The initial stages of high energy Heavy Ion Collisions

Institut de Physique Théorique, Saclay, December 2011

Œ

Francois Gelis

Introduction QFT w/ strong sources Factorization Phenomenology Final state evolution Summary and Outlook

François Gelis IPhT, Saclay

Outline

œ

0	Quantum field theory with strong sources
2	Initial state factorization
3	Phenomenology
4	Final state evolution

François Gelis

Introduction QFT w/ strong sources Factorization Phenomenology Final state evolution Summary and Outlook

Introduction

QCD phase diagram – Heavy ion collisions

Francois Gelis

QCD phase diagram – Heavy ion collisions

Temperature

What would we like to learn?

- i. Establish the existence of a transition
- ii. Parameters of the transition: T_c, ε_c
- iii. Equation of state of nuclear matter
- iv. Transport properties of nuclear matter
- v. Formation of the QGP and thermalization

François Gelis

Œ

Stages of a collision

François Gelis

Stages of a collision

François Gelis

Œ

This talk : evolution up to times ~ 1 fm/c

- i. Partonic content of high energy nuclei
- ii. Gluon production in the collision
- iii. Evolution shortly after the collision, Thermalization

Kinematics

François Gelis

- Low typical final state transverse momentum $p_{\perp} \lesssim 1 \text{ GeV}$
- Incoming partons have low momentum fractions $x \sim p_\perp/E$
 - $x \sim 10^{-2}$ at RHIC (E = 200 GeV)
 - $x \sim 4.10^{-4}$ at the LHC (E = 2.76 5.5 TeV)

Nucleon parton distributions

François Gelis

œ

Nucleon parton distributions

François Gelis

Nucleon parton distributions

François Gelis

Saturation domain

François Gelis

œ

Saturation domain

Francois Gelis

Color Glass Condensate = effective theory of small x gluons

[McLerran, Venugopalan (1994), Jalilian-Marian, Kovner, Leonidov, Weigert (1997), Iancu, Leonidov, McLerran (2001)]

The fast partons (k⁺ > Λ⁺) are frozen by time dilation
 ▷ described as static color sources on the light-cone :

$$\mathbf{J}^{\mu} = \delta^{\mu +} \boldsymbol{\rho}(\mathbf{x}^{-}, \vec{\mathbf{x}}_{\perp}) \qquad (\mathbf{0} < \mathbf{x}^{-} < 1/\Lambda^{+})$$

- The color sources ρ are random, and described by a probability distribution $W_{\Lambda^+}[\rho]$
- Slow partons (k⁺ < Λ⁺) may evolve during the collision
 ▷ treated as standard gauge fields
 ▷ eikenel equaling to the current III + L AII

 \rhd eikonal coupling to the current J^{μ} : $J_{\mu}A^{\mu}$

$$\label{eq:s_matrix} \begin{split} \mathbb{S} = \underbrace{-\frac{1}{4}\int \mathsf{F}_{\mu\nu}\mathsf{F}^{\mu\nu}}_{\mathbb{S}_{_{YM}}} + \int \underbrace{\mathsf{J}^{\mu}\mathsf{A}_{\mu}}_{\text{fast partons}} \end{split}$$

François Gelis

œ

Renormalization group evolution, JIMWLK equation

- The cutoff between the sources and the fields is not physical, and should not enter in observables
- · Loop corrections contain logs of the cutoff
- These logs can be cancelled by letting the distribution of the sources depend on the cutoff

 $\Lambda \frac{\partial W[\rho]}{\partial \Lambda} = \mathcal{H}\left(\rho, \frac{\delta}{\delta \rho}\right) W[\rho] \qquad \text{(JIMWLK equation)}$

 So far, proven in situations involving only one nucleus What about nucleus-nucleus collisions?
 Do the logs mix the sources of the two nuclei?

François Gelis

œ

Introduction OFT w/ strong sources Factorization Phenomenology Final state evolution Summary and Outlook

Quantum Field Theory with strong sources

[FG, Venugopalan (2006)]

Power counting

François Gelis

In the saturated regime: $J \sim g^{-1}$

 $g^{-2} g^{\# \text{ of external legs }} g^{2 \times (\# \text{ of loops})}$

No dependence on the number of sources J
 infinite number of graphs at each order

Inclusive observables

 Inclusive observables do not veto any final state Example: moments of the transition probabilities :

$$\frac{dN_1}{d^3\vec{p}} \sim \sum_{n=0}^{\infty} (n+1) \int \frac{1}{(n+1)!} \left[\underbrace{d\Phi_1 \cdots d\Phi_n}_{n \text{ part, phase-space}} \right] \left| \left\langle pp_1 \cdots p_n \text{ out} \right| 0_{in} \right\rangle \right|^2$$

(single inclusive particle distribution)

 Completeness of the out-states > expectation value of some out-operator in the in-vacuum state :

$$\underbrace{\frac{dN_{1}}{d^{3}\vec{\mathbf{p}}} \sim \langle \mathbf{0}_{in} | \mathbf{a}_{out}^{\dagger}(\mathbf{p}) \mathbf{a}_{out}(\mathbf{p}) | \mathbf{0}_{in} \rangle}{\uparrow}}_{n} \underbrace{\sum_{n} \frac{1}{n!} \int \left[d\Phi_{1} \cdots d\Phi_{n} \right] | \mathbf{p}_{1} \cdots \mathbf{p}_{n} | \mathbf{0}_{in} \rangle \langle \mathbf{p}_{1} \cdots \mathbf{p}_{n} | = 1}$$

- Disconnected vacuum-vacuum graphs cancel in $\left< 0_{in} \right| \cdots \left| 0_{in} \right>$ expectation values

François Gelis

- Start with transition amplitudes : sources \rightarrow particles

François Gelis

- Start with transition amplitudes : sources \rightarrow particles
- Consider squared amplitudes (including interferences)

Francois Gelis

- Start with transition amplitudes : sources \rightarrow particles
- Consider squared amplitudes (including interferences)
- See them as cuts through vacuum diagrams Cut propagator $\sim \delta(p^2)$

Francois Gelis

- Start with transition amplitudes : sources \rightarrow particles
- Consider squared amplitudes (including interferences)
- See them as cuts through vacuum diagrams Cut propagator $\sim \delta(p^2)$

Weight each cut by $z(p) \rightarrow$ generating functional

$$F[z] \equiv \sum_{n} \frac{1}{n!} \int \left[d\Phi_1 \cdots d\Phi_n \right] z(\mathbf{p}_1) \cdots z(\mathbf{p}_n) \left| \left\langle \mathbf{p}_1 \cdots \mathbf{p}_{n \text{ out}} \middle| \mathbf{0}_{in} \right\rangle \right|^2$$

François Gelis

Generating functional

• Observables are given by derivatives of F[z], e.g.

$$\frac{\mathrm{d}\mathsf{N}_1}{\mathrm{d}^3\vec{\mathbf{p}}} = \left.\frac{\delta\mathsf{F}[z]}{\delta z(\mathbf{p})}\right|_{z=1}$$

(inclusive observables are derivatives at the point z = 1)

- Unitarity implies F[1] = 1
- Exclusive observables involve derivatives at z = 0

Reduction formula

$$\frac{\delta \log F[z]}{\delta z(\mathbf{p})} = \int d^4 x d^4 y \ e^{i\mathbf{p} \cdot (x-y)} \ \Box_x \Box_y \left[\mathbf{A}_+(\mathbf{x})\mathbf{A}_-(\mathbf{y}) + \mathbf{G}_{+-}(\mathbf{x},\mathbf{y}) \right]$$

 A_{\pm} and G_{+-} are connected Schwinger-Keldysh 1- and 2-point functions, with cut propagators weighted by z(p)

François Gelis

œ

Leading Order

• Structure of the expansion in g² :

$$A_{\pm} = \frac{1}{g} \Big[\underbrace{a_0}_{\text{tree}} + \underbrace{a_1 g^2}_{1-\text{loop}} + \cdots \Big] \qquad G_{+-} = \underbrace{b_0}_{\text{tree}} + \underbrace{b_1 g^2}_{1-\text{loop}} + \cdots$$

- LO : we need only $A_+(x)$ and $A_-(y)$, at tree level
- These functions obey the classical equation of motion :

 $\Box \mathcal{A} + V'(\mathcal{A}) = J$

- Boundary conditions : retarded, with $\mathcal{A} \to 0$ at $x_0 = -\infty$

Inclusive spectra at LO

$$\frac{dN_1}{d^3\vec{p}}\Big|_{LO} \sim \int d^4x d^4y \ e^{ip \cdot (x-y)} \Box_x \Box_y \ \mathcal{A}(x) \ \mathcal{A}(y)$$

$$\frac{dN_n}{d^3\vec{p}_1 \cdots d^3\vec{p}_n}\Big|_{LO} = \frac{dN_1}{d^3\vec{p}_1}\Big|_{LO} \cdots \frac{dN_1}{d^3\vec{p}_n}\Big|_{LO}$$

François Gelis

François Gelis

$$\Box \mathcal{A} + V'(\mathcal{A}) = J \qquad , \quad \lim_{x_0 \to -\infty} \mathcal{A}(x) = 0$$

Perturbative expansion :

• Built with retarded propagators

Summary and Outlook

François Gelis

œ

$$\Box \mathcal{A} + V'(\mathcal{A}) = J \qquad , \quad \lim_{x_0 \to -\infty} \mathcal{A}(x) = 0$$

• Built with retarded propagators

Introduction OFT w/ strong sources Factorization Phenomenology Final state evolution

Summary and Outlook

François Gelis

Œ

Introduction QFT w/ strong sources Factorization Phenomenology

Final state evolution Summary and Outlook

$$\Box \mathcal{A} + V'(\mathcal{A}) = J \qquad , \quad \lim_{x_0 \to -\infty} \mathcal{A}(x) = 0$$

• Perturbative expansion :

Built with retarded propagators

François Gelis

œ

- Built with retarded propagators
- Classical fields resum the full series of tree diagrams

Cauchy problem for classical fields

Green's formula

 In some situations, one needs to express the classical field in terms of the source J and its value on a surface Σ

$$\mathcal{A}(\mathbf{x}) = i \int_{y \in \Omega} G^{0}_{R}(\mathbf{x}, y) \left[J(y) - V'(\mathcal{A}(y)) \right] + i \int_{y \in \Sigma} G^{0}_{R}(\mathbf{x}, y) \left(n \cdot \stackrel{\leftrightarrow}{\vartheta}_{y} \right) \mathcal{A}_{init}(y)$$

François Gelis

Small perturbations of a classical field

Wave propagating over a classical background

$$\left[\Box_x + V''(\mathcal{A}(x))\right] \mathbf{a}(x) = 0 \qquad , \quad \mathbf{a}(x) = \alpha(x) \ \text{ on } \Sigma$$

Formal solution

$$\begin{split} \left[\alpha \, \mathbb{T} \right]_{y} &\equiv \alpha(y) \frac{\delta}{\delta \mathcal{A}_{\text{init}}(y)} + (n \cdot \partial \alpha(y)) \frac{\delta}{\delta(n \cdot \partial \mathcal{A}_{\text{init}}(y))} \\ \\ & \alpha(x) \equiv \int_{y \in \Sigma} \left[\alpha \, \mathbb{T} \right]_{y} \quad \mathcal{A}(x) \end{split}$$

Diagrammatic interpretation :

François Gelis

Small perturbations of a classical field

Wave propagating over a classical background

$$\left[\Box_x + V''(\mathcal{A}(x))\right] \mathbf{a}(x) = 0 \qquad , \quad \mathbf{a}(x) = \alpha(x) \ \text{ on } \Sigma$$

Formal solution

$$\begin{split} \left[\alpha \, \mathbb{T} \right]_{y} &\equiv \alpha(y) \frac{\delta}{\delta \mathcal{A}_{\text{init}}(y)} + (n \cdot \partial \alpha(y)) \frac{\delta}{\delta(n \cdot \partial \mathcal{A}_{\text{init}}(y))} \\ \\ & \alpha(x) \equiv \int_{y \in \Sigma} \left[\alpha \, \mathbb{T} \right]_{y} \quad \mathcal{A}(x) \end{split}$$

Diagrammatic interpretation :

a(x)

François Gelis

Next to Leading Order

• What do we need at NLO?

$$A_{\pm} = \frac{1}{g} \left[a_0 + \underline{a_1 g^2} + \cdots \right] \qquad G_{+-} = \underline{b_0} + b_1 g^2 + \cdots$$

- These two subleading quantities can be expressed in terms of perturbations to the retarded classical field
- For instance, at tree level:

$$G_{+-}(x,y) = \int \frac{d^3k}{(2\pi)^3 2k} a_k(x) a_k^*(y)$$
$$\left[\Box_x + V''(\mathcal{A}(x))\right] a_k(x) = 0 \quad , \quad \lim_{x_0 \to -\infty} a_k(x) = e^{ik \cdot x}$$

François Gelis

Next to Leading Order

François Gelis

- Valid for all inclusive multi-gluon spectra, and for the energy-momentum tensor
- Valid for any Cauchy surface Σ

Master relation between LO and NLO

- · Not specific to scalar theories
- In the CGC, upper cutoff on the loop momentum : k[±] < Λ, to avoid double counting with the sources J_{1,2}
 ▷ large logarithms of the cutoff

 $\frac{\mathrm{d}N_{1}}{\mathrm{d}^{3}\vec{p}}\Big|_{_{\mathrm{NLO}}} = \left[\frac{1}{2}\int\int_{\mathbf{k}}\left[\alpha_{\mathbf{k}}\,\mathbb{T}\right]_{\mathbf{u}}\left[\alpha_{\mathbf{k}}^{*}\,\mathbb{T}\right]_{\mathbf{v}} + \int_{\mathbf{v}}\left[\alpha\,\mathbb{T}\right]_{\mathbf{u}}\right]\frac{\mathrm{d}N_{1}}{\mathrm{d}^{3}\vec{p}}\Big|_{_{\mathrm{LO}}}$

François Gelis

Introduction QFT w/ strong sources Factorization Phenomenology Final state evolution Summary and Outlook

Factorization

[FG, Lappi, Venugopalan (2008)]

Handwaving argument for factorization

• The duration of the collision is very short: $\tau_{coll} \sim E^{-1}$

François Gelis

Handwaving argument for factorization

- The duration of the collision is very short: $\tau_{coll} \sim E^{-1}$
- The logarithms we want to resum are due to the radiation of soft gluons, which takes a long time
 it must happen (long) before the collision

François Gelis
Handwaving argument for factorization

- The duration of the collision is very short: $\tau_{coll} \sim E^{-1}$
- The logarithms we want to resum are due to the radiation of soft gluons, which takes a long time
 it must happen (long) before the collision
- The projectiles are not in causal contact before the impact
 b the logarithms are intrinsic properties of the projectiles, independent of the measured observable

Francois Gelis

Space-time evolution of the classical field

• Sources located on the light-cone:

$$J^{\mu} = \delta^{\mu +} \underbrace{\rho_1(x^-, x_{\perp})}_{\sim \delta(x^-)} + \delta^{\mu -} \underbrace{\rho_2(x^+, x_{\perp})}_{\sim \delta(x^+)}$$

- Regions 1,2 : A^μ depends only on ρ₁ or ρ₂ (known analytically)
- Region 3 : A^μ = radiated field after the collision, only known numerically

François Gelis

œ

Space-time evolution of the classical field

• Sources located on the light-cone:

$$J^{\mu} = \delta^{\mu +} \underbrace{\rho_1(x^-, x_{\perp})}_{\sim \delta(x^-)} + \delta^{\mu -} \underbrace{\rho_2(x^+, x_{\perp})}_{\sim \delta(x^+)}$$

- Region 0 : $\mathcal{A}^{\mu} = 0$
- Regions 1,2 : A^μ depends only on ρ₁ or ρ₂ (known analytically)
- Region 3 : A^μ = radiated field after the collision, only known numerically

François Gelis

œ

- I : too trivial to be useful
- II : too hard to be usable

Introduction OFT w/ strong sources Factorization Phenomenology Final state evolution

- I : too trivial to be useful
- II : too hard to be usable
- III : tractable

François Gelis

Introduction QFT w/ strong sources Factorization Phenomenology Final state evolution

- I : too trivial to be useful
- II : too hard to be usable
- III : tractable
- IV : simplest choice

Introduction QFT w/ strong sources Factorization Phenomenology Final state evolution

Summary and Outlook

Strategy

- Compute the fluctuations a_k and α on Σ
- Extract the logarithms in the integration over k
- · Check that they are universal

Initial state logarithms

Central result

$$\begin{split} &\frac{1}{2} \iint_{\mathbf{u}, \mathbf{v} \in \Sigma} \left[\mathbf{a}_{\mathbf{k}} \, \mathbb{T} \right]_{\mathbf{u}} \left[\mathbf{a}_{\mathbf{k}}^{*} \, \mathbb{T} \right]_{\mathbf{v}} + \int_{\mathbf{u} \in \Sigma} \left[\mathbf{\alpha} \, \mathbb{T} \right]_{\mathbf{u}} = \\ &= \log \left(\Lambda^{+} \right) \, \mathfrak{H}_{1} + \log \left(\Lambda^{-} \right) \, \mathfrak{H}_{2} + \text{terms w/o log} \end{split}$$

 $\mathfrak{H}_{1,2} = \mathsf{JIMWLK}$ Hamiltonians of the two nuclei

- No mixing between the logs of Λ^+ and Λ^-
- Since the LO⇔NLO relationship is the same for all inclusive observables, these logs have a universal structure

François Gelis

Introduction QFT w/ strong sources Factorization Phenomenology Final state evolution Summary and Outlook

S

Factorization of the logarithms

- By integrating over $\rho_{1,2}$'s, one can absorb the logarithms into universal distributions $W_{1,2}[\rho_{1,2}]$
- $\mathcal H$ is a self-adjoint operator :

$$\int [\mathsf{D}\rho] W (\mathcal{H} \mathcal{O}) = \int [\mathsf{D}\rho] (\mathcal{H} W) \mathcal{O}$$

Single inclusive gluon spectrum at Leading Log accuracy

$$\left\langle \frac{dN_{1}}{d^{3}\vec{p}} \right\rangle_{\text{Leading Log}} = \int \left[D\rho_{1} D\rho_{2} \right] W_{1} \left[\rho_{1} \right] W_{2} \left[\rho_{2} \right] \underbrace{\frac{dN_{1} \left[\rho_{1,2} \right]}{d^{3}\vec{p}} \Big|_{\text{LO}}}_{\text{fixed } \rho_{1,2}}$$

Logs absorbed into the evolution of W_{1,2} with the scales

$$\Lambda \frac{\partial W}{\partial \Lambda} = \mathcal{H} W$$
 (JIMWLK equation)

Multi-gluon correlations at Leading Log

 The previous factorization can be extended to multi-particle inclusive spectra :

$$\left\langle \frac{dN_n}{d^3 \vec{p}_1 \cdots d^3 \vec{p}_n} \right\rangle_{\text{Leading Log}} = \\ = \int \left[D\rho_1 D\rho_2 \right] W_1 \left[\rho_1 \right] W_2 \left[\rho_2 \right] \left. \frac{dN_1 \left[\rho_{1,2} \right]}{d^3 \vec{p}_1} \cdots \frac{dN_1 \left[\rho_{1,2} \right]}{d^3 \vec{p}_n} \right|_{\text{LO}}$$

- At Leading Log accuracy, all the rapidity correlations come from the evolution of the distributions W[ρ_{1,2}]
 b they are a property of the pre-collision initial state
- Predicts long range ($\Delta y \sim \alpha_s^{-1}$) correlations in rapidity

Francois Gelis

François Gelis

Phenomenology

[Dumitru, FG, McLerran, Venugopalan (2008)] [Dusling, FG, Lappi, Venugopalan (2010)] Introduction QFT w/ strong sources Factorization

Phenomenology

Final state evolution

2-particle correlations in AA collisions

- Long range rapidity correlation
- Narrow correlation in azimuthal angle
- Narrow jet-like correlation near $\Delta y = \Delta \phi = 0$

Francois Gelis

Probing early times with rapidity correlations

François Gelis

A B detection (~1 m/c) freeze out (~10 fm/c) latest correlation

 By causality, long range rapidity correlations are sensitive to the dynamics of the system at early times :

$$\tau_{correlation} \leq \tau_{freeze out} e^{-|\Delta y|/2}$$

Color field at early time

François Gelis

œ

Color field at early time

François Gelis

Introduction QFT w/ strong sources Factorization Phenomenology Final state evolution

• η -independent fields lead to long range correlations :

Introduction QFT w/ strong sources Factorization

Francois Gelis

Phenomenology

Final state evolution

• η -independent fields lead to long range correlations :

François Gelis

œ

Introduction QFT w/ strong sources Factorization Phenomenology Final state evolution Summary and Outlook

• Particles emitted by different flux tubes are not correlated $(RQ_s)^{-2}$ sets the strength of the correlation

• η -independent fields lead to long range correlations :

Introduction QFT w/ strong sources Factorization

Francois Gelis

Phenomenology

Final state evolution

- Particles emitted by different flux tubes are not correlated \triangleright (RQ_s)⁻² sets the strength of the correlation
- At early times, the correlation is flat in $\Delta\phi$

• η -independent fields lead to long range correlations :

Introduction QFT w/ strong sources Factorization Phenomenology Final state evolution Summary and Outlook

Francois Gelis

- Particles emitted by different flux tubes are not correlated \triangleright (RQ_s)⁻² sets the strength of the correlation
- At early times, the correlation is flat in $\Delta\phi$

The collimation in $\Delta\phi$ is produced later by radial flow

Centrality dependence

0.7 0.6 Introduction Amplitude QFT w/ strong sources 0.5 Factorization 0.4 Phenomenology 0.3 Final state evolution Summary and Outlook 0.2 radial boost model 0.1 STAR preliminary 0 50 100 150 200 250 300 350 400 0 N_{part}

 Main effect : increase of the radial flow velocity with the centrality of the collision François Gelis

Rapidity dependence

François Gelis

œ

Introduction QFT w/ strong sources Factorization Phenomenology

Final state evolution Summary and Outlook

Rapidity dependence

François Gelis

François Gelis

Final state evolution

[Dusling, Epelbaum, FG, Venugopalan (2010)] [Dusling, FG, Venugopalan (2011)] [Epelbaum, FG (2011)]

Energy momentum tensor at LO

François Gelis

Œ

Introduction QFT w/ strong sources Factorization Phenomenology

Final state evolution

Energy momentum tensor at LO

François Gelis

Weibel instabilities for small perturbations

[Mrowczynski (1988), Romatschke, Strickland (2003), Arnold, Lenaghan, Moore (2003), Rebhan, Romatschke, Strickland (2005), Arnold, Lenaghan, Moore, Yaffe (2005), Romatschke, Rebhan (2006),...]

François Gelis

œ

Weibel instabilities for small perturbations

[Mrowczynski (1988), Romatschke, Strickland (2003), Arnold, Lenaghan, Moore (2003), Rebhan, Romatschke, Strickland (2005), Arnold, Lenaghan, Moore, Yaffe (2005), Romatschke, Rebhan (2006),...]

- Some of the field fluctuations α_k diverge like $exp\,\sqrt{\mu\tau}$ when $\tau\to+\infty$
- Some components of $\mathsf{T}^{\mu\nu}$ have secular divergences when evaluated at fixed loop order
- When $a_k \sim A \sim g^{-1}$, the power counting breaks down and additional contributions must be resummed :

$$g e^{\sqrt{\mu\tau}} \sim 1$$
 at $\tau_{max} \sim \mu^{-1} \log^2(g^{-1})$

$$1e-13 \underbrace{\textbf{E}}_{0} + \underbrace{\textbf{I}}_{1000} + \underbrace{\textbf{I}}_{1500} + \underbrace{\textbf{I}}_{2000} + \underbrace{\textbf{I}}_{2500} + \underbrace{\textbf{I}}_{3000} + \underbrace{\textbf{I}}_{3500} \\ g^{2} \mu \tau$$

François Gelis

œ

Introduction QFT w/ strong sources Factorization Phenomenology Final state evolution

Improved power counting

François Gelis

Improved power counting

$$\label{eq:loop} \text{Loop} \sim g^2 \qquad , \qquad \mathbb{T}_{\textbf{u}} \sim e^{\sqrt{\mu\tau}}$$

• 1 loop :
$$(ge^{\sqrt{\mu\tau}})^2$$

• 2 disconnected loops : $(ge^{\sqrt{\mu\tau}})^4$

François Gelis

œ

Introduction QFT w/ strong sources Factorization

Phenomenology

Final state evolution

Improved power counting

Leading terms at τ_{max}

All disjoint loops to all orders

exponentiation of the 1-loop result

François Gelis

Resummation of the leading secular terms

$T_{\text{resummed}}^{\mu\nu} = \exp\left[\frac{1}{2} \int_{u,v\in\Sigma} \underbrace{\int_{k} [a_{k}\mathbb{T}]_{u} [a_{k}^{*}\mathbb{T}]_{v}}_{\mathfrak{G}(u,v)} + \int_{u\in\Sigma} [\boldsymbol{\alpha}\mathbb{T}]_{u}\right] T_{\text{Lo}}^{\mu\nu}[\mathcal{A}_{\text{init}}]$

François Gelis

CECI

Introduction QFT w/ strong sources Factorization Phenomenology Final state evolution

Resummation of the leading secular terms

$$T_{\text{resummed}}^{\mu\nu} = \exp\left[\frac{1}{2}\int_{u,v\in\Sigma}\int_{k} [a_{k}\mathbb{T}]_{u}[a_{k}^{*}\mathbb{T}]_{v} + \int_{u\in\Sigma} [\alpha\mathbb{T}]_{u}\right] T_{LO}^{\mu\nu}[\mathcal{A}_{\text{init}}]$$
$$= \int [D\chi] \exp\left[-\frac{1}{2}\int_{u,v\in\Sigma}\chi(u)\mathcal{G}^{-1}(u,v)\chi(v)\right] T_{LO}^{\mu\nu}[\mathcal{A}_{\text{init}} + \chi + \alpha]$$

œ

Francois Gelis

- The evolution remains classical, but we must average over a Gaussian ensemble of initial conditions
- Note : the constant shift α can be absorbed into a redefinition of \mathcal{A}_{init}

More on this resummation

- The Gaussian fluctuations around the classical field A_{init} promote it to a coherent quantum state (they add 1/2 particle to every mode)
- Dual formulation of QM in the classical phase-space :

Density	ρ̂		W(Q, P)
Evolution	$\vartheta_t \widehat{\rho} + \mathfrak{i}[\widehat{H}, \widehat{\rho}] = 0$	Wigner trans.	$\partial_t \mathbf{W} + \{\{\mathbf{W}, \mathbf{H}\}\} = 0$
Initial condition	$\left \mathcal{A}_{\mathrm{init}} ight angle \left\langle\mathcal{A}_{\mathrm{init}} ight $		$\exp -\frac{1}{2}\int \chi g^{-1}\chi$

Approximations :

- Moyal bracket $\{\{\cdot, \cdot\}\}$ replaced by classical Poisson bracket
- · Non-gaussianities of the initial distribution are ignored
- Independent (and anterior..) uses of this scheme :
 - Cosmology [Polarski, Starobinsky (1995), Son (1996), Khlebnikov, Tkachev (1996)]
 - Cold atoms [Davis, Morgan, Burnett (2002), Norrie, Ballagh, Gardiner (2004)]

œ

Anharmonicity and decoherence

François Gelis

• The oscillation frequency depends on the initial condition

Anharmonicity and decoherence

François Gelis

• The oscillation frequency depends on the initial condition

Anharmonicity and decoherence

François Gelis

- The oscillation frequency depends on the initial condition
- An ensemble of initial configurations spreads in time
Anharmonicity and decoherence

- The oscillation frequency depends on the initial condition
- · An ensemble of initial configurations spreads in time

Anharmonicity and decoherence

- The oscillation frequency depends on the initial condition
- · An ensemble of initial configurations spreads in time
- At large times, the ensemble fills densely all the region allowed by energy conservation

Similar problem in a simpler toy model

 φ^4 field theory coupled to a source

$$\mathcal{L} = \frac{1}{2} (\partial_{\alpha} \phi)^2 - \frac{g^2}{4!} \phi^4 + J \phi$$

$$J ~~ \propto ~~ \theta(-x^0) ~ \frac{Q^3}{g}$$

- In 3+1-dim, g is dimensionless, and the only scale in the problem is Q, provided by the external source
- The source is active only at $x^0 < 0,$ and is turned off adiabatically when $x^0 \to -\infty$
- This theory has unstable modes (parametric resonance)

Introduction QFT w/ strong sources Factorization Phenomenology Final state evolution

Summary and Outlook

Secular divergences in fixed order calculations

Oscillating pressure at LO : no equation of state

Secular divergences in fixed order calculations

François Gelis

Tree + 1-loop 40 30 Introduction 20 QFT w/ strong sources 10 Factorization Phenomenology inal state evolution -10 Summary and Outlook -20 -30 -40 -20 0 20 40 60 80 time PLO+NLO €I.O+NLO

- Oscillating pressure at LO : no equation of state
- Small NLO correction to the energy density (protected by energy conservation)
- Secular divergence in the NLO correction to the pressure

Resummed energy momentum tensor

- · No secular divergence in the resummed pressure
- The pressure relaxes to the equilibrium equation of state

Spectral density

François Gelis

Complicated spectral density at early times

Spectral density

- Complicated spectral density at early times
- Single quasiparticle peak at late times

Time evolution of the occupation number

- Resonant peak at early times
- Turbulent Kolmogorov spectrum in the intermediate k-range?
- · Late times : classical equilibrium with a chemical potential
- $\mu \approx m$ + excess at k = 0: Bose-Einstein condensation?

Bose-Einstein condensation

- Start with the same energy density, but an empty zero mode
- · Very quickly, the zero mode becomes highly occupied
- · Same distribution as before at late times

Evolution of the condensate

- Formation time almost independent of the coupling
- Condensate lifetime much longer than its formation time
- Smaller amplitude and faster decay at large coupling

François Gelis

Introduction QFT w/ strong sources Factorization Phenomenology Final state evolution

Summary and Outlook

Summary and Outlook

Summary

- Factorization of high energy logarithms in AA collisions
 - limited to inclusive observables
 - · leads to the rapidity dependence of correlations
 - links nucleus-nucleus collisions to other reactions (pA, DIS)
- Resummation of secular terms in the final state evolution
 - stabilizes the NLO calculation
 - · leads to the equilibrium equation of state
 - full thermalization on much longer time-scales
 - · Bose-Einstein condensation for overoccupied initial states

Outlook

- factorization for dense-dilute collisions?
- can it be extended to exclusive observables?
- thermalization in QCD, w/ longitudinal expansion?
- if a BEC is formed, phenomenological implications?
- links to quantum chaos?

François Gelis

œ

François Gelis

œ

Introduction QFT w/ strong sources Factorization Phenomenology Final state evolution

Summary and Outlook

Dense-dilute collisions

François Gelis

Dense-dilute collisions

Exclusive processes

François Gelis

œ

Exclusive processes

Example : differential probability to produce 1 particle at LO

$$\frac{dP_1}{d^3\vec{p}}\Big|_{LO} = F[0] \times \int d^4x d^4y \ e^{ip \cdot (x-y)} \Box_x \Box_y \mathcal{A}_+(x) \mathcal{A}_-(y)\Big|_{z=0}$$

- The vacuum-vacuum graphs do not cancel in exclusive quantities : F[0] ≠ 1 (in fact, F[0] = exp(-c/g²) ≪ 1)
- A₊ and A₋ are classical solutions of the Yang-Mills equations, but with non-retarded boundary conditions

François Gelis

œ

Thermalization in Yang-Mills theory

• Recent analytical work : Kurkela, Moore (2011)

- Going from scalars to gauge fields :
 - More fields per site (3 Lorentz components × 8 colors)
 - · More complicated spectrum of initial conditions
 - Expansion : UV overflow on a fixed grid in $\boldsymbol{\eta}$

Francois Gelis

BEC and dilepton production

François Gelis

œ

BEC and dilepton production

François Gelis

 \rhd excess of dileptons with $k_\perp \ll M_{inv}$

Links to Quantum Chaos

- Quantum Chaos : how does the chaos at the classical level manifests itself in quantum mechanics?
- Berry's conjecture [M.V. Berry (1977)]

High lying eigenstates of such systems have nearly random wavefunctions. The corresponding Wigner distribution is almost uniform on the energy surface

• Srednicki's eigenstate thermalization hypothesis [M. Srednicki (1994)]

For sufficiently inclusive measurements, these high lying eigenstates look thermal. If the system starts in a coherent state, decoherence is the main mechanism to thermalization

François Gelis

œ

François Gelis

Introduction

QFT w/ strong sources

Factorization

Phenomenology

Final state evolution

Summary and Outlook

Backup

Boundary conditions

$$\begin{aligned} \mathcal{A}_{+}(\mathbf{x}) = & \int_{\mathbf{y}} G^{0}_{++}(\mathbf{x}, \mathbf{y}) \Big[J(\mathbf{y}) - V'(\mathcal{A}_{+}(\mathbf{y})) \Big] - G^{0}_{+-}(\mathbf{x}, \mathbf{y}) \Big[J(\mathbf{y}) - V'(\mathcal{A}_{-}(\mathbf{y})) \Big] \\ \mathcal{A}_{-}(\mathbf{x}) = & \int_{\mathbf{y}} G^{0}_{-+}(\mathbf{x}, \mathbf{y}) \Big[J(\mathbf{y}) - V'(\mathcal{A}_{+}(\mathbf{y})) \Big] - G^{0}_{--}(\mathbf{x}, \mathbf{y}) \Big[J(\mathbf{y}) - V'(\mathcal{A}_{-}(\mathbf{y})) \Big] \\ \widetilde{G}^{0}_{+-}(\mathbf{p}) = 2\pi \mathbf{z}(\mathbf{p}) \,\theta(-\mathbf{p}_{0}) \delta(\mathbf{p}^{2}) \end{aligned}$$

- \mathcal{A}_+ and \mathcal{A}_- are solutions of the classical EoM
- Decompose the fields in Fourier modes :

$$\mathcal{A}_{\epsilon}(\mathbf{x}) \equiv \int \frac{d^{3}\vec{\mathbf{p}}}{(2\pi)^{3}2\mathsf{E}_{\mathbf{p}}} \left[\mathfrak{a}_{\epsilon}^{(+)}(\mathbf{x}_{0},\vec{\mathbf{p}}) \, e^{-\mathrm{i}\mathbf{p}\cdot\mathbf{x}} + \mathfrak{a}_{\epsilon}^{(-)}(\mathbf{x}_{0},\vec{\mathbf{p}}) \, e^{+\mathrm{i}\mathbf{p}\cdot\mathbf{x}} \right]$$

Boundary conditions

$$\begin{aligned} x^{0} &= -\infty : \quad a_{+}^{(+)}(\vec{\mathbf{p}}) = a_{-}^{(-)}(\vec{\mathbf{p}}) = 0 \\ x^{0} &= +\infty : \quad a_{-}^{(+)}(\vec{\mathbf{p}}) = \mathbf{z}(\mathbf{p}) \, a_{+}^{(+)}(\vec{\mathbf{p}}) \,, \quad a_{+}^{(-)}(\vec{\mathbf{p}}) = \mathbf{z}(\mathbf{p}) \, a_{-}^{(-)}(\vec{\mathbf{p}}) \end{aligned}$$

François Gelis

œ

Moyal bracket

- · Wigner transform of the commutator
- Explicit expression :

$$\{\{A,B\}\} = \frac{2}{\hbar} A(Q,P) \sin\left(\frac{\hbar}{2}(\stackrel{\leftarrow}{\nabla}_{Q} \stackrel{\rightarrow}{\nabla}_{P} - \stackrel{\leftarrow}{\nabla}_{P} \stackrel{\rightarrow}{\nabla}_{Q})\right) B(Q,P)$$

• Quantum deformation of the Poisson bracket :

 $\{\{A, B\}\} = \{A, B\} + O(\hbar^2)$

François Gelis