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General outline

■ Lecture I : Gluon saturation in DIS

■ Lecture II : Proton-nucleus collisions

■ Lecture III : AA collisions : gluon production

■ Lecture IV : AA collisions : glasma instabilities
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Lecture III : AA : gluon production

■ Introduction to nucleus-nucleus collisions

■ Power counting and bookeeping

■ Classical fields, boundary conditions

■ Factorization at small x
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Introduction
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Stages of a nucleus-nucleus collision
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Stages of a nucleus-nucleus collision

z 

t

strong fields classical EOMs

gluons & quarks out of eq. kinetic theory

gluons & quarks in eq.
hydrodynamics

hadrons in eq.

freeze out

■ compute the initial production of semi-hard particles
■ compute initial conditions for hydrodynamics
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Small x QCD in AA collisions

■ Saturation affects the early stages of heavy ion collisions, up
to a time τ ∼ Q−1

s

■ The dynamics that takes place afterwards blurs the physics
of saturation (for instance, if the system reaches
thermalization, it does not remember the details of the
dynamics at early times)

⊲ Saturation affects only inclusive observables, like the
overall multiplicity and its energy dependence

⊲ Nucleus-nucleus collisions are a limited framework in
order to probe saturation

■ In AA collisions, the Color Glass Condensate provides a
framework that can be used to compute an initial condition
for the rest of the evolution
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Small x QCD in AA collisions

■ 99% of the multiplicity below p⊥ ∼ 2 GeV

■ the bulk of particle production comes from (very) low x

⊲ high gluon density (even more so in nuclei : G
A
/Gp ≈ A)
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Krasnitz-Venugopalan computation

■ Gluon spectrum from retarded classical solutions of Yang-Mills
equations (Krasnitz, Venugopalan (1998); Lappi (2003)) :
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Krasnitz-Venugopalan computation

■ In nucleus-nucleus collisions, the two sources are equally
strong, and should be treated on the same footing :

Jµ ≡ δµ+δ(x−) ρ1(~x⊥) + δµ−δ(x+) ρ2(~x⊥)

■ Average over the sources ρ1, ρ2

〈O〉
Y

=

Z
ˆ
Dρ1

˜ ˆ
Dρ2

˜
W

Ybeam−Y
[ρ1

˜
W

Y +Ybeam

ˆ
ρ2

˜
O[ρ1 , ρ2

˜

■ How to compute O[ρ
1
, ρ

2
] in the saturation regime ?

■ What is the meaning of this factorization formula ?
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Goals of this lecture

■ Why can the gluon yield be obtained from classical solutions
of Yang-Mills equations ?

■ Why are the boundary conditions retarded ?

■ Is this a controlled approximation, i.e. the first term in a more
systematic expansion ?

■ Is it possible to go beyond this computation, and study the
1-loop corrections ? Logs(1/x) and factorization ?
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Initial particle production

■ Dilute regime : one parton in each projectile interact
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Initial particle production

■ Dilute regime : one parton in each projectile interact

■ Dense regime : multiparton processes become crucial
(+ pileup of many simultaneous scatterings)



Introduction

Bookkeeping

● Power counting

● Vacuum diagrams

● Bookkeeping

Classical fields

Factorization

Summary

CERN

François Gelis – 2007 Lecture III / IV – Hadronic collisions at the LHC and QCD at high density, Les Houches, March-April 2008 - p. 12

Power counting and Bookkeeping



Introduction

Bookkeeping

● Power counting

● Vacuum diagrams

● Bookkeeping

Classical fields

Factorization

Summary

CERN

François Gelis – 2007 Lecture III / IV – Hadronic collisions at the LHC and QCD at high density, Les Houches, March-April 2008 - p. 13

Power counting
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Power counting

■ In the saturated regime, the sources are of order 1/g

(because
〈
ρρ

〉
∼ occupation number ∼ 1/αs)

■ The order of each connected diagram is given by :

1

g2
g# produced gluons g2(# loops)

■ The total order of a graph is the product of the orders of its
disconnected subdiagrams
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Power counting

■ Example : Inclusive gluon spectrum :

dN

d3~p
=

1

g2

[

c0 + c1 g2 + c2 g4 + · · ·
]

■ The coefficients c0,1,··· are themselves series that resum all
orders in (gρ

1,2
)n. For instance,

c0 =

∞∑

n=0

c0,n (gρ
1,2

)n

■ We want to calculate at least the entire c0/g2 contribution,
and a subset of the higher order terms
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Vacuum diagrams

■ Vacuum diagrams do not produce any gluon. They are
contributions to the vacuum to vacuum amplitude

〈
0out

∣
∣0in

〉

■ The order of a connected vacuum diagram is given by :

g−2 g2(# loops)

■ Relation between connected and non connected vacuum
diagrams :

X
„

all the vacuum

diagrams

«

= exp


X “ simply connected

vacuum diagrams

”ff

= eiV [j]
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Bookkeeping
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Bookkeeping

■ Consider squared amplitudes (including interference terms)
rather than the amplitudes themselves
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Bookkeeping

■ Consider squared amplitudes (including interference terms)
rather than the amplitudes themselves

■ See them as cuts through vacuum diagrams
cut propagator : 2πθ(−p0)δ(p2)
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Bookkeeping

■ Consider squared amplitudes (including interference terms)
rather than the amplitudes themselves

■ See them as cuts through vacuum diagrams
cut propagator : 2πθ(−p0)δ(p2)

■ The sum of the vacuum diagrams, exp(iV [j]), is the
generating functional for time-ordered products of fields :

˙
0out

˛
˛TA(x1) · · ·A(xn)

˛
˛0in

¸
=

δ

δj(x1)
· · ·

δ

δj(xn)
eiV [j]
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Bookkeeping

■ The probability of producing exactly n particles is :

Pn =
1

n!

∫
d3~p1

(2π)32E1
· · · d3~pn

(2π)32En

∣
∣
〈
~p1 · · ·~pnout

∣
∣0in

〉∣
∣
2

■ Exercise. Show that :

Pn =
1

n!
Cn eiV [j+] e−iV ∗[j−]

∣
∣
∣
j+=j−=j

with







C ≡
∫

x,y

G0
+−(x, y) ¤x¤y

δ

δj+(x)

δ

δj−(y)

G0
+−(x, y) ≡

∫
d4p

(2π)4
e−ip·(x−y) 2πθ(−p0)δ(p2)

Hint : start from the reduction formula for the transition amplitude,
and use the fact that exp(iV [j]) is the generating functional

Note : the propagator G0
+−(x, y) is a cut propagator
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Bookkeeping

■ Reminder :

C ≡

Z

x,y

G0
+−(x, y) ¤x¤y

δ

δj+(x)

δ

δj−(y)

■ Consider a generic cut vacuum diagram :
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Bookkeeping

■ Reminder :

C ≡

Z

x,y

G0
+−(x, y) ¤x¤y

δ

δj+(x)

δ

δj−(y)

■ Consider a generic cut vacuum diagram :

δ

δj−(y)
→

y



Introduction

Bookkeeping

● Power counting

● Vacuum diagrams

● Bookkeeping

Classical fields

Factorization

Summary

CERN

François Gelis – 2007 Lecture III / IV – Hadronic collisions at the LHC and QCD at high density, Les Houches, March-April 2008 - p. 18

Bookkeeping

■ Reminder :

C ≡

Z

x,y

G0
+−(x, y) ¤x¤y

δ

δj+(x)

δ

δj−(y)

■ Consider a generic cut vacuum diagram :

δ

δj+(x)
→

y
x
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Bookkeeping

■ Reminder :

C ≡

Z

x,y

G0
+−(x, y) ¤x¤y

δ

δj+(x)

δ

δj−(y)

■ Consider a generic cut vacuum diagram :

¤y →
y

x
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Bookkeeping

■ Reminder :

C ≡

Z

x,y

G0
+−(x, y) ¤x¤y

δ

δj+(x)

δ

δj−(y)

■ Consider a generic cut vacuum diagram :

¤x →
y

x
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Bookkeeping

■ Reminder :

C ≡

Z

x,y

G0
+−(x, y) ¤x¤y

δ

δj+(x)

δ

δj−(y)

■ Consider a generic cut vacuum diagram :

G0
+−(x, y) →

y

x

⊲ the operator C removes two sources (one in the amplitude and
one in the complex conjugated amplitude), and creates a new cut
propagator
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Bookkeeping

■ The sum of all the cut vacuum diagrams, with sources j+ on
one side of the cut and j− on the other side, can be written
as :

∑
(

all the cut

vacuum diagrams

)

= eC eiV [j+] e−iV ∗[j−]

■ If we set j+ = j− = j, then we should get
∑

n Pn = 1

■ Therefore, we have :

eC eiV [j+] e−iV ∗[j−]
∣
∣
∣
j+=j−

= 1

Note : the use of this identity renders automatic an important
cancellation that would be hard to see at the level of
diagrams (somewhat related to AGK)
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Bookkeeping

■ The operator C can be used to derive many useful formulas :

F (z) =

+∞∑

n=0

zn Pn = ezC eiV [j+] e−iV ∗[j−]
∣
∣
∣
j+=j−=j

⊲ sum of all cut vacuum graphs, where each cut is weighted by z

N = F ′(1) = C eC eiV [j+] e−iV ∗[j−]
∣
∣
∣
j+=j−=j

N(N − 1) = F ′′(1) = C2 eC eiV [j+] e−iV ∗[j−]
∣
∣
∣
j+=j−=j

■ Main benefit :

The tracking of infinite sets of Feynman diagrams has been
replaced by simple algebraic manipulations
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Classical fields,

Boundary conditions
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Diagrammatic expansion

■ It is easy to express the average multiplicity as :

N =
∑

n
n Pn = C

{

eC eiV [j+] e−iV ∗[j−]
︸ ︷︷ ︸

}

j+=j−=j

sum of all the cut vacuum diagrams : eiW [j+,j−]

■ There are two types of terms :
◆ C picks two sources in the same connected cut diagram

δ2iW

δj+(x)δj−(y)
→

◆ C picks two sources in two distinct connected cut diagrams

δiW

δj+(x)

δiW

δj−(y)
→
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Diagrammatic expansion (LO)

■ At LO, only tree diagrams contribute
⊲ the first type of topologies can be neglected

(they have at least one loop)

■ In each blob, we must sum over all the tree diagrams, and
over all the possible cuts :

N
LO

=
∑

trees

∑

cuts

tree

tree

■ Note : at this point, the sources on both sides of the cut must
be set equal :

j+ = j− = j
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Retarded propagators

■ In the previous diagrams, one must sum over all the possible
ways of cutting lines inside the blobs

■ This can be achieved via Cutkosky’s cutting rules :

◆ A vertex is −ig on one side of the cut, and +ig on the other side

◆ A source ρ changes sign depending on the side of the cut

◆ There are four propagators, depending on the location w.r.t. the
cut of the vertices they connect :

G0
++(p) = i/(p2 − m2 + iǫ) (standard Feynman propagator)

G0
−−(p) = −i/(p2 − m2 − iǫ) (complex conjugate of G0

++(p))

G0
+−(p) = 2πθ(−p0)δ(p2 − m2)

◆ At each vertex of a given diagram, sum over the types + and −

(2n terms for a diagram with n vertices)
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Retarded propagators

■ When summing over the cuts, we only get combinations of
propagators such as :

G0
++(p) − G0

+−(p) =
i

p2
− m2 + iǫ

− 2πθ(−p0)δ(p2 − m2)
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Retarded propagators

■ When summing over the cuts, we only get combinations of
propagators such as :

G0
++(p) − G0

+−(p) = PP

»
i

p2 − m2

–

+ πδ(p2 − m2) − 2πθ(−p0)δ(p2 − m2)

z }| {

insert : 1 = θ(p0) + θ(−p
0)
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Retarded propagators

■ When summing over the cuts, we only get combinations of
propagators such as :

G0
++(p) − G0

+−(p) = PP

»
i

p2 − m2

–

+ π
ˆ
θ(p0) − θ(−p0)
| {z }

˜
δ(p2 − m2)

sign (p0)
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Retarded propagators

■ When summing over the cuts, we only get combinations of
propagators such as :

G0
++(p) − G0

+−(p) =
i

p2
− m2 + i sign(p0)ǫ
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Retarded propagators

■ When summing over the cuts, we only get combinations of
propagators such as :

G0
++(p) − G0

+−(p) = G
0

R
(p)

■ Similarly : G0
−+(p) − G0

−−(p) = G0
R
(p)

■ Starting from the “leaves” of the trees, one can use these
formulas in order to replace recursively all the G0

±±
propagators by retarded propagators

⊲ we have a sum of tree diagrams with retarded propagators
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Classical fields

■ The sum of all the tree diagrams constructed with retarded
propagators is the solution of classical field equations with
retarded boundary condition :

lim
t→−∞

A(t, ~x) = 0

■ Proof (for a scalar theory with a cubic self-interaction). The
classical EOM reads

`
¤ + m2´

ϕ(x) +
g

2
ϕ2(x) = j(x)

■ Write the Green’s formula for the retarded solution that
obeys ϕ(t, ~x) = 0 at t = −∞ :

ϕ(x) =

Z

d4y G0
R

(x − y)
h

−i
g

2
ϕ2(y) + i j(y)

i
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Classical field

■ One can construct the solution iteratively, by using in the
r.h.s. the solution found in the previous orders

■ Order g0 :

ϕ
(0)

(x) =

Z

d4y G0
R
(x − y) i j(y)

■ Order g1 :

ϕ
(0)

(x) + ϕ
(1)

(x) =

Z

d4y G0
R
(x − y)

h

−i
g

2
ϕ2

(0)
(y) + i j(y)

i

i.e.

ϕ
(1)

(x) = −i
g

2

Z

d4y G0
R

(x − y)

»Z

d4z G0
R

(y − z) i j(z)

–2
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Retarded classical solution

■ The diagrammatic expansion of this classical solution is :
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Retarded classical solution

■ The diagrammatic expansion of this classical solution is :

+ 1
2
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Retarded classical solution

■ The diagrammatic expansion of this classical solution is :

+ +1
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Retarded classical solution

■ The diagrammatic expansion of this classical solution is :

+ + + +1
2

1
2

1
2

1
8



Introduction

Bookkeeping

Classical fields

● Diagrammatic expansion

● Retarded propagators

● Classical fields

● Gluon spectrum at LO

● Glasma

● Generating functional

Factorization

Summary

CERN

François Gelis – 2007 Lecture III / IV – Hadronic collisions at the LHC and QCD at high density, Les Houches, March-April 2008 - p. 28

Retarded classical solution

■ The diagrammatic expansion of this classical solution is :

+ + + +1
2

1
2

1
2

1
8

■ The classical solution is given by the sum of all the tree
diagrams with retarded propagators
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Gluon spectrum at LO

Krasnitz, Nara, Venugopalan (1999 – 2001), Lappi (2003)

■ The gluon spectrum at LO is given by :

dN

dY d2~p⊥

˛
˛
˛
˛
LO

=
1

16π3

Z

x,y

eip·(x−y)
¤x¤y

X

λ

ǫµ
λǫν

λ Aµ(x)Aν(y)

where Aµ(x) is the solution of Yang-Mills equations,

[Dµ,Fµν ] = Jν

such that

lim
x0→−∞

Aµ(x) = 0
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Gluon spectrum at LO

sΛ/Tk
0 1 2 3 4 5 6

T
k2

)d
N

/d
2

Rπ
1/

(

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

KNV I

KNV II

Lappi

■ Lattice artifacts at large momentum
(they do not affect much the overall number of gluons)

■ Important softening at small k⊥ compared to pQCD (saturation)
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Initial Glasma fields

Lappi, McLerran (2006) (Semantics : Glasma ≡ Glas[s - plas]ma)

■ Before the collision, the chromo-~E and ~B fields are localized
in two sheets transverse to the beam axis

■ Immediately after the collision, the chromo-~E and ~B fields
have become longitudinal :

Ez = ig
[
Ai

1,Ai
2

]
, Bz = igǫij

[
Ai

1,A
j
2

]

0 0.5 1 1.5 2
g

2µτ

0

0.2

0.4

0.6

0.8
[(

g2 µ)
4 /g

2 ]
B

z

2

E
z

2

B
T

2

E
T

2
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Boost invariance

■ Gauge condition : x+A− + x−A+ = 0

⇒ A±(x) = ± x± β(τ, η, ~x⊥)

η = const

τ = const

■ Initial values at τ = 0+ : Ai(0+, η, ~x⊥) and β(0+, η, ~x⊥) do
not depend on the rapidity η

⊲ Ai and β remain independent of η at all times
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Exercise : Generating functional

■ Consider a function z(~p), and define the functional

F [z] ≡
1

n!

+∞X

n=0

Z

dΦ1 · dΦn z(~p1) · · · z(~pn)
˛
˛
˙
~p1 · · ·~pnout

˛
˛0in

¸˛
˛2

■ At LO, one can write it in terms of two classical fields A±(x) :

δ ln F [z]

δz(~p)

˛
˛
˛
˛
LO

=

Z

x,y

eip·(x−y) · · · Aµ
+(x)Aν

−(y)

■ Non retarded boundary conditions unless z(~p) ≡ 1 :

a
(+)
+ (−∞, ~p) = a

(−)
− (−∞, ~p) = 0

a
(+)
− (+∞, ~p) = z(~p) a

(+)
+ (+∞, ~p)

a
(−)
+ (+∞, ~p) = z(~p) a

(−)
− (+∞, ~p)

where : Aǫ(x) ≡

Z
d3~p

(2π)32Ep

h

a(+)
ǫ (x0, ~p) e−ip·x + a(−)

ǫ (x0, ~p) e+ip·x
i
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Factorization at small x
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What is the problem ?

■ Naive perturbative expansion :

dN

d3~p
=

1

g2

[

c0 + c1 g2 + c2 g4 + · · ·
]

Note : so far, we have seen how to compute c0 given ρ
1,2

■ Problem : c1,2,··· contain logarithms of 1/x1,2 :

c1 = c10 + c11 ln
( 1

x1,2

)

c2 = c20 + c21 ln
( 1

x1,2

)

+ c22 ln2
( 1

x1,2

)

︸ ︷︷ ︸

Leading Log terms

■ At small x1,2, these logs are large, and we would like to
resum all the terms that have as many logs as powers of g2
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What is the problem ?

■ For the single gluon spectrum in AA collisions, one would
like to establish a formula such as :

fi
dN

d3~p

fl

=
LLog

Z
ˆ
Dρ1 Dρ2

˜
W

Ybeam−y
[ρ1] Wy+Ybeam

[ρ2]
dN

d3~p

˛
˛
˛
˛
LO

with
∂

∂Y
W

Y
= HW

Y

p

ρ1ρ2 y + Ybeam- Ybeam

◆ All the leading logs of 1/x1,2 are absorbed in the W ′s

◆ The W ′s obey the JIMWLK evolution equation
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Factorization in four easy steps

■ I : Express the single gluon spectrum at LO and NLO in
terms of classical fields and small field fluctuations. Check
that their boundary conditions are retarded

■ II : Write the NLO terms as a perturbation of the initial value
of the classical fields on the light-cone :

dN

d3~p

˛
˛
˛
˛
NLO

=
h1

2

Z

~u,~v∈LC

G(~u, ~v)TuTv +

Z

~u∈LC

β(~u)Tu

i dN

d3~p

˛
˛
˛
˛
LO

■ III : For ~u, ~v on the same branch of the light-cone, one has :

1

2

Z

~u,~v∈LC

G(~u, ~v)TuTv+

Z

~u∈LC

β(~u)Tu = log
“Λ+

p+

”

×H + finite terms

■ IV : There are no other logs. Factorization follows trivially
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Single gluon spectrum at LO

■ LO results for the single gluon spectrum :

◆ At LO, the single gluon spectrum can be expressed in
terms of classical solutions of the field equation of motion

◆ These classical fields obey retarded boundary conditions

dN

d3~p

∣
∣
∣
∣
LO

= lim
t→+∞

∫

d3~xd3~y ei~p·(~x−~y) · · · Aµ(t, ~x) Aν(t, ~y)

[
Dµ,Fµν

]
= Jν

lim
t→−∞

Aµ(t, ~x) = 0



Introduction

Bookkeeping

Classical fields

Factorization

● What is the problem ?

● Leading order

● Next to Leading Order

● Initial field perturbation

● JIMWLK Hamiltonian

● Extensions

Summary

CERN

François Gelis – 2007 Lecture III / IV – Hadronic collisions at the LHC and QCD at high density, Les Houches, March-April 2008 - p. 39

Single gluon spectrum at LO

■ Retarded classical fields are sums of tree diagrams :

x y
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Single gluon spectrum at LO

■ Retarded classical fields are sums of tree diagrams :

x y

Ainitial

■ Note : the gluon spectrum is a functional of the value of the
classical field just above the backward light-cone :

dN

d3~p
= F [Ainitial]
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Single gluon spectrum at NLO

■ 1-loop graphs contributing to the gluon spectrum at NLO :
x y x y

dN

d3~p

∣
∣
∣
∣
NLO

= lim
t→+∞

∫

d3~xd3~y ei~p·(~x−~y) · · ·
[

Gµν(x, y)

+βµ(t, ~x) Aν(t, ~y) + Aµ(t, ~x) βν(t, ~y)
]

◆ Gµν is a 2-point function on top of the classical field
◆ βµ is a small field fluctuation driven by a 1-loop source
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Single gluon spectrum at NLO

■ The 2-point function Gµν can be written as

G(x, y) =

Z
d3~k

(2π)32Ek

a−k(x) a+k(y)

with

8

><

>:

δ2S
Y M

δA2
· a±k = 0

lim
t→−∞

a±k(t, ~x) = ǫ(k) e±ik·x

■ The equation of motion for βµ reads

δ2S
Y M

δA2
· β =

∂3S
Y M

(A)

∂A3

| {z }

1

2

Z
d3~k

(2π)32Ek

a−k(x) a+k(x)

| {z }

3-gluon vertex in
the background A

value of the loop

lim
t→−∞

β(t, ~x) = 0
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Single gluon spectrum at NLO

■ The retarded nature of the field fluctuations allows a
factorization between the initial condition (calculable
analytically) and the evolution on top of Aµ (complicated) :

aµ(x) =
[ ∫

~u∈LC

a(u) ·Tu

]

︸ ︷︷ ︸

Aµ(x)

initial condition

◆ ’LC’ is a surface just above the backward light-cone

◆ Tu is the generator of shifts of the initial
value of the fields on this surface :

F [Ainitial + a] ≡ exp
h Z

~u∈LC

a(u) ·Tu

i

F [Ainitial]
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Single gluon spectrum at NLO

■ 1-loop graphs contributing to the gluon spectrum at NLO :
x y

u

v

x y

u

v

x y

u

■ The NLO corrections can be written as :

dN

d3~p

˛
˛
˛
˛
NLO

=
h1

2

Z

~u,~v∈LC

G(~u, ~v)TuTv +

Z

~u∈LC

β(~u)Tu

i dN

d3~p

˛
˛
˛
˛
LO

⊲ the functions G(~u, ~v) and β(~u) can be evaluated analytically



Introduction

Bookkeeping

Classical fields

Factorization

● What is the problem ?

● Leading order

● Next to Leading Order

● Initial field perturbation

● JIMWLK Hamiltonian

● Extensions

Summary

CERN

François Gelis – 2007 Lecture III / IV – Hadronic collisions at the LHC and QCD at high density, Les Houches, March-April 2008 - p. 44

Divergences

■ If ~u, ~v belong to the same branch of the LC (e.g.
u− = v− = ǫ), the function G(~u, ~v) contains

G(~u, ~v) ∼
∫ +∞

0

dk+

k+
· · · eik−(u+−v+) with k− ≡ k2

⊥
2k+

⊲ the integral converges at k+ = 0 but not when k+ → +∞

Note : the log is a log(Λ+/p+), where Λ+ is the boundary
between the hard color sources and the fields, and p+ the
longitudinal momentum of the produced gluon

p+

p

ρ1Λ+
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JIMWLK Hamiltonian

■ When ~u, ~v are on the same branch of the LC, we have
h1

2

Z

~u,~v∈LC

G(~u, ~v)TuTv +

Z

~u∈LC

β(~u)Tu

i

=
LLog

log

„
Λ+

p+

«

×
h

JIMWLK H
i

■ The configuration where ~u, ~v are on the first branch of the
LC can be rewritten as

dN

d3~p

∣
∣
∣
∣
NLO

=
LLog

log

(
Λ+

p+

)

H1
dN

d3~p

∣
∣
∣
∣
LO

with H1 the JIMWLK Hamiltonian for the first nucleus

■ Including also the configuration where both ~u, ~v are on the
second branch of the LC, we get

dN

d3~p

∣
∣
∣
∣
NLO

=
LLog

[

log

(
Λ+

p+

)

H1 + log

(
Λ−

p−

)

H2

] dN

d3~p

∣
∣
∣
∣
LO



Introduction

Bookkeeping

Classical fields

Factorization

● What is the problem ?

● Leading order

● Next to Leading Order

● Initial field perturbation

● JIMWLK Hamiltonian

● Extensions

Summary

CERN

François Gelis – 2007 Lecture III / IV – Hadronic collisions at the LHC and QCD at high density, Les Houches, March-April 2008 - p. 46

Leading Log divergences

■ The only remaining possibility is to have ~u and ~v on different
branches of the LC

η µ
-k(u) η ν

+k(v)

LC

However, there is no log
divergence in this case, since
the k+ integral is of the form :
∫

dk+

k+
· · · eik+(u−−v−) eik−(u+−v+)

⊲ no mixing of the
divergences of the two nuclei

■ Therefore, one gets the expected factorization formula :
〈

dN

d3~p

〉

LLog

=

∫
[
Dρ

1
Dρ

2

]
W

Y1
[ρ

1
]W

Y2
[ρ

2
]

dN

d3~p

∣
∣
∣
∣
LO

with Y1 = log(
√

s/p+) , Y2 = log(
√

s/p−)
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Extensions

■ One can prove similar factorization results for the inclusive
two-gluon spectrum,

〈
d2N

d3~p1d
3~p2

〉

LLog

=

∫
[
Dρ

1
Dρ

2

]
W

Y1
[ρ

1
]W

Y2
[ρ

2
]

dN

d3~p1

∣
∣
∣
∣
LO

× dN

d3~p2

∣
∣
∣
∣
LO

(valid provided the two gluons are nearby in rapidity)

■ Obvious extensions of this result hold for the n-gluon
spectrum

■ When there is a large rapidity separation between the
measured gluons, additional large logs that are not
resummed by this formula can exist
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Summary
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Summary

■ Nucleus-nucleus collisions are not a good framework in
order to probe saturation, but the physics of saturation is
crucial in order to correctly assess what happens in the early
stages of AA collisions

◆ Leading order ⊲ classical fields
(retarded in the case of inclusive observables)

◆ The resummation of Leading Logs of 1/x1,2 can be
factorized in the evolved distribution of color sources

■ Next lecture : among the higher order corrections, there are
other terms that may become large due to an instability

⊲ these terms must also be resummed
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Extra bits
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Inclusive quark spectrum

FG, Kajantie, Lappi (2004, 2005)

■ One can construct for quarks an operator Cq that plays the
same role as C for the gluons

■ By repeating the same arguments, we find two generic
topologies contributing to the inclusive quark spectrum :

(the blobs are sums of cut diagrams)

■ The first topology cannot exist because the quark line is not
closed on itself

⊲ the quark spectrum starts at one loop
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Quark production at one loop

■ At lowest order (one loop), the quark spectrum reads :

dNq

dY d2~p⊥

=
1

16π3

Z

x,y

eip·x u(~p) (i
→

/∂ x −m) S+−(x, y) (i
←

/∂ y +m) u(~p) e−ip·y

where S+− is the quark propagator (with one endpoint on each side
of the cut) to which are attached tree graphs in all the possible ways
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Quark production at one loop

■ At lowest order (one loop), the quark spectrum reads :

dNq

dY d2~p⊥

=
1

16π3

Z

x,y

eip·x u(~p) (i
→

/∂ x −m) S+−(x, y) (i
←

/∂ y +m) u(~p) e−ip·y

where S+− is the quark propagator (with one endpoint on each side
of the cut) to which are attached tree graphs in all the possible ways

■ We need to calculate the sum of the following tree diagrams :

x y
+ -
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Quark production at one loop

■ At lowest order (one loop), the quark spectrum reads :

dNq

dY d2~p⊥

=
1

16π3

Z

x,y

eip·x u(~p) (i
→

/∂ x −m) S+−(x, y) (i
←

/∂ y +m) u(~p) e−ip·y

where S+− is the quark propagator (with one endpoint on each side
of the cut) to which are attached tree graphs in all the possible ways

■ We need to calculate the sum of the following tree diagrams :

x y
+ -

■ Perform a resummation of all the sub-diagrams that
correspond to the retarded classical solution :

∑
trees
cuts

= ∑
trees

=
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Quark propagator

■ The summation of all the classical field insertions can be
done by solving a Lippmann-Schwinger equation :

Sǫǫ′(x, y) = S0
ǫǫ′(x, y)−ig

X

η=±

(−1)η

Z

d4z S0
ǫη(x, z)Aµ(z)γµSηǫ′(z, y)

■ This equation is rather non-trivial to solve in this form,
because of the mixing of the 4 components of the
propagator. Perform a rotation on the ± indices :

Sǫǫ′ → Sαβ ≡
X

ǫ,ǫ′=±

UαǫUβǫ′Sǫǫ′

(−1)ǫδǫǫ′ → Σαβ ≡
X

ǫ=±

UαǫUβǫ(−1)ǫ

■ A useful choice for the rotation matrix U is U = 1√
2

(

1 −1

1 1

)
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Quark propagator

■ Under this rotation, the matrix propagator and field insertion
become :

Sαβ =

0

@
0 S

A

S
R

S
D

1

A , Σαβ =

0

@
0 1

1 0

1

A

where S0
D

(p) = 2π(/p + m)δ(p2 − m2)

■ The main simplification comes from the fact that S0
Σ is the

sum of a diagonal matrix and a nilpotent matrix

■ One finds that S
R

and S
A

do not mix, i.e. they obey
equations such as :

S
R

(x, y) = S0
R

(x, y) − i g

Z

d4z S0
R

(x, z)Aµ(z)γµS
R

(z, y)

■ One can solve S
D

in terms of S
R

and S
A

:

S
D

= S
R
∗ S0

R

−1 ∗ S0
D
∗ S0

A

−1 ∗ S
A
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Quark propagator

■ In order to go back to S+−, invert the rotation :

S+− =
1

2
[S

A
− S

R
− S

D
]

■ At this point, we can rewrite the quark spectrum in terms of
retarded and advanced quark propagators in the classical
background

■ Finally, one can rewrite it in terms of retarded solutions of the
Dirac equation on top of the background Aµ(x)

dNq

dY d2~p⊥

=
1

16π3

Z
d3~q

(2π)32Eq

˛
˛
˛M(~p, ~q)

˛
˛
˛

2

with

M(~p, ~q) = lim
x0→+∞

Z

d3~x eip·x u†(~p)ψq (x)

(i/∂x−g /A(x)−m)ψq (x) = 0 , ψq (x0, ~x) =
x0→−∞

v(~q)eiq·x
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Quark propagator

■ This calculation amounts to summing the following
diagrams :
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Background field

■ Space-time structure of the classical color field:

z

t

0

21

3
◆ Region 0: Aµ = 0

◆ Region 1: A± = 0,
Ai = i

g
U1∇

i
⊥U†

1

◆ Region 2: A± = 0,
Ai = i

g
U2∇

i
⊥U†

2

◆ Region 3: Aµ 6= 0

■ Notes:
◆ In the region 3, Aµ is known only numerically
◆ We must solve the Dirac equation numerically as well
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Quark propagation

■ Propagation through region 0:

z

t

⊲ trivial because there is no background field

ψq (x) = v(~q)eiq·x
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Quark propagation

■ Propagation through region 1:

z

t τ i

⊲ Pure gauge background field

⊲ ψ
q,1(τi) can be obtained analytically
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Quark propagation

■ Propagation through region 2:

z

t τ i

⊲ Pure gauge background field

⊲ ψ
q,2(τi) can be obtained analytically
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Quark propagation

■ Propagation through region 3:

z

t τ iτ f

⊲ One must solve the Dirac equation :
ˆ
i/∂ − g /A− m

˜
ψq(τ, η, ~x⊥) = 0

⊲ initial condition: ψq (τi) = ψq,1(τi) + ψq,2(τi)

(τi = 0+ in practice)
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Time dependence

■ g2µ = 2 GeV , (*) g2µ = 1 GeV :

0 0.05 0.1 0.15 0.2 0.25
τ [fm]

0
10

0
20

0
30

0
dN

 / 
dy

m = 60 MeV
m = 300 MeV
m = 600 MeV
m = 1.5 GeV
m = 300 MeV *
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Spectra for various quark masses

■ g2µ = 2 GeV , τ = 0.25 fm :

0 1 2 3 4
q̂ [GeV]

0
5×

10
4

1×
10

5
2×

10
5

dN
/d

yd
2 q T

 [
ar

bi
tr

ar
y 

un
its

]

m = 60 MeV
m = 300 MeV
m = 600 MeV
m = 1.5 GeV
m = 3 GeV
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