Gluon saturation from DIS to AA collisions II – Proton-nucleus collisions

François Gelis CERN and CEA/Saclay

General outline

Introduction

Solution of YM equations

Gluon production

Heavy quark production

- Lecture I : Gluon saturation in DIS
- Lecture II : Proton-nucleus collisions
- Lecture III : AA collisions : gluon production
- Lecture IV : AA collisions : glasma instabilities

Lecture II : Proton-nucleus collisions

Introduction

Solution of YM equations

Gluon production

Heavy quark production

- Solution of Yang-Mills equations
- Gluon production
- Heavy quark production

Introduction

Solution of YM equations

Gluon production

Heavy quark production

Introduction

François Gelis – 2007

Lecture II / IV - Hadronic collisions at the LHC and QCD at high density, Les Houches, March-April 2008 - p. 4

Probing saturation in ideal conditions

Introduction

Solution of YM equations

Gluon production

Heavy quark production

Probing saturation in ideal conditions

Solution of YM equations

Gluon production

Heavy quark production

Ideally, one would like to collide the saturated nucleon/nucleus with a well known simple probe that does not involve QCD at all > Deep Inelastic Scattering

Probing saturation in ideal conditions

Introduction

Solution of YM equations

Gluon production

Heavy quark production

- Ideally, one would like to collide the saturated nucleon/nucleus with a well known simple probe that does not involve QCD at all > Deep Inelastic Scattering
- The next best thing is to probe a saturated hadron with another hadron which is not saturated
 - preferably, the probe should be a nucleon not a nucleus whose relevant parton content is not at small x

Introduction

Solution of YM equations

- Covariant gauge
- Order 0
- Order 1
- Other gauges

Gluon production

Heavy quark production

Solution of YM equations

Introduction

|--|

- Covariant gauge
 Order 0
- Order 1
- Other gauges

Gluon production

Heavy quark production

YM equations in covariant gauge

Blaizot, FG, Venugopalan (2004)

We must solve the Yang-Mills equations with the current :

$$J^{\mu}(x) \equiv \delta^{\mu +} \,\delta(x^{-}) \rho_{A}(\vec{x}_{\perp}) + \delta^{\mu -} \,\delta(x^{+}) \rho_{p}(\vec{x}_{\perp})$$

- Initial condition : the gauge field vanishes at $x^0 \to -\infty$
- The proton source density ρ_{p} is much smaller than the nuclear one. We will only keep the first order in ρ_{p}

Order 0 in the proton source

Introduction

Solution of YM equations

Covariant gauge

• Order 0

Order 1

Other gauges

Gluon production

Heavy quark production

In covariant gauge, $\partial_{\mu}A^{\mu} = 0$, the YM equations can be rewritten as :

$$\exists A^{\nu} = J^{\nu} + ig[A_{\mu}, F^{\mu\nu} + \partial^{\mu}A^{\nu}]$$

One must also enforce current conservation :

 $[D_{\mu}, J^{\mu}] = 0$

Reminder : solution at order ρ_{p}^{0} (nucleus alone)

$$A_{0}^{+} = -\delta(x^{-}) \frac{1}{\partial_{\perp}^{2}} \rho_{A}(\boldsymbol{x}_{\perp}) \quad , \qquad A_{0}^{-} = A_{0}^{i} = 0$$

(covariant current conservation is trivial at this order)

Note : the color field of the proton alone is :

$$A^{\mu}_{\mathbf{p}} = -\,\delta^{\mu-}\,\delta(x^+)\frac{1}{\partial_{\perp}^2}\rho_{\mathbf{p}}(\vec{x}_{\perp})$$

Order 1 in the proton source

Introduction

Solution of YM equations

- Covariant gauge
- Order 0
- Order 1

Other gauges

Gluon production

Heavy quark production

• Color precession of the nuclear current J^+ :

Multiple scatterings of a gluon in the nuclear field :

Order 1 in the proton source

Introduction

Solution of YM equations

Covariant gauge

• Order 0

Order 1

Other gauges

Gluon production

Heavy quark production

Solution at order ρ_{p}^{1} in momentum space :

$$\begin{split} A_{1}^{\mu}(\boldsymbol{k}) &= A_{p}^{\mu}(\boldsymbol{k}) + \frac{i\boldsymbol{g}}{k^{2}} \int \frac{d^{2}\boldsymbol{\vec{k}}_{1\perp}}{(2\pi)^{2}} \left\{ C_{U}^{\mu} \Big[\boldsymbol{U}(\boldsymbol{\vec{k}}_{2\perp}) - (2\pi)^{2} \delta(\boldsymbol{\vec{k}}_{2\perp}) \Big] \right\} \\ &+ C_{V}^{\mu} \Big[\boldsymbol{V}(\boldsymbol{\vec{k}}_{2\perp}) - (2\pi)^{2} \delta(\boldsymbol{\vec{k}}_{2\perp}) \Big] \Big\} \frac{\rho_{p}(\boldsymbol{\vec{k}}_{1\perp})}{\boldsymbol{k}_{1\perp}^{2}} \end{split}$$

$$\begin{split} C_{U}^{-} &\equiv -\frac{k_{1\perp}^{2}}{k^{+}}, C_{U}^{+} \equiv \frac{k_{2\perp}^{2} - k_{\perp}^{2}}{k^{-}}, C_{U}^{i} \equiv -2k_{1}^{i} \\ C_{V}^{-} &\equiv 2k^{-}, C_{V}^{+} \equiv -2k^{+} + 2\frac{k_{\perp}^{2}}{k^{-}}, C_{V}^{i} \equiv 2k^{i} \\ U(\vec{k}_{2\perp}) &\equiv \int_{\vec{x}_{\perp}} e^{-i\vec{k}_{2\perp}\cdot\vec{x}_{\perp}} \text{ T } \exp ig \int dz^{-} A_{0}^{+}(z^{-},\vec{x}_{\perp}) \\ V(\vec{k}_{2\perp}) &\equiv \int_{\vec{x}_{\perp}} e^{-i\vec{k}_{2\perp}\cdot\vec{x}_{\perp}} \text{ T } \exp i\frac{g}{2} \int dz^{-} A_{0}^{+}(z^{-},\vec{x}_{\perp}) \end{split}$$

Note the weird factor 1/2 in the exponential in V...

Introduction

Solution of YM equations

Covariant gaugeOrder 0

• Order 1

• Other gauges

Gluon production

Heavy quark production

Order 1 in the proton source

• Properties of C^{μ}_{U} and C^{μ}_{V} :

For any k: $k \cdot C_U = k \cdot C_V = 0$ For k on-shell: $C_U \cdot C_V = C_V^2 = 0$ $C_U^2 = -4 \frac{k_{1\perp}^2 k_{2\perp}^2}{k_{\perp}^2}$ (Lipatov's vertex)

Properties of U and V : Define U and V with bounds in the integration over z^- , e.g.

$$U(y^{-}, x^{-} | \vec{x}_{\perp}) \equiv \mathrm{T} \exp ig \int_{x^{-}}^{y^{-}} dz^{-} A_{0}^{+}(z^{-}, \vec{x}_{\perp})$$

Exercise : prove that we have :

$$U(y^{-},x^{-}) - V(y^{-},x^{-}) = \frac{ig}{2} \int_{x^{-}}^{y^{-}} d\mathbf{z}^{-} U(y^{-},\mathbf{z}^{-}) A_{0}^{+}(\mathbf{z}^{-}) V(\mathbf{z}^{-},x^{-})$$

Solution in other gauges

Introduction

Solution of YM equations
Covariant gauge

- Order 0
- Order 1

Other gauges

Gluon production

Heavy quark production

Schwinger gauge : $x^+A^- + x^-A^+ = 0$

Dumitru, McLerran (2002)

• Light-cone gauge of the proton : $A^- = 0$

FG, Mehtar-Tani (2006)

The advantage of this gauge is that the proton does not affect the sources of the nucleus. The nuclear field can be treated as a background that one calculates once for all

Introduction

Solution of YM equations

Gluon production

- Amplitude
- Gluon yield
- MV model
- Forward high pt suppression
- Limiting fragmentation
- Distribution of recoils

Heavy quark production

Gluon production

Amplitude

Introduction

Solution of YM equations

Gluon production

Amplitude

Gluon yield

- MV model
- Forward high pt suppression
- Limiting fragmentation

Distribution of recoils

Heavy quark production

The gluon production amplitude is given by :

$$\mathcal{M}^{(\lambda)}_{\mathrm{g}}(oldsymbol{k}) = k^2 \; A^{\mu}_1(k) \; \epsilon^{(\lambda)}_{\mu}(oldsymbol{k})$$

Sum over the polarizations :

$$\sum_{\lambda} \epsilon_{\mu}^{(\lambda)}(\boldsymbol{q}) \epsilon_{\nu}^{(\lambda)*}(\boldsymbol{q}) = -g_{\mu\nu}$$

(using this formula includes non physical polarizations as well, but they do not contribute thanks to the transversality of the color field)

• When we square the amplitude, we only get a correlator $\langle UU^{\dagger} \rangle$, thanks to the properties of C_{U}^{μ} and C_{V}^{μ} (in particular, V does not contribute)

Gluon yield

Introduction

Solution of YM equations

Gluon production

Amplitude

Gluon yield

MV model

- Forward high pt suppression
- Limiting fragmentation

Distribution of recoils

Heavy quark production

After squaring the amplitude, one gets :

$$\frac{dN_{\rm g}}{d^2\vec{\boldsymbol{k}}_{\perp}dy} \sim \frac{\alpha_s}{\boldsymbol{k}_{\perp}^2} \int \frac{d^2\boldsymbol{p}_{\perp}}{(2\pi)^2} \ \phi_{\rm p}(\boldsymbol{k}_{\perp}-\boldsymbol{p}_{\perp}) \ \frac{d\phi_A(\boldsymbol{p}_{\perp}|\boldsymbol{b})}{d^2\boldsymbol{X}_{\perp}}$$

Note : this formula is compatible with k_{\perp} -factorization (see Kovchegov, Tuchin (2002) for a proof that this formula is valid at leading log)

- $\phi_{\rm p}$ is the non integrated gluon distribution of the proton
- $d\phi_A/d^2 X_{\perp}$ is the non integrated gluon distribution of the nucleus, at the impact parameter **b**:

$$\frac{d\phi_A(\vec{p}_\perp|\boldsymbol{b})}{d^2\vec{X}_\perp} = \frac{\boldsymbol{p}_\perp^2}{4\alpha_s N_c} \int d^2\vec{r}_\perp \ e^{i\vec{p}_\perp\cdot\vec{r}_\perp} \ \mathrm{tr}\Big\langle U(\boldsymbol{b} + \frac{\vec{r}_\perp}{2})U^{\dagger}(\boldsymbol{b} - \frac{\vec{r}_\perp}{2})\Big\rangle$$

Gluon yield

Introduction

Solution of YM equations

- Gluon production
- Amplitude
- Gluon yield
- MV model
- Forward high pt suppression
- Limiting fragmentation
- Distribution of recoils

Heavy quark production

Limit of collinear factorization in the proton :

If one assumes that the proton non integrated gluon distribution is much narrower than the nuclear one, we can assume

$$ig| k_\perp - p_\perp ig| \ll ig| p_\perp ig|$$

and thus

 $p_\perp pprox k_\perp$

Therefore,

$$\frac{dN_{\rm g}}{d^2 \vec{\boldsymbol{k}}_{\perp} dy} \sim \frac{\alpha_s}{\boldsymbol{k}_{\perp}^2} \frac{d\phi_A(\boldsymbol{k}_{\perp} | \boldsymbol{b})}{d^2 \boldsymbol{X}_{\perp}} \underbrace{\int \int \frac{d^2 \boldsymbol{q}_{\perp}}{(2\pi)^2} \phi_{\rm p}(\boldsymbol{q}_{\perp})}{x_1 G_{\rm p}(x_1, \boldsymbol{k}_{\perp}^2)}$$

Introduction

Solution of YM equations

Gluon production

Amplitude

Gluon yield

- MV model
- Forward high pt suppression
- Limiting fragmentation
- Distribution of recoils

Heavy quark production

- The JIMWLK equation must be completed by an initial condition, given at some moderate x_0
- The McLerran-Venugopalan model is often used as an initial condition at moderate x_0 for a large nucleus :

- partons distributed randomly
- many partons in a small tube
- no correlations at different $ec{x}_{\perp}$

The MV model assumes that the density of color charges $\rho(\vec{x}_{\perp})$ has a Gaussian distribution :

$$W_{Y}[\boldsymbol{\rho}] = \exp\left[-\int d^{2}\boldsymbol{\vec{x}}_{\perp} \frac{\boldsymbol{\rho}_{a}(\boldsymbol{\vec{x}}_{\perp})\boldsymbol{\rho}_{a}(\boldsymbol{\vec{x}}_{\perp})}{2\mu^{2}(Y)}\right]$$

Introduction

Solution of YM equations

Gluon p	oroduction
---------	------------

- Amplitude
- Gluon yield

● MV model

- Forward high pt suppression
- Limiting fragmentation
- Distribution of recoils

Heavy quark production

$$W_{Y}[\rho_{A}] = \exp\left[-\int_{\vec{\boldsymbol{x}}_{\perp}} \frac{\rho_{A,a}(\vec{\boldsymbol{x}}_{\perp})\rho_{A,a}(\vec{\boldsymbol{x}}_{\perp})}{2\mu_{A}^{2}(Y)}\right]$$

Lecture II / IV – Hadronic collisions at the LHC and QCD at high density, Les Houches, March-April 2008 - p. 18

Introduction

Solution of YM equations

Gluon production

AmplitudeGluon yield

• MV model

- Forward high pt suppression
- Limiting fragmentation
- Distribution of recoils

Heavy quark production

Gluon spectrum in the MV model:

Introduction

Solution of YM equations

Gluon production

Amplitude

Gluon yield

MV model

- Forward high pt suppression
- Limiting fragmentation
- Distribution of recoils

Heavy quark production

(stronger effect if Q_s is larger)

High pt suppression at large Y

Introduction

Solution of YM equations

Gluon production

Amplitude

Gluon yield

• MV model

Forward high pt suppression

- Limiting fragmentation
- Distribution of recoils

Heavy quark production

Results of the BRAHMS experiment at RHIC for deuteron-gold collisions :

- At small rapidity, suppression at low p_{\perp} and enhancement at high p_{\perp} (multiple scatterings Cronin effect)
- At large rapidity, suppression at all p_{\perp} 's (shadowing)

Kinematics

Introduction

Solution of YM equations

Amplitude

Gluon yield

• MV model

Forward high pt suppression

Limiting fragmentation

• Distribution of recoils

Heavy quark production

- Note : the MV model has some Cronin effect, but cannot lead to a suppression at forward rapidity
- Evolution to small-x (BK, JIMWLK) leads to a suppression

RdA at RHIC from the BK equation

Introduction

Solution of YM equations

Amplitude

Gluon yield

• MV model

Forward high pt suppression

Limiting fragmentation

Distribution of recoils

Heavy quark production

Albacete, Armesto, Kovner, Salgado, Wiedemann (2004)

RpA at LHC from the BK equation

Introduction

Solution of YM equations

Amplitude

Gluon yield

• MV model

Forward high pt suppression

Limiting fragmentation

Distribution of recoils

Heavy quark production

dA collisions at RHIC

Kharzeev, Kovchegov, Tuchin (2005)

Gluon production

Amplitude

Solution of YM equations

Gluon yield

Introduction

• MV model

Forward high pt suppression

Limiting fragmentation

Distribution of recoils

Heavy quark production

François Gelis – 2007

Lecture II / IV – Hadronic collisions at the LHC and QCD at high density, Les Houches, March-April 2008 - p. 25

dA collisions at RHIC

Dumitru, Hayashigaki, Jalilian-Marian (2005 – 2006)

Introduction

Solution of YM equations

Amplitude

Gluon yield

MV model

Forward high pt suppression

Limiting fragmentation

• Distribution of recoils

Heavy quark production

Note : the model predicts only the slope of the spectrum; its normalization is adjusted by a *Y*-dependent *K*-factor

Limiting fragmentation (RHIC)

Lecture II / IV – Hadronic collisions at the LHC and QCD at high density, Les Houches, March-April 2008 - p. 27

Qualitative explanation

Introduction

Solution of YM equations

Gluon production

- AmplitudeGluon yield
- MV model
- Forward high pt suppression

Limiting fragmentation

Distribution of recoils

Heavy quark production

The ratio of the two saturation scales is : $Q_s^2(x_2)/Q_s^2(x_1) \sim \exp(2\lambda Y) \sim 20$ with $\lambda \approx 0.3$ and Y = 5

> neglect the transverse momentum in the projectile at large x_1 compared to that in the projectile at small x_2

> use collinear factorization for projectile 1

The spectrum reads :

$$\frac{dN_{\rm g}}{d^2 \vec{\boldsymbol{p}}_{\perp} dY} \sim x_1 f(x_1, \boldsymbol{p}_{\perp}^2) \, \underline{\int d^2 \vec{\boldsymbol{r}}_{\perp} \, e^{i \vec{\boldsymbol{p}}_{\perp} \cdot \vec{\boldsymbol{r}}_{\perp}} \, \left\langle \operatorname{tr} \left(U(0) U^{\dagger}(\vec{\boldsymbol{r}}_{\perp}) \right) \right\rangle_{x_2}}$$

Note : the underlined factor becomes independent of x_2 when integrated over \vec{p}_{\perp} because of the unitarity of the Wilson lines

• At large x_1 , $x_1 f(x_1, p_{\perp}^2)$ is almost independent of p_{\perp}^2 (Bjorken scaling), and the integration over \vec{p}_{\perp} leads to :

 $\frac{dN}{dY} \propto x_1 f(x_1) \quad \Rightarrow \quad \text{depends only on } x_1 \sim \exp(Y - Y_{\text{beam}})$

Distribution of recoils

FG, Borghini (2006)

Since in this description a pA collision amounts to multiple scatterings of a parton from the proton on those of the nucleus, an interesting issue is the distribution of the recoils when the incoming parton is scattered at a high p_{\perp}

- If the recoil momentum is shared evenly between a large number of partons, the final state will look like a monojet
- If a single parton takes most of the recoil, then the final state will look like a standard di-jet event

Solution of YM equations

Gluon production

Amplitude

Introduction

- Gluon yield
- MV model
- Forward high pt suppression
- Limiting fragmentation

Distribution of recoils

Heavy quark production

Number of recoils above Ktmin

• When $Q_s \lesssim k_{\perp}^{\min} \lesssim k_{\perp}$, there is only one recoil

 \triangleright the momentum of the scattered parton is absorbed by a single source \triangleright pair of jets rather than a monojet

Levy random walks

Introduction

Solution of YM equations

Gluon production

- Amplitude
- Gluon yield
- MV model
- Forward high pt suppression
- Limiting fragmentation

Distribution of recoils

Heavy quark production

- Interpretation : the scattering of the incoming parton can be seen a a random walk in p_{\perp} space, with a probability $\mathcal{P}(k_{\perp})$ to gain \vec{k}_{\perp} at each step of the random walk
- A crucial property of $\mathcal{P}(k_{\perp})$ is whether its second moment,

$$\sigma \equiv \int d^2 ec{m k}_\perp \; k_\perp^2 \; {\cal P}(k_\perp) \;, \quad {
m is \ finite \ or \ not}$$

Levy random walks

Introduction

Solution of YM equations

Gluon production

- Amplitude
- Gluon yield
- MV model
- Forward high pt suppression
- Limiting fragmentationDistribution of recoils

Heavy quark production

- Interpretation : the scattering of the incoming parton can be seen a a random walk in p_⊥ space, with a probability P(k_⊥) to gain k_⊥ at each step of the random walk
- A crucial property of $\mathcal{P}(k_{\perp})$ is whether its second moment,

$$\sigma \equiv \int d^2 ec{m k}_\perp \; k_\perp^2 \; {\cal P}(k_\perp) \;, \quad$$
 is finite or not

If σ is finite, the random walk takes an exponentially large number of steps to get far from the origin :

Levy random walks

Introduction

Solution of YM equations

Gluon production

- Amplitude
- Gluon yield
- MV model
- Forward high pt suppression
- Limiting fragmentationDistribution of recoils

Heavy quark production

- Interpretation : the scattering of the incoming parton can be seen a a random walk in p_⊥ space, with a probability P(k_⊥) to gain k_⊥ at each step of the random walk
- A crucial property of $\mathcal{P}(k_{\perp})$ is whether its second moment,

$$\sigma \equiv \int d^2 ec{m k}_\perp \; k_\perp^2 \; {\cal P}(k_\perp) \;, \quad$$
 is finite or not

If σ is infinite (true for the MV model), the random walk can go far from the origin in one big step and a few small ones :

Introduction

Solution of YM equations

Gluon production

Heavy quark production

Amplitude

- Pair cross-section
- Quark cross-section
- Kt factorization
- Cronin effect
- Pair production

Heavy quark production

Heavy quark production

Introduction

Solution of YM equations

Gluon production

Heavy quark production

- Amplitude
- Pair cross-section
- Quark cross-section
- Kt factorization
- Cronin effect
- Pair production

Blaizot, FG, Venugopalan (2004), Tuchin (2004)

We expect that the pair is produced either before or after the collision with the nucleus. The production of the pair inside the nucleus should be suppressed by s^{-1/2}

Heavy quark production

Introduction

Solution of YM equations

Gluon production

Heavy quark production

- Amplitude
- Pair cross-section
- Quark cross-section
- Kt factorization
- Cronin effect
- Pair production

Blaizot, FG, Venugopalan (2004), Tuchin (2004)

• We expect that the pair is produced either before or after the collision with the nucleus. The production of the pair inside the nucleus should be suppressed by $s^{-1/2}$

- The manifestation of this property is somewhat obfuscated at the amplitude level :
 - True for the amplitude if the classical field A^{μ} inside the nucleus remains bounded when $s \to \infty$
 - This is not the case in covariant gauge...
 - One must split the field into a singular part (proportional to
 - $\delta(x^{-})$) and a regular part (that has no $\delta(x^{-})$)

Quark production amplitude

Introduction

Solution of YM equations

Gluon production

- Heavy quark production
- Amplitude
- Pair cross-section
- Quark cross-section
- Kt factorization
- Cronin effect
- Pair production

Regular contributions to the amplitude:

$$\begin{split} \mathcal{M}_{Q\overline{Q}}^{\mathrm{reg}} &= g^{2} \int_{\vec{k}_{1\perp},\vec{k}_{\perp}} \frac{\rho_{\mathrm{p},a}(\vec{k}_{1\perp})}{k_{1\perp}^{2}} \int_{\vec{x}_{\perp},\vec{y}_{\perp}} e^{i\vec{k}_{\perp}\cdot\vec{x}_{\perp}} e^{i(\vec{p}_{\perp}+\vec{q}_{\perp}-\vec{k}_{\perp}-\vec{k}_{1\perp})\cdot\vec{y}_{\perp}} \\ &\times \overline{u}(\vec{q}) \begin{cases} \frac{\gamma^{-}(\not{q}-\not{k}+m)\gamma^{+}(\not{q}-\not{k}-\not{k}_{1}+m)\gamma^{-}[\widetilde{U}(\vec{x}_{\perp})t^{a}\widetilde{U}^{\dagger}(\vec{y}_{\perp})]}{2p^{-}[(\vec{q}_{\perp}-\vec{k}_{\perp})^{2}+m^{2}]+2q^{-}[(\vec{q}_{\perp}-\vec{k}_{\perp}-\vec{k}_{1\perp})^{2}+m^{2}]} \\ &+ t^{b} \Big[\frac{\not{C}_{U}(p+q,\vec{k}_{1\perp})}{(p+q)^{2}} U_{ba}(\vec{x}_{\perp}) - \frac{\gamma^{-}}{p^{-}+q^{-}} V_{ba}(\vec{x}_{\perp}) \Big] \bigg\} v(\vec{p}) \end{split}$$

Notes:

- \widetilde{U} is a Wilson line in the fundamental representation
- the Wilson line V is still there !

Quark production amplitude

Introduction

Solution of YM equations

Gluon production

Heavy quark production

- Amplitude
- Pair cross-section
- Quark cross-section
- Kt factorization
- Cronin effect
- Pair production

Singular diagram :

Corresponding term in the amplitude:

$$egin{aligned} \mathcal{M}^{\mathrm{sing}}_{Q\overline{Q}} &= g^2 \int_{ec{k}_{1\perp}} rac{
ho_{\mathrm{p},a}(ec{k}_{1\perp})}{k_{1\perp}^2} \int_{ec{x}_{\perp}} e^{i(ec{p}_{\perp}+ec{q}_{\perp}-ec{k}_{1\perp})\cdotec{x}_{\perp}} \ & imes rac{\overline{u}(ec{q})\gamma^-t^b v(ec{p})}{p^-+q^-} ig[V_{ba}(ec{x}_{\perp})-U_{ba}(ec{x}_{\perp})ig] \end{aligned}$$

Quark production amplitude

Introduction

Solution of YM equations

Gluon production

Heavy quark production

- Amplitude
- Pair cross-section
- Quark cross-section
- Kt factorization
- Cronin effect
- Pair production

$$\begin{split} \mathcal{M}_{F} = & g^{2} \int_{\vec{k}_{1\perp},\vec{k}_{\perp}} \frac{\rho_{\mathrm{p},a}(\vec{k}_{1\perp})}{k_{1\perp}^{2}} \int_{\vec{x}_{\perp},\vec{y}_{\perp}} e^{i(\vec{k}_{\perp}\cdot\vec{x}_{\perp})} e^{i(\vec{p}_{\perp}+\vec{q}_{\perp}-\vec{k}_{\perp}-\vec{k}_{1\perp})\cdot\vec{y}_{\perp}} \\ \times & \overline{u}(\vec{q}) \Big\{ [\widetilde{U}(\vec{x}_{\perp})t^{a}\widetilde{U}^{\dagger}(\vec{y}_{\perp})] T_{q\bar{q}}(\vec{k}_{\perp}) + [t^{b}U_{ba}(\vec{x}_{\perp})] \not L \Big\} v(\vec{p}) \end{split}$$

with

Total amplitude :

Notes:

- The V's cancel between regular and singular contributions
- The terms with the adjoint Wilson line U combine to be proportional to Lipatov's vertex L^μ
- Our original expectations are now fulfilled...

Pair cross-section

Introduction

Solution of YM equations

Gluon production

Heavy quark production

Amplitude

Pair cross-section

Quark cross-section

Kt factorization

Cronin effect

Pair production

Pair production cross-section:

$$\begin{split} \frac{d\sigma_{Q\overline{Q}}}{d^{2}\vec{p}_{\perp}d^{2}\vec{q}_{\perp}dy_{p}dy_{q}} &= \frac{\alpha_{s}^{2}N_{c}}{8\pi^{4}d_{A}} \int\limits_{\vec{k}_{1\perp},\vec{k}_{2\perp}} \frac{\delta(\vec{p}_{\perp}+\vec{q}_{\perp}-\vec{k}_{1\perp}-\vec{k}_{2\perp})}{k_{1\perp}^{2}k_{2\perp}^{2}} \\ \times \Big\{ \int_{\vec{k}_{\perp},\vec{k}_{\perp}'} \operatorname{tr}\Big[(\not\!\!\!\!/+m)T_{q\overline{q}}(\vec{k}_{\perp})(\not\!\!\!/-m)T_{q\overline{q}}^{*}(\vec{k}_{\perp}')\Big]\phi_{A}^{q\overline{q},q\overline{q}}(\vec{k}_{2\perp}|\vec{k}_{\perp},\vec{k}_{\perp}') \\ &+ \int_{\vec{k}_{\perp}} \operatorname{tr}\Big[(\not\!\!\!/+m)T_{q\overline{q}}(\vec{k}_{\perp})(\not\!\!\!/-m)\vec{L}^{*} + \operatorname{h.c.}\Big]\phi_{A}^{q\overline{q},g}(\vec{k}_{2\perp}|\vec{k}_{\perp},\vec{k}_{\perp}') \\ &+ \operatorname{tr}\Big[(\not\!\!\!/+m)\vec{L}(\not\!\!/-m)\vec{L}^{*}\Big]\phi_{A}^{g,g}(\vec{k}_{2\perp})\Big\}\phi_{\mathrm{p}}(\vec{k}_{1\perp}) \end{split}$$

 \triangleright compatible with k_{\perp} -factorization on the proton side, but not for the nucleus: one needs three different "distributions" in order to describe the nucleus

Pair cross-section

Introduction

Solution of YM equations

Gluon production

Heavy quark production

Amplitude

- Pair cross-section
- Quark cross-section
- Kt factorization
- Cronin effect
- Pair production

Nuclear "gluon distributions":

$$\phi_A^{g,g}(\vec{k}_{2\perp}) = \frac{k_{2\perp}^2}{4\alpha_s N_c} \int_{\vec{x}_\perp, \vec{y}_\perp} e^{i\vec{k}_{2\perp} \cdot (\vec{x}_\perp - \vec{y}_\perp)} \operatorname{tr} \left\langle U(\vec{x}_\perp) U^{\dagger}(\vec{y}_\perp) \right\rangle$$

$$\phi_{A}^{q\bar{q},g}(\vec{k}_{2\perp}|\vec{k}_{\perp}) = \frac{k_{2\perp}^{2}}{2\alpha_{s}N_{c}} \int_{\vec{x}_{\perp},\vec{y}_{\perp},\vec{z}_{\perp}} e^{i\left[\vec{k}_{\perp}\cdot\vec{x}_{\perp}+(\vec{k}_{2\perp}-\vec{k}_{\perp})\cdot\vec{y}_{\perp}-\vec{k}_{2\perp}\cdot\vec{z}_{\perp}\right]} \times \operatorname{tr}\left\langle \widetilde{U}(\vec{x}_{\perp})t^{a}\widetilde{U}^{\dagger}(\vec{y}_{\perp})t^{b}U_{ba}(\vec{z}_{\perp})\right\rangle$$

$$\phi_{A}^{q\bar{q},q\bar{q}}(\vec{k}_{2\perp}|\vec{k}_{\perp},\vec{k}_{\perp}') = \frac{k_{2\perp}^{2}}{2\alpha_{s}N_{c}} \int e^{i\left[\vec{k}_{\perp}\cdot\vec{x}_{\perp}-\vec{k}_{\perp}'\cdot\vec{x}_{\perp}'+(\vec{k}_{2\perp}-\vec{k}_{\perp})\cdot\vec{y}_{\perp}-(\vec{k}_{2\perp}-\vec{k}_{\perp}')\cdot\vec{y}_{\perp}\right]} \times \operatorname{tr}\left\langle \widetilde{U}(\vec{x}_{\perp})t^{a}\widetilde{U}^{\dagger}(\vec{y}_{\perp})\widetilde{U}(\vec{y}_{\perp}')t^{a}\widetilde{U}(\vec{x}_{\perp}')\right\rangle$$

Pair cross-section

Introduction

Solution of YM equations

Gluon production

Heavy quark production

- Amplitude
- Pair cross-section
- Quark cross-section
- Kt factorization
- Cronin effect
- Pair production

Sum rules and k_{\perp} -factorization:

The 2-, 3- and 4-point functions are related by:

$$\int_{\vec{k}_{\perp},\vec{k}_{\perp}'} \phi_A^{q\bar{q},q\bar{q}}(\vec{k}_{2\perp}|\vec{k}_{\perp},\vec{k}_{\perp}') = \int_{\vec{k}_{\perp}} \phi_A^{q\bar{q},g}(\vec{k}_{2\perp}|\vec{k}_{\perp}) = \phi_A^{g,g}(\vec{k}_{2\perp})$$

- k_{\perp} -factorization would be valid if one could neglect the \vec{k}_{\perp} dependence in $T_{q\bar{q}}(\vec{k}_{\perp})$
- this happens if the QQ pair has a small transverse size (compared to the typical scale in the nucleus, i.e. Q_s⁻¹)
 Note: physically, this means that the QQ pair propagates through the nucleus as if it were a gluon
- k_{\perp} -factorization should be recovered in the following limits: $m \to \infty, m(Q\overline{Q}) \to \infty, p_{\perp}(Q) \to \infty$

Quark cross-section

Introduction

Solution of YM equations

Gluon production

Heavy quark production

Amplitude

Pair cross-section

- Quark cross-section
- Kt factorization
- Cronin effect
- Pair production

Single quark production cross-section:

$$\begin{split} \frac{d\sigma_{q}}{d^{2}\vec{q}_{\perp}dy_{q}} &= \frac{\alpha_{s}^{2}N}{8\pi^{4}d_{A}} \int \frac{dp^{+}}{p^{+}} \int_{\vec{k}_{1\perp},\vec{k}_{2\perp}} \frac{1}{\vec{k}_{1\perp}^{2}\vec{k}_{2\perp}^{2}} \\ &\times \Big\{ \mathrm{tr}\Big[(\not\!\!\!\!\!/ + m)T_{q\bar{q}}(\vec{k}_{2\perp})(\not\!\!\!/ - m)T_{q\bar{q}}^{*}(\vec{k}_{2\perp}) \Big] \frac{C_{F}}{N} \phi_{A}^{q,q}(\vec{k}_{2\perp}) \\ &+ \int_{\vec{k}_{\perp}} \mathrm{tr}\Big[(\not\!\!\!\!/ + m)T_{q\bar{q}}(\vec{k}_{\perp})(\not\!\!\!/ - m)\vec{L}^{*} + \mathrm{h.c.} \Big] \phi_{A}^{q\bar{q},g}(\vec{k}_{2\perp}|\vec{k}_{\perp}) \\ &+ \mathrm{tr}\Big[(\not\!\!\!\!/ + m)\vec{L}(\not\!\!\!/ - m)\vec{L}^{*} \Big] \phi_{A}^{g,g}(\vec{k}_{2\perp}) \Big\} \phi_{\mathrm{p}}(\vec{k}_{1\perp}) \end{split}$$

- $\phi_A^{q,q}$ is the analogue of $\phi_A^{g,g}$ for the fundamental representation
- k_{\perp} -factorization still broken for the nucleus
- contains only 2-point and 3-point correlators

Introduction

Solution of YM equations

Gluon production

Heavy quark production

- AmplitudePair cross-section
- Quark cross-section
- Kt factorization
- Cronin effect
- Pair production

Fujii, FG, Venugopalan (2005,2006)

 k_{\perp} -factorization holds if the 3-point and 2-point functions are related by:

$$\phi_{A}^{q\bar{q},g}(\vec{k}_{2\perp}|\vec{k}_{\perp}) = (2\pi)^{2} \frac{1}{2} \left[\delta(\vec{k}_{\perp}) + \delta(\vec{k}_{\perp} - \vec{k}_{2\perp}) \right] \phi_{A}^{g,g}(\vec{k}_{2\perp})$$

- This relation means that the QQ pair interacts with the nucleus in such a way that all the momentum exchanged goes to the quark or to the antiquark
- The ratio $\phi_A^{q\bar{q},g}(\vec{k}_{2\perp}|\vec{k}_{\perp})/\phi_A^{g,g}(\vec{k}_{2\perp})$ should be close to the sum of two delta functions for k_{\perp} -factorization to be a good approximation

Introduction

Solution of YM equations

Gluon production

Heavy quark production

- Amplitude
- Pair cross-section
- Quark cross-section
- Kt factorization
- Cronin effect
- Pair production

3-point function in the MV model:

Lecture II / IV – Hadronic collisions at the LHC and QCD at high density, Les Houches, March-April 2008 - p. 42

Introduction

Solution of YM equations

Gluon production

Heavy quark production

- Amplitude
- Pair cross-section
- Quark cross-section
- Kt factorization
- Cronin effect
- Pair production

For a large enough $k_{2\perp}$, there are two peaks localized at $\vec{k}_{\perp} = \vec{0}$ and $\vec{k}_{\perp} = \vec{k}_{2\perp}$ respectively

- The width of the peaks is of the order of the saturation momentum Q_s
- The area under each peak is 1/2 (when they are well separated...)
- When $k_{2\perp} \lesssim Q_s$, the two peaks merge into a single peak centered at $\vec{k}_{\perp} = \vec{k}_{2\perp}/2$
- k_{\perp} -factorization should be a good approximation if all the scales characterizing the final state are much larger than Q_s :
 - the typical $k_{2\perp}$ is large compared to Q_s
 - the width of the peaks can be neglected

Introduction

Solution of YM equations

Gluon production

Heavy quark production

- Amplitude
- Pair cross-section
- Quark cross-section

Kt factorization

- Cronin effect
- Pair production

Introduction

Solution of YM equations

Gluon production

Heavy quark production

- Amplitude
- Pair cross-section
- Quark cross-section
- Kt factorization
- Cronin effect
- Pair production

Introduction

Solution of YM equations

Gluon production

Heavy quark production

- Amplitude
- Pair cross-section
- Quark cross-section
- Kt factorization
- Cronin effect
- Pair production

exact / k_{\perp} -factorized, m = 4.5 GeV

Introduction

Solution of YM equations

Gluon production

Heavy quark production

Amplitude

- Pair cross-section
- Quark cross-section
- Kt factorization
- Cronin effect
- Pair production

General trends for the breaking of k_{\perp} -factorization :

- The magnitude of the breaking increases as *m* decreases
- The magnitude of the breaking increases with Q_s
- The effect is maximum for $q_{\perp} \sim Q_s$
- As expected, k_{\perp} -factorization is recovered at large q_{\perp}
- If Q_s ≤ m, q_⊥, the k_⊥-factorization breaking terms enhance the cross-section: having more scatterings pushes a few more pairs above the kinematical threshold
- If Q_s ≫ m, q_⊥, the effect is a reduction of the cross-section: with a large Q_s it becomes less likely to produce a quark with a small transverse mass

 \triangleright These corrections tend to enhance the Cronin peak that one would obtain by using the k_{\perp} -factorized formula for quark production

Cronin effect for quark production

Introduction

Solution of YM equations

Gluon production

Heavy quark production

Amplitude

• Pair cross-section

• Quark cross-section

- Kt factorization
- Cronin effect
- Pair production

Lecture II / IV – Hadronic collisions at the LHC and QCD at high density, Les Houches, March-April 2008 - p. 48

Cronin effect for pair production

Introduction

Solution of YM equations

Gluon production

Heavy quark production

- Amplitude
- Pair cross-section
- Quark cross-section
- Kt factorization
- Cronin effect
- Pair production

 $m = 1.5 \text{ GeV}, Q_8^2 = 4 \text{ GeV}^2$

Lecture II / IV - Hadronic collisions at the LHC and QCD at high density, Les Houches, March-April 2008 - p. 49

Invariant mass spectrum

• MV model (m = 1.5 GeV)

Introduction

Solution of YM equations

Gluon production

Heavy quark production

- Amplitude
- Pair cross-section
- Quark cross-section
- Kt factorization
- Cronin effect
- Pair production

Lecture II / IV – Hadronic collisions at the LHC and QCD at high density, Les Houches, March-April 2008 - p. 50

JPsi in the Color Evaporation Model

Introduction

Solution of YM equations

Gluon production

Heavy quark production

- Amplitude
- Pair cross-section
- Quark cross-section
- Kt factorization
- Cronin effect

Pair production

Lecture II / IV - Hadronic collisions at the LHC and QCD at high density, Les Houches, March-April 2008 - p. 51