Quark-Gluon Plasma and Heavy Ion Collisions

II – Collective effects, Hydrodynamics, Phenomenology

François Gelis

CEA/Saclay

General outline

Collective phenomena

Relativistic hydrodynamics

- I: Physics of the QGP, Field theory at finite T
- Collective effects, Hydrodynamics, Phenomenology

Lecture II

Collective phenomena

Relativistic hydrodynamics

- Collective phenomena
- Relativistic hydrodynamics
- Phenomenology

Collective phenomena

- Dressed propagator
- Quasi-particles
- Debye screening
- Landau damping

Relativistic hydrodynamics

Phenomenology

Collective phenomena in the QGP

Collective phenomena

Collective phenomena

- Dressed propagator
- Quasi-particles
- Debye screening
- Landau damping

Relativistic hydrodynamics

- Phenomena involving many elementary constituents
- Long wavelength compared to the typical distance between constituents
- Small frequency or energy
- Major collective phenomena :
 - Quasi-particles
 - Debye screening
 - Landau damping
 - Collisional width

Dressed propagator

Collective phenomena

- Dressed propagatorQuasi-particles
- Debye screening
- Landau damping

Relativistic hydrodynamics

Phenomenology

In order to assess how the medium affects the propagation of excitations, one must compute the photon (gluon) polarization tensor $\Pi^{\mu\nu}(x,y) \equiv \langle J^{\mu}(x)J^{\nu}(y) \rangle$

The photon (or gluon for QCD) self-energy can be resummed on the propagator. Diagrammatically, this amounts to summing :

$$\dots + \dots \\ (\dots + \dots) \\ ($$

The properties of the medium can be read off the analytic properties of this resummed propagator (cuts, poles, ...)

Dressed propagator

T

Collective phenomena

- Dressed propagator
 Quasi-particles
- Debye screening
- Landau damping

Relativistic hydrodynamics

Phenomenology

Reminder : the photon polarization tensor $\Pi^{\mu\nu}$ is transverse. At T = 0, this implies :

$$\Pi^{\mu\nu}(P) = \left(g^{\mu\nu} - \frac{P^{\mu}P^{\nu}}{P^2}\right) \ \Pi(P^2)$$

- this is due to gauge invariance and Lorentz invariance
- Exercise : this property ensures that the photon remains massless at all orders of perturbation theory
- This formula is not valid at T > 0, because there is a preferred frame (in which the plasma velocity is zero)
 > the tensorial decomposition of Π^{µν} is more complicated, and

> the tensorial decomposition of $\Pi^{\mu\nu}$ is more complicated, and the photon acquires an effective mass

Dressed propagator

Collective phenomena

- Dressed propagator
- Quasi-particles
- Debye screening
- Landau damping

Relativistic hydrodynamics

Phenomenology

• At finite T, the tensorial decomposition of $\Pi^{\mu\nu}$ is :

 $\Pi^{\mu\nu}(P) = P_T^{\mu\nu}(P) \Pi_T(P) + P_L^{\mu\nu}(P) \Pi_L(P)$

with the following projectors (in the plasma rest frame)

$$P_T^{ij}(P) = g^{ij} + \frac{p^i p^j}{\vec{p}^2}, \quad P_T^{0i}(P) = 0, \quad P_T^{00}(P) = 0$$
$$P_L^{ij}(P) = -\frac{(p^0)^2 p^i p^j}{\vec{p}^2 P^2}, \quad P_L^{0i}(P) = -\frac{p^0 p^i}{P^2}, \quad P_L^{00}(P) = -\frac{\vec{p}^2}{P^2}$$

Therefore, we have

$$\Pi^{\mu}{}_{\mu}(P) = 2\Pi_{T}(P) + \Pi_{L}(P) \quad , \quad \Pi^{00}(P) = -\frac{\vec{p}^{2}}{P^{2}}\Pi_{L}(P)$$

This leads to the following propagator :

$$D^{\mu\nu}(P) = P_T^{\mu\nu}(P) \ \frac{1}{P^2 - \Pi_T(P)} + P_L^{\mu\nu}(P) \ \frac{1}{P^2 - \Pi_L(P)}$$

Dressed propagator - Exercise

Collective phenomenaDressed propagator

• Quasi-particles

- Debye screening
- Landau damping

Relativistic hydrodynamics

Phenomenology

• Check the following properties of the tensors $P_{T,L}^{\mu\nu}$:

$$P^{\mu}_{T \mu} = 2$$

$$P^{\mu}_{L \ \mu} = 1$$

$$P^{\mu}_{T \alpha} P^{\alpha \nu}_{T} = P^{\mu \nu}_{T}$$

$$P^{\mu}_{L \ \alpha} \ P^{\alpha \nu}_{L} = P^{\mu \nu}_{L}$$

$$P^{\mu}_{T \alpha} P^{\alpha \nu}_{L} = 0$$

Collective phenomena

- Dressed propagator
- Quasi-particles
- Debye screening
- Landau damping

Relativistic hydrodynamics

Phenomenology

Dressed propagator

- The calculation of $\Pi^{\mu}{}_{\mu}$ and Π^{00} can be done for a discrete Matsubara frequency ω_p , and one performs the analytic continuation $i\omega_p \rightarrow p_0$ afterwards
- Because one is after the long distance properties of the plasma, one also makes the approximation $|\vec{p}| \ll |\vec{k}|$ (Hard Thermal Loops : Braaten, Pisarski 1990)
- For instance, the fermionic contribution to the spatial part Π^{ij} of the polarization tensor reads :

$$\sum_{k=1}^{m} \sum_{k=1}^{m} \sum_{k=1}^{m} \sum_{k=1}^{m} \sum_{k=1}^{m} \frac{d^{3}\vec{k}}{(2\pi)^{3}} \, \hat{v}_{k}^{i} \, \frac{\partial n_{F}(\vec{k})}{\partial k^{l}} \, \left[\delta^{jl} - \frac{\hat{v}_{k}^{j} \hat{v}_{k}^{l}}{\omega - \hat{v}_{k} \cdot \vec{p} + i\epsilon} \right]$$

($\widehat{m{v}}_{m{k}}\equiv m{ec{k}}/|m{ec{k}}|$, $N_{
m f}$ = number of quark flavors)

• Note : with the gluon loop, the only change is $N_{\rm f} \rightarrow N_{\rm f} + 2N_{\rm c}$

Quasi-particles

Collective	phenomen
------------	----------

- Dressed propagator
- Quasi-particles
- Debye screening
- Landau damping

Relativistic hydrodynamics

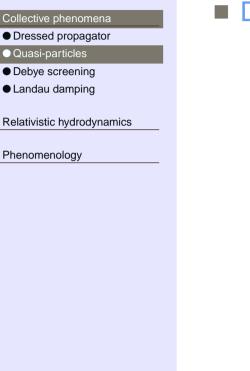
Phenomenology

• The functions $\Pi_{T,L}(P)$ read :

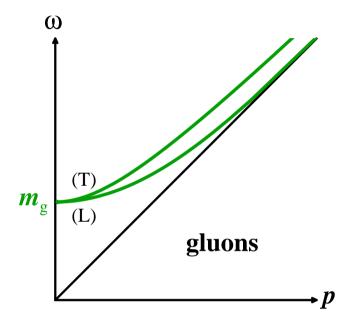
 $\Pi_T(P) = \frac{e^2 T^2}{6} \left[\frac{p_0^2}{p^2} + \frac{p_0}{2p} \left(1 - \frac{p_0^2}{p^2} \right) \ln \left(\frac{p_0 + p}{p_0 - p} \right) \right]$ $\Pi_L(P) = \frac{e^2 T^2}{3} \left[1 - \frac{p_0^2}{p^2} \right] \left[1 - \frac{p_0}{2p} \ln \left(\frac{p_0 + p}{p_0 - p} \right) \right]$

- Quasi-particles correspond to poles in the propagator. Their dispersion relation is the function $p_0 = \omega(\vec{p})$ that defines the location of the pole
- The inverse of the imaginary part of p_0 is the lifetime of the quasi-particles (If $Im(p_0) = 0$, they are stable). In order to be able to talk about quasi-particles, one must have $Im(p_0) \ll Re(p_0)$

Quasi-particles



Dispersion curves of particles in the plasma :



Thermal masses due to interactions with the other particles in the plasma :

$$m_{\rm q} \sim m_{\rm g} \sim gT$$

At this order, the quasi-particles are stable

Singularities

Collective phenomena

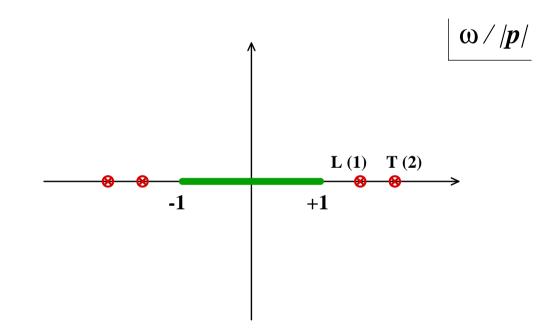
Dressed propagator

- Quasi-particles
- Debye screening
- Landau damping

Relativistic hydrodynamics

Phenomenology

In the complex plane of $\omega/|\vec{p}|$, the dressed propagator has poles (quasi-particles) and a cut (Landau damping) :



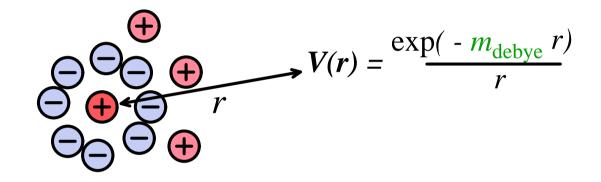
Debye screening

Collective phenomena

- Dressed propagator
- Quasi-particles
- Debye screening
- Landau damping
- Relativistic hydrodynamics

Phenomenology

A test charge polarizes the particles of the plasma in its vicinity, in order to screen its charge :



The Coulomb potential of the test charge decreases exponentially at large distance. The effective interaction range is :

 $\ell \sim 1/m_{
m debye} \sim 1/gT$

Note : static magnetic fields are not screened by this mechanism (they are screened over length-scales $\ell_{\rm mag} \sim 1/g^2 T$)

Collective phenomenaDressed propagator

Relativistic hydrodynamics

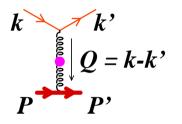
Quasi-particles
Debye screening
Landau damping

Phenomenology

Debye screening

- Place a quark of mass M at rest in the plasma, at $\vec{r} = 0$
 - Scatter another quark off it. The scattering amplitude reads

$$\mathcal{M} = \left[g\overline{u}(\vec{k}')\gamma_{\mu}u(\vec{k})
ight]\left[g\overline{u}(\vec{P}')\gamma_{\nu}u(\vec{P})
ight]\sum_{lpha=T,L}rac{P_{lpha}^{\mu
u}(Q)}{Q^2 - \Pi_{lpha}(Q)}$$



- If $\vec{P} = 0$ (test charge at rest), only $\alpha = L$ contributes
- From $(P+Q)^2 = M^2$, we get a $2\pi\delta(q_0)/2M$
- For the scattering off an external potential A^{μ} , the amplitude is $\mathcal{M} = \left[g \overline{u}(\vec{k}') \gamma_{\mu} u(\vec{k}) \right] A^{\mu}(Q)$
- Thus, the potential created by the test charge at rest is :

$$A^{\mu}(Q) = g \frac{\overline{u}(\vec{P}')\gamma_{\nu}u(\vec{P})}{2M} \frac{2\pi\delta(q_0)P_L^{\mu\nu}(0,\vec{q})}{\vec{q}^2 + \Pi_L(0,\vec{q})} = \frac{2\pi g \delta^{\mu 0}\delta(q_0)}{\vec{q}^2 + \Pi_L(0,\vec{q})}$$

Debye screening

By a Fourier transform, we obtain the Coulomb potential :

$$A^{0}(t,\vec{r}) = g \int \frac{d^{3}\vec{q}}{(2\pi)^{3}} \frac{e^{i\vec{q}\cdot\vec{r}}}{\vec{q}^{2} + \prod_{L}(0,\vec{q})}$$

If we are in the vacuum, $\Pi_L = 0$, and the Fourier transform gives the usual Coulomb law :

$$A_{\rm vac}^0(t, \vec{r}) = g \int \frac{d^3 \vec{q}}{(2\pi)^3} \, \frac{e^{i \vec{q} \cdot \vec{r}}}{\vec{q}^2} = \frac{g}{4\pi |\vec{r}|}$$

In a plasma, $\prod_L (0, \vec{q}) = \frac{g^2 T^2}{3} \equiv m_D^2$. The Fourier transform can also be done exactly

$$A^{0}(t,\vec{r}) = g \int \frac{d^{3}\vec{q}}{(2\pi)^{3}} \; \frac{e^{i\vec{q}\cdot\vec{r}}}{\vec{q}^{2} + m_{D}^{2}} = \frac{g}{4\pi|\vec{r}|} \; e^{-m_{D}|\vec{r}|}$$

 \triangleright the potential is unmodified at $r \ll 1/m_{\rm D}$, but exponentially suppressed at large distance

Collective phenomenaDressed propagator

Landau damping

Relativistic hydrodynamics

Landau damping

Collective phenomena

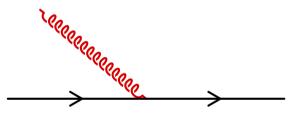
- Dressed propagator
- Quasi-particles
- Debye screening
- Landau damping

Relativistic hydrodynamics

Phenomenology

The self-energies $\prod_{L,T}(p_0, \vec{p})$ have an imaginary part when $|p_0| \leq |\vec{p}|$. This implies that the propagation of space-like modes is attenuated

A wave propagating through the plasma is damped because its quanta may be absorbed by particles of the plasma :



The characteristic frequency of this damping is :

 $\omega_c \sim gT$

Collective phenomena

Relativistic hydrodynamics

- Energy-momentum tensor
- Ideal hydrodynamics
- Sound propagation

Phenomenology

Relativistic hydrodynamics

Energy-momentum tensor

Collective phenomena

- Relativistic hydrodynamics
- Energy-momentum tensor
- Ideal hydrodynamics
- Sound propagation

Phenomenology

- Noether's theorem states that for each continuous symmetry of the Lagrangian, there is an associated conserved current J^{μ} , such that $\partial_{\mu}J^{\mu} = 0$
- As a consequence, the quantity

$$Q(t) \equiv \int d^3 \vec{x} \ J^0(t, \vec{x})$$

is time independent. Proof :

$$\partial_t Q(t) = \int d^3 \vec{x} \, \partial_t J^0(t, \vec{x}) = -\int d^3 \vec{x} \, \vec{\nabla}_x \cdot \vec{J}(t, \vec{x})$$
$$= -\oint d^2 \vec{S} \cdot \vec{J}(t, \vec{x}) = 0$$

Note : the spatial vector \vec{J} describes the flow of the quantity Q across a surface

Collective phenomena

Relativistic hydrodynamics

Energy-momentum tensor

Ideal hydrodynamics

Sound propagation

Phenomenology

Energy-momentum tensor

- In a theory invariant under translations in time and position, the energy and the momentum are conserved quantities
- For each direction ν , there is a conserved current, denoted $T^{\mu\nu}$, called the energy-momentum tensor, that obeys

$$\partial_{\mu}T^{\mu\nu} = 0$$

The integral over space of the zero component gives the 4-momentum of the system

$$P^{\nu} = \int d^3 \vec{x} \ T^{0\mu}(t, \vec{x})$$

The vector T^{iμ} (i=1,2,3) represents the flow of the component μ of momentum. For μ = 0, this is an energy flow. For μ = 1, 2, 3, this is a 3-momentum flow and it is thus related to pressure

Energy-momentum tensor

Collective phenomena

Relativistic hydrodynamics

- Energy-momentum tensor
- Ideal hydrodynamics

Sound propagation

Phenomenology

Consider a fluid cell at rest, of volume δV . It has an energy $\delta P^0 = \epsilon \, \delta V$ and a 3-momentum $\delta \vec{P} = 0$. This can be achieved if the energy momentum tensor has the following components :

$$T^{00} = \epsilon \quad , \quad T^{0i} = 0$$

The flow of momentum P^i across an element of surface $d\vec{S}$ is $dP^i = dS^j T^{ji}$. From the definition of the pressure p, this must be equal to pdS^i . Hence $T^{ij} = p\delta^{ij}$.

Therefore, in the local rest frame of the fluid :

$$T^{\mu\nu} = \begin{pmatrix} \epsilon & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix}$$

Energy-momentum tensor

Collective phenomena

Relativistic hydrodynamics

- Energy-momentum tensor
- Ideal hydrodynamics

Sound propagation

Phenomenology

In an arbitrary frame where the fluid 4-velocity is v^{μ} , the energy-momentum tensor can only be built from the symmetric tensors $g^{\mu\nu}$ and $v^{\mu}v^{\nu}$. In the local rest frame $(v^{\mu} = (1, 0, 0, 0))$, we must recover the previous expression. Therefore :

 $T^{\mu\nu} = (p+\epsilon) v^{\mu} v^{\nu} - p g^{\mu\nu}$

Note : this expression is valid only for an ideal fluid, with no dissipative phenomena. In a viscous fluid, there can be a transport of momentum due to the friction of fluid layers that move at different velocities. This is taken into account by additional terms in $T^{\mu\nu}$ that are proportional to the derivatives $\partial_i v^j$, multiplied by the viscosity η .

Ideal hydrodynamics

Collective phenomena

Relativistic hydrodynamics

Energy-momentum tensor

Ideal hydrodynamics

Sound propagation

Phenomenology

The fundamental equation of non viscous hydrodynamics is simply the conservation of the energy-momentum,

 $\partial_{\mu}T^{\mu\nu} = 0$

- In the non-relativistic limit,
 - $v^{\mu} \approx (1, \vec{v})$
 - ϵ becomes the mass density ρ

• the pressure p is much smaller than the energy density ϵ It is easy to check that the above equation is equivalent to the continuity equation for mass and to Euler's equation :

$$\nu = 0 : \qquad \partial_t \rho + \vec{\nabla}_x \cdot (\rho \vec{v}) = 0$$
$$\nu = i : \qquad \partial_t (\rho v^i) + \partial_j (\rho v^i v^j) + \partial_i p = 0$$

Note : the second equation can be cast into the more familiar form

$$\boldsymbol{\rho} \left[\partial_t + \vec{\boldsymbol{v}} \cdot \vec{\boldsymbol{\nabla}}_{\boldsymbol{x}} \right] \, \vec{\boldsymbol{v}} + \vec{\boldsymbol{\nabla}}_{\boldsymbol{x}} \, \boldsymbol{p} = 0$$

Ideal hydrodynamics

Collective phenomena

- Relativistic hydrodynamics
- Energy-momentum tensor
- Ideal hydrodynamics
- Sound propagation

- In hydrodynamics, the unknown functions are :
 - $p(t, \vec{x}), \epsilon(t, \vec{x})$
 - $v^{\mu}(t, \vec{x})$ (3 unknowns only, since $v_{\mu}v^{\mu} = 1$)
- $\partial_{\mu}T^{\mu\nu} = 0$ gives only 4 equations
- An additional constraint comes from the equation of state of the matter under consideration, as a relation between the local pressure p and energy density e
- An initial condition $p_0(\vec{x}), \epsilon_0(\vec{x}), \vec{v}_0(\vec{x})$ must be specified at a certain time t_0 . Since the relativistic Euler equation contains only first derivatives in time, this is sufficient to obtain the solution at any time $t > t_0$.

Sound propagation

Collective phenomena

Relativistic hydrodynamics

Energy-momentum tensor

Ideal hydrodynamics

Sound propagation

Phenomenology

Consider a small perturbation on top of a static fluid :

 $p = p_0 + p'$ $\epsilon = \epsilon_0 + \epsilon'$

The Euler equation, linearized in the perturbations, read :

$$\partial_t \epsilon' + (p_0 + \epsilon_0) \vec{\nabla}_x \cdot \vec{v'} = 0$$
$$(p_0 + \epsilon_0) \partial_t \vec{v}' + \vec{\nabla}_x p' = 0$$

Differentiate the 1st equation with respect to time, and eliminate the velocity \vec{v}' . We get :

$$\partial_t^2 \, \epsilon' = {oldsymbol
abla}_{oldsymbol x}^2 \, p'$$

For small perturbations, write $\epsilon' = (\partial \epsilon / \partial p)_0 p'$. Therefore,

$$\frac{1}{c_s^2} \partial_t^2 \, p' = \vec{\nabla}_x^2 \, p' \qquad \text{with } c_s^2 \equiv \left(\frac{\partial p}{\partial \epsilon}\right)_0$$

Collective phenomena

Relativistic hydrodynamics

Phenomenology

- Initial energy density
- Initial temperature
- QGP "opacity"
- Collective flow
- Hadronization
- Strangeness
- Deconfinement

Initial energy density

Bjorken estimate :

Collective phenomena

Relativistic hydrodynamics

- Initial energy density
- Initial temperature
- QGP "opacity"
- Collective flow
- Hadronization
- Strangeness
- Deconfinement

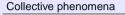
$$\epsilon_0 pprox rac{1}{oldsymbol{S}_\perp au_0} rac{dE_\perp}{dy}$$

- $dE_{\perp}/dy \approx 620$ GeV at RHIC ($\sqrt{s} = 200$ GeV, gold nuclei)
- $S_{\perp} \approx 140 \text{ fm}^2$ for central collisions
- $\tau_0 \approx 0.15 \text{ fm}$

$$\triangleright \quad \epsilon_0 \approx 30 \text{ GeV/fm}^3$$

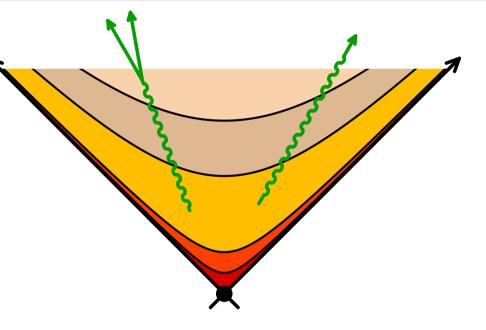
- Reminder : lattice QCD predicts deconfinement at $\epsilon_{\rm crit} \sim 1 \ {\rm GeV/fm^3}$
- Note : things look less impressive in terms of the temperature since $\epsilon \sim T^4 \Rightarrow T/T_{\rm crit} \sim 30^{1/4} \sim 2.3$

Thermal photons



Relativistic hydrodynamics

- Initial energy density
- Initial temperature
- QGP "opacity"
- Collective flow
- Hadronization
- Strangeness
- Deconfinement



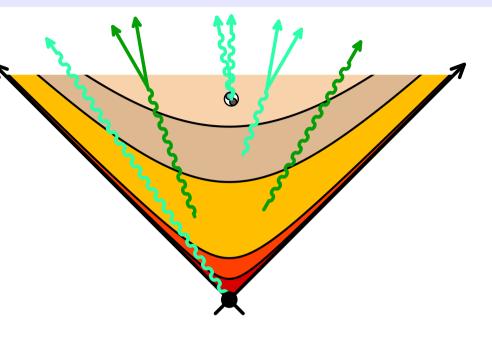
- Photons produced by the QGP :
 - Rate determined by physics at the scale g^2T
 - Very sensitive to the temperature : $dN_{\gamma}/dtd^{3}\vec{x} \sim T^{4}$

Thermal photons



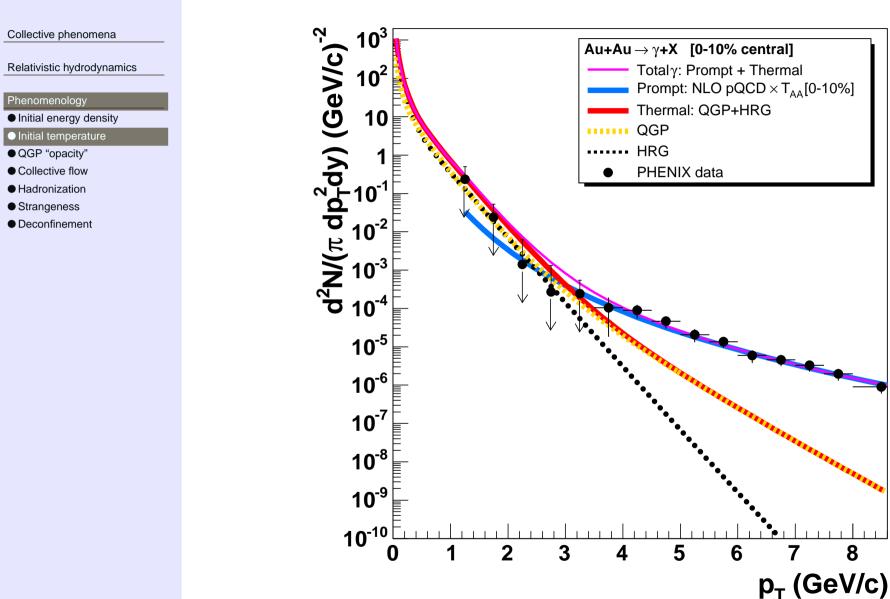
Relativistic hydrodynamics

- Initial energy density
- Initial temperature
- QGP "opacity"
- Collective flow
- Hadronization
- Strangeness
- Deconfinement



- Photons produced by the QGP :
 - Rate determined by physics at the scale g^2T
 - Very sensitive to the temperature : $dN_{\gamma}/dtd^{3}\vec{x} \sim T^{4}$
- But very important background...
 - initial photons
 - photons produced by in-medium jet fragmentation
 - photons produced by the hadron gas
 - meson decays

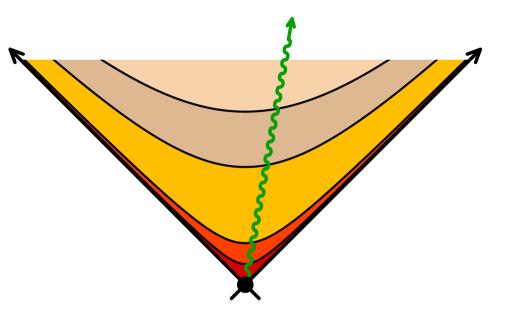
Direct photons at RHIC



8

Relativistic hydrodynamics

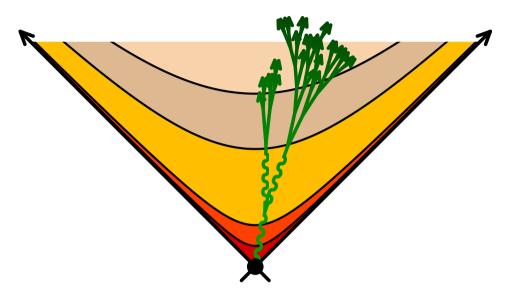
- Initial energy density
- Initial temperature
- QGP "opacity"
- Collective flow
- HadronizationStrangeness
- Deconfinement



- High p_{\perp} jets are produced at the initial impact
 - Not very interesting by themselves...

Relativistic hydrodynamics

- Initial energy density
- Initial temperature
- QGP "opacity'
- Collective flowHadronization
- Strangeness
- Deconfinement

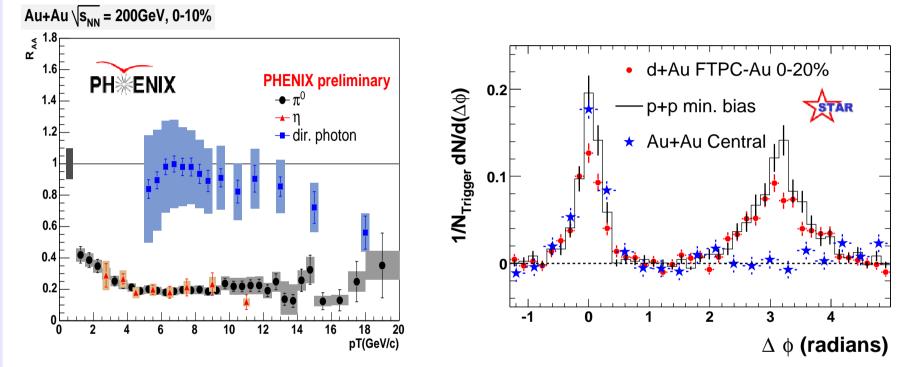


- High p_{\perp} jets are produced at the initial impact
 - Not very interesting by themselves...
- Radiative energy loss when they travel through the QGP
 - Sensitive to the energy density of the medium
 - Depends on the path length as L^2
 - Important modification of the azimuthal correlations

Collective phenomena

Relativistic hydrodynamics

- Initial energy density
- Initial temperature
- QGP "opacity'
- Collective flow
- Hadronization
- Strangeness
- Deconfinement



- Hadrons are strongly suppressed
 - Mesons involving heavy quarks (e.g. D) are also suppressed
 - Photons are not suppressed
- The correlation at 180° disappears in AA collisions

Collective phenomena

Relativistic hydrodynamics

Phenomenology

Initial energy density

Initial temperature

- QGP "opacity'
- Collective flow
- Hadronization
- Strangeness
- Deconfinement

Interpretation :

- Jets escape only if they are produced near the edge and are directed outwards
- The opposite jet is totally absorbed
 - ▷ confirms the very large energy density

Collective flow

Consider a non-central collision :

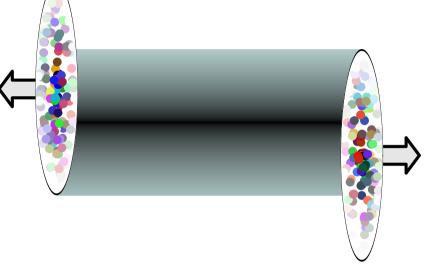
Relativistic hydrodynamics

Phenomenology

Initial energy density

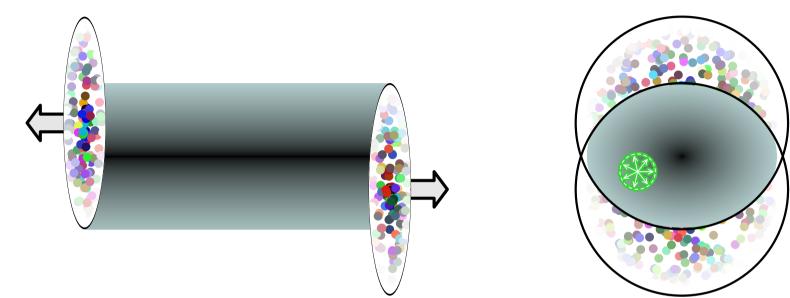
Collective phenomena

- Initial temperature
- QGP "opacity"
- Collective flow
- Hadronization
- Strangeness
- Deconfinement



Collective flow

Consider a non-central collision :



 Initially, the momentum distribution of particles is isotropic in the transverse plane, because their production comes from local partonic interactions

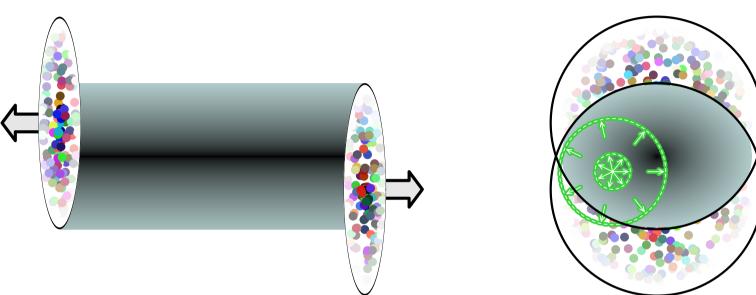
Relativistic hydrodynamics

Collective phenomena

- Initial energy density
- Initial temperature
- QGP "opacity"
- Collective flow
- Hadronization
- Strangeness
- Deconfinement

Collective flow

Consider a non-central collision :



- Initially, the momentum distribution of particles is isotropic in the transverse plane, because their production comes from local partonic interactions
- If these particles were escaping freely, the distribution would remain isotropic at all times

Collective phenomena

Relativistic hydrodynamics

- Initial energy density
- Initial temperature
- QGP "opacity"
- Collective flow
- Hadronization
- Strangeness
- Deconfinement

Collective flow

Consider a non-central collision :

- Initially, the momentum distribution of particles is isotropic in the transverse plane, because their production comes from local partonic interactions
- If these particles were escaping freely, the distribution would remain isotropic at all times
- If the system has a small mean free path, pressure gradients are anisotropic and induce an anisotropy of the distribution

Collective phenomena

Relativistic hydrodynamics

- Initial energy density
- Initial temperature
- QGP "opacity"
- Collective flow
- Hadronization
- Strangeness
- Deconfinement

Collective phenomena

PhenomenologyInitial energy density

Hadronization
Strangeness
Deconfinement

Initial temperature
QGP "opacity"
Collective flow

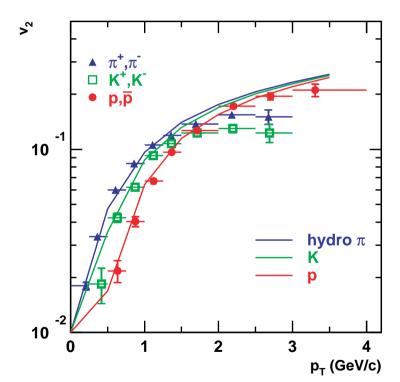
Relativistic hydrodynamics

Collective flow and ideal hydrodynamics

Observable: 2nd harmonic of the azimuthal distribution

 $dN/d\varphi \sim 1 + 2v_1 \cos(\varphi) + 2v_2 \cos(2\varphi) + \cdots$

 $\triangleright v_2$ measures the ellipticity of the momentum distribution



Note : even heavy quarks seem to follow this flow

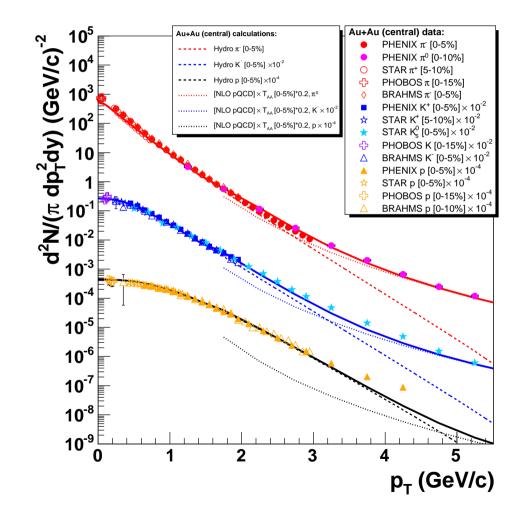
Another success of hydrodynamics

Collective phenomena

Relativistic hydrodynamics

- Phenomenology
- Initial energy density
- Initial temperature
- QGP "opacity"
- Collective flow
- Hadronization
- Strangeness
- Deconfinement

Hydrodynamics reproduces the hadron spectra at low p_{\perp}



Is the QGP a perfect fluid?

Collective phenomena

Relativistic hydrodynamics

- Initial energy density
- Initial temperature
- QGP "opacity"
- Collective flow
- Hadronization
- Strangeness
- Deconfinement

- Note: a perfect fluid is a fluid with a very small viscosity, that can be described with Euler equations (ideal hydrodynamics)
- The elliptic flow coefficient v₂ measured at RHIC is well reproduced by ideal hydrodynamics, that has no viscosity
 - In hydrodynamics, the relevant parameter is the dimensionless ratio η/s of the shear viscosity to the entropy density
 - It has been concluded from there that the QGP must have a very small ratio η/s
- In the weakly coupled QGP, η/s is all but small...

Statistical models

Collective phenomena

Relativistic hydrodynamics

- Phenomenology
- Initial energy density
- Initial temperature
- QGP "opacity"
- Collective flow
- Hadronization
- Strangeness
- Deconfinement

- One assumes that particles are produced by a thermalized system with temperature T and baryon chemical potential μ_B
- The number of particles of mass m per unit volume is :

$$\frac{dN}{d^3\vec{x}} = \int \frac{d^3\vec{p}}{(2\pi)^3} \, \frac{1}{e^{(\sqrt{p^2 + m^2} - \mu_B Q)/T} \pm 1}$$

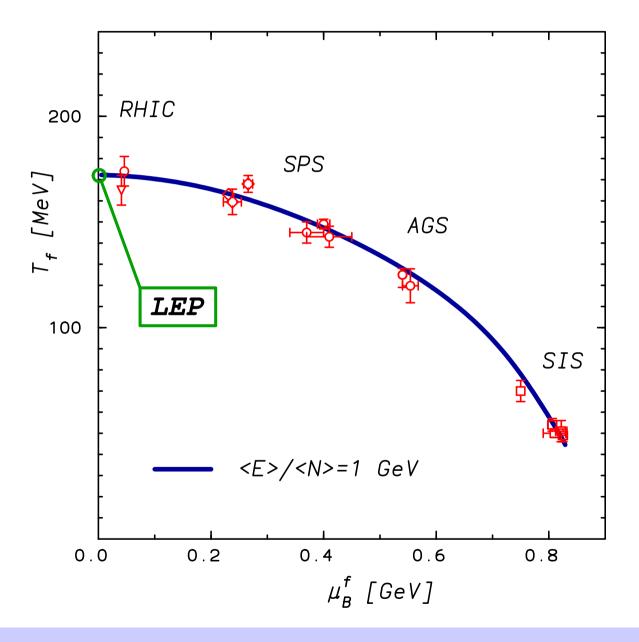
- These models reproduce the ratios of particle yields with only two parameters
- The same models also work for e^+e^- collisions
 - Standard explanation: randomly filling a phase space leads to exponential distributions
 - However, this argument alone does not explain why the value of T that comes out is the same as in nucleus-nucleus collisions
 dynamical arguments (about the properties of the vacuum?) may be involved here...

Freeze-out parameters

Collective phenomena

Relativistic hydrodynamics

- Initial energy density
- Initial temperature
- QGP "opacity"
- Collective flow
- Hadronization
- Strangeness
- Deconfinement



Strangeness enhancement

Collective phenomena

Relativistic hydrodynamics

Phenomenology

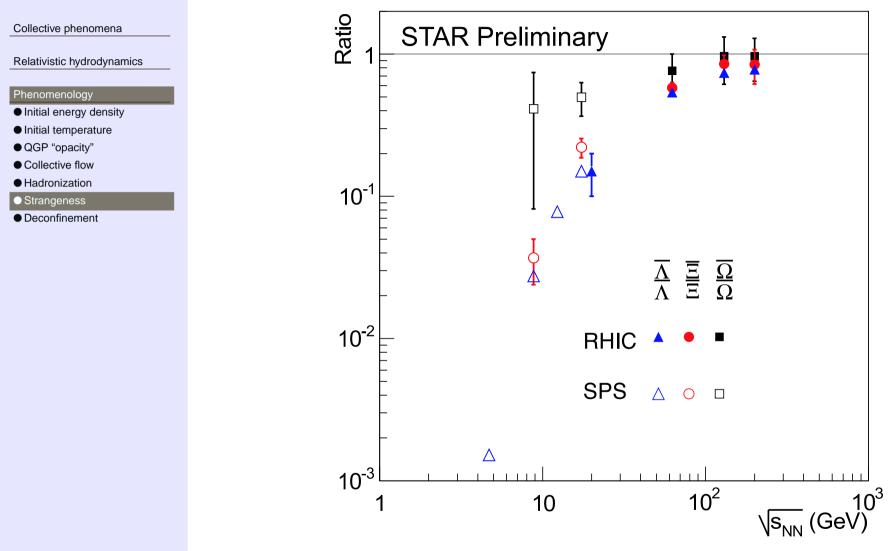
- Initial energy density
- Initial temperature
- QGP "opacity"
- Collective flow
- Hadronization
- Strangeness
- Deconfinement

In a nucleon, the distribution of strange quarks is smaller than that of u, d quarks (valence) by a factor of the order of $\alpha_s \sim 0.2-0.3$

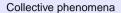
 \triangleright In *pp* collisions, less strange particles are produced than non-strange particles

- In the QGP, the average energy of u, d quarks and of the gluons is of the order of the temperature
 ▷ if T is large enough (compared to the mass of the strange quark), then the processes uu → ss, dd → ss, gg → ss are not inhibited by the kinematical threshold due to the mass of the s quark
- In this case, the population of strange quarks will become identical to that of light quarks
 b the production of strange hadrons will be enhanced compared to proton-proton collisions
- The interpretation of data based on statistical models works also for strange particles at RHIC

Strangeness enhancement

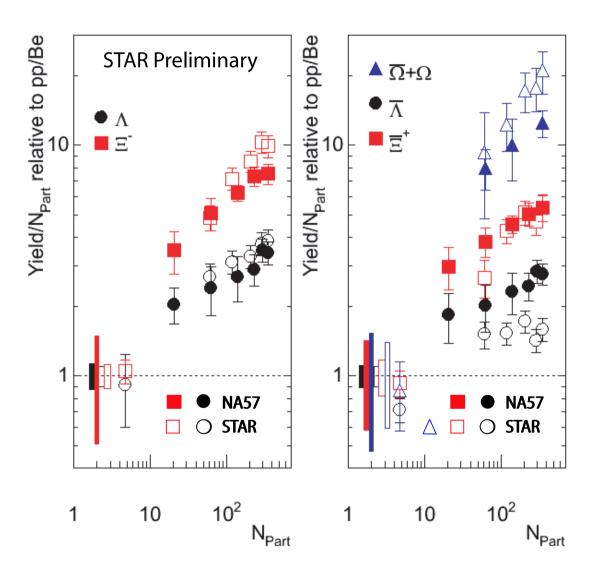


Strangeness enhancement



Relativistic hydrodynamics

- Initial energy density
- Initial temperature
- QGP "opacity"
- Collective flow
- Hadronization
- Strangeness
- Deconfinement

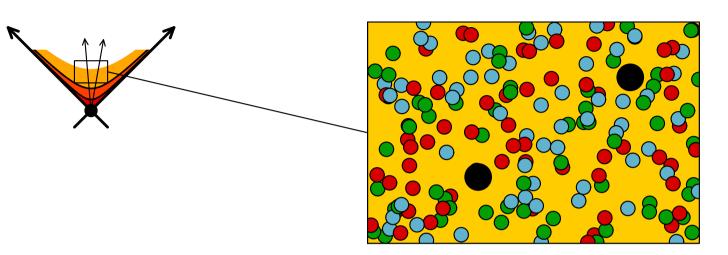


J/Psi suppression

Collective phenomena

Relativistic hydrodynamics

- Initial energy density
- Initial temperature
- QGP "opacity"
- Collective flow
- Hadronization
- Strangeness
- Deconfinement



- Debye screening prevents the QQ pair from forming a bound state Matsui, Satz (1986)
 - each heavy quark pairs with a light quark in order to form a D meson
- The inter-quark potential can be calculated using lattice QCD
- Possible observable : [J/ψ] / [Open charm]
 ▷ complication : there is also a suppression in proton-nucleus collisions, due to multiple scattering

J/Psi suppression

Collective phenomena

Relativistic hydrodynamics

Phenomenology

- Initial energy density
- Initial temperature
- QGP "opacity"
- Collective flow
- Hadronization
- Strangeness
- Deconfinement

What do we do with this potential?

• Shröedinger equation for a $Q\overline{Q}$ bound state :

$$\left[2m_Q + \frac{1}{m_Q}\vec{\nabla}^2 + U(r,T)\right]\Psi = M(T)\Psi$$

- Non-relativistic
- Assumes that there are only two-body interactions
- Dissociation temperatures :

state	J/ψ	χ_c	ψ'	Υ	χ_b	Υ'
T_d/T_c	2.0	1.1	1.1	4.5	2.0	2.0

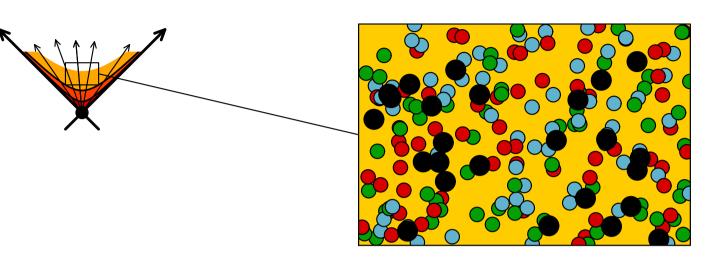
 \triangleright the $Q\overline{Q}$ states are not dissolved immediately above the critical temperature

... or enhancement ?

Collective phenomena

Relativistic hydrodynamics

- Initial energy density
- Initial temperature
- QGP "opacity"
- Collective flow
- Hadronization
- Strangeness
- Deconfinement



- Many QQ pairs may be produced in each AA collision Braun-Munzinger, Stachel (2000) Thews, Schroedter, Rafelski (2001)
 - A Q from one pair may recombine with a \overline{Q} from another pair
- Avoids the conclusion of Matsui and Satz's scenario, provided that the average distance between heavy quarks is smaller than the Debye screening length
- May lead to an enhancement of J/ψ production

J/Psi measurements at RHIC

Collective phenomena

Relativistic hydrodynamics

- Initial energy density
- Initial temperature
- QGP "opacity"
- Collective flow
- Hadronization
- Strangeness
- Deconfinement

