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General outline

■ Lecture I : Parton evolution at small x, Saturation

■ Lecture II : Initial particle production

■ Lecture III : Instabilities and thermalization

■ Lecture IV : Kinetic theory, Near-Equilibrium dynamics
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Lecture IV : Kinetic theory

■ Collisionless kinetic equations

■ Boltzmann equation

■ Transport coefficients

■ From kinetic theory to hydrodynamics
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Factorization formula

■ By resumming all the large logs (1/x1,2) and the terms
affected by the instability, one gets :

dN

dY d2~p
⊥

=

∫ [
Dρ1] [Dρ2

]
W

Ybeam−Y
[ρ1] W

Ybeam+Y
[ρ2]

×

∫ [
Da
]

Z̃[a]
dN [Ain(ρ1, ρ2)+a]

dY d2~p
⊥

■ The gluon spectrum for given (ρ1, ρ2) and a is given by :

dN [Ain(ρ1, ρ2) + a]

dY d2~p
⊥

∝

Z

x,y

eip·(x−y)
· · · Aµ(x)Aν(y)

■ Aµ(x) is the retarded solution of Yang-Mills equations :
[
Dµ, Fµν

]
= 0 with initial condition : A =

τ=0+
Ain(ρ1, ρ2) + a
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Kinetic theory

■ So far, our description of the early time dynamics of the
system is based on fields (classical fields + quantum
fluctuations)

The fields are then Fourier transformed (with an on-shell
momentum) and a distribution of particles can be extracted

■ However, this semi-classical description cannot apply until
very late times, because some important dynamics is
missing : collisions

■ The fact that collisions are missing would show up at two
loops, under the form of secular terms :
◆ Secular terms increase like powers of the time, and must

be resummed in order to keep the description of the
system under control at late time

◆ This resummation leads to a Boltzmann equation
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Kinetic theory

■ In kinetic theory, the system is described by distributions of
particles

f(t, ~x, ~p) ≡
dN

d3~x d3~p

■ Implicit hypothesis :
◆ The particle distributions vary slowly with t and ~x (gradients in

t, ~x are much smaller than the typical momentum ~p)
◆ On-shell particles propagate freely between two collisions

■ Kinetic equations describe the time evolution of these
distributions under the influence of external forces, or of the
mutual interactions of the particles

■ Kinetic equations :
◆ Free transport equation
◆ Vlasov equation
◆ Boltzmann equation
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Collisionless kinetic equations
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Free transport

■ Free transport is a regime in which the particles do not
interact. Given an initial f(t0, ~x, ~p), the particles propagate
on straight lines, at constant velocity

■ The kinetic equation that describes this regime reads :

p · ∂
X

f(t, ~x, ~p) = 0

or, equivalently :
[
∂t + ~vp · ~∇x

]
f(t, ~x, ~p) = 0 with ~vp ≡

~p

Ep

■ This equation can be solved trivially from its initial condition :

f(t, ~x, ~p) = f(t0, ~x − ~vp(t − t0), ~p)

Interpretation :
◆ The momentum ~p of the particles does not change
◆ If a particle of momentum ~p is at the position ~x at time t, it

comes from the position ~x − ~vp(t − t0) at the time t0
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Free transport

■ At the time t0 :
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Free transport

■ At the time t :
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Vlasov equation

■ The Vlasov equation describes the time evolution of a
distribution of particles under the influence of a force ~F

■ The Vlasov equation reads :
[
∂t + ~vp · ~∇x

]
f(t, ~x, ~p) + ~F · ~∇pf(t, ~x, ~p) = 0

■ When the force is externally applied, it can be solved
formally by :

f(t, ~x, ~p) = f(t0, ~x0, ~p0)

where (~x0, ~p0) is the position in phase space at time t0 that leads to
(~x, ~p) at time t under the effect of the force ~F . If (~x(τ), ~p(τ))

denotes the trajectory between t0 and t, one has

~x = ~x0 +

Z t

t0

dτ
~p(τ)

Ep(τ)
, ~p = ~p0 +

Z t

t0

dτ ~F (τ, ~x(τ))
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Vlasov equation

■ At the time t0 :
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Vlasov equation

■ At the time t : F
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Vlasov equation

■ At the time t : F
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Vlasov equation

■ At the time t : F
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Vlasov equation + mean field

■ In many applications, the force ~F is not externally applied,
but results from the action of all the other particles

■ Example : for electro-magnetic interactions among the
particles in the system, the force term in the Vlasov equation
reads

e vµ
p Fµν

| {z }
∂ν

p f(t, ~x, ~p)

Lorentz force in covariant form

with

F µν
≡ ∂µAν

− ∂νAµ

∂µF µν(x) = e

Z
d3~p

(2π)3
vν

p f(t, ~x, ~p)

| {z }

(Maxwell’s equation)

EM current created by the particles
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Boltzmann equation
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Collision term

■ The Boltzmann equation takes into account the collisions
among particles. It is valid when these collisions are
sufficiently local (i.e. no long range interactions among pairs
of particles). Thanks to the Debye screening, this is a valid
assumption for a neutral plasma

■ The Boltzmann equation reads :
[
∂t + ~vp · ~∇x

]
f(t, ~x, ~p) + ~F · ~∇pf(t, ~x, ~p) = Cp[f ]

⊲ the functional Cp [f ] is the collision term. For 2 → 2 collisions, it

can be written as :

Cp [f ] =
1

2Ep

Z
d3~p′

(2π)32Ep′

Z
d3~k

(2π)32Ek

Z
d3~k

′

(2π)32Ek′

(2π)4δ(p+k−p′
−k′)

×

h

f(X,~p′)f(X,~k
′

)(1 + f(X,~p))(1 + f(X,~k))

−f(X,~p)f(X,~k)(1 + f(X,~k
′

))(1 + f(X,~p′))
i ˛

˛
˛M

˛
˛
˛

2
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Collision term

■ Elementary 2-body collision :
F

p

k

p’

k’

Note : microscopic collisions are reversible
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Historical note

■ A weaker form of the Boltzmann equation first appeared in
the work of Maxwell (1866), who derived equations for
momentum averaged quantities such as :

ϕ(X) ≡

∫
d3~p

(2π)3
φ(~p) f(X,~p)

■ Later, Boltzmann obtained an equation for f(X,~p) itself, and
provided the corresponding physical interpretation
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Diluteness assumption

■ In order to be able to neglect 3-body collisions and higher,
the system under study must be sufficiently dilute

■ For a system of N hard spheres of radius r, the Boltzmann
equation is valid in the limit :

{
Nr2 = const

Nr3 → 0

(Boltzmann-Grad limit)

■ The first condition means that the mean free path is fixed
(λ = 1/nσ, n = N/V, σ = 2πr2)

■ The second condition means that the volume occupied by
the particles tend to zero
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Molecular chaos assumption

■ Strictly speaking, the collision term should contain the
probability to find a pair of particles of momenta ~p, ~k at the
point (t, ~x) before the collision

⊲ one should have used the 2-particle phase-space
distribution :

f2(X,~p; X,~k)

that contains information about the 2-particle correlations

■ By writing :

f2(X,~p; X,~k) = f(X,~p)f(X,~k)

one assumes that the two colliding particles have
uncorrelated momenta before the collision

■ Although the microscopic processes are reversible, the
Boltzmann equation is not, because the two momenta
become correlated after the collision



Introduction

Collisionless kinetic equations

Boltzmann equation

● Collision term

● Implicit assumptions

● Collisions or mean field ?

● Collisional invariants

● H theorem

● Equilibrium state

Transport coefficients

Boltzmann to Hydrodynamics

Summary

CERN

François Gelis – 2007 Lecture IV / IV – Advanced School on QGP, IIT, Mumbai, July 2007 - p. 24

Collisions or mean field ?

■ Given a two-body interaction between particles, should we
treat it as part of the mean field force term, or as part of the
collision term?

■ Bobylev, Illner : for inverse power forces in r−s

◆ the collision term prevails if s > 3
◆ the mean-field term prevails if s < 3

■ This indicates that short-range interactions should be treated
as collisions, while long range interactions go in the
mean-field term

■ Examples :

Debye screened forces → collisions

Hard sphere interactions → collisions

Gravitational forces → mean-field



Introduction

Collisionless kinetic equations

Boltzmann equation

● Collision term

● Implicit assumptions

● Collisions or mean field ?

● Collisional invariants

● H theorem

● Equilibrium state

Transport coefficients

Boltzmann to Hydrodynamics

Summary

CERN

François Gelis – 2007 Lecture IV / IV – Advanced School on QGP, IIT, Mumbai, July 2007 - p. 25

Collisional invariants

■ Consider a quantity I(~p), and the integral

I[f ] ≡

Z
d3~p

(2π)3
Cp [f ] I(~p)

■ By symmetry under the exchange (~p, ~p′) ↔ (~k, ~k
′

) and

antisymmetry under (~p, ~k) ↔ (~p′, ~k
′

), we can write

I[f ] =
1

4

Z
d3~p

(2π)3
Cp [f ]

h

I(~p) + I(~k) − I(~p′) − I(~k
′

)
i

■ A quantity I(~p) for which the bracket [· · · ] vanishes is called
a collisional invariant

■ Collisional invariants :

◆ I(~p) = 1 (elastic collisions conserve the number of particles)

◆ I(~p) = pµ (energy-momentum conservation)
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Local conservation laws

■ Define the density and current at point X for the quantity I :

I(X) ≡

∫
d3~p

(2π)3
I(~p) f(X,~p)

~J
I
(X) ≡

∫
d3~p

(2π)3
I(~p) ~vp f(X,~p)

■ Multiply the Boltzmann equation by I(~p) and integrate it over
all the momenta p :
◆ The collision term gives zero for a collisional invariant
◆ If there is no force term, then one obtains

∂tI(X) + ~∇x · ~J
I
(X) = 0

⊲ continuity equation for the local conservation of the quantity I

■ Note : if there is a force term, the number of particles is
locally conserved, but not their momentum
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H theorem

■ Define the quantities

h(X,~p) ≡ (1 + f(X,~p)) ln(1 + f(X,~p)) − f(X,~p) ln(f(X,~p))

H(X) ≡

Z
d3~p

(2π)3
h(X,~p) , ~J

H
(X) ≡

Z
d3~p

(2π)3
h(X,~p)~vp

■ From the Boltzmann equation, we get

h

∂t + ~vp · ~∇x

i

h + ~F (X) · ~∇ph = Cp [f ] ln

„
1 + f(X,~p)

f(X,~p)

«

∂tH + ~∇x · ~J
H

= σ
H

with σ
H

≡

Z
d3~p

(2π)3
Cp [f ] ln

„
1 + f(X,~p)

f(X,~p)

«
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H theorem

■ Using the symmetry properties of the collision term, we can
rewrite σ

H
as

σ
H

=
1

4

∫
d3~p

(2π)3
Cp[f ]

[
ln

(
1 + f(X,~p)

f(X,~p)

)
+ ln

(
1 + f(X,~k)

f(X,~k)

)

− ln

(
1 + f(X,~p′)

f(X,~p′)

)
− ln

(
1 + f(X,~k

′

)

f(X,~k
′

)

)]

■ In the right hand side, one can rewrite the factors that
depend on f as follows :

f(X,~p)f(X,~k)(1+f(X,~p′))(1+f(X,~k
′

))
h αpαk

αp′αk′

−1
i

ln

„
αpαk

αp′αk′

«

with αp ≡ (1 + f(X,~p))/f(X,~p)

■ Since (X − 1) ln(X) ≥ 0, we have σ
H
≥ 0

⊲ the quantity H has a positive source term
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H theorem

■ Interpretation :
◆ H(X) is the entropy density, and ~J

H
(X) its current

◆ Because the continuity equation for H has a right hand
side σ

H
, it is not a conserved quantity

◆ Because σ
H
≥ 0, the total amount of H in the system can

only increase

■ Remarks :
◆ This seems to contradict Poincaré’s recurrence theorem :

“Any system with a finite volume phase-space will return
arbitrarily close to its initial conditions in a finite time”
⊲ where does the irreversibility come from in the Boltzmann eq.?

◆ Molecular chaos assumption : the Boltzmann equation is an

approximation of the full dynamical evolution of the system, in
which one neglects correlations among particles prior to

collisions. By dropping these correlations, one loses the
information necessary to reverse the time evolution of the system
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H theorem

■ Loschmidt’s paradox :

◆ Evolve a gas of particles from t = 0 to t = t0
◆ At t = t0, reverse all the velocities
◆ Evolve the system from t = t0 to t = 2t0

■ In a mechanistic description, the entropy at 2t0 should be the
same as the entropy at 0, because all the particles went back
to their original location

■ With the Boltzmann equation, the H theorem implies
H(2t0) > H(0) (having reversed the velocities at t = t0 does
not alter this conclusion)
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H theorem

■ Loschmidt’s paradox :

◆ Evolve a gas of particles from t = 0 to t = t0
◆ At t = t0, reverse all the velocities
◆ Evolve the system from t = t0 to t = 2t0

■ In a mechanistic description, the entropy at 2t0 should be the
same as the entropy at 0, because all the particles went back
to their original location

■ With the Boltzmann equation, the H theorem implies
H(2t0) > H(0) (having reversed the velocities at t = t0 does
not alter this conclusion)

■ Resolution : the assumption that pairs of particles are
non-correlated before the collisions breaks down when one
tries to reverse the time direction in the Boltzmann equation
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Equilibrium state

■ When the equilibrium is reached, σ
H

= 0

⊲ ln((1 + feq)/feq) is a collisional invariant

⊲ it is a linear combination of 1 and pµ :

ln

(
1 + feq(X,~p)

feq(X,~p)

)
= α+βµpµ ⇒ feq(X,~p) =

1

eα+βµpµ
− 1

(Bose-Einstein distribution)

■ βµpµ is the Lorentz covariant form of p0/T (β = 1/T )

■ α is a chemical potential associated to the conservation of
the number of particles
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Transport coefficients
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Transport coefficients

■ The Boltzmann equation is a powerful tool for calculating
transport coefficients such as conductivity, viscosity,
diffusion constants

■ These transport coefficients can also be calculated in
quantum field at finite temperature. Example for the electric
conductivity :
◆ σel is the coefficient of proportionality between the induced

electric current and the applied electric field :

~jel = σel
~E

◆ It is given by a current-current correlator (Kubo’s formula) :

σel =
1

6
lim
ω→0

Z

d4x eiωt
D

ji
el(t, ~x) ji

el(0, ~0)
E

T

◆ This correlation function can be evaluated from Feynman

diagrams at finite temperature, but one needs to sum an infinite
series of graphs ⊲ quite difficult
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Transport coefficients

■ In the evaluation of σel from the Boltzmann equation, one
perturbs a system at equilibrium by a small electric field
⊲ it enters in the Boltzmann equation via the force ~F ≡ e~E

■ This force induces a departure of f away from feq. It is
convenient to parameterize it by

f(X,~p) ≡ feq(X,~p) + feq(X,~p)(1 + feq(X,~p)) f1(X,~p)

■ Since the applied field is small, the deviation f1 is also small
⊲ linearize the collision term in f1 :

Cp [f ] = Lp · f1 + O(f2
1 )

≡
1

2Ep

Z
d3~p′

(2π)32Ep′

Z
d3~k

(2π)32Ek

Z
d3~k

′

(2π)32Ek′

(2π)4δ(p+k−p′
−k′)

×feq(X,~p)feq(X,~k)(1 + feq(X,~k
′

))(1 + feq(X,~p′))

×

h

f1(X,~p) + f1(X,~k) − f1(X,~p′) − f1(X,~k
′

)
i ˛

˛
˛M

˛
˛
˛

2
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Transport coefficients

■ We apply an uniform electric field, hence ~∇xf(X,~p) = 0

■ In order to have ~jel = σel
~E, we must reach the stationary

regime. Therefore ∂tf(X,~p) = 0

■ Since the applied field is small, it is legitimate to replace f by
feq in the force term. Thus, the linearized Boltzmann
equation reads :

Lp · f1 = e~E · ~∇p feq(X,~p)

■ Solve this equation (not easy, but doable numerically). Since
it is a linear equation, the solution f1 is linear in ~E

■ Then, one calculates the current induced by this perturbation
of the particle distribution,

~jel = e

Z
d3~p

(2π)3
~vp feq(X,~p)(1 + feq(X,~p)) f1(X,~p)

⊲ read σel as the coefficient of proportionality between ~jel and ~E
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From Boltzmann to Hydrodynamics
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Energy-momentum tensor

■ In a theory invariant under translations in time and position,
the energy and the momentum are conserved quantities

■ For each direction ν, there is a conserved current, denoted
T µν , called the energy-momentum tensor, that obeys

∂µT µν = 0

■ The integral over space of the zero component gives the
4-momentum of the system

P ν =

Z

d3~x T 0µ(t, ~x)

■ The vector T iµ (i=1,2,3) represents the flow of the
component µ of momentum. For µ = 0, this is an energy
flow. For µ = 1, 2, 3, this is a 3-momentum flow and it is thus
related to pressure
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Ideal hydrodynamics

■ Hydrodynamics is a macroscopic description of a system
based on the local conservation laws

■ Energy and momentum. This conservation law can be
expressed as :

∂µT µν = 0

■ There are additional continuity equations for every
conserved quantum number. Example : baryon number

■ Number of equations : 4 + 1 for each extra conserved charge

■ In order to turn these conservation laws into hydrodynamic
equations, one needs to know the form of the
energy-momentum tensor in terms of local quantities :

◆ energy density ǫ(X)

◆ pressure p(X)

◆ flow velocity ~v(X)
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Ideal hydrodynamics

■ Consider a fluid cell at rest, of volume δV . It has an energy
δP 0 = ǫ δV and a 3-momentum δ ~P = 0. This can be
achieved if the energy momentum tensor has the following
components :

T 00 = ǫ , T 0i = 0

■ The flow of momentum P i across an element of surface d~S
is dP i = dSjT ji. From the definition of the pressure p, this
must be equal to pdSi. Hence T ij = pδij.

■ Therefore, in the local rest frame of the fluid :

T µν =

0

B
B
B
B
B
@

ǫ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

1

C
C
C
C
C
A
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Ideal hydrodynamics

■ In an arbitrary frame where the fluid 4-velocity is vµ, the
energy-momentum tensor can only be built from the
symmetric tensors gµν and vµvν . In the local rest frame
(vµ = (1, 0, 0, 0)), we must recover the previous expression.
Therefore :

T µν = (p + ǫ) vµ vν − p gµν

■ Note : this expression is valid only for an ideal fluid, with no
dissipative phenomena. In a viscous fluid, there can be a
transport of momentum due to the friction of fluid layers that
move at different velocities. This is taken into account by
additional terms in T µν that are proportional to the
derivatives ∂iv

j , multiplied by the viscosity η.
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Ideal hydrodynamics

■ In the non-relativistic limit, the energy-momentum
conservation ∂µT µν = 0 leads to :

◆ vµ
≈ (1, ~v)

◆ ǫ becomes the mass density ρ

◆ the pressure p is much smaller than the energy density ǫ

It is easy to check that the above equation is equivalent to
the continuity equation for mass and to Euler’s equation :

ν = 0 : ∂tρ + ~∇x · (ρ~v) = 0

ν = i : ∂t(ρvi) + ∂j(ρvivj) + ∂ip = 0

Note : the second equation can be cast into the more familiar form

ρ
h

∂t + ~v · ~∇x

i

~v + ~∇x p = 0
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Ideal hydrodynamics

■ In the previous equations, the unknown functions are :
◆ p(t, ~x), ǫ(t, ~x)
◆ vµ(t, ~x) (3 unknowns only, since vµvµ = 1)

■ ∂µT µν = 0 gives only 4 equations

■ An additional constraint comes from the equation of state of
the matter under consideration, as a relation between the
local pressure p and energy density ǫ

■ An initial condition p0(~x), ǫ0(~x), ~v0(~x) must be specified at a
certain time t0. Since the relativistic Euler equation contains
only first derivatives in time, this is sufficient to obtain the
solution at any time t > t0.
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Kinetic point of view

■ In kinetic theory, the expression of the energy-momentum
tensor is :

T µν(X) =

∫
d3~p

(2π)3
pµpν

Ep

f(X,~p)

Note : this quantity transforms as a rank 2 tensor thanks to
the fact that d3~p/Ep and f(X,~p)are Lorentz invariants

■ This tensor combines the density I(X) and the flow vector
J

I
(X) associated to the four collisional invariants pν

■ The discussion on collisional invariants automatically implies
that ∂µT µν = 0 at all times in kinetic theory

■ But Boltzmann does not automatically imply that ideal
hydrodynamics applies. One needs in addition that T µν

takes the form T µν = Diag (ǫ, p, p, p)
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Kinetic point of view

■ Assume that the Boltzmann equation has led to a situation of
local thermal equilibrium characterized by :

feq(X,~p) =
1

eβµ(X)pµ
− 1

■ Find the velocity −vµ(X) of the boost that transforms
βµ(X)pµ into β(X)p0. vµ(X) is the local flow velocity

■ In this frame, the kinetic energy-momentum tensor is
diagonal, and it is easy to compute ǫ and p as a function of
T ≡ 1/β. For massless particles, one finds :

p =
ǫ

3

(equation of state of an ideal gas of massless particles)
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Kinetic point of view

■ Note : the conditions of application of ideal hydrodynamics
are also realized under less restrictive conditions, when the
particle distribution is isotropic in the local rest frame :

f(X,~p) = f(X, |~p|)

■ With such a particle distribution, one gets T 0i = 0 and
T ij = p δij, with

p =
1

3

∫
d3~p

(2π)3
|~p| f(X, |~p|)

■ Similarly, one gets the energy density :

ǫ = T 00 =

∫
d3~p

(2π)3
|~p| f(X, |~p|)

⊲ one obtains again p = ǫ/3
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Summary
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Summary

z 

t

strong fields classical EOMs

gluons & quarks out of eq. kinetic theory

gluons & quarks in eq.
hydrodynamics

hadrons in eq.

freeze out

Lecture I
Lecture II

Lecture III
Lecture IV

■ Lecture I : Parton evolution at small x, Saturation
■ Lecture II : Initial particle production
■ Lecture III : Instabilities and thermalization
■ Lecture IV : Kinetic theory, Near-Equilibrium dynamics
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