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General outline

■ Lecture I : Parton evolution at small x, Saturation

■ Lecture II : Initial particle production

■ Lecture III : Instabilities and thermalization

■ Lecture IV : Kinetic theory, Near-Equilibrium dynamics
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Lecture II : Initial particle production

■ Introduction to nucleus-nucleus collisions

■ Power counting and bookkeeping

■ Inclusive gluon spectrum

■ Loop corrections and factorization
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Introduction
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Initial particle production

z 

t

strong fields classical EOMs

gluons & quarks out of eq. kinetic theory

gluons & quarks in eq.
hydrodynamics

hadrons in eq.

freeze out

Can we calculate the initial particle spectrum in QCD ?



Introduction

Bookkeeping

Inclusive gluon spectrum

Loop corrections

Motivation for lecture III

CERN

François Gelis – 2007 Lecture II / IV – Advanced School on QGP, IIT, Mumbai, July 2007 - p. 6

Small x QCD in AA collisions

■ 99% of the multiplicity below p⊥ ∼ 2 GeV

■ The bulk of of particle production comes from (very) low x

⊲ high gluon density (even more so in nuclei : G
A
/Gp ≈ A)
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Small x QCD in AA collisions

■ Saturation affects the early stages of heavy ion collisions, up
to a time τ ∼ Q−1

s

■ The dynamics that takes place afterwards blurs the physics
of saturation (for instance, if the system reaches
thermalization, it does not remember the details of the
dynamics at early times)
⊲ Saturation controls only inclusive observables, like the
overall multiplicity and its energy dependence
⊲ Nucleus-nucleus collisions are a limited framework in
order to probe saturation

■ The Color Glass Condensate provides a (consistent?)
framework in order to compute the spectrum of the particles
that are produced initially, which is then used as an initial
condition for the rest of the evolution
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Initial particle production

■ Main difficulty : studying the collision of two densely
occupied projectiles is much more complicated than the
asymmetric cases involving an elementary probe

?
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Initial particle production

■ Dilute regime : one parton in each projectile interact
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Initial particle production

■ Dilute regime : one parton in each projectile interact

■ Dense regime : multiparton processes become crucial
(+ pileup of many simultaneous scatterings)
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Description of AA collisions

■ For symmetric collisions (e.g. nucleus-nucleus collisions),
the two projectiles should be treated on the same footing

■ For nucleus-nucleus collisions, there are two strong sources
that contribute to the color current :

Jµ ≡ δµ+δ(x−) ρ1(~x⊥) + δµ−δ(x+) ρ2(~x⊥)

■ Average over the sources ρ1, ρ2

〈O
Y
〉 =

Z
ˆ
Dρ1

˜ ˆ
Dρ2

˜
W

Ybeam−Y
[ρ1

˜
W

Y +Ybeam

ˆ
ρ2

˜
O[ρ1, ρ2

˜

■ Can this factorization formula be justified ?
■ How to compute O[ρ1, ρ2] ?
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Kinematics

■ If the produced object is characterized by (M⊥, Y ), it comes
from partons with momentum fractions

x1,2 =
M⊥√
s
e±Y

■ The rapidity of a nucleon in the beam is :

Ybeam ≡
1

2
ln

„
P+

P−

«

=
1

2
ln

„
s

m2
N

«

■ The rapidities of the incoming partons are given by :

Y1 ≡
1

2
ln

„
k+
1

k−1

«

= Ybeam + ln(x1) +
1

2
ln

„
m2

N

k2
1⊥

«

Y2 ≡
1

2
ln

„
k+
2

k−2

«

= −Ybeam − ln(x2)−
1

2
ln

„
m2

N

k2
2⊥

«
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Kinematics

■ The mid value and difference are :

Y1 + Y2

2
= Y +

1

4
ln

(
k2

2⊥
k2

1⊥

)

Y1 − Y2 = ln

(
M2

⊥
k1⊥k2⊥

)

■ When one looks at the bulk of particle production, M⊥, k1⊥, k2⊥ are
all of the order of the saturation scale, and the remaining logs in

these formulae are small. Hence,

Y1 ≈ Y2 ≈ Y

⊲ the incoming partons (or color sources in the CGC context) sit
at rapidities very close to the rapidity of the produced object

+Ybeam-Ybeam
Y

Y1Y2
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Power counting and Bookkeeping
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Power counting
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Power counting

■ In the saturated regime, the sources are of order 1/g

(because
〈
ρρ
〉
∼ occupation number ∼ 1/αs)

■ The order of each connected diagram is given by :

1

g2
g# produced gluons g2(# loops)

■ The total order of a graph is the product of the orders of its
disconnected subdiagrams ⊲ somewhat messy...
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Vacuum diagrams

■ Vacuum diagrams do not produce any gluon. They are
contributions to the vacuum to vacuum amplitude

〈
0out

∣
∣0in

〉

■ The order of a connected vacuum diagram is given by :

g−2 g2(# loops)

■ Relation between connected and non connected vacuum
diagrams :

X
„

all the vacuum

diagrams

«

= exp


X “ connected

vacuum diagrams

”ff

= eiV [j]
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Bookkeeping
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Bookkeeping

■ Consider squared amplitudes (including interference terms)
rather than the amplitudes themselves
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Bookkeeping

■ Consider squared amplitudes (including interference terms)
rather than the amplitudes themselves

■ See them as cuts vacuum diagrams. Cutting lines amounts
to putting them on-shell (cut propagator : 2πθ(−p0)δ(p2))
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Bookkeeping

■ Consider squared amplitudes (including interference terms)
rather than the amplitudes themselves

■ See them as cuts vacuum diagrams. Cutting lines amounts
to putting them on-shell (cut propagator : 2πθ(−p0)δ(p2))

■ The sum of the vacuum diagrams, exp(iV [j]), is the
generating functional for time-ordered products of fields :

˙
0out

˛
˛TA(x1) · · ·A(xn)

˛
˛0in

¸
=

δ

δj(x1)
· · · δ

δj(xn)
eiV [j]
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Bookkeeping

■ The probability Pn of producing exactly n particles can be obtained

by acting n times on vacuum diagrams with a “cut operator” C

Pn =
1

n!
Cn eiV [j+]

| {z }
e−iV ∗[j−]

| {z }

˛
˛
˛
˛
j+=j−=j

amplitude c.c. amplitude

■ The sum of all the cut vacuum diagrams, with sources j+ on one

side of the cut and j− on the other side, can be written as :

eC eiV [j+] e−iV ∗[j−] =
X

„
all the cut

vacuum diagrams

«

⊲ Note : if we set j+ = j− = j, then this is
P

n Pn = 1
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Bookkeeping

■ With more details :

C ≡
Z

x,y

G0
+−(x, y)

| {z }
�x�y

δ

δj+(x)

δ

δj−(y)

G0
+−(x, y) ≡

Z
d4p

(2π)4
e−ip·(x−y) 2πθ(−p0)δ(p2)

| {z }

cut propagator

■ Consider a generic cut vacuum diagram :
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Bookkeeping

■ With more details :

C ≡
Z

x,y

G0
+−(x, y)

| {z }
�x�y

δ

δj+(x)

δ

δj−(y)

G0
+−(x, y) ≡

Z
d4p

(2π)4
e−ip·(x−y) 2πθ(−p0)δ(p2)

| {z }

cut propagator

■ Consider a generic cut vacuum diagram :

δ

δj−(y)
→

y
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Bookkeeping

■ With more details :

C ≡
Z

x,y

G0
+−(x, y)

| {z }
�x�y

δ

δj+(x)

δ

δj−(y)

G0
+−(x, y) ≡

Z
d4p

(2π)4
e−ip·(x−y) 2πθ(−p0)δ(p2)

| {z }

cut propagator

■ Consider a generic cut vacuum diagram :

δ

δj+(x)
→

y
x



Introduction

Bookkeeping

● Power counting

● Vacuum diagrams

● Bookkeeping

Inclusive gluon spectrum

Loop corrections

Motivation for lecture III

CERN

François Gelis – 2007 Lecture II / IV – Advanced School on QGP, IIT, Mumbai, July 2007 - p. 18

Bookkeeping

■ With more details :

C ≡
Z

x,y

G0
+−(x, y)

| {z }
�x�y

δ

δj+(x)

δ

δj−(y)

G0
+−(x, y) ≡

Z
d4p

(2π)4
e−ip·(x−y) 2πθ(−p0)δ(p2)

| {z }

cut propagator

■ Consider a generic cut vacuum diagram :

�y →
y

x
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Bookkeeping

■ With more details :

C ≡
Z

x,y

G0
+−(x, y)

| {z }
�x�y

δ

δj+(x)

δ

δj−(y)

G0
+−(x, y) ≡

Z
d4p

(2π)4
e−ip·(x−y) 2πθ(−p0)δ(p2)

| {z }

cut propagator

■ Consider a generic cut vacuum diagram :

�x →
y

x
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Bookkeeping

■ With more details :

C ≡
Z

x,y

G0
+−(x, y)

| {z }
�x�y

δ

δj+(x)

δ

δj−(y)

G0
+−(x, y) ≡

Z
d4p

(2π)4
e−ip·(x−y) 2πθ(−p0)δ(p2)

| {z }

cut propagator

■ Consider a generic cut vacuum diagram :

G0
+−(x, y) →

y

x

⊲ C removes two sources (one in the amplitude and one in the
complex conjugated amplitude), and creates a new cut propagator
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Bookkeeping

■ The operator C can be used to derive many useful formulas :

F (z) =
+∞∑

n=0

zn Pn = ezC eiV [j+] e−iV ∗[j−]
∣
∣
∣
j+=j−=j

⊲ sum of all cut vacuum graphs, where each cut is weighted by z

N = F ′(1) = C eC eiV [j+] e−iV ∗[j−]
∣
∣
∣
j+=j−=j

■ Benefits :
◆ The tracking of infinite sets of Feynman diagrams has been

replaced by simple algebraic manipulations

◆ The use of the identity eC eiV [j+] e−iV ∗[j−]
˛
˛
˛
j+=j−

= 1 renders

automatic an important cancellation that would be hard to see
from the diagrams (Abramovsky-Gribov-Kancheli)
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Inclusive gluon spectrum
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First moment of the distribution

■ Reminder :

N =
∑

n
n Pn = C

{

eC eiV [j+] e−iV ∗[j−]
︸ ︷︷ ︸

}

j+=j−=j

sum of all the cut vacuum graphs

■ There are two kind of terms :
◆ C picks two sources in two distinct connected cut diagrams

◆ C picks two sources in the same connected cut diagram
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First moment at LO

■ At LO, only tree diagrams contribute (each loop costs an αs)
⊲ the second type of topologies can be neglected

(they have at least one loop)

■ In each blob, we must sum over all the tree diagrams, and
over all the possible cuts :

N
LO

=
∑

trees

∑

cuts

tree

tree

■ Reminder : at the end, the sources on both sides of the cut
must be set equal :

j+ = j−
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First moment at LO

■ One can prove easily that, for each graph, the sum over the
cuts amounts to replacing all the propagators by retarded
propagators. This comes from the fact that :

- = retarded propagator

■ The sum of all the tree graphs ending at a point x is a
solution Aµ(x) of the classical equations of motion of the
theory. In the case of QCD, they are the Yang-Mills
equations (analogue of the Maxwell equations of electrodynamics)

■ Note : the possibility of neglecting quantum effects comes
from the fact that we are dealing with large occupation
numbers, i.e. large fields :

[
Aµ(x),Aν(y)

]
∼ O(1) ≪ Aµ(x)Aν(y)

■ Because the propagators are retarded, the solution we need
obeys the following boundary condition : Aµ(x) =

t→−∞
0
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Gluon spectrum at LO

Krasnitz, Nara, Venugopalan (1999 – 2001), Lappi (2003)

■ The gluon spectrum at LO is given by :

dNLO

dY d2~p⊥
=

1

16π3

Z

x,y

eip·(x−y)
�x�y

X

λ

ǫµλǫ
ν
λ Aµ(x)Aν(y)

where Aµ(x) is the retarded solution of Yang-Mills equations that
vanishes in the remote past

■ Note : the spectrum depends only on the fields at late time
Z

d4x eip·x
�xAµ(x) = lim

x0→+∞

Z

d3~x eip·x [∂0 − iEp]Aµ(x)
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Gluon spectrum at LO

■ The retarded nature of the classical fields involved in this
approach makes the numerical resolution straightforward :

◆ Discretize the spatial coordinates and put the fields on a
lattice :

Aµ(x0, x, y, z) → Aµ(x0, i, j, k)

◆ Write the Yang-Mills equations as

∂

∂x0
A = F (A, ~∇A)

◆ Start at some large negative time x0
ini with A = 0

◆ To update from x0 to x0 + ∆x0, do :

A(x0 + ∆x0) = A(x0) + ∆x0 F (A(x0), ~∇A(x0))

◆ At a large positive time, perform a Fourier decomposition
of the field A, and compute the gluon spectrum
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Gluon spectrum at LO

■ The calculation is done in the gauge : x+A− + x−A+ = 0

⊲ A− = 0 at z = t and A+ = 0 at z = −t
⊲ the produced gauge field does not modify the currents J+, J−

■ In this gauge, one can find analytically the field just above
the light-cone, at τ = 0+. Therefore, the previous algorithm
needs to be implemented only in the forward light-cone :

Ain−→
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Gluon spectrum at LO

sΛ/Tk
0 1 2 3 4 5 6

T
k2

)d
N

/d
2

Rπ
1/

(

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

KNV I

KNV II

Lappi

■ Important softening at small k⊥ compared to pQCD (saturation)

■ Lattice artefacts at large momentum
(they do not affect much the overall number of gluons)
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Boost invariance

η = const

τ = const

■ Initial values at τ = 0+ : the initial fields Ain do not depend
on the rapidity η

⊲ they remain independent of η at all times
(invariance under boosts in the z direction)

⊲ numerical resolution performed in 1 + 2 dimensions
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Initial Glasma fields

Lappi, McLerran (2006) (Semantics : Glasma ≡ Glas[s - plas]ma)

■ Before the collision, the chromo-~E and ~B fields are localized
in two sheets transverse to the beam axis

■ Immediately after the collision, the chromo-~E and ~B fields
have become longitudinal :

Ez = ig
[
Ai

1,Ai
2

]
, Bz = igǫij

[
Ai

1,Ai
2

]

0 0.5 1 1.5 2
g

2µτ

0

0.2

0.4

0.6

0.8
[(

g2 µ)
4 /g

2 ]
B

z

2

E
z

2

B
T

2

E
T

2
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Loop corrections

WARNING : work in progress !!

(FG, Lappi, Venugopalan)
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Reasons for studying loop corrections

■ Factorization. Proving “factorization at leading order” in fact
requires to look at loop corrections :

◆ Loop corrections in QCD have large logarithms of 1/x1,2

◆ These large logs can compensate the smallness of the
coupling constant αs, i.e. αs log(1/x1,2) ∼ 1 even though
αs ≪ 1

◆ Factorizability in this context means that all the powers
[αs log(1/x1,2)]

n[Qs/p⊥]n can be resummed by letting the
generalized “parton distributions” W [ρ1,2] evolve with
rapidity

■ The boost invariant solution found at tree level is a very
peculiar configuration. Moreover, it is known from numerical
studies that it is unstable if perturbed by rapidity dependent
fluctuations. Loop corrections generate such perturbations!
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1-loop corrections to N

■ 1-loop diagrams for N

tree

1-loop

tree

■ This involves diagrams such as :
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1-loop corrections to N

■ It is useful to divide the 1-loop corrections into a piece below
the light-cone (calculable analytically) and a part above the
light-cone (that must be solved numerically) :

u u

v

◆ Any divergence that happens in the part below the light-cone is
related to the initial state, and we should try to absorb it in the

“parton distributions” W [ρ1,2]

◆ Anything in the forward light-cone happens after the collision and

has to do with the evolution of the final state
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Divergences

■ If taken at face value, the 1-loop corrections are plagued by
several divergences :

◆ The pieces below the light-cone are infinite, because of an
unbounded integration over a rapidity variable

◆ The loop corrections can be seen as a perturbation of the
initial field on the light-cone

However, the boost invariant classical solution of
Yang-Mills equations suffers from an instability under
rapidity dependent perturbations (Romatschke,
Venugopalan (2005))

⊲ see lecture III : Glasma instabilities
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Initial state factorization

■ Anatomy of the full calculation :





WYbeam -Y[ρ1]





WYbeam +Y[ρ2]





N[ Ain(ρ1 , ρ2) ]



Introduction

Bookkeeping

Inclusive gluon spectrum

Loop corrections

● Why ?

● 1-loop corrections to N

● Initial state factorization

Motivation for lecture III

CERN

François Gelis – 2007 Lecture II / IV – Advanced School on QGP, IIT, Mumbai, July 2007 - p. 35

Initial state factorization

■ Anatomy of the full calculation :





WYbeam -Y[ρ1]





WYbeam +Y[ρ2]





N[ Ain(ρ1 , ρ2) ] + δ N

■ When the observable N [Ain(ρ1, ρ2)] is corrected by an extra
gluon, one gets divergences of the form αs

∫
dY in δN
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Initial state factorization

■ Anatomy of the full calculation :
Y
+ Ybeam

- Ybeam

 Y0

 Y ’
0





WYbeam -Y0

[ρ1]





WYbeam +Y ’

0
[ρ2]





N[ Ain(ρ1 , ρ2) ] + δ N

■ When the observable N [Ain(ρ1, ρ2)] is corrected by an extra
gluon, one gets divergences of the form αs

∫
dY in δN

■ Put some arbitrary cutoffs Y0 and Y ′
0 between the

“observable” and the “source distributions” : the dependence
on Y0, Y

′
0 should cancel between the various factors
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Initial state factorization

■ In order to prove the factorization of these divergences in the
initial state distributions of sources, one must be able to
relate them to the Hamiltonian that governs the rapidity
dependence of the distributions W

Y
[ρ1,2] in the following

way :
h

δN
i

divergent
coefficients

=
h

(Y0 − Y )H†[ρ1] + (Y − Y ′0 )H†[ρ2]
i

NLO

where H[ρ] is the Hamiltonian that governs the rapidity
dependence of the source distribution W

Y
[ρ] :

∂W
Y
[ρ]

∂Y
= H[ρ] W

Y
[ρ]



Introduction

Bookkeeping

Inclusive gluon spectrum

Loop corrections

● Why ?

● 1-loop corrections to N

● Initial state factorization

Motivation for lecture III

CERN

François Gelis – 2007 Lecture II / IV – Advanced School on QGP, IIT, Mumbai, July 2007 - p. 37

Initial state factorization

■ If everything works as expected, one can write

dN

dY d2~p⊥
=

∫
[
Dρ1] [Dρ2

]
W

Ybeam−Y
[ρ1] WYbeam+Y

[ρ2]

×dN [Ain(ρ1, ρ2)]

dY d2~p⊥

■ Somewhat analogous to factorization in conventional pQCD :

W
Y

[ρ] ←→ parton distribution

and it has the same conceptual importance, because it implies the
universality of the distributions W

Y
[ρ] (e.g. that they are identical in

eA and in AA collisions)

■ In lecture III, we will see that this formula must be slightly
modified because of the Glasma instabilities
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Motivation for lecture III
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Motivation for lecture III

■ The instabilities alluded to in this lecture have the potential to
ruin the whole approach:

◆ Formally, they arise at one-loop and are suppressed by αs

◆ They also come with an exponentially growing factor of
time exp

√
µτ with µ ∼ Qs

■ Does the CGC framework become completely useless after
a time τ ∼ Q−1

s log2(1/αs) ?

■ Or can we make it work beyond this limit by a resummation ?

■ What is the connection between this instability and the usual
Weibel instability in plasma physics?

■ Does it help to reach local thermalization?
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Lecture III : Instabilities, thermalization

■ Reminder on initial gluon production

■ Glasma instabilities

■ Instabilities in anisotropic plasmas

■ Thermalization ?
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Lecture IV : Kinetic theory

■ Collisionless kinetic equations

■ Boltzmann equation

■ Transport coefficients

■ From kinetic theory to hydrodynamics
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Complements
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Power counting

■ Consider a connected graph with :
◆ n

E
external lines, n

I
internal lines

◆ n3 3-gluon vertices (g), n4 4-gluon vertices (g2)
◆ nρ color sources (g−1)
◆ nL independent loops

■ These numbers are related by :

3n3 + 4n4 + nρ = nE + 2nI

nL = nI − (n3 + n4)− nρ + 1

■ Therefore, the order of the diagram in g :

gn3 g2n4 g−nρ = g−2 gn
E g2(n

L
−1)
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Sum over the cuts

■ In the previous diagrams, one must sum over all the possible
ways of cutting inside the blobs

■ This can be achieved via Cutkosky’s cutting rules :
◆ A vertex is −ig on one side of the cut, and +ig on the other side
◆ There are four propagators, depending on the location w.r.t. the

cut of the vertices they connect :

G0
++(p) = i/(p2 −m2 + iǫ) (standard Feynman propagator)

G0
−−(p) = −i/(p2 −m2 − iǫ) (complex conjugate of G0

++(p))

G0
+−(p) = 2πθ(−p0)δ(p2 −m2)

G0
−+(p) = 2πθ(p0)δ(p2 −m2)

◆ At each vertex of a given diagram, sum over the types + and −
(2n terms for a diagram with n vertices)

■ Note : this is also the zero-temperature version of the
Schwinger-Keldysh formalism
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Sum over the cuts

■ In the sum over the cuts, we get combinations of
propagators such as :

G0
++(p)−G0

+−(p) =
i

p2 − m2 + iǫ
− 2πθ(−p0)δ(p2 −m2)
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Sum over the cuts

■ In the sum over the cuts, we get combinations of
propagators such as :

G0
++(p)−G0

+−(p) = PP

»
i

p2 −m2

–

+ πδ(p2 −m2)− 2πθ(−p0)δ(p2 −m2)

z }| {

1 = θ(p0) + θ(−p
0)
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Sum over the cuts

■ In the sum over the cuts, we get combinations of
propagators such as :

G0
++(p)−G0

+−(p) = PP

»
i

p2 −m2

–

+ π
ˆ
θ(p0)− θ(−p0)
| {z }

˜
δ(p2 −m2)

sign (p0)



Introduction

Bookkeeping

Inclusive gluon spectrum

Loop corrections

Motivation for lecture III

Complements

● Power counting

● Sum over the cuts

● Retarded classical solution

● Gluon spectrum at LO

● Generating function

● Inclusive quark spectrum

● NLO corrections

CERN

François Gelis – 2007 Lecture II / IV – Advanced School on QGP, IIT, Mumbai, July 2007 - p. 45

Sum over the cuts

■ In the sum over the cuts, we get combinations of
propagators such as :

G0
++(p)−G0

+−(p) =
i

p2 − m2 + ip0ǫ
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Sum over the cuts

■ In the sum over the cuts, we get combinations of
propagators such as :

G0
++(p)−G0

+−(p) = G
0

R
(p)

■ Similarly : G0
−+(p) −G0

−−(p) = G0
R
(p)

■ Starting from the “leaves” of the trees, use these formulas
recursively in order to replace all the G0

±± propagators by
retarded propagators. Example :

Σ
ε = +/-

ε

+ +
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Sum over the cuts

■ In the sum over the cuts, we get combinations of
propagators such as :

G0
++(p)−G0

+−(p) = G
0

R
(p)

■ Similarly : G0
−+(p) −G0

−−(p) = G0
R
(p)

■ Starting from the “leaves” of the trees, use these formulas
recursively in order to replace all the G0

±± propagators by
retarded propagators. Example :

Σ
ε = +/-

ε
+ +
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Sum over the cuts

■ In the sum over the cuts, we get combinations of
propagators such as :

G0
++(p)−G0

+−(p) = G
0

R
(p)

■ Similarly : G0
−+(p) −G0

−−(p) = G0
R
(p)

■ Starting from the “leaves” of the trees, use these formulas
recursively in order to replace all the G0

±± propagators by
retarded propagators. Example :

Σ
ε = +/-

ε
+ +
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Sum over the cuts

■ In the sum over the cuts, we get combinations of
propagators such as :

G0
++(p)−G0

+−(p) = G
0

R
(p)

■ Similarly : G0
−+(p) −G0

−−(p) = G0
R
(p)

■ Starting from the “leaves” of the trees, use these formulas
recursively in order to replace all the G0

±± propagators by
retarded propagators. Example :

Σ
ε = +/-

ε

+ +
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Sum over the cuts

■ In the sum over the cuts, we get combinations of
propagators such as :

G0
++(p)−G0

+−(p) = G
0

R
(p)

■ Similarly : G0
−+(p) −G0

−−(p) = G0
R
(p)

■ Starting from the “leaves” of the trees, use these formulas
recursively in order to replace all the G0

±± propagators by
retarded propagators. Example :

Σ
ε = +/-

ε
+ +
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Sum over the cuts

■ In the sum over the cuts, we get combinations of
propagators such as :

G0
++(p)−G0

+−(p) = G
0

R
(p)

■ Similarly : G0
−+(p) −G0

−−(p) = G0
R
(p)

■ Starting from the “leaves” of the trees, use these formulas
recursively in order to replace all the G0

±± propagators by
retarded propagators. Example :

Σ
ε = +/- ε

+ +
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Sum over the cuts

■ In the sum over the cuts, we get combinations of
propagators such as :

G0
++(p)−G0

+−(p) = G
0

R
(p)

■ Similarly : G0
−+(p) −G0

−−(p) = G0
R
(p)

■ Starting from the “leaves” of the trees, use these formulas
recursively in order to replace all the G0

±± propagators by
retarded propagators. Example :

Σ
ε = +/-

ε
+

⊲ we have a sum of tree diagrams with retarded propagators
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Retarded classical solution

■ The sum of all the tree diagrams constructed with retarded
propagators is the solution of Yang-Mills equations,

[Dµ, F
µν ] = Jν , with retarded boundary condition Aµ(x0 = −∞) = 0

■ Proof (for a scalar theory). The classical EOM reads
`
� +m2´

ϕ(x) +
g

2
ϕ2(x) = j(x)

■ Write the Green’s formula for the retarded solution that
obeys ϕ(x) = 0 at x0 = −∞ :

ϕ(x) =

Z

d4y G0
R
(x− y)

h

−i g
2
ϕ2(y) + i j(y)

i

where G0
R
(x− y) is the free retarded propagator
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Retarded classical solution

■ Order g0 :

ϕ
(0)

(x) =

Z

d4y G0
R

(x− y) i j(y)

■ Order g1 :

ϕ
(0)

(x) + ϕ
(1)

(x) =

Z

d4y G0
R
(x− y)

h

−i g
2
ϕ2

(0)
(y) + i j(y)

i

i.e.

ϕ
(1)

(x) = −i g
2

Z

d4y G0
R
(x− y)

»Z

d4z G0
R

(y − z) i j(z)
–2

■ One can construct the solution iteratively, by using in the
r.h.s. the solution found in the previous orders
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Retarded classical solution

■ The diagrammatic expansion of this classical solution is :
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Retarded classical solution

■ The diagrammatic expansion of this classical solution is :

+ 1
2
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Retarded classical solution

■ The diagrammatic expansion of this classical solution is :

+ +1
2

1
2
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Retarded classical solution

■ The diagrammatic expansion of this classical solution is :

+ + + +1
2

1
2

1
2

1
8
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Retarded classical solution

■ The diagrammatic expansion of this classical solution is :

+ + + +1
2

1
2

1
2

1
8

■ The classical solution is given by the sum of all the tree
diagrams with retarded propagators
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Gluon spectrum at LO

■ Space-time structure of the classical color field:

nucle
us 1

nucleus 2

z

t

0

21

3

◆ Region 0 : no causal relation to either nuclei
◆ Region 1 : causal relation to the 1st nucleus only
◆ Region 2 : causal relation to the 2nd nucleus only
◆ Region 3 : causal relation to both nuclei
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Gluon spectrum at LO

■ Propagation through region 0:

z

t

⊲ trivial : the classical field is entirely determined by the
initial condition, i.e.

Aµ = 0
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Gluon spectrum at LO

■ Propagation through region 1:

z

t τ i

⊲ the Yang-Mills equation can be solved analytically when
there is only one nucleus :

A+
1 = A−1 = 0 , Ai

1 =
i

g
U1(~x⊥)∂iU†1 (~x⊥)

with U1(~x⊥) = T+ exp ig

Z

dx+T a 1

∇
2
⊥

ρa
1(x+, ~x⊥)
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Gluon spectrum at LO

■ Propagation through region 2:

z

t τ i

⊲ the Yang-Mills equation can be solved analytically when
there is only one nucleus :

A+
2 = A−2 = 0 , Ai

2 =
i

g
U2(~x⊥)∂iU†2 (~x⊥)

with U2(~x⊥) = T− exp ig

Z

dx−T a 1

∇
2
⊥

ρa
2(x−, ~x⊥)
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Gluon spectrum at LO

■ Propagation through region 3 (forward light cone):

z

t τ iτ f

⊲ one must solve numerically the Yang-Mills equations with
the following initial condition at τi = 0+ :

Ai(τ = 0, ~x⊥) = Ai
1(~x⊥) +Ai

2(~x⊥)

Aη(τ = 0, ~x⊥) =
ig

2

h

Ai
1(~x⊥) , Ai

2(~x⊥)
i

Aτ = 0 (gauge condition)
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Less inclusive quantities

■ One can also compute less inclusive quantities at Leading
Order in terms of classical solutions of Yang-Mills equations,
but with complicated boundary conditions in general

■ Example: Generating function
◆ Definition : F (z) ≡P∞

n=0 Pn z
n

◆ F ′(z)/F (z) has the same diagrammatic expansion as N , but
with each cut propagator multiplied by z

◆ Performing the sum over the cuts does not give retarded
propagators anymore :

-  z 6= retarded propagator

◆ F ′(z)/F (z) can be written in terms of classical solutions of
Yang-Mills, but they must obey boundary conditions both at

t = −∞ and t = +∞
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Definition

■ One can encode the information about all the probabilities
Pn in a generating function defined as :

F (z) ≡
∞∑

n=0

Pn z
n

■ From the expression of Pn in terms of the operator C, we can
write :

F (z) = ezC eiV e−iV ∗

■ Reminder :

◆ eC eiV e−iV ∗

is the sum of all the cut vacuum diagrams
◆ The cuts are produced by the action of C

■ Therefore, F (z) is the sum of all the cut vacuum diagrams in
which each cut line is weighted by a factor z
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What would it be good for ?

■ Let us pretend that we know the generating function F (z).
We could get the probability distribution as follows :

Pn =
1

2π

Z 2π

0

dθ e−inθ F (eiθ)

Note : this is trivial to evaluate numerically by a FFT :

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 0  500  1000  1500  2000

P
n

n

Poisson distribution :   F(x) = exp( n (exp(x)-1))

Other F(x) with the same average
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F(z) at Leading Order

■ We have : F ′(z) = C
{
ezC eiV e−iV ∗}

■ By the same arguments as in the case of N , we get :

F ′(z)

F (z)
= +

■ The major difference is that the cut graphs that must be
evaluated have a factor z attached to each cut line

■ At tree level (LO), we can write F ′(z)/F (z) in terms of
solutions of the classical Yang-Mills equations, but these
solutions are not retarded anymore, because :

-  z 6= retarded propagator
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F(z) at Leading Order

■ The derivative F ′/F has an expression which is formally
identical to that of N ,

F ′(z)

F (z)
=

Z
d3~p

(2π)32Ep

Z

x,y

eip·(x−y)
�x�y

X

λ

ǫµλǫ
ν
λ A(+)

µ (x)A(−)
ν (y) ,

with A(±)
µ (x) two solutions of the Yang-Mills equations

■ If one decomposes these fields into plane-waves,

A(ε)
µ (x) ≡

Z
d3~p

(2π)32Ep

n

f
(ε)
+ (x0, ~p)e−ip·x + f

(ε)
− (x0, ~p)eip·x

o

the boundary conditions are :

f
(+)
+ (−∞, ~p) = f

(−)
− (−∞, ~p) = 0

f
(−)
+ (+∞, ~p) = z f

(+)
+ (+∞, ~p) , f

(+)
− (+∞, ~p) = z f

(−)
− (+∞, ~p)

■ There are boundary conditions both at x0 = −∞ and
x0 = +∞ ⊲ not an initial value problem ⊲ hard...
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Inclusive quark spectrum

FG, Kajantie, Lappi (2004, 2005)

■ One can construct for quarks an operator Cq that plays the
same role as C for the gluons

■ By repeating the same arguments, we find two generic
topologies contributing to the inclusive quark spectrum :

(the blobs are sums of cut diagrams)

■ The first topology cannot exist because the quark line is not
closed on itself

⊲ the quark spectrum starts at one loop
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Quark production at one loop

■ At lowest order (one loop), the quark spectrum reads :

dNq

dY d2~p⊥
=

1

16π3

Z

x,y

eip·x u(~p) (i
→

/∂ x −m)S+−(x, y) (i
←

/∂ y +m)u(~p) e−ip·y

where S+− is the quark propagator (with one endpoint on each side
of the cut) to which are attached tree graphs in all the possible ways
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Quark production at one loop

■ At lowest order (one loop), the quark spectrum reads :

dNq

dY d2~p⊥
=

1

16π3

Z

x,y

eip·x u(~p) (i
→

/∂ x −m)S+−(x, y) (i
←

/∂ y +m)u(~p) e−ip·y

where S+− is the quark propagator (with one endpoint on each side
of the cut) to which are attached tree graphs in all the possible ways

■ We need to calculate the sum of the following tree diagrams :

x y
+ -
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Quark production at one loop

■ At lowest order (one loop), the quark spectrum reads :

dNq

dY d2~p⊥
=

1

16π3

Z

x,y

eip·x u(~p) (i
→

/∂ x −m)S+−(x, y) (i
←

/∂ y +m)u(~p) e−ip·y

where S+− is the quark propagator (with one endpoint on each side
of the cut) to which are attached tree graphs in all the possible ways

■ We need to calculate the sum of the following tree diagrams :

x y
+ -

■ Perform a resummation of all the sub-diagrams that
correspond to the retarded classical solution :

∑
trees
cuts

= ∑
trees

=
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Quark propagator

■ The summation of all the classical field insertions can be
done by solving a Lippmann-Schwinger equation :

Sǫǫ′(x, y) = S0
ǫǫ′(x, y)−ig

X

η=±

(−1)η

Z

d4z S0
ǫη(x, z)Aµ(z)γµSηǫ′(z, y)

■ This equation is rather non-trivial to solve in this form,
because of the mixing of the 4 components of the
propagator. Perform a rotation on the ± indices :

Sǫǫ′ → Sαβ ≡
X

ǫ,ǫ′=±

UαǫUβǫ′Sǫǫ′

(−1)ǫδǫǫ′ → Σαβ ≡
X

ǫ=±

UαǫUβǫ(−1)ǫ

■ A useful choice for the rotation matrix U is U = 1√
2

(

1 −1

1 1

)
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Quark propagator

■ Under this rotation, the matrix propagator and field insertion
become :

Sαβ =

0

@
0 S

A

S
R

S
D

1

A , Σαβ =

0

@
0 1

1 0

1

A

where S0
D

(p) = 2π(/p+m)δ(p2 −m2)

■ The main simplification comes from the fact that S0
Σ is the

sum of a diagonal matrix and a nilpotent matrix

■ One finds that S
R

and S
A

do not mix, i.e. they obey
equations such as :

S
R
(x, y) = S0

R
(x, y)− i g

Z

d4z S0
R

(x, z)Aµ(z)γµS
R

(z, y)

■ One can solve S
D

in terms of S
R

and S
A

:

S
D

= S
R
∗ S0

R

−1 ∗ S0
D
∗ S0

A

−1 ∗ S
A
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Quark propagator

■ In order to go back to S+−, invert the rotation :

S+− =
1

2
[SA − SR − SD ]

■ At this point, we can rewrite the quark spectrum in terms of
retarded and advanced quark propagators in the classical
background

■ Finally, one can rewrite it in terms of retarded solutions of the
Dirac equation on top of the background Aµ(x)

dNq

dY d2~p⊥
=

1

16π3

Z
d3~q

(2π)32Eq

˛
˛
˛M(~p, ~q)

˛
˛
˛

2

with

M(~p, ~q) = lim
x0→+∞

Z

d3~x eip·x u†(~p)ψq (x)

(i/∂x−g /A(x)−m)ψq (x) = 0 , ψq (x0, ~x) =
x0→−∞

v(~q)eiq·x
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Quark propagator

■ This calculation amounts to summing the following
diagrams :
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Background field

■ Space-time structure of the classical color field:

z

t

0

21

3
◆ Region 0: Aµ = 0

◆ Region 1: A± = 0,
Ai = i

g
U1∇i

⊥U
†
1

◆ Region 2: A± = 0,

Ai = i
g
U2∇i

⊥U
†
2

◆ Region 3: Aµ 6= 0

■ Notes:
◆ In the region 3, Aµ is known only numerically
◆ We must solve the Dirac equation numerically as well
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Quark propagation

■ Propagation through region 0:

z

t

⊲ trivial because there is no background field

ψq (x) = v(~q)eiq·x
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Quark propagation

■ Propagation through region 1:

z

t τ i

⊲ Pure gauge background field

⊲ ψ
q,1(τi) can be obtained analytically
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Quark propagation

■ Propagation through region 2:

z

t τ i

⊲ Pure gauge background field

⊲ ψ
q,2(τi) can be obtained analytically
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Quark propagation

■ Propagation through region 3:

z

t τ iτ f

⊲ One must solve the Dirac equation :
ˆ
i/∂ − g /A−m

˜
ψq(τ, η, ~x⊥) = 0

⊲ initial condition: ψq (τi) = ψq,1(τi) + ψq,2(τi)

(τi = 0+ in practice)
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Time dependence

■ g2µ = 2 GeV , (*) g2µ = 1 GeV :

0 0.05 0.1 0.15 0.2 0.25
τ [fm]

0
10

0
20

0
30

0
dN

 / 
dy

m = 60 MeV
m = 300 MeV
m = 600 MeV
m = 1.5 GeV
m = 300 MeV *
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Spectra for various quark masses

■ g2µ = 2 GeV , τ = 0.25 fm :

0 1 2 3 4
q̂ [GeV]

0
5×

10
4

1×
10

5
2×

10
5

dN
/d

yd
2 q T

 [
ar

bi
tr

ar
y 

un
its

]

m = 60 MeV
m = 300 MeV
m = 600 MeV
m = 1.5 GeV
m = 3 GeV
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Reminder on the LO result

■ The LO inclusive gluon spectrum reads :

dN
LO

dY d2~p⊥
=

1

16π3

Z

x,y

eip·(x−y) · · · Aµ(x)Aν(y)

where Aµ(x) is the retarded solution of Yang-Mills equations

■ In the following, it will be useful to see N
LO

as a functional of
the classical gauge field Ain on the light-cone
Note : the functional NLO [Ain] has no explicit dependence on the
sources ρ1,2, because there are no sources above the light-cone

■ The dependence on ρ1 and ρ2 is hidden in Ain. Hence, we
can write

NLO ≡ NLO [Ain[ρ1, ρ2]]
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1-loop corrections to N

■ 1-loop diagrams for N

tree

1-loop

tree
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1-loop corrections to N

■ 1-loop diagrams for N

tree

1-loop

tree

■ This involves diagrams such as :
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1-loop corrections to N

■ The 1-loop correction to N can be written as a perturbation
of the initial value problem encountered at LO :
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1-loop corrections to N

■ The 1-loop correction to N can be written as a perturbation
of the initial value problem encountered at LO :

u

δN =

» Z

~u ∈ light cone

δAin(~u) T ~u

–

NLO

◆ T ~u is the generator of shifts of the initial condition at the point ~u
on the light-cone, i.e. : T ~u ∼ δ/δAin(~u)
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1-loop corrections to N

■ The 1-loop correction to N can be written as a perturbation
of the initial value problem encountered at LO :

u u

v

δN =

» Z

~u ∈ light cone

δAin(~u) T ~u +

Z

~u,~v ∈ light cone

1

2
Σ(~u, ~v) T ~u T ~v

–

NLO

◆ T ~u is the generator of shifts of the initial condition at the point ~u
on the light-cone, i.e. : T ~u ∼ δ/δAin(~u)

◆ δAin(~u) and Σ(~u, ~v) are in principle calculable analytically
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Sketch of a proof – I

■ The first two terms involve :

δA(x) ≡ g

2

Z

d4z
X

ǫ=±

ǫ G+ǫ(x, z)Gǫǫ(z, z)

■ The third term involves G+−(x, y)

■ The propagators G±± are propagators in the background A, in the
Schwinger-Keldysh formalism. They obey :

8

<

:

G+− = G
R
G0 −1

R
G0

+−G
0 −1
A

G
A

G±± =
1

2

ˆ
G

R
G0 −1

R
(G0

+− +G0
−+)G0 −1

A
G

A
± (G

R
+ G

A
)
˜

G
R,A

= retarded/advanced propagators in the background A
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Sketch of a proof – II

■ G++ and G−− are only needed with equal endpoints
⊲ they are both equal to

G++(z, z) = G−−(z, z) =
1

2

ˆ
G

R
G0 −1

R
(G0

+− +G0
−+)G0 −1

A
G

A

˜
(z, z)

⊲ thus, δA can be simplified into :

δA(x) =
g

2

Z

d4z
h

G++(x, z)−G+−(x, z)
i

G++(z, z)

=
g

2

Z

d4z G
R

(x, z)G++(z, z)

■ G
R
G0 −1

R
G0

+−G
0 −1
A

G
A

can be written as :

ˆ
GRG

0 −1
R

G0
+−G

0 −1
A

GA

˜
(x, y) =

Z
d3~p

(2π)32Ep

ζ~p(x)ζ∗~p(y) ,

with
ˆ
�x +m2 + gA(x)

˜
ζ~p(x) = 0 and lim

x0→−∞
ζ~p(x) = eip·x
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Sketch of a proof – III

■ Green’s formulas :

A(x) =

Z

Ω

d4z G0
R
(x, z)

h

j(z)− g

2
A2(z)

i

+

Z

LC

d3~u G0
R

(x, u)
h

n·
→

∂ u −n·
←

∂ u

i

Ain(~u)

δA(x) =

Z

Ω

d4z G
R

(x, z)
g

2
G++(z, z)

+

Z

LC

d3~u G
R
(x, u)

h

n·
→

∂ u −n·
←

∂ u

i

δAin(~u)

ζ~p(x) =

Z

LC

d3~u GR(x, u)
h

n·
→

∂ u −n·
←

∂ u

i

ζ~p in(~u)

GR(x, y) = G0
R

(x, y) + g

Z

Ω

d4z G0
R
(x, z)A(z)GR(z, y)
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Sketch of a proof – IV

■ Thanks to the operator

ain(~u) · T ~u ≡ ain(~u)
δ

δAin(~u)
+

h

(n · ∂u)ain(~u)
i δ

δ(n · ∂u)Ain(~u)
,

we can write

ζ~p(x) =

Z

~u∈LC

h

ζ~p in(~u) · T ~u

i

A(x)

δA(x) =

Z

Ω

d4z GR(x, z)
g

2
G++(z, z) +

Z

~u∈LC

h

δAin(~u) · T ~u

i

A(x)

⊲ from the classical field A(x), the operator ain(~u) · T ~u builds the
fluctuation a(x) whose initial condition on the light-cone is ain(~u)

■ The 3rd diagram can directly be written as :
Z

d3~p

(2π)32Ep

Z

~u,~v∈LC

hh

ζ~p in(~u) · T ~u

i

A(x)
i hh

ζ∗~p in(~v) · T ~v

i

A(y)
i
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Sketch of a proof – V

■ One can finally prove that
Z

Ω

d4z G
R
(x, z)

g

2
G++(z, z) =

=
1

2

Z
d3~p

(2π)32Ep

Z

~u,~v∈LC

h

ζ~p in(~u) · T ~u

ih

ζ∗~p in(~v) · T ~v

i

A(x)

⊲ δA(x) =

" Z

~u∈LC

h

δAin(~u) · T ~u

i

+
1

2

Z
d3~p

(2π)32Ep

Z

~u,~v∈LC

h

ζ~p in(~u) · T ~u

ih

ζ∗~p in(~v) · T ~v

i
#

A(x)

■ This leads to the announced formula for δN , with

Σ(~u, ~v) ≡
Z

d3~p

(2π)32Ep

ζ~p in(~u)ζ∗~p in(~v)
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Sketch of a proof – VI

■ Conjecture : this result can be generalized to any observable
that can be written in terms of the gauge field with retarded
boundary conditions, O ≡ O[A]:

δO =

» Z

~u ∈ light cone

δAin(~u) T ~u +

Z

~u,~v ∈ light cone

1

2
Σ(~u, ~v) T ~u T ~v

–

OLO

⊲ whatever we conclude for the multiplicity from this
formula holds true for any such observable
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Divergences

■ If taken at face value, this 1-loop correction is plagued by
several divergences :

◆ The two coefficients δAin(~x) and Σ(~x, ~y) are infinite,
because of an unbounded integration over a rapidity
variable

◆ At late times, T ~xA(τ, ~y) diverges exponentially,

T ~xA(τ, ~y) ∼ δA(τ, ~y)

δAin(~x)
∼

τ→+∞
e
√

µτ

because of an instability of the classical solution of
Yang-Mills equations under rapidity dependent
perturbations (Romatschke, Venugopalan (2005))

⊲ see lecture III : Weibel instabilities
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Initial state factorization

■ Why is it plausible ?

◆ Reminder :
[

δN
]

divergent
coefficients

=

{
∫

~x

[

δAin(~x)
]

div
T ~x

+
1

2

∫

~x,~y

[

Σ(~x, ~y)
]

div
T ~xT ~y

}

N
LO

◆ Compare with the evolution Hamiltonian :

H[ρ] =

∫

~x⊥

σ(~x⊥)
δ

δρ(~x⊥)
+

1

2

∫

~x⊥,~y
⊥

χ(~x⊥, ~y⊥)
δ2

δρ(~x⊥)δρ(~y⊥)

■ The coefficients σ and χ in the Hamiltonian are well known
⊲ one must compute analytically the divergent part

of δAin and Σ
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