most of the equation relies on conservation laws and general principles of statistical physics. Only the cross-section depends on QCD

Inputs

- Cross-sections
- ii. Initial condition $f(t_0, \vec{x}, \vec{p})$

QCD primer

Building blocks Asymptotic freedom

Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions

Transport models

Perturbative QCD

Lattice QCD

Partition function Lattice QCD

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Hydrodynamics: limit of kinetic theory when $\ell_{mfn} \rightarrow 0$

François Gelis

Equations of hydrodynamics (conservation laws)

$$\partial_{\mu}T^{\mu\nu}=0$$
 , $\partial_{\mu}J^{\mu}_{R}=0$

$$\partial_{\mu}J_{\scriptscriptstyle B}^{\mu}=0$$

Assumptions and inputs

i. Near equilibrium form of $T^{\mu\nu}$:

$$T^{\mu\nu} = \underbrace{(p + \epsilon) \ v^{\mu} \ v^{\nu} - p \ g^{\mu\nu}}_{\text{ideal hydro}} \oplus \underbrace{(\eta, \zeta) \partial v}_{\text{viscous terms}} \oplus \cdots$$

- ii. Equation of State: $p = f(\epsilon)$
- iii. Transport coefficients: η, ζ, \cdots
- iv. Initial condition for ϵ and \vec{v} at some t_0

QCD primer

Building blocks Asymptotic freedom Color confinement

Deconfinement

Debve screening Deconfinement transition Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions

Transport models

Perturbative QCD

Lattice QCD Partition function

Lattice QCD

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

26

François Gelis

QCD primer Building blocks Asymptotic freedom Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function Lattice QCD

CGC

Why small-x gluons matter Gluon saturation

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

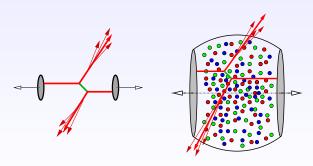
Summary

QCD primer

Deconfinement

QCD in heavy ion collisions

Perturbative QCD


QCD at finite T, Lattice QCD

Color Glass Condensate

AdS/CFT

Jet quenching

- The basis of perturbative QCD is asymptotic freedom
- pQCD is the tool of choice for computing the production of hard objects (high p_⊥ jets, direct photons, heavy quarks)
- In heavy ion collisions, a new challenge for QCD is the study of the propagation of a hard object in a dense quark-gluon medium

François Gelis

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function Lattice QCD

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

3 QCD in heavy ion collisions

Perturbative QCD

6 QCD at finite T, Lattice QCD Partition function

Lattice QCD

Color Glass Condensate

AdS/CFT

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening Deconfinement transition Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function

Lattice QCD

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

$$Z \equiv \operatorname{Tr}(e^{-\beta H}) = \int [\mathcal{D}A^{\mu}\mathcal{D}\overline{\psi}\mathcal{D}\psi] e^{-S_{\mathcal{E}}[A^{\mu},\overline{\psi},\psi]}$$

- $S_{\scriptscriptstyle E}$ is the Euclidean action, with imaginary time in $[0,\beta=1/T]$. The Matsubara formalism provides a way to do perturbative calculations at finite T
- Z knows everything about the QGP thermodynamics :

$$\begin{split} E &= -\frac{\partial Z}{\partial \beta} \\ S &= \beta E + \ln(Z) \\ F &= E - TS = -\frac{1}{\beta} \ln(Z) \end{split}$$

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC Heavy Ion Collisions

Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function

CGC

Why small-x gluons matter Gluon saturation

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

- QCD primer
- 2 Deconfinement
- QCD in heavy ion collisions
- Perturbative QCD
- QCD at finite T, Lattice QCD

Partition function

Lattice QCD

- Color Glass Condensate
- AdS/CFT

QCD primer Building blocks

Building blocks Asymptotic freedom Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function

CGC

Why small-x gluons matter Gluon saturation

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

 Lattice QCD: discretize space-time, and approximate the functional integration by a Monte-Carlo sampling

· "Sign problem":

- does not work for "real time" correlation functions
 limited to static properties of the QGP (thermodynamics)
- · does not work with a baryon chemical potential
- Light quarks with realistic masses are computationally expensive

2 Deconfinement

QCD in heavy ion collisions

Perturbative QCD

QCD at finite T, Lattice QCD

Color Glass Condensate Why small-x gluons matter Gluon saturation Saturation domain æ

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

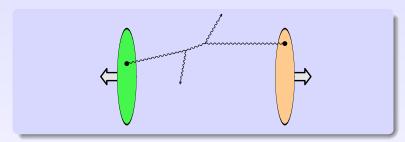
Lattice QCD

Partition function

CGC

Why small-x gluons matter

Gluon saturation


AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

AdS/CFT

Longitudinal momentum fraction in AA collisions

 The partons that are relevant for the process under consideration carry the longitudinal momentum fractions:

$$x_{1,2} = \frac{P_{\perp}}{\sqrt{s}} e^{\pm Y}$$

P⊥: transverse momentum

• Y: rapidity

• \sqrt{s} : collision energy

François Gelis

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening Deconfinement transition Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

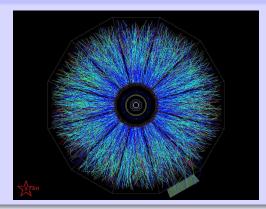
Lattice QCD

Partition function Lattice QCD

CGC

Why small-x gluons matter
Gluon saturation
Saturation domain

AdS/CFT


Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

30

Longitudinal momentum fraction in AA collisions

Nucleus-Nucleus collision

- 99% of the multiplicity below p_⊥ ~ 2 GeV
- $x \sim 10^{-2}$ at RHIC ($\sqrt{s} = 200$ GeV)
- $x \sim 4.10^{-4}$ at the LHC ($\sqrt{s} = 5.5$ TeV) \triangleright partons at small x are the most important

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening Deconfinement transition Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

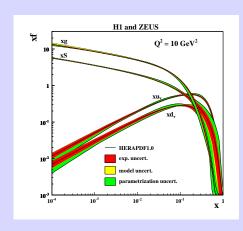
Lattice QCD

Partition function Lattice QCD

CGC

Why small-x gluons matter
Gluon saturation
Saturation domain

AdS/CFT


Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

31

Growth of the gluon distribution at small x

Parton distributions at small x

• Gluons dominate at any $x \le 10^{-1}$

François Gelis

QCD primer

Building blocks Asymptotic freedom

Color confinement

Deconfinement

Debye screening Deconfinement transition Phase diagram

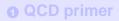
QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function Lattice QCD


CGC

Why small-x gluons matter

Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

- Deconfinement
- QCD in heavy ion collisions
- Perturbative QCD
- QCD at finite T, Lattice QCD
- G Color Glass Condensate

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

QCD primer

Building blocks Asymptotic freedom Color confinement

Deconfinement

Debve screening Deconfinement transition Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

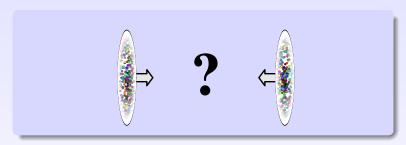
Perturbative OCD

Lattice QCD

Partition function

Lattice QCD

CGC


Why small-x gluons matter Gluon saturation

Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Multiple scatterings and gluon recombination

 Main difficulty: How to treat collisions involving a large number of partons?

François Gelis

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

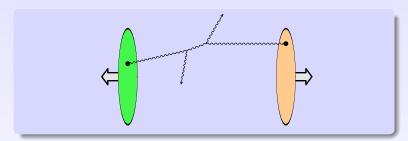
Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function Lattice QCD

CGC


Why small-x gluons matter Gluon saturation

Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Multiple scatterings and gluon recombination

- Dilute regime : one parton in each projectile interact
 - \triangleright large Q², no small-x effects
 - □ usual PDFs + DGLAP evolution

François Gelis

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening Deconfinement transition Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

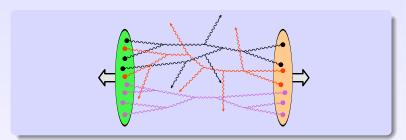
Perturbative QCD

Lattice QCD

Partition function Lattice QCD

CGC

Why small-x gluons matter


Gluon saturation Saturation domain

Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Multiple scatterings and gluon recombination

- Dense regime : multiparton processes become crucial
 - ⊳ gluon recombinations are important (saturation)
 - > multi-parton distributions + JIMWLK evolution

$$\mathcal{L} = -\frac{1}{4} \mathbf{F^2} + \mathbf{J} \cdot \mathbf{A}$$

(gluons only, field ${\color{red} A}$ for ${\color{red} k^+}<\Lambda$, classical source ${\color{red} J}$ for ${\color{red} k^+}>\Lambda$)

François Gelis

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening Deconfinement transition Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

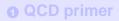
Lattice QCD

Partition function Lattice QCD

CGC

Why small-x gluons matter

Gluon saturation


Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

33

- Deconfinement
- QCD in heavy ion collisions
- Perturbative QCD
- QCD at finite T, Lattice QCD
- G Color Glass Condensate

Why small-x gluons matter Gluon saturation

Saturation domain

QCD primer Building blocks

Asymptotic freedom Color confinement

Deconfinement

Debve screening Deconfinement transition Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative OCD

Lattice QCD

Partition function Lattice QCD

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Gribov, Levin, Ryskin (1983)

Number of gluons per unit area:

$$\rho \sim \frac{xG_{A}(x, \mathbf{Q}^2)}{\pi R_{A}^2}$$

Recombination cross-section:

$$\sigma_{gg \to g} \sim \frac{\alpha_s}{Q^2}$$

Recombination happens if $\rho\sigma_{gg\to g}\gtrsim$ 1, i.e. $Q^2\lesssim Q_s^2,$ with :

$$Q_s^2 \sim \frac{\alpha_s x G_A(x, Q_s^2)}{\pi R_A^2} \sim A^{1/3} \frac{1}{x^{0.3}}$$

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

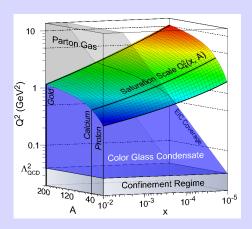
Lattice QCD

Partition function Lattice QCD

CGC

Why small-x gluons matter
Gluon saturation
Saturation domain

AdS/CFT


Gauge-gravity duality Viscosity in N=4 SYM Limitations

Saturation domain

François Gelis

œ

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

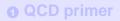
Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD


Partition function Lattice QCD

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

- Deconfinement
- **3 QCD** in heavy ion collisions
- Perturbative QCD
- QCD at finite T, Lattice QCD
- 6 Color Glass Condensate
- AdS/CFT Gauge-gravity duality Viscosity in N=4 SYM Limitations

Building blocks Asymptotic freedom

Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function

Lattice QCD

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality

Viscosity in N=4 SYM Limitations

Building blocks Asymptotic freedom

Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

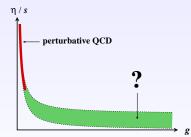
Lattice QCD

Partition function Lattice QCD

CGC

Why small-x gluons matter Gluon saturation

AdS/CFT


Gauge-gravity duality

Viscosity in N=4 SYM Limitations

Summary

 The shear viscosity has been calculated in QCD at weak coupling (g → 0), and it is quite large :

$$\frac{\eta}{s} = \frac{5.12}{g^4 \ln\left(\frac{2.42}{g}\right)}$$

 However, η/s decreases quickly when the coupling increases > Can we calculate it?

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC Heavy Ion Collisions

Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function Lattice OCD

CGC

Why small-x gluons matter Gluon saturation

AdS/CFT

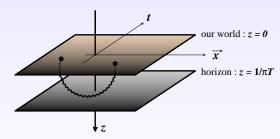
Gauge-gravity duality

Viscosity in N=4 SYM Limitations

Summary

 Maximally super-symmetric SU(N) Yang-Mills theories in the limit g²N → +∞ are dual to classical super-gravity on an AdS₅ × S₅ manifold with metric

$$ds^{2} = \frac{R^{2}}{z^{2}} (\underbrace{-dt^{2} + d\vec{x}^{2}}_{\text{we live here...}} + dz^{2}) + R^{2}d\Omega_{5}^{2}$$
we live here... (at z=0)


 If an operator O of our world is coupled on the boundary to a field φ₀ that extends in the bulk, the duality states that:

$$e^{-S_{cl}[\varphi]} = \left\langle e^{\int_{boundary} \mathfrak{O} \phi_0} \right\rangle$$

- The right hand side is a generating functional for the correlators of operators O in the 4-dim gauge theory
- The left hand side is calculable in the gravity dual (solve the classical EOM for φ with the boundary condition $\phi_0)$

$$-dt^2 + dz^2 \rightarrow -f(z)dt^2 + dz^2/f(z)$$
 with $f(z) = 1 - (\pi zT)^4$

• f(z) = 0 at $z = 1/\pi T$ \Rightarrow black hole horizon

 Ordinary particles in 4-dimensions are the end points of strings living in the bulk. Temperature effects occur when a string gets close to the BH horizon

QCD primer Building blocks

Asymptotic freedom

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function

CGC

Why small-x gluons matter Gluon saturation

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM

Limitations

Deconfinement

QCD in heavy ion collisions

Perturbative QCD

QCD at finite T, Lattice QCD

Color Glass Condensate

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

QCD primer

Building blocks Asymptotic freedom

Color confinement

Debye screening

Deconfinement transition Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

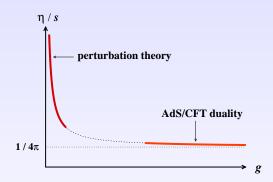
Perturbative QCD

Lattice QCD

Partition function

Lattice QCD

CGC


Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality
Viscosity in N=4 SYM

Limitations

Viscosity in SUSY Yang-Mills

- In SYM at $g^2N \to \infty$, one gets $\eta/s = 1/4\pi$
- Conjecture : $1/4\pi$ is the lowest possible value for η/s
- Note: all the known substances have a viscosity to entropy ratio (much) larger than that

François Gelis

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function Lattice QCD

CGC

Why small-x gluons matter Gluon saturation

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM

Limitations

François Gelis

QCD primer

Building blocks Asymptotic freedom Color confinement

Deconfinement

Debve screening Deconfinement transition Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative OCD

Lattice QCD

Partition function Lattice QCD

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM

Limitations

Summary

QCD primer

Deconfinement

QCD in heavy ion collisions

Perturbative QCD

QCD at finite T, Lattice QCD

G Color Glass Condensate

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

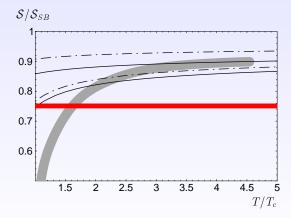
Lattice QCD

Partition function

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT


Gauge-gravity duality Viscosity in N=4 SYM

Limitations

Summary

 AdS/CFT only applies to maximally super-symmetric Yang-Mills theories. Such theories are scale invariant, have no running coupling, no chiral symmetry breaking, and no confinement

- Whether what we learn about these theories is accurate for QCD (that has broken scale invariance, running coupling, chiral symmetry breaking, confinement, and quite different matter fields...) is at best a wishful thinking
- Nevertheless an interesting playground in order to realize how wrong one's weak coupling prejudices may be...

 At T < 3T_c, the coupling may indeed be strong, but scale violations make AdS/CFT unreliable

François Gelis

QCD primer

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function Lattice QCD

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM

Limitations Summary

Building blocks
Asymptotic freedom
Color confinement

Deconfinement

Debye screening
Deconfinement transition
Phase diagram

QCD in HIC

Heavy Ion Collisions Effective descriptions Transport models

Perturbative QCD

Lattice QCD

Partition function

CGC

Why small-x gluons matter Gluon saturation Saturation domain

AdS/CFT

Gauge-gravity duality Viscosity in N=4 SYM Limitations

Summary

QCD in heavy ion collisions displays a very rich spectrum of phenomena

- Ab initio methods (lattice) are often impractical in QCD
- The consequence of this is the diversity of tools and techniques that have been developed to study various aspects of strong interactions in heavy ion collisions
- QCD also plays a role in providing inputs into a number of effective descriptions such as kinetic theory and hydrodynamics

Thank You!