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General outline

■ Lecture I : Quantum field theory at finite T

■ Lecture II : Collective phenomena in the QGP

■ Lecture III : Out of equilibrium systems
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Lecture I : QFT at finite T

■ Introduction

■ Perturbative expansion at finite T

■ Matsubara formalism
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QCD : Quarks and gluons

■ Electromagnetic interaction : Quantum electrodynamics
◆ Matter : electron , interaction carrier : photon
◆ Interaction :

∼ e (electric charge of the electron)

■ Strong interaction : Quantum chromo-dynamics
◆ Matter : quarks , interaction carriers : gluons
◆ Interactions :

a

i

j

∼ g (ta)ij
a

b

c

∼ g (T a)bc

◆ i, j : colors of the quarks (3 possible values)
◆ a, b, c : colors of the gluons (8 possible values)
◆ (ta)ij : 3 × 3 matrix , (T a)bc : 8 × 8 matrix
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QCD : Asymptotic freedom

■ Running coupling : αs = g2/4π

αs(r) =
2πNc

(11Nc − 2Nf ) log(1/rΛ
QCD

)

■ The effective charge seen at large distance is screened by
fermionic fluctuations (as in QED)
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QCD : Asymptotic freedom

■ Running coupling : αs = g2/4π

αs(r) =
2πNc

(11Nc − 2Nf ) log(1/rΛ
QCD

)

■ The effective charge seen at large distance is screened by
fermionic fluctuations (as in QED)

■ But gluonic vacuum fluctuations produce an anti-screening
(because of the non-abelian nature of their interactions)

■ As long as Nf <11Nc/2 = 16.5, the gluons win...
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QCD : Asymptotic freedom

αS(MZ)=0.1182±0.0027

JADE
OPAL (preliminary)

ALEPH

JADE
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■ The coupling constant is small at short distances
■ At high density, a hadron gas may undergo deconfinement

⊲ quark gluon plasma
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QCD :Quark confinement

■ The quark potential increases linearly with distance
■ Quarks are confined into color singlet hadrons
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Deconfinement transition
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■ Fast increase of the pressure :
◆ at T ∼ 270 MeV, if there are only gluons
◆ at T ∼ 150–170 MeV, depending on the number of light quarks
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Deconfinement transition

Individual
nucleons plasma

Quark gluon

Density

■ When the nucleon density increases, they merge, enabling
quarks and gluons to hop freely from a nucleon to its
neighbors

■ This phenomenon extends to the whole volume when the
phase transition ends

■ Note: if the transition is first order, it goes through a mixed
phase containing a mixture of nucleons and plasma
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QCD phase diagram

Quark−Gluon

hadronic
phase Color superconductor

plasma

Temperature

Nuclei Neutron stars

Density
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QGP in the early universe

Quark−Gluon

hadronic
phase Color superconductor

plasma

Temperature

Nuclei Neutron stars

Density

Expansion of
the early Universe
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QGP in the early universe

big bang

end of inflation

EW transition

confinement

nucleosynthesis

formation of atoms

time

Quark Gluon Plasma

10-32 sec

10-10 sec

10-5 sec

10+2 sec

10+12 sec
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Heavy ion collisions

Quark−Gluon

hadronic
phase Color superconductor

plasma

Temperature

Nuclei Neutron stars

Density

Heavy ion collisions
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Stages of a nuc leus-nucleus collision

z = ctz = -ct

z  (beam axis)

t
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Stages of a nucleus-nucleus collision

z 

t

■ τ ∼ 0 fm/c

■ Production of hard particles :
◆ jets, direct photons
◆ heavy quarks

■ calculable with perturbative QCD (leading twist)
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Stages of a nucleus-nucleus collision

z 

t

strong fields classical EOMs

■ τ ∼ 0.2 fm/c
■ Production of semi-hard particles : gluons, light quarks
■ relatively small momentum : p⊥ . 2–3 GeV
■ make up for most of the multiplicity
■ sensitive to the physics of saturation (higher twist)
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Stages of a nucleus-nucleus collision

z 

t

strong fields classical EOMs

gluons & quarks out of eq. kinetic theory

■ τ ∼ 1–2 fm/c
■ Thermalization

◆ experiments suggest a fast thermalization
◆ but this is still not well understood from QCD
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Stages of a nucleus-nucleus collision

z 

t

strong fields classical EOMs

gluons & quarks out of eq. kinetic theory

gluons & quarks in eq. hydrodynamics

■ 2 ≤ τ . 10 fm/c
■ Quark gluon plasma
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Stages of a nucleus-nucleus collision

z 

t

strong fields classical EOMs

gluons & quarks out of eq. kinetic theory

gluons & quarks in eq.
hydrodynamics

hadrons in eq.

■ 10 . τ . 20 fm/c
■ Hot hadron gas
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Stages of a nucleus-nucleus collision

z 

t

strong fields classical EOMs

gluons & quarks out of eq. kinetic theory

gluons & quarks in eq.
hydrodynamics

hadrons in eq.

freeze out

■ τ → +∞

■ Chemical freeze-out :
density too small to have inelastic interactions

■ Kinetic freeze-out :
no more elastic interactions
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Quantum field theory at T=0

■ In order to study collision processes involving a small
number of particles, one uses Quantum Field Theory at zero
temperature

■ It can be used to calculate scattering amplitudes, such as
〈
~p1~p2out

∣
∣~k1

~k2in

〉

■ Besides the incoming particles, the only other fields that can
be involved in the scattering process are quantum
fluctuations of the vacuum
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Quantum field theory at T=0

■ A QFT is specified by its Lagrangian, that describes the
interactions among its elementary constituents

■ When the interactions are weak, one can compute
observables in perturbation theory, i.e. as a series in the
coupling constants

■ LSZ reduction formulas : scattering amplitudes are obtained
from the Fourier transform of the time-ordered correlators

˙
~p1~p2out

˛
˛~k1

~k2in

¸
=

Z

x1,x2,y1,y2

ei(k1·x1+k2·x2−p1·y1−p2·y2)

×�x1
�x2

�y1
�y2

˙
0out

˛
˛Tφ(x1)φ(x2)φ(y1)φ(y2)

˛
˛0in

¸

| {z }

can be calculated perturbatively

Note : T = time ordering
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Quantum field theory at T=0

■ The perturbative expansion is a series in gn. The g
dependence can be extracted by writing the Heisenberg
fields in terms of fields of the interaction representation :

φ(x) ≡ U(−∞, x0)φin(x)U(x0,−∞)

U(t2, t1) = T exp i

∫ t2

t1

d4x L
I
(φin(x))

︸ ︷︷ ︸

interaction term, e.g. gφ3
in(x)

■ One gets a series in g by expanding the exponential

■ Feynman rules in coordinate space :

◆ Vertices : −ig
Z

d4x

◆ Propagators : G0
F

(x, y) =
˙
0

˛
˛Tφin(x)φin(y)

˛
˛0

¸

Note : in momentum space,

G0
F

(p) ≡

Z

d4(x− y) eip·(x−y) G0
F
(x, y) =

i

p2 −m2+iǫ
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Quantum field theory at T=0 - Exercise

■ Properties of U(t1, t2) :

◆ U(t, t)= 1

◆ UU †= 1

◆ U(t1, t2)U(t2, t3)= U(t1, t3)

◆ U−1(t1, t2)= U(t2, t1)

■ φ(x) and φin(x) coincide when x0 → −∞

■ If φ(x) obeys the equation of motion with interactions, then
φin(x) is a free field :

(�+m2)φ(x)−
∂L

I
(φ(x))

∂φ(x)
= U(−∞, x0)

h

(�+m2)φin(x)
i

U(x0,−∞)
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Perturbation theory at finite T
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Introduction

■ Contrary to T = 0, particles from the thermal environment
can participate in reactions :

■ This phenomenon gives their temperature dependence to
correlators

■ The time-ordered correlators are now defined as

G(x1, · · · , xn) ≡
Tr (e−βH T φ(x1) · · ·φ(xn))

Tr (e−βH)

(with β ≡ 1/T )
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Introduction

■ Contrary to T = 0, scattering amplitudes are not very
interesting objects, because there are no asymptotically free
states inside a sample of matter at non-zero temperature

■ Interesting physical quantities :

◆ Equation of state

◆ Screening length

◆ Quasi-particle spectral functions

◆ Transport coefficients

■ All these quantities can be obtained from the thermal
correlators defined on the previous slide
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T=0 limit

■ The thermal correlators can be rewritten in terms of
eigenstates of the Hamiltonian :

G(x1, · · · , xn) =
1

Tr (e−βH)

∑

states n

e−βEn
〈
n
∣
∣T φ(x1) · · ·φ(xn)

∣
∣n

〉

■ When T → 0 (i.e. β → +∞), only the vacuum state
∣
∣0

〉

survives since it has the lowest energy. Thus

lim
T→0

G(x1, · · · , xn) =
〈
0
∣
∣T φ(x1) · · ·φ(xn)

∣
∣0

〉

■ Therefore, our definition of the thermal correlators is a
natural extension of the definition used at zero temperature
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Perturbative expansion

■ In order to perform the perturbative expansion at finite T , we
must identify all the sources of g dependence

■ One of them is the interactions inside the field operator φ(x).
This is identical to T = 0 :

φ(x) = U(−∞, x0)φin(x)U(x0,−∞)

U(t2, t1) ≡ T exp i

∫ t2

t1

d4x L
I
(φin(x))

■ At T > 0, another source of g-dependence is the density
operator exp(−βH), since H = H0 + H

I
. One can prove

e−βH = e−βH0 T exp i

∫ −∞−iβ

−∞

d4x L
I
(φin(x))

︸ ︷︷ ︸

U(−∞− iβ,−∞)
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Perturbative expansion - Exercise

■ Proof of
exp(−βH)
| {z }

= exp(−βH0) U(−∞− iβ,−∞)
| {z }

A(β) B(β)

■ B(β) can be rewritten as

B(β) = e−βH0 T exp−i

Z −∞−iβ

−∞

dt HI
in(t)

with HI
in(t) = exp(iH0(t+ ∞))H

I
exp(−iH0(t+ ∞))

■ A(β) and B(β) are identical at β = 0 (trivial)

■ Their first derivatives are identical at any β

A′(β) = −H A(β)

B′(β) = −H0B(β) − e−βH0HI
in(−∞− iβ)

| {z }
T exp−i

Z −∞−iβ

−∞

dt HI
in(t)

H
I
e−βH0
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Perturbative expansion

■ From the previous formulas, we can write :

e−βH T φ(x1) · · ·φ(xn) =

= e−βH0 P φin(x1) · · ·φin(xn) exp i

∫

C

d4x L
I
(φin(x))

C = [ti,+∞] ∪ [+∞, ti] ∪ [ti, ti − iβ] :

ti

ti - iβ

(it is instructive to let the path start at an arbitrary ti instead of −∞)

■ The symbol P denotes path ordering. The contour C is
oriented, and the closest operator to the end of the path
should be on the left of the product

■ On the upper branch of the contour, the path ordering is
equivalent to the usual time-ordering. The times x0

1, · · · , x0
n

are on the upper branch of the path
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Perturbative expansion

■ From the previous formula, one sees that – in coordinate
space – perturbation theory at finite T is very similar to
perturbation theory at T = 0. The only difference is that the
time integrations at the vertices run over the contour C

■ Feynman rules :

◆ Vertices : −ig

∫

C

d4x

◆ Propagator :

G0(x, y) =
Tr (e−βH0 P φin(x)φin(y))

Tr (e−βH0)

■ At the moment, it seems that the result may depend on the
arbitrary initial time ti we have just introduced. However, we
will prove shortly that nothing depends on ti
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Perturbative expansion

■ The free thermal propagator is obtained from the Fourier
decomposition of the free field φin(x) :

φin(x) =

∫
d3~p

(2π)32Ep

[

ain(~p) e−ip·x + a†
in(~p) e+ip·x

]

■ Exercise : prove the following relations
ˆ
e−βH0 , ain(~p)

˜
= e−βH0(1 − e−βEp )ain(~p)

Tr (e−βH0 ain(~p)) = 0

Tr (e−βH0 a†in(~p)ain(~p′)) = (2π)3 2Ep nB
(Ep) δ(~p − ~p′)

with n
B

(E) =
1

eβE − 1

■ From there, it is easy to obtain :

G0(x, y) =

Z
d3~p

(2π)32Ep

h

(θc(x
0
− y0) + n

B
(Ep)) e−ip·(x−y)

+(θc(y
0
− x0) + n

B
(Ep)) e+ip·(x−y)

i
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KMS symmetry

■ The density operator exp(−βH) can be seen as an evolution
operator for an imaginary time shift :

e−βHφ(x0−iβ, ~x)eβH = φ(x0, ~x)

■ Consider the correlator G ≡ Tr (e−βH T φ(ti, ~x) · · · )

■ ti is the “smallest” time on C : G = Tr (e−βH (T · · · )φ(ti, ~x))

■ Use the cyclicity of the trace, and the first relation :
G = Tr (e−βH φ(ti − iβ, ~x) (T · · · ))

■ ti−iβ is the “largest” time : G = Tr (e−βH T φ(ti−iβ, ~x) · · · )

⊲ G has identical values at x0 = ti and x0 = ti − iβ
(Kubo-Martin-Schwinger symmetry)

■ This property is true for equilibrium thermal correlators with
any number of points, at any order of perturbation theory
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Path deformations

■ The free propagator does not depend explicitly on ti
■ It verifies the KMS symmetry
■ Any graph contributing to a correlator G(x1, · · · , xn) has a

contribution of the form :

G =

∫

C

dy0
1 · · · dy0

p F (x1, · · · , xn; y0
1 , · · · , y0

p)

where the function F is (piece-wise) holomorphic and takes
identical values at y0

i = ti and y0
i = ti − iβ

■ The derivative of G with respect to ti involves the difference
of F at the endpoints of the contour, and is therefore zero

Interpretation : ti is the time at which the system is put in
thermal equilibrium. By definition of thermal equilibrium, no
measurement made afterwards can tell the value of ti

■ More general deformations of the contour C also leave the
value of G unchanged
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Conserved charges

■ A field φ is charged (with charge q) under the operator Q if it
obeys a relation of the form [Q, φin(x)] = −qφin(x)

Note : Q is Hermitian and q is real. If the field φ is Hermitian, then q
can only be zero. The simplest charged fields are complex scalars :

φin(x) =

Z
d3~p

(2π)32Ep

h

ain(~p) e−ip·x + b†in(~p) e+ip·x
i

■ When the charge Q is conserved, thermal averages should
be calculated with the density operator exp(−β(H + µQ))
where µ is the corresponding chemical potential

■ For an external line that carry a conserved charge q, the
KMS symmetry is G(· · · ti · · · ) = eβµq G(· · · ti − iβ · · · )

■ Since Q is conserved, it cannot depend on the coupling
constants of the theory ⊲ the contour C is not affected by
chemical potentials
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Conserved charges

■ Exercise : derive the relations :

Tr (eβ(H0+µQ) a†in(~p)ain(~p′)) = (2π)3 2Ep

1

eβ(Ep−µq) − 1
δ(~p − ~p′)

Tr (eβ(H0+µQ) b†in(~p)bin(~p′)) = (2π)3 2Ep

1

eβ(Ep+µq) − 1
δ(~p − ~p′)

(all the other averages are zero)

■ The free propagator now depends on µ :

G0(x, y) =

Z
d3~p

(2π)32Ep

h

(θc(x
0
− y0) +

1

eβ(Ep−µq) − 1
) e−ip·(x−y)

+(θc(y
0
− x0) +

1

eβ(Ep+µq) − 1
) e+ip·(x−y)

i
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Fermions

■ Consider a spin 1/2 fermion :

ψin(x) =

Z
d3~p

(2π)32Ep

h

bλin(~p)uλ(~p) e−ip·x + dλ†
in (~p)vλ(~p) e+ip·x

i

with uλ, vλ(λ = 1, 2) independent solutions of the free Dirac
equations (/p−m)uλ(~p) = 0 , (/p+m)vλ(~p) = 0

■ For consistency, fermions must be quantized with
anti-commutation relations ⊲ Fermi-Dirac distributions

■ Free propagator :

S0(x, y) =

Z
d3~p

(2π)32Ep

h

(Epγ
0
−~p · ~γ+m)(θc(x

0
−y0)−

1

eβ(Ep−µq)+1
) e−ip·(x−y)

+(−Epγ
0
−~p · ~γ+m)(θc(y

0
−x0)−

1

eβ(Ep+µq)+1
) e+ip·(x−y)

i

■ KMS for fermions : G(· · · ti · · · ) = −eβµq G(· · · ti − iβ · · · )
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Matsubara formalism
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Thermodynamical quantities

■ Vacuum diagrams are diagrams without any external legs

■ The sum of all the vacuum diagrams provides the partition
function

Z = Tr (e−βH)

■ From Z, one can obtain other thermodynamical quantities :

E = −
∂Z

∂β

S = βE + ln(Z)

F = E − TS = −
1

β
ln(Z)
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Thermodynamical quantities

■ Vacuum diagrams are pure numbers (they do not depend on
any external coordinate)

⊲ For this reason, we are not tied to using a contour C that
contains the real axis

■ We can deform the contour to make it simpler

ti

ti - iβ

0

- iβ

■ If we denote x0 = −iτ , the variable τ is real and spans the
range [0, β]. The Feynman rules obtained with this choice of
the contour C are known as “imaginary time formalism”

■ Note : one could in principle use them to calculate
non-vacuum diagrams, but beyond 2-point functions, the
analytic continuation to real time is complicated
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Matsubara frequencies

■ The propagator – and more generally the integrand for any
diagram – is β-periodic in the imaginary time τ

■ Therefore, one can go to Fourier space by decomposing the
time dependence in Fourier series and by doing an ordinary
Fourier transform in space :

G0(τx, ~x, τy, ~y) = T
+∞∑

n=−∞

∫
d3~p

(2π)3
eiωn(τx−τy)e−i~p·(~x−~y) G0(ωn, ~p)

with ωn ≡ 2πnT . Note : for fermions, ωn = 2π(n + 1
2 )T

If the line carries the conserved charge q, one must shift
ωn → ωn − iµq

■ Exercise : an explicit calculation gives :

G0(ωn, ~p) =
1

ω2
n + ~p2 + m2
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Matsubara formalism

■ Feynman rules :

◆ Propagators : G0(ωn, ~p) = 1/(ω2
n + ~p2 + m2)

◆ Vertices : g + conservation of ωn and ~p

◆ Loops : T
∑

n

∫
d3~p

(2π)3

■ Examples (written here in the massless case) :

= λT 2
X

m,n

Z
d3~p

(2π)3
d3~q

(2π)3
1

(ω2
m + ~p2)(ω2

n + ~q2)

= g2T 2
X

m,n

Z
d3~p

(2π)3
d3~q

(2π)3
1

(ω2
m + ~p2)(ω2

n + ~q2)(ω2
m+n + (~p + ~q)2)
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Tips and tricks

■ The calculation of the discrete sums can be a bit tedious...

■ Method 1 : replace each propagator by

G0(ωn, ~p) =
1

2Ep

∫ β

0

dτ e−iωnτ
[

(1+n
B
(Ep)) e−Epτ+n

B
(Ep) eEpτ

]

■ One should combine this trick with the formula
∑

n

eiωnτ = β
∑

n

δ(τ − nβ)

which turns all the time dependence into combinations of
delta functions. Then, all the time integrations are trivial
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Tips and tricks

■ Method 2 : use a function P (ω) that has simple poles of
residue 1 at each iωn. Then, write the discrete sums as

∑

n

f(iωn) =

∮

γ

dz

2iπ
f(z)P (z)

where γ is a path made of a small circle around each pole

Note : for instance P (z) =
β

eβz − 1

■ If the function f(z) has no pole on the imaginary axis,
deform the contour γ in two lines along the imaginary axis

■ Deform the contour to bring it along the real energy axis
(beware of the poles lying away from the real axis!)
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Tips and tricks

■ Exercise. Tadpole in a λφ4 theory :

=
λT

2

X

n

Z
d3~p

(2π)3
1

ω2
n + ~p2

=
λT

2

X

n

Z
d3~p

(2π)3
1

2Ep

Z β

0

dτ e−iωnτ
h

(1+n
B

(Ep))e−Epτ +n
B

(Ep)eEpτ
i

=
λ

2

Z
d3~p

(2π)32Ep

Z β

0

dτ
X

n

δ(τ−nβ)
h

(1+n
B

(Ep))e−Epτ +n
B

(Ep)eEpτ
i

=
λ

2

Z
d3~p

(2π)32Ep

ˆ
1 + 2n

B
(Ep)

˜

(the remaining integral is “elementary”)

■ Note : in the last formula, the 1 gives the usual ultraviolet
divergence, and the n

B
gives a finite contribution that

vanishes if T → 0 ⊲ this term is a medium effect
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Tips and tricks

■ With massless bosons, one frequently encounters integrals
of the form :

In,p ≡

∫ ∞

0

dx
xn

(ex − 1)p

■ Exercise : prove the following formula :

In,p =
n!

(p − 1)!

p−1
∑

i=0

αp−1,i ζ(n + 1 − i)

8

>>>><

>>>>:

(x− 1)(x− 2) · · · (x− p+ 1) ≡

p−1X

i=0

αp−1,i x
i

ζ(s) ≡

∞X

n=1

1

ns
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Tips and tricks

■ The equilibrium thermal distributions obey some useful
relations. The simplest one is :

(1+n
B
(q0))n

F
(p0 + q0)(1−n

F
(p0)) = n

B
(q0)n

F
(p0)(1−n

F
(p0 + q0))

■ Notes :
◆ These relations are closely related to KMS, and are valid

only in equilibrium

◆ They are the mathematical translation of “detailed
balance” :

p+q

q

p p+q

q

p
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Lecture II : Collective effects in the QGP

■ Length scales in the QGP

■ Long distance effective theories

■ Collective phenomena in the QGP

■ Anisotropic plasmas
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Lecture III : Out of equilibrium systems

■ Schwinger-Keldysh formalism, Long time pathologies

■ From fields to kinetic theory

■ Collisionless kinetic equations

■ Boltzmann equation

■ Transport coefficients
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