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CGC degrees of freedom

■ The fast partons (large x) are frozen by time dilation
⊲ described as static color sources on the light-cone :

Jµ
a = δµ+δ(x−)ρa(~x⊥) (x− ≡ (t − z)/

√
2)

■ Slow partons (small x) cannot be considered static over the
time-scales of the collision process ⊲ they must be treated
as the usual gauge fields

Since they are radiated by the fast partons, they must be
coupled to the current Jµ

a by a term : AµJµ

■ The color sources ρa are random, and described by a
distribution functional W

Y
[ρ], with Y the rapidity that

separates “soft” and “hard”
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CGC evolution

■ Evolution equation (JIMWLK) :

∂W
Y

∂Y
= H W

Y

H =
1

2

Z

~y⊥

δ

δ eA+
b (ǫ, ~y⊥)

ηab(~x⊥, ~y⊥)
δ

δ eA+
a (ǫ, ~x⊥)

where −∂2
⊥

eA+(ǫ, ~x⊥) = ρ(ǫ, ~x⊥)

■ ηab is a non-linear functional of ρ

■ This evolution equation resums the powers of αs ln(1/x) and
of Qs/p⊥ that arise in loop corrections

■ This equation simplifies into the BFKL equation when the
color density ρ is small (one can expand ηab in ρ)
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Nucleus-nucleus collisions

z  (beam axis)

t

strong fields classical EOMs

gluons & quarks out of eq. viscous hydrodynamics

gluons & quarks in eq.
ideal hydrodynamics

hadrons in eq.

freeze out

■ calculate the initial production of semi-hard particles
■ provide initial conditions for hydrodynamics



Introduction

● Parton saturation

● Color Glass Condensate

● Nucleus-nucleus collisions

● Factorization at small x

Single gluon spectrum

Initial field perturbation

JIMWLK Hamiltonian

Factorization

Final remarks

CERN

François Gelis – 2008 Symposium on “Fundamental Problems in Hot and/or Dense QCD”, YITP, Kyoto, March 2008 - p. 8

CGC and Nucleus-Nucleus collisions

?
L = −1

2
trFµνFµν + (Jµ

1 + Jµ
2︸ ︷︷ ︸)Aµ

Jµ

■ Given the sources ρ1,2 in each projectile, how do we calculate
observables? Is there some kind of perturbative expansion?

■ Loop corrections and factorization?
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Initial particle production

■ Dilute regime : one parton in each projectile interact
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Initial particle production

■ Dilute regime : one parton in each projectile interact

■ Dense regime : multiparton processes become crucial

(+ pileup of many partonic scatterings in each AA collision)
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What is factorization ?

■ A factorization formula divides an observable into a
perturbatively calculable part (involving quarks and gluons)
and a non-perturbative part describing the partonic content
of hadrons or nuclei :

O = F ⊗ Opartonic

■ Factorization has no predictive power unless the distributions
F are intrinsic properties of the incoming projectiles :
◆ F cannot depend on the observable
◆ F of one projectile cannot depend on the second projectile

■ Factorization can accommodate certain resummations :
◆ Loop corrections in QCD generate corrections of the form

[αslog(·)]n, that are large in some parts of the phase-space
◆ When these corrections do not depend on the observable and

projectiles, they can be absorbed in the definition of F via an
universal evolution equation



Introduction

● Parton saturation

● Color Glass Condensate

● Nucleus-nucleus collisions

● Factorization at small x

Single gluon spectrum

Initial field perturbation

JIMWLK Hamiltonian

Factorization

Final remarks

CERN

François Gelis – 2008 Symposium on “Fundamental Problems in Hot and/or Dense QCD”, YITP, Kyoto, March 2008 - p. 11

Factorization in the dilute regime

■ Factorization in the dilute small-x regime is known as
k

T
-factorization

■ It was introduced in the discussion of heavy quark production
near threshold, when s ≫ 4m2

q, to resum large logs of 1/x1,2

Collins, Ellis (1991), Catani, Ciafaloni, Hautmann (1991)
Levin, Ryskin, Shabelski, Shuvaev (1991)

■ In this framework, cross-sections read :

dσ

dY d2 ~P ⊥

∝
Z

~k1⊥,~k2⊥

δ(~k1⊥+~k2⊥− ~P ⊥) ϕ1(x1, k1⊥) ϕ2(x2, k2⊥)
|M|2

k2
1⊥k2

2⊥

x1,2 =
M⊥√

s
e±Y

■ The small-x leading logs are resummed into the
non-integrated gluon distributions ϕ

1,2
by letting them evolve

according to the BFKL equation
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Factorization in the dense regime

■ In the dense regime, observables are sensitive to parton
correlations beyond 2-point correlations. The distributions
ϕ

1,2
do not provide this information, but it is present in the

source distributions W [ρ1,2] of the CGC

■ Factorization in the dense regime at small-x has been
established for DIS. The leading logs can be absorbed into
W [ρ] by letting it evolve according to the JIMWLK equation

■ In the collision of two dense projectiles :

◆ The large logs have a coefficient that depends in a complicated
way on the sources of both nuclei. One must show that they can
still be absorbed in one of the two W [ρ]’s

◆ The dependence of the observable on the sources ρ1,2 is not
known analytically, already at LO

◆ Even less is known about loop corrections...
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Factorization in the dense regime

■ For the single gluon spectrum in AA collisions, one would
like to establish a formula such as :

fi
dN

d3~p

fl
=

LLog

Z ˆ
Dρ1 Dρ2

˜
W

Ybeam−y
[ρ1] Wy+Ybeam

[ρ2]
dN

d3~p

˛̨
˛̨
LO

with
∂

∂Y
W

Y
= HW

Y

p

ρ1ρ2 y + Ybeam- Ybeam

◆ All the leading logs of 1/x1,2 are absorbed in the W ′s

◆ The W ′s obey the JIMWLK evolution equation
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Factorization in four easy steps

■ I : Express the single gluon spectrum at LO and NLO in
terms of classical fields and small field fluctuations. Check
that their boundary conditions are retarded

■ II : Write the NLO terms as a perturbation of the initial value
of the classical fields on the light-cone :

dN

d3~p

˛̨
˛̨
NLO

=
h1

2

Z

~u,~v∈LC

G(~u, ~v)TuTv +

Z

~u∈LC

β(~u)Tu

i dN

d3~p

˛̨
˛̨
LO

■ III : For ~u, ~v on the same branch of the light-cone, one has :

1

2

Z

~u,~v∈LC

G(~u, ~v)TuTv+

Z

~u∈LC

β(~u)Tu = log
“Λ+

p+

”
×H + finite terms

■ IV : There are no other logs. Factorization follows trivially
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- I -

Single gluon spectrum

at LO and NLO
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Single gluon spectrum at LO

p

■ Leading Order = tree diagrams only
■ Tag one gluon of momentum ~p

■ Integrate out the phase-space of all the other gluons

dN

d3~p
∼

∞∑

n=0

1

n!

∫ [
d3~p1 · · · d3~pn

] ∣∣〈~p ~p1 · · ·~pn

∣∣0
〉∣∣2
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Single gluon spectrum at LO

■ LO results for the single gluon spectrum :

◆ Disconnected graphs cancel in the inclusive spectrum

◆ At LO, the single gluon spectrum can be expressed in
terms of classical solutions of the field equation of motion

◆ These classical fields obey retarded boundary conditions

dN

d3~p

∣∣∣∣
LO

= lim
t→+∞

∫
d3~xd3~y ei~p·(~x−~y) · · · Aµ(t, ~x) Aν(t, ~y)

[
Dµ,Fµν

]
= Jν

lim
t→−∞

Aµ(t, ~x) = 0

Note : retarded boundary conditions play an important role in the
following. They are not automatic, but seem generic for inclusive
observables
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Single gluon spectrum at LO

■ Retarded classical fields are sums of tree diagrams :

x y
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Single gluon spectrum at LO

■ Retarded classical fields are sums of tree diagrams :

x y

Ainitial

■ Note : the gluon spectrum is a functional of the value of the
classical field just above the backward light-cone :

dN

d3~p
= F [Ainitial]
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Single gluon spectrum at NLO

p

■ Next to Leading Order = 1-loop diagrams

■ Connected diagrams only

■ Expressible in terms of classical fields, and small fluctuations
about the classical field, both with retarded boundary
conditions



Introduction

Single gluon spectrum

● Leading Order

● Next to Leading Order

Initial field perturbation

JIMWLK Hamiltonian

Factorization

Final remarks

CERN

François Gelis – 2008 Symposium on “Fundamental Problems in Hot and/or Dense QCD”, YITP, Kyoto, March 2008 - p. 20

Single gluon spectrum at NLO

■ 1-loop graphs contributing to the gluon spectrum at NLO :
x y x y

dN

d3~p

∣∣∣∣
NLO

= lim
t→+∞

∫
d3~xd3~y ei~p·(~x−~y) · · ·

[
Gµν(x, y)

+βµ(t, ~x) Aν(t, ~y) + Aµ(t, ~x) βν(t, ~y)
]

◆ Gµν is a 2-point function on top of the classical field
◆ βµ is a small field fluctuation driven by a 1-loop source
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Single gluon spectrum at NLO

■ The 2-point function Gµν can be written as

Gµν(x, y) =

Z
d3~k

(2π)32Ek

ηµ
−k(x) ην

+k(y)

with

8
<
:

ˆ
Dµ,

ˆ
Dµ, ην

±k

˜˜
−

ˆ
Dµ,

ˆ
Dν , ηµ

±k

˜˜
+ ig

ˆ
Fµ

ν , ηµ
±k

˜
= 0

lim
t→−∞

ηµ
±k(t, ~x) = ǫµ(k) e±ik·x

(obtained by writing the YM equation for A+ η±k , linearized in η±k)

■ The equation of motion for βµ reads
ˆ
Dµ,

ˆ
Dµ, βν

˜˜
−

ˆ
Dµ,

ˆ
Dν , βµ

˜˜
+ ig

ˆ
Fµ

ν , βµ
˜

=

=
∂3L

Y M
(A)

∂Aν(x)∂Aρ(x)∂Aσ(x)| {z }

1

2

Z
d3~k

(2π)32Ek

ηµ
−k(x) ην

+k(x)

| {z }
3g vertex in the background A value of the loop
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Expression as a perturbation

of the initial classical field
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Single gluon spectrum at NLO

■ The retarded nature of the field fluctuations allows a
factorization between the initial condition (calculable
analytically) and the evolution on top of Aµ (complicated) :

aµ(x) =
[ ∫

~u∈LC

a(u) ·Tu

]

︸ ︷︷ ︸
Aµ(x)

initial condition

◆ ’LC’ is a surface just above the backward light-cone

◆ Tu is the generator of shifts of the initial
value of the fields on this surface :

F [Ainitial + a] ≡ exp
h Z

~u∈LC

a(u) ·Tu

i
F [Ainitial]

Note : this construction is possible only because the objects
involved in the problem obey retarded boundary conditions

LC

x

a(u)
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Single gluon spectrum at NLO

■ This factorization can be applied to the NLO gluon spectrum:
x y

-k +k

x y
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Single gluon spectrum at NLO

■ This factorization can be applied to the NLO gluon spectrum:
x y

u

v

-k +k

x y

u

v

■ They can be written as a perturbation of the LC initial fields :

dN

d3~p

˛̨
˛̨
NLO

=
h 1

2

Z

~u,~v∈LC

G(~u, ~v)TuTv

| {z }

i dN

d3~p

˛̨
˛̨
LO

| {z }
below the LC above the LC

G(~u, ~v) ≡
Z

d3~k

(2π)32Ek

η−k(u) η+k(v)
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Single gluon spectrum at NLO

■ This factorization can be applied to the NLO gluon spectrum:
x y

u

v

-k +k

x y

u

v

x y

u

■ The loop can also be below the light-cone :

dN

d3~p

˛̨
˛̨
NLO

=
h 1

2

Z

~u,~v∈LC

G(~u, ~v)TuTv +

Z

~u∈LC

β(~u)Tu

| {z }

i dN

d3~p

˛̨
˛̨
LO

| {z }
below the LC above the LC

⊲ the functions G(~u, ~v) and β(~u) can be evaluated analytically
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JIMWLK Hamiltonian
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Divergences

■ If ~u, ~v belong to the same branch of the LC (e.g.
u− = v− = ǫ), the function G(~u, ~v) contains

G(~u, ~v) ∼
∫ +∞

0

dk+

k+
· · · eik−(u+−v+) with k− ≡ k2

⊥

2k+

⊲ the integral converges at k+ = 0 but not when k+ → +∞

Note : the log is a log(Λ+/p+), where Λ+ is the boundary
between the hard color sources and the fields, and p+ the
longitudinal momentum of the produced gluon

p+

p

ρ1Λ+
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Leading Log approximation

■ In the LC gauge A+ = 0, the operator η(u) ·Tu is

η(u)·Tu ≡ (∂−ηi
a(u))

δ

δ(∂−Ai
a(u))

+η−
a (u)

δ

δA−
a (u)

+(∂µηµ
a (u))

δ

δ(∂µAµ
a(u))

■ An explicit calculation of ∂−ηi
±k and η−

±k shows that these
components have an extra 1/k+ when k+ → +∞

■ At leading log, it seems sufficient to consider :

η(u) ·Tu =
LLog

(∂µηµ
a (u))

δ

δ(∂µAµ
a(u))

This is almost correct, but not quite...
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Leading Log approximation

■ The region above the LC contains a classical background
field of the form

A± = 0 , Ai =
i

g
Ω†∂iΩ

⊲ the interaction of the fluctuation with a background field can turn
terms that are not divergent on the LC into divergent terms !
(factors of k+ can arise in the 3-gluon derivative coupling)

■ Because this background is a pure gauge, this problem is easily
circumvented by using [Ωη]a instead of ηa :

η(u) ·Tu ≡ (∂−[Ωη]ib(u))
δ

δ(∂−[ΩA]ib(u))
+ [Ωη]−b (u)

δ

δ[ΩA]−b (u)

+(∂µ[Ωη]µb (u))
δ

δ(∂µ[ΩA]µb (u))

⊲ at leading log, only the last term matters
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JIMWLK Hamiltonian

■ Derivatives with respect to ∂µ[ΩA]µb (u) can be mapped to
derivatives with respect to the slowest color sources :

Z
du+ δ

δ(∂µ[ΩA]µb (u))
=

Z
d2~x⊥

˙
~u⊥

˛̨ 1

∂2
⊥

˛̨
~x⊥

¸ δ

δ eA+
a (ǫ, ~x⊥)

with −∂2
⊥

eA+(ǫ, ~x⊥) = ρ(ǫ, ~x⊥)

■ When ~u, ~v are on the same branch of the LC, we have

1

2

Z

~u,~v∈LC

G(~u, ~v)TuTv =
LLog

1

2
log

„
Λ+

p+

« Z

~x⊥,~y⊥

ηab(~x⊥, ~y⊥)
δ2

δ eA+
a (ǫ, ~x⊥)δ eA+

b (ǫ, ~y⊥)

with ηab(~x⊥, ~y⊥) ≡ 1

π

Z
d2~z⊥

(2π)2
(~x⊥ − ~z⊥) · (~y⊥ − ~z⊥)

(~x⊥ − ~z)2(~y⊥ − ~z⊥)2

×
h
1 + Ω(x)Ω†(y) − Ω(x)Ω†(z) − Ω(z)Ω†(y)

i

ab
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JIMWLK Hamiltonian

■ By using the Green’s formula for βµ, one can show that

Z

~u∈LC

β(~u)Tu =
LLog

1

2
log

„
Λ+

p+

« Z

~x⊥

 Z

~y⊥

δηab(~x⊥, ~y⊥)

δ eA+
b (ǫ, ~y⊥)

!
δ

δ eA+
a (ǫ, ~x⊥)

■ Combining the real and virtual terms :
h1

2

Z

~u,~v∈LC

G(~u, ~v)TuTv +

Z

~u∈LC

β(~u)Tu

i

=
LLog

log

„
Λ+

p+

«
1

2

Z

~y⊥

δ

δ eA+
b (ǫ, ~y⊥)

ηab(~x⊥, ~y⊥)
δ

δ eA+
a (ǫ, ~x⊥)

| {z }
JIMWLK H

(Note : H is Hermitian)
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Leading Log divergences

■ The configuration where ~u, ~v are on the first branch of the
LC can be rewritten as

dN

d3~p

∣∣∣∣
NLO

=
LLog

log

(
Λ+

p+

)
H1

dN

d3~p

∣∣∣∣
LO

with H1 the JIMWLK Hamiltonian for the first nucleus

■ Including also the configuration where both ~u, ~v are on the
second branch of the LC, we get

dN

d3~p

∣∣∣∣
NLO

=
LLog

[
log

(
Λ+

p+

)
H1 + log

(
Λ−

p−

)
H2

] dN

d3~p

∣∣∣∣
LO



Introduction

Single gluon spectrum

Initial field perturbation

JIMWLK Hamiltonian

Factorization

● Leading Log divergences

● Factorization

Final remarks

CERN

François Gelis – 2008 Symposium on “Fundamental Problems in Hot and/or Dense QCD”, YITP, Kyoto, March 2008 - p. 33

Leading Log divergences

■ The only remaining possibility is to have ~u and ~v on different
branches of the LC

η µ
-k(u) η ν

+k(v)

LC

However, there is no log
divergence in this case, since
the k+ integral is of the form :
∫

dk+

k+
· · · eik+(u−−v−) eik−(u+−v+)

⊲ no mixing of the
divergences of the two nuclei
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Leading Log factorization

■ All the above discussion is for given sources ρ1,2 (or given fields
eA±
1,2). Averaging over all the configurations of the sources in the

two projectiles, and using the hermiticity of H, we obtain
fi

dN

d3~p

fl

LO+NLO

=
LLog

Z ˆ
D eA+

1 D eA−
2

˜

×
“h

1 + log

„
Λ+

p+

«
H1 + log

„
Λ−

p−

«
H2

i
W [ eA+

1 ] W [ eA−
2 ]

” dN

d3~p

˛̨
˛̨
LO

■ This is a 1-loop result. Using RG arguments, we get the following
factorized formula for the resummation of the leading log terms to
all orders :

fi
dN

d3~p

fl
=

LLog

Z ˆ
D eA+

1 D eA−
2

˜
W

Y1
[ eA+

1 ] W
Y2

[ eA−
2 ]

dN

d3~p

˛̨
˛̨
LO

with
∂

∂Y
W

Y
= HW , Y1 = log(

√
s/p+) , Y2 = log(

√
s/p−)
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Final remarks
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Requirements for factorization

■ The fact that the observable is bilinear in the fields is not
essential. The formula

O
NLO

=
[1

2

∫

~u,~v∈LC

G(~u, ~v)TuTv +

∫

~u∈LC

β(~u)Tu

]
O

LO

can be established for more general observables, provided
their expectation value depends on retarded fields only

■ Crucial ingredients for factorization :
◆ Only connected diagrams contribute

◆ One should have an initial value problem
⊲ retarded boundary conditions are essential

◆ The observable should involve only one rapidity scale.
Otherwise, there are extra large corrections in αs(y1 − y2)

that are not captured in the evolution of the W [Ã±]’s
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Quantities that do factorize

■ Energy-momentum tensor Tµν(τ, η, ~x⊥) :

〈T µν(τ, η, ~x⊥)〉 =
LLog

Z ˆ
D eA+

1 D eA−
2

˜
W

Y1
[ eA+

1 ] W
Y2

[ eA−
2 ]

h
T µν(τ, η, ~x⊥)

i

LO

with Y1 = ln(
√

s) − η , Y2 = ln(
√

s) + η

⊲ CGC initial conditions for hydrodynamics
⊲ Note : this cannot be used for studying fluctuations

■ Higher moments of the multiplicity distribution in a small slice
of rapidity. These moments are expressible in terms of
retarded quantities (FG, Venugopalan)

■ For some quantities, an extension of the above form of
factorization may be able to resum all the leading logs.
Example : 2-gluon correlations with a large rapidity
separation between the gluons (work in progress with
T. Lappi and R. Venugopalan)
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Quantities that do not factorize

■ More exclusive quantities seem out of reach of this form of
factorization :

◆ Example : survival probability of rapidity gaps

⊲ for such quantities, the main obstruction is the impossibility to
write them in terms of retarded objects

⊲ The problem is not factorization (which should follow from
causality to a large extent) per se, but that our description of the
wavefunction of the incoming projectiles does not contain enough
information to answer the question we are asking

(W [ eA] is only the diagonal part of the initial density matrix of the
incoming nucleus)
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Summary

■ Factorization works (at leading log) in the saturation regime
of nucleus-nucleus collisions : all the leading logarithms of
1/x1,2 can be absorbed into the evolution of the distribution
of color sources of the corresponding nucleus

■ Restriction : the observable must be sufficiently inclusive (so
that it can be expressed in terms of fields with retarded
boundary conditions)

■ The proof becomes straightforward once one has rewritten
the observable in a way that exhibits the causal nature of the
involved fields

■ Extensions :
◆ The “non leading log” terms still contain pieces that trigger the

Weibel instability ⊲ resummation ?

◆ Factorization for the inclusive 2-gluon spectrum

◆ Factorization in an exclusive quantity
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