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General outline

■ Lecture I : Quantum field theory at finite T

■ Lecture II : Collective phenomena in the QGP

■ Lecture III : Out of equilibrium systems
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Lecture III : Out of equilibrium systems

■ Schwinger-Keldysh formalism, Long time pathologies

■ From fields to kinetic theory

■ Collisionless kinetic equations

■ Boltzmann equation

■ Transport coefficients
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Schwinger-Keldysh formalism

Long time pathologies
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Reminder: equilibrium

■ In equilibrium, the free density operator is ρ ≡ exp(−βH0) :

ρ = exp −

Z
d3~k

(2π)3
β Ek a†

in(~k)ain(~k)

Note : the interactions contained in the full H lead to the vertical
branch of the time contour

■ The fact that ρ is the equilibrium density operator is reflected
in the KMS symmetry of thermal correlators :

G(· · · , ti, · · · ) = G(· · · , ti − iβ, · · · )

■ The free scalar propagator reads :

G0(x, y) =

Z
d3~p

(2π)32Ep

h
(θc(x

0
− y0) + n

B
(Ep)) e−ip·(x−y)

+(θc(y
0
− x0) + n

B
(Ep)) e+ip·(x−y)

i
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More remarks on equilibrium

■ ρ (and n
B

) represent the statistical properties of the system
at the initial time ti. This precision is pointless in equilibrium -
because the particle distribution is time independent - but is crucial
out-of-equilibrium

■ The equilibrium density operator is extremely peculiar. All the
information about the distribution of particles in the system is
contained in the single particle phase-space density n

B
. All

the higher correlations are trivial in equilibrium

⊲ this is the reason why the Feynman rules at finite T are
very similar to those at T = 0 (modification of the time
integration contour, and of the free propagator)

■ For a completely generic ρ, one may have non-Gaussian
initial correlations. In the Feynman rules, they would appear
in the form of additional vertices (usually non-local). For
instance, non-trivial 2-particle correlations would be encoded
in a 4-point vertex
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Non-equilibrium Gaussian systems

■ There are no systematic studies of non-equilibrium systems
with non-Gaussian initial correlations, mostly because of the
complexity of the Feynman rules

It is generally believed that these non-Gaussian correlations
affect the system only during a very short transient regime

■ In this lecture, I consider only Gaussian correlations. The
most general Gaussian density operator can be written as

ρ = exp −
∫

d3~k

(2π)3
βk Ek a†

in(~k)ain(~k)

◆ Because this ρ does not contain any interaction term, the time

contour is simply [ti, +∞] ∪ [+∞, ti]

◆ The propagator is the same as in equilibrium, with the

substitution

n
B

(Ek) → fk ≡
1

eβkEk − 1

Note : any function fk can be parameterized in this form
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Schwinger-Keldysh formalism

■ The diagrammatic expansion is the same as in equilibrium

■ At each vertex : −ig

∫

C

d4x

◆ The contour is now limited to the two horizontal branches

◆ The KMS symmetry, and the freedom to deform the contour at
will - that one had in equilibrium - are lost

■ Free propagator :

G0(x, y) =

Z
d3~p

(2π)32Ep

h
(θc(x

0
− y0) + fp) e−ip·(x−y)

+(θc(y
0
− x0) + fp) e+ip·(x−y)

i

where fp is the initial particle distribution
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Momentum space formulation

■ Let us assume that the initial time ti is ti = −∞
■ Then, one can compute the diagrams in momentum space.

Because the time contour has two branches, there are four
possible combinations for the propagator, depending on
which branch hosts the endpoints. In momentum space, they
read

G0
++(p) =

i

p2 − m2 + iǫ
+ 2πfpδ(p2 − m2)

G0
−−(p) =

−i

p2 − m2 − iǫ
+ 2πfpδ(p2 − m2)

G0
+−(p) = 2π(θ(−p0) + fp)δ(p2 − m2)

G0
−+(p) = 2π(θ(+p0) + fp)δ(p2 − m2)

■ The vertices are −ig or +ig depending on whether the time
is on the upper or lower branch (the opposite sign is due to
the fact that the lower branch is oriented in the opposite
direction)
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Momentum space formulation - Exercise

■ Check the following formula :
(

G0
++ G0

+−

G0
−+ G0

−−

)
= U

(
G0

F
0

0 G0∗
F

)
U

with

U(p) ≡



√

1 + fp
θ(−p0)+fp√

1+fp

θ(+p0)+fp√
1+fp

√
1 + fp




and

G0
F
(p) ≡ i

p2 − m2 + iǫ
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Momentum space formulation

■ For each graph, assign ± signs to the vertices in all the
possible ways (2n possibilities for n vertices)

■ Connect the vertices by the corresponding G0
ǫǫ′ propagators

■ Integrate over the momenta of all the independent loops

■ Notes :
◆ The same formalism can be used in equilibrium

◆ However, the contribution of the vertical part of the time
contour brings a small modification to the propagator :

n
B
(Ep) → n

B
(|p0|)
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KMS symmetry

■ The n-point correlators in the Schwinger-Keldysh formalism
obey the following relation :

∑

ǫ1···ǫn=±

[ ∏

{i|ǫi=−}

(−1)
]

Gǫ1···ǫn
(k1, · · · , kn) = 0

Note : this relation is true even out of equilibrium

■ A second relation - related to KMS - is satisfied in
equilibrium :

∑

ǫ1···ǫn=±

[ ∏

{i|ǫi=−}

(−e−βk0

i )
]

Gǫ1···ǫn
(k1, · · · , kn) = 0

■ Note : amputated correlators obey the same relations,
without the minus signs
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Pathologies - Exercise

■ The propagators of the Schwinger-Keldysh formalism in
momentum space are linear combinations of the distributions

P
1

p2 − m2
, δ(p2 − m2)

■ Show that the square of these distributions is ill-defined

■ However, some bilinear combinations are well defined :

2
[
P

1

x

]
δ(x) = − d

dx
δ(x)

π2δ2(x) −
[
P

1

x

]2
=

d

dx

[
P

1

x

]

■ For consistency, all the ill-defined products of distributions
must cancel when calculating graphs in the
Schwinger-Keldysh formalism
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Pathologies

■ Example : insertion of a self-energy. Consider :

Σ =
∑

ǫ,ǫ′=±

G0
+ǫ(p) Σǫǫ′(p) G0

ǫ′+(p)

■ This expression contains δ2(p2 − m2) terms (that cannot be
combined with others to make finite objects) whose sum is
proportional to (for p0 > 0)

2fp(1 + fp)
[
Σ++ + Σ−−

]
+ (1 + 2fp)

[
(1 + fp)Σ+− + fpΣ−+

]

■ Using the first relation among the Σǫǫ′ ’s (which is always
true), this coefficient becomes

(1 + fp)Σ+− − fpΣ−+

⊲ This is zero only if the KMS identity holds, i.e. if the
system is in equilibrium!
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Pathologies

■ One can learn a bit more by resumming the self energy on
the propagator. Define :

G0
≡

0
@G0

++ G0
+−

G0
−+ G0

−−

1
A , D ≡

0
@G0

F
0

0 G0∗
F

1
A , S ≡

0
@Σ++ Σ+−

Σ−+ Σ−−

1
A

■ We want to calculate :G ≡
∞∑

n=0

[G0(−iS)
]n G0 = U

∞∑

n=0

[
−iDUSU

]n DU

■ For p0 > 0, we have DUSU =

(
G0

F
Σ

F
G0

F
Σ̃

0 G0∗
F

Σ∗
F

)

with

8
<
:

Σ
F
≡ Σ++ + Σ+−

eΣ ≡
1

1 + fp

h
(1 + fp)Σ+− − fpΣ−+

i
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Pathologies

■ DUSU is the sum of a diagonal and a nilpotent matrix

⊲ the calculation of its n-th power is easy

■ The resummed propagator matrix is :G = U

(
G

F
G

F
Σ̃G∗

F

0 G∗
F

)
U with G

F
(p) ≡ i

p2 − m2 − Σ
F

+ iǫ

■ In equilibrium Σ̃ = 0 thanks to KMS, and the resummed
propagator matrix is diagonalized with the same matrix U .
This was expected since, in equilibrium, interactions do not
change the particle distribution

■ Out of equilibrium, the propagator matrix is no longer
diagonalizable with U . Moreover, G

F
and G∗

F
have mirror

poles with respect to the real energy axis

⊲ pinch singularities if Im Σ
F

= 0
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Interpretation

■ Compare the bare and resummed propagators :

G0 =

0
@ G0

F
θ(−p0)(G0

F
+ G0∗

F
)

θ(+p0)(G0
F

+ G0∗
F

) G0∗
F

1
A+(G0

F
+G0∗

F
)fp

0
@1 1

1 1

1
A

G =

0
@ G

F
θ(−p0)(G

F
+ G∗

F
)

θ(+p0)(G
F

+ G∗
F

) G∗
F

1
A + (G

F
+ G∗

F
)fp

0
@1 1

1 1

1
A

+
h
(1 + fp)Σ+− − fpΣ−+

i
G

F
G∗

F

0
@1 1

1 1

1
A

■ The pinch term gives an equal contribution to the four
components of the propagator matrix, exactly like the
distribution fp ⊲ this suggests that this term can be
absorbed in a redefinition of fp
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Interpretation

■ Strictly speaking, the Schwinger-Keldysh formalism with
ti = −∞ makes sense only in equilibrium

It is possible to check this in the space-time representation : the
previous calculation gives a finite result even out of equilibrium as
long as ti is finite, but the limit ti → −∞ is finite only in equilibrium

■ In fact, the pinch singularities tell us that we are trying to do
something a bit stupid: we are trying to calculate a certain
process taking place at a time x0 in an out of equilibrium
medium, in terms of the particle distribution fp at the time ti.
This is in principle feasible, but extremely unnatural

The pinch singularities suggest that it would be much simpler
to compute this process in terms of the particle distribution at
the time x0 instead

■ By working in coordinate space, we will see that the
self-energy resummation amounts - in a certain
approximation - to let fp have a time dependence governed
by a Boltzmann equation
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From fields to kinetic theory
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Dyson-Schwinger equations

■ In coordinate space, the resummation of the self-energy can
be done via the Dyson-Schwinger equations :

G(x, y) = G0(x, y) +

∫

C

d4ud4v G0(x, u)
(
− iΣ(u, v)

)
G(v, y)

G(x, y) = G0(x, y) +

∫

C

d4ud4v G(x, u)
(
− iΣ(u, v)

)
G0(v, y)

■ Apply �x + m2 to the first equation, using the fact that
(�x + m2)G0(x, y) = −iδc(x − y) :

(�x + m2)G(x, y) = −iδc(x − y) −
∫

C

d4v Σ(x, v) G(v, y)

■ Similarly,

(�y + m2)G(x, y) = −iδc(x − y) −
∫

C

d4v G(x, v) Σ(v, y)
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Wigner transform

■ Out of equilibrium, 2-point functions depend separately on
their two arguments (in equilibrium they depend only on the
difference x − y)

■ However, it is useful to perform a Fourier transform with
respect to the difference s ≡ x − y. The Wigner transform of
F (x, y) is defined as

F (X, p) ≡
∫

d4s eip·s F (X +
s

2
, X − s

2
)

■ Derivatives with respect to x and y can be written in terms of
derivatives with respect to X and s :

∂x =
1

2
∂

X
+ ∂s , ∂y =

1

2
∂

X
− ∂s

�x =
1

4
�

X
+ ∂

X
· ∂s + �s , �y =

1

4
�

X
− ∂

X
· ∂s + �s
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Wigner transform - Exercise

■ Wigner transform of a convolution. Consider :

H(x, y) ≡
∫

d4z F (x, z) G(z, y)

■ Prove that :

H(X, p) = e
i
2

[
∂

X1
·∂p2

−∂
X2

·∂p1

]
F (X1, p1) G(X2, p2)

∣∣∣
X1=X2=X

p1=p2=p

■ By expanding the exponential, one gets the gradient
expansion of the Wigner transform of the convolution product
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Gradient expansion

■ The derivatives with respect to X (∂
X

, �
X

) characterize the
space and time scales over which the particle distribution
changes significantly

■ We assume that these scales are much larger than the De
Broglie wavelength of the particles, i.e. that
∂

X
≪ p, �

X
≪ p2

■ Note : typically, ∂
X

is at most of the order of the inverse
transport mean free path, i.e. g4T

■ As we shall see, the relevant self-energy in transport
phenomena is of order g4T 2, while the typical particle
momentum is of order T

⊲ it is sufficient to expand the convolution product in the
r.h.s. to zeroth order in gradients
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Gradient expansion

■ By taking the difference of the Dyson-Schwinger equations
w.r.t. x and y, and by breaking it down into its ±
components, one finds

−2ip · ∂
X

(G+−(X, p) − G−+(X, p)) = 0

−2ip · ∂
X

(G+−(X, p) + G−+(X, p)) = 2
[
G−+Σ+− − G+−Σ−+

]

■ Quasi-particle ansatz : by analogy with the free theory, one
assumes that (for p0 > 0)

G−+(X, p) = (1 + f(X, p))ρ(X, p)

G+−(X, p) = f(X, p)ρ(X, p)

where ρ(X, p) ≡ G−+(X, p) − G+−(X, p)

■ This assumption is valid when the quasi-particles are
long-lived. This usually requires that the coupling be small
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Boltzmann equation

■ Thus, we get a Boltzmann equation :
[
∂t + ~vp · ~∇~x

]
f(X, p) =

i

2Ep

[
(1+f(X, p))Σ+−−f(X, p)Σ−+

]

where ~vp ≡ ~p/Ep

■ In the r.h.s (collision term), we see the same combination as
in the KMS condition ⊲ it is zero in equilibrium

■ The collision term is a (spatially local) functional of the
particle distribution f(X, p) ⊲ the Boltzmann equation is an
approximation of the Dyson-Schwinger equations in which
the degrees of freedom are on-shell particles

■ The combination ∂t + ~vp · ~∇~x is the transport derivative

It is zero on any function whose t and ~x dependence arise
only in the combination ~x − ~vpt
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Boltzmann equation - Exercise

■ Consider a scalar theory with a λφ4 interaction

■ Show that the first non-zero contribution to the collision term
arises at 2-loops, in the diagram

■ Calculate the corresponding collision term, and show that it
is given by

λ2

4Ep

Z
d3~p1

(2π)32E1

Z
d3~p2

(2π)32E2

Z
d3~p3

(2π)32E3
(2π)4δ(p − p1 − p2 − p3)

×

h
f(p1)f(p2)(1 + f(p3))(1 + f(p)) − f(p3)f(p)(1 + f(p1))(1 + f(p2))

i

(General structure : Gain term – Loss term)
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Boltzmann-Vlasov equation

■ Our derivation must be slightly modified when the
self-energy Σ(u, v) contains a local part :

Σ(u, v) = Φ(u)δc(u − v) + Π(u, v)

■ In the derivation of the Boltzmann equation, one needs the
Wigner transform of

Φ(y)G(x, y) − Φ(x)G(x, y)

Exercise : show that to lowest order in the gradient
expansion, this Wigner transform is

i∂
X

Φ(X) · ∂pG(X, p)

■ The modified Boltzmann equation reads :
[
∂t + ~vp · ~∇~x

]
f+

1

2Ep

∂
X

Φ · ∂pf =
i

2Ep

[
(1+f)Σ+−−fΣ−+

]
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Collisionless kinetic equations
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Free transport

■ Free transport is a regime in which the particles do not
interact. Given an initial f(t0, ~x, ~p), the particles propagate
on straight lines, at constant velocity

■ The kinetic equation that describes this regime reads :

p · ∂
X

f(t, ~x, ~p) = 0

or, equivalently :
[
∂t + ~vp · ~∇x

]
f(t, ~x, ~p) = 0 with ~vp ≡ ~p

Ep

■ This equation can be solved trivially from its initial condition :

f(t, ~x, ~p) = f(t0, ~x − ~vp(t − t0), ~p)

Interpretation :
◆ The momentum ~p of the particles does not change
◆ If a particle of momentum ~p is at the position ~x at time t, it

comes from the position ~x − ~vp(t − t0) at the time t0
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Free transport

■ At the time t0 :
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Free transport

■ At the time t :
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Vlasov equation

■ The Vlasov equation describes the time evolution of a
distribution of particles under the influence of a force ~F

■ The Vlasov equation reads :
[
∂t + ~vp · ~∇x

]
f(t, ~x, ~p) + ~F · ~∇pf(t, ~x, ~p) = 0

■ When the force is externally applied, it can be solved
formally by :

f(t, ~x, ~p) = f(t0, ~x0, ~p0)

where (~x0, ~p0) is the position in phase space at time t0 that leads to
(~x, ~p) at time t under the effect of the force ~F . If (~x(τ), ~p(τ))

denotes the trajectory between t0 and t, one has

~x = ~x0 +

Z t

t0

dτ
~p(τ)

Ep(τ)
, ~p = ~p0 +

Z t

t0

dτ ~F (τ, ~x(τ))
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Vlasov equation

■ At the time t0 :
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Vlasov equation

■ At the time t : F
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Vlasov equation

■ At the time t : F
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Vlasov equation

■ At the time t : F
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Vlasov equation + mean field

■ In many applications, the force ~F is not externally applied,
but results from the action of all the other particles

■ Example : for electro-magnetic interactions among the
particles in the system, the force term in the Vlasov equation
reads

e vµ
p Fµν| {z }

∂ν
p f(t, ~x, ~p)

Lorentz force in covariant form

with

F µν
≡ ∂µAν

− ∂νAµ

∂µF µν(x) = e

Z
d3~p

(2π)3
vν

p f(t, ~x, ~p)

| {z }
(Maxwell’s equation)

EM current created by the particles
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Boltzmann equation
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Collision term

■ The Boltzmann equation takes into account the collisions
among particles. It is valid when these collisions are
sufficiently local (i.e. no long range interactions among pairs
of particles). Thanks to the Debye screening, this is a valid
assumption for a neutral plasma

■ The Boltzmann equation reads :
[
∂t + ~vp · ~∇x

]
f(t, ~x, ~p) + ~F · ~∇pf(t, ~x, ~p) = Cp[f ]

⊲ the functional Cp [f ] is the collision term. For 2 → 2 collisions, it

can be written as :

Cp [f ] =
1

2Ep

Z
d3~p′

(2π)32Ep′

Z
d3~k

(2π)32Ek

Z
d3~k

′

(2π)32Ek′

(2π)4δ(p+k−p′
−k′)

×

h
f(X,~p′)f(X,~k

′
)(1 + f(X,~p))(1 + f(X,~k))

−f(X,~p)f(X,~k)(1 + f(X,~k
′
))(1 + f(X,~p′))

i ˛̨
˛M

˛̨
˛
2
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Collision term

■ Elementary 2-body collision :
F

p

k

p’

k’

Note : microscopic collisions are reversible
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Diluteness assumption

■ In order to be able to neglect 3-body collisions and higher,
the system under study must be sufficiently dilute

■ For a system of N hard spheres of radius r, the Boltzmann
equation is valid in the limit :

{
Nr2 = const

Nr3 → 0

(Boltzmann-Grad limit)

■ The first condition means that the mean free path is fixed
(λ = 1/nσ, n = N/V, σ = 2πr2)

■ The second condition means that the volume occupied by
the particles tend to zero
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Molecular chaos assumption

■ Strictly speaking, the collision term should contain the
probability to find a pair of particles of momenta ~p, ~k at the
point (t, ~x) before the collision

⊲ one should have used the 2-particle phase-space
distribution :

f2(X,~p; X,~k)

that contains information about the 2-particle correlations

■ By writing :

f2(X,~p; X,~k) = f(X,~p)f(X,~k)

one assumes that the two colliding particles have
uncorrelated momenta before the collision

■ Although the microscopic processes are reversible, the
Boltzmann equation is not, because the two momenta
become correlated after the collision
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Collisions or mean field ?

■ Given a two-body interaction between particles, should we
treat it as part of the mean field force term, or as part of the
collision term?

■ Bobylev, Illner : for inverse power forces in r−s

◆ the collision term prevails if s > 3
◆ the mean-field term prevails if s < 3

■ This indicates that short-range interactions should be treated
as collisions, while long range interactions go in the
mean-field term

■ Examples :

Debye screened forces → collisions

Hard sphere interactions → collisions

Gravitational forces → mean-field
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Collisional invariants

■ Consider a quantity I(~p), and the integral

I[f ] ≡

Z
d3~p

(2π)3
Cp [f ] I(~p)

■ By symmetry under the exchange (~p, ~p′) ↔ (~k, ~k
′
) and

antisymmetry under (~p, ~k) ↔ (~p′, ~k
′
), we can write

I[f ] =
1

4

Z
d3~p

(2π)3
Cp [f ]

h
I(~p) + I(~k) − I(~p′) − I(~k

′
)
i

■ A quantity I(~p) for which the bracket [· · · ] vanishes is called
a collisional invariant

■ Collisional invariants :

◆ I(~p) = 1 (elastic collisions conserve the number of particles)

◆ I(~p) = pµ (energy-momentum conservation)
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Local conservation laws

■ Define the density and current at point X for the quantity I :

I(X) ≡
∫

d3~p

(2π)3
I(~p) f(X,~p)

~J
I
(X) ≡

∫
d3~p

(2π)3
I(~p) ~vp f(X,~p)

■ Multiply the Boltzmann equation by I(~p) and integrate it over
all the momenta p :
◆ The collision term gives zero for a collisional invariant
◆ If there is no force term, then one obtains

∂tI(X) + ~∇x · ~J
I
(X) = 0

⊲ continuity equation for the local conservation of the quantity I

■ Note : if there is a force term, the number of particles is
locally conserved, but not their momentum
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H theorem

■ Define the quantities

h(X,~p) ≡ (1 + f(X,~p)) ln(1 + f(X,~p)) − f(X,~p) ln(f(X,~p))

H(X) ≡

Z
d3~p

(2π)3
h(X,~p) , ~J

H
(X) ≡

Z
d3~p

(2π)3
h(X,~p)~vp

■ From the Boltzmann equation, we get

h
∂t + ~vp · ~∇x

i
h + ~F (X) · ~∇ph = Cp [f ] ln

„
1 + f(X,~p)

f(X,~p)

«

∂tH + ~∇x · ~J
H

= σ
H

with σ
H

≡

Z
d3~p

(2π)3
Cp [f ] ln

„
1 + f(X,~p)

f(X,~p)

«
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H theorem

■ Using the symmetry properties of the collision term, we can
rewrite σ

H
as

σ
H

=
1

4

∫
d3~p

(2π)3
Cp[f ]

[
ln

(
1 + f(X,~p)

f(X,~p)

)
+ ln

(
1 + f(X,~k)

f(X,~k)

)

− ln

(
1 + f(X,~p′)

f(X,~p′)

)
− ln

(
1 + f(X,~k

′
)

f(X,~k
′
)

)]

■ In the right hand side, one can rewrite the factors that
depend on f as follows :

f(X,~p)f(X,~k)(1+f(X,~p′))(1+f(X,~k
′
))

h αpαk

αp′αk′

−1
i
ln

„
αpαk

αp′αk′

«

with αp ≡ (1 + f(X,~p))/f(X,~p)

■ Since (X − 1) ln(X) ≥ 0, we have σ
H
≥ 0

⊲ the quantity H has a positive source term
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H theorem

■ Interpretation :
◆ H(X) is the entropy density, and ~J

H
(X) its current

◆ Because the continuity equation for H has a right hand
side σ

H
, it is not a conserved quantity

◆ Because σ
H
≥ 0, the total amount of H in the system can

only increase

■ Remarks :
◆ This seems to contradict Poincaré’s recurrence theorem :

“Any system with a finite volume phase-space will return
arbitrarily close to its initial conditions in a finite time”
⊲ where does the irreversibility come from in the Boltzmann eq.?

◆ Molecular chaos assumption : the Boltzmann equation is an

approximation of the full dynamical evolution of the system, in
which one neglects correlations among particles prior to

collisions. By dropping these correlations, one loses the
information necessary to reverse the time evolution of the system
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Equilibrium state

■ When the equilibrium is reached, σ
H

= 0

⊲ ln((1 + feq)/feq) is a collisional invariant

⊲ it is a linear combination of 1 and pµ :

ln

(
1 + feq(X,~p)

feq(X,~p)

)
= α+βµpµ ⇒ feq(X,~p) =

1

eα+βµpµ − 1

(Bose-Einstein distribution)

■ βµpµ is the Lorentz covariant form of p0/T (β = 1/T )

■ α is a chemical potential associated to the conservation of
the number of particles
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Transport coefficients
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Transport coefficients

■ The Boltzmann equation is a powerful tool for calculating
transport coefficients such as conductivity, viscosity,
diffusion constants

■ These transport coefficients can also be calculated in
quantum field at finite temperature. Example for the electric
conductivity :
◆ σel is the coefficient of proportionality between the induced

electric current and the applied electric field :

~jel = σel
~E

◆ It is given by a current-current correlator (Kubo’s formula) :

σel =
1

6
lim
ω→0

Z
d4x eiωt

D
ji
el(t, ~x) ji

el(0, ~0)
E

T

◆ This correlation function can be evaluated from Feynman

diagrams at finite temperature, but one needs to sum an infinite
series of graphs ⊲ quite difficult
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Transport coefficients

■ In the evaluation of σel from the Boltzmann equation, one
perturbs a system at equilibrium by a small electric field
⊲ it enters in the Boltzmann equation via the force ~F ≡ e~E

■ This force induces a departure of f away from feq. It is
convenient to parameterize it by

f(X,~p) ≡ feq(X,~p) + feq(X,~p)(1 + feq(X,~p)) f1(X,~p)

■ Since the applied field is small, the deviation f1 is also small
⊲ linearize the collision term in f1 :

Cp [f ] = Lp · f1 + O(f2
1 )

≡
1

2Ep

Z
d3~p′

(2π)32Ep′

Z
d3~k

(2π)32Ek

Z
d3~k

′

(2π)32Ek′

(2π)4δ(p+k−p′
−k′)

×feq(X,~p)feq(X,~k)(1 + feq(X,~k
′
))(1 + feq(X,~p′))

×

h
f1(X,~p) + f1(X,~k) − f1(X,~p′) − f1(X,~k

′
)
i ˛̨

˛M
˛̨
˛
2
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Transport coefficients

■ We apply an uniform electric field, hence ~∇xf(X,~p) = 0

■ In order to have ~jel = σel
~E, we must reach the stationary

regime. Therefore ∂tf(X,~p) = 0

■ Since the applied field is small, it is legitimate to replace f by
feq in the force term. Thus, the linearized Boltzmann
equation reads :

Lp · f1 = e~E · ~∇p feq(X,~p)

■ Solve this equation (not easy, but doable numerically). Since
it is a linear equation, the solution f1 is linear in ~E

■ Then, one calculates the current induced by this perturbation
of the particle distribution,

~jel = e

Z
d3~p

(2π)3
~vp feq(X,~p)(1 + feq(X,~p)) f1(X,~p)

⊲ read σel as the coefficient of proportionality between ~jel and ~E
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