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General outline

■ Lecture I : Gluon saturation in DIS

■ Lecture II : Proton-nucleus collisions

■ Lecture III : AA collisions : gluon production

■ Lecture IV : AA collisions : glasma instabilities
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Lecture I : Gluon saturation in DIS

■ QCD and Factorization

■ Color Glass Condensate

■ Eikonal scattering

■ Solution of YM equations

■ DIS cross-section

■ Fits of DIS data
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QCD and factorization
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Asymptotic freedom

■ Running coupling : αs = g2/4π

αs(r) =
2πNc

(11Nc − 2Nf ) log(1/rΛ
QCD

)

■ The effective charge seen at large distance is screened by
fermionic fluctuations (as in QED)
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Asymptotic freedom

■ Running coupling : αs = g2/4π

αs(r) =
2πNc

(11Nc − 2Nf ) log(1/rΛ
QCD

)

■ The effective charge seen at large distance is screened by
fermionic fluctuations (as in QED)

■ But gluonic vacuum fluctuations produce an anti-screening
(because of the non-abelian nature of their interactions)

■ As long as Nf <11Nc/2 = 16.5, the gluons win...
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Quark confinement

■ The quark potential increases linearly with distance
■ Color singlet hadrons : no free quarks and gluons in nature
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How to test QCD?

■ QCD is the fundamental theory of strong interactions among
quarks and gluons

■ Experiments involve hadrons in their initial and final states,
not quarks and gluons

■ Hadrons cannot be described perturbatively in QCD

■ Scattering amplitudes with time-like on-shell momenta
cannot be computed on the lattice

⊲ How can we compare theory and experiments?

⊲ Factorization : separation of short distances
(perturbative) and long distance (non perturbative)
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Factorization

■ At a superficial level, factorization means that :

Ohadrons = F ⊗ Opartons

◆ F = parton distribution
◆ Opartons = observable at the partonic level

(calculable in perturbation theory)

■ For this to be useful, F must be universal
(i.e. independent of the observable O)

■ In order to test QCD experimentally, measure as many
observables as possible, and try to find common F ’s that fit
all the data
Note : at this stage, by looking at only one observable, it is
impossible to perform any meaningful test, since it is always
possible to adjust F so that it works
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Factorization

■ Some loop corrections in Opartons are enhanced by large
logarithms, e.g.

αs ln

(
M2

m2
H

)
, αs ln

( s

M2

)
∼ αs ln

(
1

x

)

Note : the log that occurs depends on the details of the kinematics
◆ Bjorken limit: s, M2 → +∞ with s/M2 fixed
◆ Regge limit: s → +∞, M2 fixed

■ These logs upset a naive application of perturbation theory
when αs ln(·) ∼ 1 ⊲ they must be resummed

■ This resummation can be performed analytically

◆ the result of the resummation is universal

◆ all the leading logs can be absorbed in F

⊲ the factorization formula remains true
⊲ this summation dictates how F evolves with M2 or x
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Factorization

■ These logarithms tell us that the relevant parton distributions
depend on the resolution scales (in time and in transverse
momentum) associated to a given process

■ Calculation of some process at LO :





(M⊥  , Y )

x1

x2

{
x1 = M⊥ e+Y /

√
s

x2 = M⊥ e−Y /
√

s
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Factorization

■ These logarithms tell us that the relevant parton distributions
depend on the resolution scales (in time and in transverse
momentum) associated to a given process

■ Radiation of an extra gluon :





(M⊥  , Y )

x1

x2

z,k⊥

=⇒ αs

∫

x1

dz

z

M⊥∫
d2~k⊥

k2
⊥

■ Practical consequence : pQCD predicts not only Opartons but
also the evolution ∂

M
F (or ∂xF )

⊲ the only required non-perturbative input is F (x, M0) or F (x0, M)
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Collinear factorization

■ Logs of M⊥ =⇒ DGLAP. Important when :
◆ M⊥ ≫ Λ

QCD
, while x1, x2 are rather large

■ Cross-sections read :

dσ

dY d2 ~P ⊥

∝ F (x1, M
2
⊥) F (x2, M

2
⊥) |M|2

with x1,2 = M⊥ exp(±Y )/
√

s

■ Note : there are convolutions in x1 and x2 if some particles
are integrated out in the final state

■ The factorization of logarithms has been proven to all orders
for sufficiently inclusive quantities
(see Collins, Soper, Sterman, 1984–1985)
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Kt-factorization

Collins, Ellis (1991), Catani, Ciafaloni, Hautmann (1991)

■ Logs of 1/x =⇒ BFKL. Important when :
◆ M⊥ remains moderate, while x1 or x2 (or both) are small

■ The BFKL equation is non-local in transverse momentum
⊲ it applies to non-integrated gluon distributions ϕ(x, ~k⊥)

xG(x, Q2) =

Q2Z
d2~k⊥

(2π)2
ϕ(x, ~k⊥)

⊲ the matrix element is calculated for (off-shell) gluons with ~k⊥ 6= ~0

■ In this framework, cross-sections read :

dσ

dY d2 ~P ⊥

∝
Z

~k1⊥,~k2⊥

δ(~k1⊥+~k2⊥− ~P ⊥) ϕ1(x1, k1⊥) ϕ2(x2, k2⊥)
|M|2

k2
1⊥k2

2⊥

(x1,2 = M⊥ e±Y /
√

s)
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Multi-parton interactions?

■ Collinear or kt-factorization : only one parton in each
projectile take part in the process of interest
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Multi-parton interactions?

■ Collinear or kt-factorization : only one parton in each
projectile take part in the process of interest

■ If multiparton interactions are important : the above forms of
factorization cannot work anymore, because the only
information they retain about the distribution of partons is
their 2-point correlations (i.e. the number of partons)
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Color Glass Condensate
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Saturation domain

log(Q 2)

log(x -1)

Λ
QCD
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CGC degrees of freedom

■ The fast partons (large x) are frozen by time dilation
⊲ described as static color sources on the light-cone :

Jµ
a = δµ+δ(x−)ρa(~x⊥) (x− ≡ (t − z)/

√
2)

■ Slow partons (small x) cannot be considered static over the
time-scales of the collision process ⊲ they must be treated
as the usual gauge fields

Since they are radiated by the fast partons, they must be
coupled to the current Jµ

a by a term : AµJµ

■ The color sources ρa are random, and described by a
distribution functional W

Y
[ρ], with Y the rapidity that

separates “soft” and “hard”
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CGC evolution

■ Evolution equation (JIMWLK) :

∂W
Y

∂Y
= H W

Y

H =
1

2

Z

~y⊥

δ

δ eA+
b (ǫ, ~y⊥)

ηab(~x⊥, ~y⊥)
δ

δ eA+
a (ǫ, ~x⊥)

where −∂2
⊥

eA+(ǫ, ~x⊥) = ρ(ǫ, ~x⊥)

■ ηab is a non-linear functional of ρ

■ This evolution equation resums the powers of αs ln(1/x) and
of Qs/p⊥ that arise in loop corrections

■ This equation simplifies into the BFKL equation when the
color density ρ is small (one can expand ηab in ρ)
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Deep Inelastic Scattering
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Light-cone coordinates

■ Light-cone coordinates are defined by choosing a privileged
axis (generally the z axis) along which particles have a large
momentum. Then, for any 4-vector aµ, one defines :

a+ ≡ a0 + a3

√
2

, a− ≡ a0 − a3

√
2

a1,2 unchanged. Notation : ~a⊥ ≡ (a1, a2)

■ Under a Lorentz boost in the z direction :

a+ → Λ a+ , a− → Λ−1 a− , a1,2 → a1,2

■ Some useful formulas :

x · y = x+y− + x−y+ − ~x⊥ · ~y⊥

d4x = dx+dx−d2~x⊥

¤ = 2∂+∂− − ~∇
2

⊥ Notation : ∂+ ≡ ∂

∂x−
, ∂− ≡ ∂

∂x+
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Parton-nucleus cross-section

■ Reactions involving elementary probes can be reduced to
that of individual partons with the saturated target :

dσ = dΦ1 · · · dΦn| {z }
1

2p−
2πδ(p− −

X

i

q−i ) |M|2

invariant phase-space
for the final state

◆ Invariant phase-space : dΦ ≡ d3~q

(2π)32ωq

◆ M ≡ transition amplitude
〈
~q1 · · ·~qnout

∣∣~pin

〉
in the

presence of the color field of the target

◆ The delta function comes from the fact that a highly
boosted target field (in the +z direction) is x+-independent
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Eikonal scattering
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Goal

■ Consider the scattering amplitude off an external potential :

Sβα ≡
〈
βout

∣∣αin

〉
=

〈
βin

∣∣U(+∞,−∞)
∣∣αin

〉

where U(+∞,−∞) is the evolution operator from t = −∞ to
t = +∞

U(+∞,−∞) = T exp
h
i

Z
d4x Lint(φin(x))

i

Note : Lint contains the self-interactions of the fields and their
interactions with the external potential

■ We want to calculate its high energy limit :

S
(∞)
βα ≡ lim

ω→+∞

〈
βin

∣∣eiωK3

U(+∞,−∞)e−iωK3∣∣αin

〉

where K3 is the generator of boosts in the +z direction
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Eikonal scattering in a nutshell

■ In a scattering at high energy, the collision time goes to zero
as s−1/2

■ With scalar interactions, this implies a decrease of the
scattering amplitude as s−1/2

■ With vectorial interactions, this decrease is compensated by
the growth of the component J+ of the vector current

⊲ the eikonal approximation gives the finite limit of the
scattering amplitude in the case of vectorial interactions
when s → +∞
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Eikonal limit

■ Consider an external vector potential, that couples via
eAµ(x)Jµ(x) (Jµ is the current associated to some conserved
charge)

■ We will assume that the external potential is non-zero only in
a finite range in x+, x+ ∈ [−L,+L]

■ The action of K3 on states and (scalar) fields is :

e−iωK3 ˛̨
~p · · · in

¸
=

˛̨
(eωp+, ~p⊥) · · · in

¸

eiωK3

φin(x)e−iωK3

= φin(e−ωx+, eωx−, ~x⊥)

■ K3 does not change the ordering in x+. Hence,

eiωK3

U(+∞,−∞)e−iωK3

= T exp i

Z
d4x Lint(e

iωK3

φin(x)e−iωK3

)

where Lint = Lself(φ) + eAµJµ
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Eikonal limit

■ Split the evolution operator U(+∞,−∞) into three factors :

U(+∞,−∞) = U(+∞, +L)U(+L,−L)U(−L,−∞)

Upon application of K3, this becomes :

eiωK3

U(+∞,−∞)e−iωK3

= eiωK3

U(+∞, +L)e−iωK3

×eiωK3

U(+L,−L)e−iωK3

eiωK3

U(−L,−∞)e−iωK3

■ The external potential Aµ(x) is unaffected by K3

■ The components of Jµ(x) are changed as follows :

eiωK3

J i(x)e−iωK3

= J i(e−ωx+, eωx−, ~x⊥)

eiωK3

J−(x)e−iωK3

= e−ω J−(e−ωx+, eωx−, ~x⊥)

eiωK3

J+(x)e−iωK3

= eω J+(e−ωx+, eωx−, ~x⊥)
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Eikonal limit

■ The factors U(+∞, +L) and U(−L,−∞) do not contain the
external potential. In order to deal with these factors, it is
sufficient to change variables : e−ωx+ → x+, eωx− → x−.
This leads to :

lim
ω→+∞

eiωK3

U(+∞, +L)e−iωK3

= Uself(+∞, 0)

lim
ω→+∞

eiωK3

U(−L,−∞)e−iωK3

= Uself(0,−∞)

where Uself is the same as U , but with the self-interactions only

■ For the factor U(L,−L), the change eωx− → x− leads to :

eiωK3

U(+L,−L)e−iωK3

=

= T exp i

Z +L

−L

d4x e−ω
h
eA−(x+, e−ωx−, ~x⊥)

×eωJ+(e−ωx+, x−, ~x⊥) + O(1)
i
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Eikonal limit

■ Therefore, in the limit ω → +∞, we have :

lim
ω→+∞

eiωK3

U(+L,−L)e−iωK3

= exp
h
ie

Z
d2~x⊥χ(~x⊥)ρ(~x⊥)

i

with





χ(~x⊥) ≡
∫

dx+ A−(x+, 0, ~x⊥)

ρ(~x⊥) ≡
∫

dx− J+(0, x−, ~x⊥)

■ The high-energy limit of the scattering amplitude is :

S
(∞)
βα =

˙
βin

˛̨
Uself(+∞, 0) exp

h
ie

Z

~x⊥

χ(~x⊥)ρ(~x⊥)
i
Uself(0,−∞)

˛̨
αin

¸

◆ Only the − component of the vector potential matters
◆ The self-interactions and the interactions with the external

potential are factorized ⊲ parton model
◆ This is an exact result when s → +∞
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Eikonal limit

■ The previous formula still contains all the self-interactions of
the fields. In order to perform the perturbative expansion, it is
convenient to write first :

S
(∞)
βα =

X

γ,δ

˙
βin

˛̨
Uself(+∞, 0)

˛̨
γin

¸

×
˙
γin

˛̨
exp

h
ie

Z

~x⊥

χ(~x⊥)ρ(~x⊥)
i˛̨

δin

¸˙
δin

˛̨
Uself(0,−∞)

˛̨
αin

¸

■ The factor X

δ

˛̨
δin

¸˙
δin

˛̨
Uself(0,−∞)

˛̨
αin

¸

is the Fock expansion of the initial state: the state prepared
at x+ = −∞ may have fluctuated into another state before it
interacts with the external potential
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Eikonal limit

■ We need to calculate matrix elements such as
〈
γin

∣∣F
∣∣δin

〉
,

with :

F ≡ exp ie

Z
χa(~x⊥)ρa(~x⊥)

◆ having QCD in mind, we have reinstated the color indices
◆ the contribution of quarks and antiquarks to ρa(~x⊥) is :

ρa(~x⊥) = ta
ij

Z
dp+

4πp+

d2~p⊥

(2π)2
d2~q⊥

(2π)2

n
b†in(p+, ~p⊥; i)bin(p+, ~q⊥; j)ei(~p⊥−~q⊥)·~x⊥

−d†
in(p+, ~p⊥; i)din(p+, ~q⊥; j)e−i(~p⊥−~q⊥)·~x⊥

o

◆ Note : one should keep the ordering of the exponential in x+

◆ the contribution of gluons is similar, with a color matrix in the
adjoint representation

■ The action of F on a state
∣∣δin

〉
gives a state with the same

particle content, the same + components for the momenta,
but modified transverse momenta and colors
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Light-cone wavefunction

■ For each intermediate state
〈
δin

∣∣ ≡
〈
{k+

i , ~ki⊥}
∣∣, define the

corresponding light-cone wave function by :

Ψδα({k+
i , ~xi⊥}) ≡

Y

i

Z
d2~ki⊥

(2π)2
e−i~ki⊥·~xi⊥

˙
δin

˛̨
Uself(0,−∞)

˛̨
αin

¸

■ Each charged particle going through the external field
acquires a phase proportional to its charge (antiparticles get
an opposite phase) :

Ψδα({k+
i , ~xi⊥}) −→ Ψδα({k+

i , ~xi⊥})
Y

i

Ui(~x⊥)

Ui(~x⊥) ≡ T exp
h
ig

i

Z
dx+ A−

a (x+, 0, ~x⊥)ta
i
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Light-cone wavefunction

■ We have seen that the number and the nature of the particles
is unchanged under the action of the operator F . Moreover,
in terms of the transverse coordinates, we simply have

˙
γin

˛̨
F

˛̨
δin

¸
= δ

NN′

Y

i

h
4πk+

i δ(k+
i − k+′

i )δ(~xi⊥ − ~x′
i⊥)U

Ri
(~xi⊥)

i

where U
R

(~x⊥) is a Wilson line operator, in the representation R

appropriate for the particle going through the target

■ Therefore, the high energy scattering amplitude can be
written as :

S
(∞)
βα =

X

δ

Z h Y

i∈δ

dΦi

i
Ψ†

δβ({k+
i , ~xi⊥})

h Y

i∈δ

U
Ri

(~xi⊥)
i
Ψδα({k+

i , ~xi⊥})

■ As we shall see shortly, some loop corrections are enhanced
by logs of the energy. They must be resummed and drive the
energy evolution of the amplitude
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Light-cone wave function

■ The calculation of
〈
δin

∣∣Uself(0,−∞)
∣∣αin

〉
is similar to that of

scattering amplitudes in the vacuum. The only difference is
that the integration over x+ at each vertex runs only over half
of the real axis [−∞, 0]
◆ In Fourier space, this means that the − component of the

momentum is not conserved at the vertices
◆ Instead of a δ function, one gets an energy denominator

■ Example with a single interaction :

p
k1

k2

k3

˙
~k1

~k2
~k3in

˛̨
Uself(0,−∞)

˛̨
~pin

¸
= −ig

Z 0

−∞

d4x ei(k1+k2+k3−p)·x

= −g
(2π)3δ(~k1⊥ + ~k2⊥ + ~k3⊥ − ~p⊥)δ(k+

1 + k+
2 + k+

3 − p+)

k−
1 + k−

2 + k−
3 − p− − iǫ
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Solution of Yang-Mills equations
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YM equations in covariant gauge

■ Gauge condition : ∂µAµ = 0

■ We must solve the Yang-Mills equations with the current :

Jµ
a (x) ≡ δµ+ ρa(x−, ~x⊥)

(in practice, the x− dependence is close to a δ(x−), but the
solution is valid for any x− dependence)

A = 0

?

■ The source density does not depend on x+

■ The gauge field vanishes at x0 → −∞
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YM equations in covariant gauge

■ In covariant gauge, the YM equations can be rewritten as :

¤Aν = Jν + ig[Aµ, Fµν + ∂µAν ]

■ One must also enforce current conservation :

[Dµ, Jµ] = 0

Note : this relation is satisfied trivially at order ρ1 by our ansatz for
Jµ, but it may induce higher order corrections in ρ2, ρ3, · · · to Jµ

■ Order ρ1 : the equation simplifies into ¤Aµ
(1)

= Jµ
(1)

A+
(1)

= − 1

∂2
⊥

ρ(x−, x⊥) , A−
(1)

= Ai
(1)

= 0

■ Higher orders in ρ :
◆ since A−

(1)
= 0, it cannot induce a change in J+

◆ the commutator in the YM equation is zero at order ρ2

◆ these properties remain true at all the following orders
⊲ the solution at order ρ1 is in fact the exact solution
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Light-cone gauge

■ Consider a gauge transformation :

Ãµ ≡ Ω† Aµ Ω +
i

g
Ω† ∂µ Ω

■ We look for Ω in the SU(N) group such that eA+ = 0 :

∂+ Ω = ig A+ Ω

i.e. Ω(x) = T exp
h
ig

Z x−

−∞

dz−A+(z−, ~x⊥)
i

| {z }
Ω0(x

+, ~x⊥)

U

Ω0 = arbitrary function of x+, ~x⊥

■ Residual gauge freedom fixing : if we impose that Ãµ = 0
when x− → −∞, we must chose Ω0 ≡ 1. This leads to :

Ã± = 0 , Ãi =
i

g
U† ∂i U
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DIS cross-section
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DIS amplitude

■ Differential photon-target cross-section :

dσγ∗T =
d3k

(2π)22Ek

d3p

(2π)32Ep

1

2q−
2πδ(q− − k− − p−)

×〈Mµ(q|k, p)Mν∗(q|k, p)〉 ǫµ(Q)ǫ∗ν(Q) ,

◆ k, p : momenta of the quark and antiquark
◆ q : momentum of the virtual photon

■ Scattering amplitude :

Mµ(q|k, p) =

p q
= 2π δ(p−−q−) γ−

Z
d2~x⊥ ei(~q⊥−~p⊥)·~x⊥

h
U(~x⊥)−1

i
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DIS amplitude

■ The sum of the three terms simplifies considerably :

Mµ(k|q, p) =
i

2

Z
d2~l⊥
(2π)2

Z
d2~x1⊥d2~x2⊥

h
u(~q) Γµ v(~p)

i

× ei~l⊥·~x1⊥ei(~p⊥+~k⊥−~q⊥−~l⊥)·~x2⊥

h
U(~x1⊥)U†(~x2⊥) − 1

i

with

Γµ ≡ γ−(/K − /L + m)γµ(/K − /Q − /L + m)γ−

p−[(~k⊥−~l⊥)2 + m2−2k−q+] + k−[(~k⊥−~q⊥−~l⊥)2 + m2]

■ By inserting this into the DIS cross-section, we see that the
differential cross-section (with two resolved quark jets in the
final state) depends on the correlator of four Wilson lines
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Total cross-section

■ If we integrate out the final quark and antiquark, two of the
Wilson lines cancel and we get :

σγ∗T =

∫ 1

0

dz

∫
d2~r⊥ |ψ(q|z,~r⊥)|2 σdipole(~r⊥)

with

σdipole(~r⊥) ≡ 2

Nc

Z
d2 ~X⊥ Tr

fi
1 − U( ~X⊥ +

~r⊥

2
)U†( ~X⊥ − ~r⊥

2
)

fl

and

|ψ(q|z,~r⊥)|2 ≡ Nc ǫµ(Q)ǫ∗ν(Q)

64π(q−)2z(1 − z)

Z
d2~l⊥
(2π)2

d2~l′⊥
(2π)2

ei(~l⊥−~l
′

⊥
)·~r⊥

× Tr
`
(/k + m)Γµ(/p − m)Γν′

´

Note :
˛̨
ψ

˛̨2 can be computed in closed form (in terms of the Bessel
functions K0,1)
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Fits of DIS data
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Dipole cross-section

■ Computing F2 requires to know 〈T (0, ~x⊥)〉
Y

as a function of
dipole size and energy

■ This object is often presented in the form of the “dipole
cross-section” :

σdip(~r⊥, Y ) ≡ 2

∫
d2~b

〈
T (~b − ~r⊥

2
,~b +

~r⊥

2
)

〉

Y

Note : this formula assumes that the scattering amplitude is real

■ In principle, the BK equation prescribes the energy
dependence of the dipole cross-section once it is known at a
certain energy

■ Alternatively, one can model this cross-section (including its
energy dependence)
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Golec-Biernat–Wusthoff model

■ GBW modeled the dipole cross-section as a Gaussian, with
an energy dependence entirely contained in Qs





σdip(~r⊥, Y ) = σ0

[
1 − e−Qs(Y )2r2

⊥
/4

]

Q2
s(Y ) = Q2

0 eλ(Y −Y0)

■ The exponential form in σdip is inspired of Glauber scattering

■ The fit parameters are σ0, Q0, λ and possibly an effective
quark mass in the photon wave-function

■ Quite good for all small-x HERA data, with some problems at
large Q2
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Bartels–Golec-Biernat–Kowalski model

■ This model aims at improving the agreement at large Q2, by
having a more realistic cross-section at small dipole sizes :

σdip(~r⊥, Y ) = σ0

[
1 − e−π2r2

⊥
αs(µ2)xG(x,µ2)/3σ0

]

■ The scale µ2 is chosen of the form µ2
0 + C/r2

⊥

■ The gluon distribution xG(x, µ2) obeys the DGLAP equation.
Thus, the dipole cross-section has the correct behavior at
small transverse distance

■ This form improves the fit quality at large Q2

■ A saturation scale is also hidden in this dipole cross-section,
if one recalls the formula

Q2
s ∼ αsxG(x,Q2

s)

πR2
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Iancu-Itakura-Munier model

■ This model of the dipole cross-section is derived from LO
BFKL :




Qsr⊥ ≤ 2 : σdip(~r⊥, Y ) =
σ0

2

(
Qs(Y )r⊥

2

)2(γs+ln(2/Qsr⊥)/κλY )

Qsr⊥ ≥ 2 : σdip(~r⊥, Y ) = σ0

[
1 − ea ln2(bQsr⊥)

]

Q2
s(Y ) = Q2

0 eλ(Y −Y0)

◆ Some parameters are fixed from LO BFKL :
γs = 0.63, κ = 9.9

◆ σ0, Q0 and λ must be fitted

◆ a and b are adjusted for a smooth transition at Qsr⊥ = 2
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Exclusive processes

Kowalski, Motyka, Watt (2006)

■ So far, we have only considered the total DIS cross-section,
obtained from the forward dipole amplitude via the optical
theorem

■ In order to study more exclusive processes, one needs
non-forward amplitudes. From our general eikonal formula,
they read :

〈
Ωout

∣∣γ∗
in

〉
=

∫
d2~r⊥

∫ 1

0

dz Ψ∗
Ω
ψ

∫
d2~b ei~q

⊥
·~b

〈
T (~b − ~r⊥

2
,~b +

~r⊥

2
)
〉

Y︸ ︷︷ ︸
non-forward dipole cross-section

with momentum transfer ~q⊥

Note : this formula assumes that the relevant dipole sizes r⊥ are
small compared to the target radius (i.e. the typical b)
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Exclusive processes

■ By squaring this amplitude, one gets the diffractive
cross-section for the production of the state Ω with
momentum transfer q⊥

dσdiff
γ∗p→Ωp

d2~q⊥

=
∣∣〈Ωout

∣∣γ∗
in

〉∣∣2

■ The relationship to the inclusive DIS cross-section is

σtot
γ∗p(Y , Q2) = 2 Re

〈
γ∗

out

∣∣γ∗
in

〉
~q
⊥

=0

Note : inclusive DIS only constrains the dipole amplitude
averaged over impact parameter. However, if one measures
the q⊥ dependence in exclusive reactions, one obtains
informations about the b dependence of the dipole amplitude

■ General strategy : extend the previous models in order to
give them a b-dependence, in a way that preserves F2
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Exclusive reactions

■ For the total DIS cross-section, the fit is as good as before :
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Exclusive reactions

■ Exclusive photon and vector meson production :
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Exclusive reactions

■ Exclusive photon and vector meson production :
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Energy dependence
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Scattering of a dipole

■ Assume that the initial and final states α and β are a color
singlet QQ dipole. The bare scattering amplitude can be
written as :

∝
˛̨
˛Ψ(0)(~x⊥, ~y⊥)

˛̨
˛
2

tr
h
U(~x⊥)U†(~y⊥)

i

■ At one loop, the following diagrams must be evaluated :

+ h.c.
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Scattering of a dipole

■ In the gauge A+ = 0, the emission of a gluon of momentum
k by a quark can be written as :

= 2gta
~ǫλ · ~k⊥

k2
⊥

■ In coordinate space, this reads :
Z

d2~k⊥

(2π)2
ei~k⊥·(~x⊥−~z⊥) 2gta ~ǫλ · ~k⊥

k2
⊥

=
2ig

2π
ta~ǫλ · (~x⊥ − ~z⊥)

(~x⊥ − ~z⊥)2

■ When connecting two gluons, one must use :
X

λ

~ǫi
λ~ǫ

j
λ = −gij
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Virtual corrections

■ Consider first the loop corrections inside the wavefunction of
the incoming or outgoing dipole

■ Examples :

=
∣∣∣Ψ(0)(~x⊥, ~y⊥)

∣∣∣
2

tr
[
tataU(~x⊥)U†(~y⊥)

]

×− 2αs

∫
dk+

k+

∫
d2~z⊥

(2π)2
(~x⊥ − ~z⊥) · (~x⊥ − ~z⊥)

(~x⊥ − ~z⊥)2(~x⊥ − ~z⊥)2

=
∣∣∣Ψ(0)(~x⊥, ~y⊥)

∣∣∣
2

tr
[
taU(~x⊥)U†(~y⊥)ta

]

×4αs

∫
dk+

k+

∫
d2~z⊥

(2π)2
(~x⊥ − ~z⊥) · (~y⊥ − ~z⊥)

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

■ Reminder : tata = (N2
c − 1)/2Nc ≡ C

F
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Virtual corrections

■ The sum of all virtual corrections is :

−C
F

αs

π2

Z
dk+

k+

Z
d2~z⊥

(~x⊥ − ~y⊥)2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
˛̨
˛Ψ(0)(~x⊥, ~y⊥)

˛̨
˛
2

tr
h
U(~x⊥)U†(~y⊥)

i

■ The integral over k+ is divergent. It should have an upper
bound at p+ :

Z p+

dk+

k+
= ln(p+) = Y

⊲ When Y is large, αsY may not be small. By differentiating
with respect to Y , we will get an evolution equation in Y
whose solution resums all the powers (αsY )n

■ Note : the integral over ~z⊥ is divergent when ~z⊥ = ~x⊥ or ~y⊥



QCD and factorization

Color Glass Condensate

Eikonal scattering

Solution of YM equations

DIS cross-section

Fits of DIS data

Energy dependence

● Scattering of a dipole

● 1-loop corrections

● BFKL equation

● Balitsky hierarchy

● Balitsky-Kovchegov equation

CERN

François Gelis – 2007 Lecture I / IV – Hadronic collisions at the LHC and QCD at high density, Les Houches, March-April 2008 - p. 56

Real corrections

■ There are also real corrections, for which the state that
interacts with the target has an extra gluon

■ Example :

=
∣∣∣Ψ(0)(~x⊥, ~y⊥)

∣∣∣
2

tr
[
taU(~x⊥)tbU†(~y⊥)

]

×4αs

∫
dk+

k+

∫
d2~z⊥

(2π)2
Ũab(~z⊥)

(~x⊥ − ~z⊥) · (~x⊥ − ~z⊥)

(~x⊥ − ~z⊥)2(~x⊥ − ~z⊥)2

◆ eUab(~z⊥) is a Wilson line in the adjoint representation

■ In order to simplify the color structure, first recall that :

ta eUab(~z⊥) = U(~z⊥)tbU†(~z⊥)

■ Then use the SU(Nc) Fierz identity :

tb
ijt

b
kl =

1

2
δilδjk − 1

2Nc

δijδkl
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Real corrections

■ The Wilson lines can be rearranged into :

tr
h
taU(~x⊥)tbU†(~y⊥)

i
eUab(~z⊥) =

1

2
tr

h
U†(~z⊥)U(~x⊥)

i
tr

h
U(~z⊥)U†(~y⊥)

i

− 1

2Nc

tr
h
U(~x⊥)U†(~y⊥)

i

◆ The term in 1/2Nc cancels against a similar term in the virtual
contribution

◆ All the real terms have the same color structure

■ When we sum all the real terms, we generate the same
kernel as in the virtual terms :

(~x⊥ − ~y⊥)2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

■ In order to simplify the notations, let us denote :

S(~x⊥, ~y⊥) ≡ 1

Nc

tr
h
U(~x⊥)U†(~y⊥)

i
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Evolution equation

■ The 1-loop scattering amplitude reads :

−αsN
2
c Y

2π2

˛̨
˛Ψ(0)(~x⊥, ~y⊥)

˛̨
˛
2

Z
d2~z⊥

(~x⊥ − ~y⊥)2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
n

S(~x⊥, ~y⊥) − S(~x⊥, ~z⊥)S(~z⊥, ~y⊥)
o

■ Reminder: the bare scattering amplitude was :
˛̨
˛Ψ(0)(~x⊥, ~y⊥)

˛̨
˛
2

Nc S(~x⊥, ~y⊥)

■ Hence, we have :

∂S(~x⊥, ~y⊥)

∂Y
= −αsNc

2π2

Z
d2~z⊥

(~x⊥ − ~y⊥)2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
n

S(~x⊥, ~y⊥) − S(~x⊥, ~z⊥)S(~z⊥, ~y⊥)
o

◆ since S(~x⊥, ~x⊥) = 1, the integral over ~z⊥ is now regular
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BFKL equation

Kuraev, Lipatov, Fadin (1977), Balitsky, Lipatov (1978)

■ The BFKL equation can be obtained by linearizing the
previous equation

■ Write S(~x⊥, ~y⊥) ≡ 1 − T (~x⊥, ~y⊥) and assume that we are in
the dilute regime, so that the scattering amplitude T is small.
Drop the terms that are non-linear in T :

∂ T (~x⊥, ~y⊥)

∂Y
=

αsNc

2π2

Z
d2~z⊥

(~x⊥ − ~y⊥)2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
n

T (~x⊥, ~z⊥) + T (~z⊥, ~y⊥) − T (~x⊥, ~y⊥)
o

■ The solution of this equation grows exponentially when
Y → +∞ ⊲ serious unitarity problem...
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Non-linear evolution equation

■ In fact, the first evolution equation we derived has a bounded
solution. The unbounded solutions of BFKL are due to
dropping the non-linear term. The full equation reads :

∂ T (~x⊥, ~y⊥)

∂Y
=

αsNc

2π2

Z
d2~z⊥

(~x⊥ − ~y⊥)2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
n

T (~x⊥, ~z⊥) + T (~z⊥, ~y⊥) − T (~x⊥, ~y⊥)−T (~x⊥, ~z⊥)T (~z⊥, ~y⊥)
o

(Balitsky-Kovchegov equation)

■ The r.h.s. vanishes when T reaches 1, and the growth stops.
The non-linear term lets both dipoles interact after the
splitting of the original dipole

■ Both T = 0 and T = 1 are fixed points of this equation

T = ǫ : r.h.s. > 0 ⇒ T = 0 is unstable

T = 1 − ǫ : r.h.s. > 0 ⇒ T = 1 is stable
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Caveats and improvements

■ So far, we have studied the scattering amplitude between a
color dipole and a “god given” patch of color field. This is too
naive to describe any realistic situation

■ We need to improve the treatment of the target

■ An experimentally measured cross-section is an average
over many collisions, and there is no reason why these fields
should be the same in different collisions :

T →
〈
T

〉

˙
· · ·

¸
denotes the average over the target configurations, i.e.

˙
· · ·

¸
=

Z ˆ
Dρ

˜
W

Y
[ρ] · · ·
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Balitsky hierarchy

■ Because of this average over the target configurations, the
evolution equation we have derived should be written as :

∂ 〈T (~x⊥, ~y⊥)〉
∂Y

=
αsNc

2π2

Z
d2~z⊥

(~x⊥ − ~y⊥)2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
n
〈T (~x⊥, ~z⊥)〉 + 〈T (~z⊥, ~y⊥)〉 − 〈T (~x⊥, ~y⊥)〉− 〈T (~x⊥, ~z⊥)T (~z⊥, ~y⊥)〉

o

■ As one can see, the equation is no longer a closed equation,
since the equation for 〈T 〉 depends on a new object, 〈T T 〉

■ One can derive an evolution equation for 〈T T 〉. Its right
hand side contains objects with six Wilson lines
◆ There is in fact an infinite hierarchy of nested evolution

equations, whose generic structure is

∂
˙
(UU †)n

¸

∂Y
=

Z
· · ·

D
(UU

†)n
E
⊕

D
(UU

†)n+1
E
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Balitsky-Kovchegov equation

■ If one performs the large Nc approximation on all the
equations of the Balitsky hierarchy, they can be rewritten in
terms of the dipole operator T ≡ 1 − 1

Nc
tr(UU†) only. But

they still contain averages like 〈T n〉

■ In order to truncate the hierarchy of equations, one may
assume that

〈T T 〉 ≈ 〈T 〉 〈T 〉

■ This approximation gives for 〈T 〉 the same evolution equation
as the one we had for a fixed configuration of the target
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Geometrical scaling
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Analogy with reaction-diffusion

Munier, Peschanski (2003,2004)

■ Assume translation and rotation invariance, and define :

N(Y, k⊥) ≡ 2π

Z
d2~x⊥ ei~k⊥·~x⊥

〈T (0, ~x⊥)〉
Y

x2
⊥

■ From the Balitsky-Kovchegov equation for 〈T 〉, we obtain the
following equation for N :

∂N(Y , k⊥)

∂Y
=

αsNc

π

h
χ(−∂L)N(Y , k⊥) − N2(Y , k⊥)

i

with

L ≡ ln(k2
⊥/k2

0)

χ(γ) ≡ 2ψ(1) − ψ(γ) − ψ(1 − γ)
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Analogy with reaction-diffusion

■ Expand the function χ(γ) to second order around its
minimum γ = 1/2

■ Introduce new variables :

t ∼ Y

z ∼ L +
αsNc

2π
χ′′(1/2) Y

■ The equation for N becomes :

∂tN = ∂2
zN + N − N2

(known as the Fisher-Kolmogorov-Petrov-Piscounov equation)
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Analogy with reaction-diffusion

■ Interpretation : this equation is typical for all the diffusive
systems in which a reaction A ←→ A + A takes place

◆ ∂2
zN : diffusion term (the quantity under consideration can

hop from a site to the neighboring sites)

◆ +N : gain term corresponding to A → A + A

◆ −N2 : loss term corresponding to A + A → A

■ Note : this equation has two fixed points :
◆ N = 0 : unstable
◆ N = 1 : stable

■ The stable fixed point at N = 1 exists only if one keeps the
loss term. In other words, one would not have it from the
BFKL equation
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Traveling waves

■ Assume an initial condition N(t0, z) that goes smoothly from
1 at z = −∞ to 0 at z = +∞, and behaves like exp(−βz)
when z ≫ 1

N(t,z)

z

■ The solution of the F-KPP equation is known to behave like a
traveling wave at asymptotic times (Bramson, 1983) :

N(t, z) ∼
t→+∞

N(z − mβ(t))

with mβ(t) = 2t − 3 ln(t)/2 + O(1) if β > 1

⊲ universal front velocity for a large class of initial conditions
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Geometrical scaling in DIS

Iancu, Itakura, McLerran (2002)
Mueller, Triantafyllopoulos (2002)
Munier, Peschanski (2003)

■ In QCD, the initial condition is of the required form, with β > 1
⊲ front velocity independent of the initial condition

■ Going back to the original variables, one gets :

N(Y, k⊥) = N (k⊥/Qs(Y ))

with

Q2
s(Y ) = k2

0 Y −δ eλY

■ Going from N(Y, k⊥) to 〈T (0, ~x⊥)〉
Y

, we obtain :

〈T (0, ~x⊥)〉
Y

= T (Qs(Y )x⊥)
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Geometrical scaling in DIS

■ The total γ∗p cross-section, measured in Deep Inelastic
Scattering, can be written in terms of N :

σtot
γ∗p(Y , Q2) = 2πR2

Z
d2~x⊥

Z 1

0

dz
˛̨
ψ(z, x⊥, Q2)

˛̨2 〈T (0, ~x⊥)〉
Y

◆ The photon wavefunction ψ is calculable in QED. It depends on
the dipole size x⊥ only via

˛̨
ψ(z, x⊥, Q2)

˛̨2
= f(Qfx⊥)

with Q
2

f ≡ m2
f + Q2z2(1 − z2)

■ If one neglects the quark masses, the scaling properties of
〈T 〉

Y
imply that σγ∗p depends only on the ratio Q2/Q2

s(Y ),
rather than on Q2 and Y separately
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Geometrical scaling in DIS

■ HERA data as a function of Q2 and x :
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Geometrical scaling in DIS

Stasto, Golec-Biernat, Kwiecinski (2000)

10
-1

1

10

10 2

10 3

10
-3

10
-2

10
-1

1 10 10
2

10
3

E665

ZEUS+H1 high Q2 94-95
H1 low Q2 95
ZEUS BPC 95
ZEUS BPT 97

x<0.01

all Q2

τ

σ to
tγ*

p  
 [µ

b]


	General outline
	Lecture I : Gluon saturation in DIS
	QCD and factorization
	Asymptotic freedom
	Asymptotic freedom

	Quark confinement
	How to test QCD?
	Factorization
	Factorization
	Factorization
	Factorization

	Collinear factorization
	Kt-factorization
	Multi-parton interactions?
	Multi-parton interactions?


	Color Glass Condensate
	Saturation domain
	CGC degrees of freedom
	CGC evolution
	Deep Inelastic Scattering
	Light-cone coordinates
	Parton-nucleus cross-section

	Eikonal scattering
	Goal
	Eikonal scattering in a nutshell
	Eikonal limit
	Eikonal limit
	Eikonal limit
	Eikonal limit
	Eikonal limit
	Eikonal limit
	Light-cone wavefunction
	Light-cone wavefunction
	Light-cone wave function

	Solution of Yang-Mills equations
	YM equations in covariant gauge
	YM equations in covariant gauge
	Light-cone gauge

	DIS cross-section
	DIS amplitude
	DIS amplitude
	Total cross-section

	Fits of DIS data
	Dipole cross-section
	Golec-Biernat--Wusthoff model
	Bartels--Golec-Biernat--Kowalski model
	Iancu-Itakura-Munier model
	Exclusive processes
	Exclusive processes
	Exclusive reactions
	Exclusive reactions
	Exclusive reactions

	Energy dependence
	Scattering of a dipole
	Scattering of a dipole
	Virtual corrections
	Virtual corrections
	Real corrections
	Real corrections
	Evolution equation
	BFKL equation
	Non-linear evolution equation
	Caveats and improvements
	Balitsky hierarchy
	Balitsky-Kovchegov equation

	Geometrical scaling
	Analogy with reaction-diffusion
	Analogy with reaction-diffusion
	Analogy with reaction-diffusion
	Traveling waves
	Traveling waves
	Traveling waves
	Traveling waves

	Geometrical scaling in DIS
	Geometrical scaling in DIS
	Geometrical scaling in DIS
	Geometrical scaling in DIS


