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Stages of a nucleus-nucleus collision
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Stages of a nucleus-nucleus collision
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■ τ ∼ 0 fm/c

■ Production of hard particles :
◆ jets, direct photons
◆ heavy quarks

■ calculable with perturbative QCD (leading twist)
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Stages of a nucleus-nucleus collision

z 

t

strong fields classical EOMs

■ τ ∼ 0.2 fm/c
■ Production of semi-hard particles : gluons, light quarks
■ relatively small momentum : p⊥ . 2–3 GeV
■ make up for most of the multiplicity
■ sensitive to the physics of saturation (higher twist)
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Stages of a nucleus-nucleus collision

z 

t

strong fields classical EOMs

gluons & quarks out of eq. kinetic theory

■ τ ∼ 1–2 fm/c
■ Thermalization

◆ experiments suggest a fast thermalization
◆ but this is still not understood from QCD
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Stages of a nucleus-nucleus collision

z 

t

strong fields classical EOMs

gluons & quarks out of eq. kinetic theory

gluons & quarks in eq. hydrodynamics

■ 2 ≤ τ . 10 fm/c
■ Quark gluon plasma
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Stages of a nucleus-nucleus collision

z 

t

strong fields classical EOMs

gluons & quarks out of eq. kinetic theory

gluons & quarks in eq.
hydrodynamics

hadrons in eq.

■ 10 . τ . 20 fm/c
■ Hot hadron gas
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Stages of a nucleus-nucleus collision

z 

t

strong fields classical EOMs

gluons & quarks out of eq. kinetic theory

gluons & quarks in eq.
hydrodynamics

hadrons in eq.

freeze out

■ τ → +∞
■ Chemical freeze-out :

density too small to have inelastic interactions
■ Kinetic freeze-out :

no more elastic interactions
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Stages of a nucleus-nucleus collision

z 

t

strong fields classical EOMs
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Lecture I

■ Lecture I : Parton evolution at small x, Saturation
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Stages of a nucleus-nucleus collision
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■ Lecture I : Parton evolution at small x, Saturation
■ Lecture II : Initial particle production
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Stages of a nucleus-nucleus collision

z 

t

strong fields classical EOMs

gluons & quarks out of eq. kinetic theory

gluons & quarks in eq.
hydrodynamics

hadrons in eq.

freeze out

Lecture I
Lecture II

Lecture III

■ Lecture I : Parton evolution at small x, Saturation
■ Lecture II : Initial particle production
■ Lecture III : Instabilities and thermalization



General introduction

Introduction to QCD

Parton model

Gluon saturation

Color Glass Condensate

Phenomenology of saturation

CERN

François Gelis – 2007 Lecture I / IV – Advanced School on QGP, IIT, Mumbai, July 2007 - p. 3

Stages of a nucleus-nucleus collision

z 

t

strong fields classical EOMs

gluons & quarks out of eq. kinetic theory

gluons & quarks in eq.
hydrodynamics

hadrons in eq.

freeze out

Lecture I
Lecture II

Lecture III
Lecture IV

■ Lecture I : Parton evolution at small x, Saturation
■ Lecture II : Initial particle production
■ Lecture III : Instabilities and thermalization
■ Lecture IV : Kinetic theory, Near-Equilibrium dynamics
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General outline

■ Lecture I : Parton evolution at small x, Saturation

■ Lecture II : Initial particle production

■ Lecture III : Instabilities and thermalization

■ Lecture IV : Kinetic theory, Near-Equilibrium dynamics
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Lecture I : Parton saturation

■ Introduction to QCD

■ Parton model

■ Gluon saturation

■ Color Glass Condensate

■ Phenomenology of saturation
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Introduction to QCD
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Quarks and gluons

■ Electromagnetic interaction : Quantum electrodynamics
◆ Matter : electron , interaction carrier : photon
◆ Interaction :

∼ e (electric charge of the electron)

■ Strong interaction : Quantum chromo-dynamics
◆ Matter : quarks , interaction carriers : gluons
◆ Interactions :

a

i

j

∼ g (ta)ij
a

b

c

∼ g (T a)bc

◆ i, j : colors of the quarks (3 possible values)
◆ a, b, c : colors of the gluons (8 possible values)
◆ (ta)ij : 3× 3 matrix , (T a)bc : 8× 8 matrix
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QCD Lagrangian

■ QCD Lagrangian :

L = −1

2
tr (FµνF

µν) + ψ(i/D −m)ψ

◆ the gauge field Aµ belongs to SU(3)

◆ Dµ ≡ ∂µ − igAµ is the covariant derivative
◆ Fµν ≡ i[Dµ, Dν ]/g = ∂µAν − ∂νAµ − ig[Aµ, Aν ]

■ The Lagrangian is invariant under gauge transformations :

Aµ(x)→ Ω(x)Aµ(x)Ω−1(x) +
i

g
Ω(x)∂µΩ−1(x)

ψ(x)→ Ω(x)ψ(x)

where Ω(x) ∈ SU(3)

◆ Note: the field strength is not invariant but transforms as :

Fµν(x)→ Ω(x)Fµν(x)Ω−1(x)
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Asymptotic freedom

■ Running coupling : αs = g2/4π

αs(r) =
2πNc

(11Nc − 2Nf ) log(1/rΛ
QCD

)

■ The effective charge seen at large distance is screened by
fermionic fluctuations (as in QED)
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Asymptotic freedom

■ Running coupling : αs = g2/4π

αs(r) =
2πNc

(11Nc − 2Nf ) log(1/rΛ
QCD

)

■ The effective charge seen at large distance is screened by
fermionic fluctuations (as in QED)

■ But gluonic vacuum fluctuations produce an anti-screening
(because of the non-abelian nature of their interactions)

■ As long as Nf <11Nc/2 = 16.5, the gluons win...
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Quark confinement

■ The quark potential increases linearly with distance
■ Color singlet hadrons : no free quarks and gluons in nature
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How to test QCD?

■ QCD is the fundamental theory of strong interactions among
quarks and gluons

■ Experiments involve hadrons in their initial and final states,
not quarks and gluons

■ Hadrons cannot be described perturbatively in QCD

■ Scattering amplitudes with time-like on-shell momenta
cannot be computed on the lattice

⊲ How can we compare theory and experiments?

⊲ Factorization : separation of short distances
(perturbative) and long distance (non perturbative)
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Factorization

■ At a superficial level, factorization means that :

Ohadrons = F ⊗ Opartons

◆ F = parton distribution
◆ Opartons = observable at the partonic level

(calculable in perturbation theory)

■ For this to be useful, F must be universal
(i.e. independent of the observable O)

■ In order to test QCD experimentally, measure as many
observables as possible, and try to find common F ’s that fit
all the data
Note : at this stage, by looking at only one observable, it is
impossible to perform any meaningful test, since it is always
possible to adjust F so that it works
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Factorization

■ Some loop corrections in Opartons are enhanced by large
logarithms, e.g.

αs ln

(
M2

m2
H

)
, αs ln

( s

M2

)
∼ αs ln

(
1

x

)

Note : the log that occurs depends on the details of the kinematics
◆ Bjorken limit: s,M2 → +∞ with s/M2 fixed
◆ Regge limit: s→ +∞, M2 fixed

■ These logs upset a naive application of perturbation theory
when αs ln(·) ∼ 1 ⊲ they must be resummed

■ This resummation can be performed analytically

◆ the result of the resummation is universal

◆ all the leading logs can be absorbed in F

⊲ the factorization formula remains true
⊲ this summation dictates how F evolves with M2 or x
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Factorization

■ These logarithms tell us that the relevant parton distributions
depend on the resolution scales (in time and in transverse
momentum) associated to a given process

■ Calculation of some process at LO :





(M⊥  , Y )

x1

x2

{
x1 = M⊥ e+Y /

√
s

x2 = M⊥ e−Y /
√

s
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Factorization

■ These logarithms tell us that the relevant parton distributions
depend on the resolution scales (in time and in transverse
momentum) associated to a given process

■ Radiation of an extra gluon :





(M⊥  , Y )

x1

x2

z,k⊥

=⇒ αs

∫

x1

dz

z

M⊥∫
d2~k⊥

k2
⊥

■ Practical consequence : pQCD predicts not only Opartons but
also the evolution ∂

M
F (or ∂xF )

⊲ the only required non-perturbative input is F (x,M0) or F (x0,M)
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Collinear factorization

■ Logs of M⊥ =⇒ DGLAP. Important when :
◆ M⊥ ≫ Λ

QCD
, while x1, x2 are rather large

■ Cross-sections read :

dσ

dY d2 ~P ⊥

∝ F (x1,M
2
⊥) F (x2,M

2
⊥) |M|2

with x
1,2 = M⊥ exp(±Y )/

√
s

■ Note : there are convolutions in x1 and x2 if some particles
are integrated out in the final state

■ The factorization of logarithms has been proven to all orders
for sufficiently inclusive quantities
(see Collins, Soper, Sterman, 1984–1985)
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Kt-factorization

Collins, Ellis (1991), Catani, Ciafaloni, Hautmann (1991)

■ Logs of 1/x =⇒ BFKL. Important when :
◆ M⊥ remains moderate, while x1 or x2 (or both) are small

■ The BFKL equation is non-local in transverse momentum
⊲ it applies to non-integrated gluon distributions ϕ(x, ~k⊥)

xG(x,Q2) =

Q2Z
d2~k⊥

(2π)2
ϕ(x, ~k⊥)

⊲ the matrix element is calculated for (off-shell) gluons with ~k⊥ 6= ~0

■ In this framework, cross-sections read :

dσ

dY d2 ~P ⊥

∝
Z

~k1⊥,~k2⊥

δ(~k1⊥+~k2⊥− ~P ⊥) ϕ
1
(x1, k1⊥) ϕ

2
(x2, k2⊥)

|M|2
k2
1⊥k

2
2⊥

(x1,2 = M⊥ e±Y /
√
s)
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Multi-parton interactions?

■ Collinear or kt-factorization : only one parton in each
projectile take part in the process of interest
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Multi-parton interactions?

■ Collinear or kt-factorization : only one parton in each
projectile take part in the process of interest

■ If multiparton interactions are important : the above forms of
factorization cannot work anymore, because the only
information they retain about the distribution of partons is
their 2-point correlations (i.e. the number of partons)



General introduction

Introduction to QCD

Parton model

● Nucleon at low energy

● Nucleon at high energy

● Parton model

Gluon saturation

Color Glass Condensate

Phenomenology of saturation

CERN

François Gelis – 2007 Lecture I / IV – Advanced School on QGP, IIT, Mumbai, July 2007 - p. 18

Parton model
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Nucleon at low energy

■ A nucleon at rest is a very complicated object...
■ Contains fluctuations at all space-time scales smaller than its

own size
■ Only the fluctuations that are longer lived than the external

probe participate in the interaction process
■ The only role of short lived fluctuations is to renormalize the

masses and couplings
■ Interactions are very complicated if the constituents of the

nucleon have a non trivial dynamics over time-scales
comparable to those of the probe
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Nucleon at high energy

■ Dilation of all internal time-scales for a high energy nucleon
■ Interactions among constituents now take place over

time-scales that are longer than the characteristic time-scale
of the probe
⊲ the constituents behave as if they were free

■ Many fluctuations live long enough to be seen by the probe.
The nucleon appears denser at high energy (it contains
more gluons)
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Parton model

■ At the time of the interaction, the nucleon can be seen as a
collection of free constituents, called partons

■ It can be described by non-perturbative parton distributions
that depend on the momentum fraction x of the partons

■ One can separate the perturbative hard scattering from the
non-perturbative distribution functions, because the strong
interactions that are responsible for these non-perturbative
aspects occur on much larger timescales (factorization)

■ All these properties are based only on kinematics and
causality, and should remain true in the saturation regime
◆ what we use as the “parton distribution” must contain information

about multiparton configurations
◆ the calculation of the “hard” process is more involved
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Gluon saturation
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Parton evolution

⊲ assume that the projectile is big, e.g. a nucleus, and has
many valence quarks (only two are represented)

⊲ on the contrary, consider a small probe, with few partons

⊲ at low energy, only valence quarks are present in the hadron
wave function
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Parton evolution

⊲ when energy increases, new partons are emitted

⊲ the emission probability is αs

∫
dx
x ∼ αsln( 1

x ), with x the
longitudinal momentum fraction of the gluon

⊲ at small-x (i.e. high energy), these logs need to be
resummed
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Parton evolution

⊲ as long as the density of constituents remains small, the
evolution is linear: the number of partons produced at a given step
is proportional to the number of partons at the previous step (BFKL)
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Parton evolution

⊲ eventually, the partons start overlapping in phase-space

⊲ parton recombination becomes favorable

⊲ after this point, the evolution is non-linear:
the number of partons created at a given step depends non-linearly
on the number of partons present previously
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Saturation criterion

Gribov, Levin, Ryskin (1983)

■ Number of gluons per unit area:

ρ ∼ xG
A
(x, Q2)

πR2
A

■ Recombination cross-section:

σgg→g ∼
αs

Q2

■ Recombination happens if ρσgg→g & 1, i.e. Q2 . Q2
s, with:

Q2
s ∼ αsxG(x, Q2

s)

πR2
A

∼ A1/3 1

x0.3

■ At saturation, the phase-space density is:

dNg

d2~x⊥d2~p⊥

∼ ρ

Q2
∼ 1

αs
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Saturation domain

log(Q 2)

log(x -1)

Λ
QCD
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Saturation domain

log(Q 2)

log(x -1)

Λ
QCD

SPS
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Saturation domain

log(Q 2)

log(x -1)

Λ
QCD

SPS
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Saturation domain

log(Q 2)

log(x -1)

Λ
QCD
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Saturation domain

log(Q 2)

log(x -1)

Λ
QCD

SPS

RHIC

LHC

LHC, high Pt
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Multiple scatterings

■ Single scattering :

⊲ 2-point function in the projectile ⊲ gluon number
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Multiple scatterings

■ Single scattering :

⊲ 2-point function in the projectile ⊲ gluon number

■ Multiple scatterings :

⊲ 4-point function in the projectile ⊲ higher correlation
⊲ multiple scatterings in the projectile
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Multiple scatterings

■ Power counting : rescattering corrections are suppressed by
inverse powers of the typical mass scale in the process :

»
µ2

M2
⊥

–n

■ The parameter µ2 has a factor of αs, and a factor
proportional to the gluon density ⊲ rescatterings are
important at high density

■ Relative order of magnitude :

2 scatterings
1 scattering

∼ Q2
s

M2
⊥

with Q2
s ∼ αs

xG(x,Q2
s)

πR2

■ When this ratio becomes ∼ 1, all the rescattering corrections
become important ⊲ one must resum all

[
Qs/M⊥

]n

■ These effects are not accounted for in DGLAP or BFKL
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Color Glass Condensate
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Degrees of freedom

■ The fast partons (large x) are frozen by time dilation
⊲ described as static color sources on the light-cone :

Jµ
a = δµ+δ(x−)ρa(~x⊥) (x− ≡ (t− z)/

√
2)

■ Slow partons (small x) are radiated by the fast ones. They
have a large occupation number ⊲ described by a classical
color field Aµ that obeys Yang-Mills’s equation:

[Dν , F νµ]a = Jµ
a

■ The color sources ρa are random, and described by a
distribution functional W

Y
[ρ], with Y the rapidity that

separates “soft” and “hard”
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Deep Inelastic Scattering
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Deep Inelastic Scattering

100 configurations



General introduction

Introduction to QCD

Parton model

Gluon saturation

Color Glass Condensate

● Degrees of freedom

● Deep Inelastic Scattering

● Energy dependence

● MV model

Phenomenology of saturation

CERN

François Gelis – 2007 Lecture I / IV – Advanced School on QGP, IIT, Mumbai, July 2007 - p. 34

Deep Inelastic Scattering

■ Reactions involving a hadron or nucleus and an “elementary”
projectile are fairly straightforward to study

■ Example : forward DIS amplitude :

〈T (~x⊥, ~y⊥)〉 =
Z

[Dρ] W
Y

[ρ]

»
1− 1

Nc
tr(U(~x⊥)U†(~y⊥))

–

⊲ this formula resums all the [αs ln(1/x)]m[Qs/p⊥]n for the
inclusive DIS cross-section
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Deep Inelastic Scattering

■ U(~x⊥) is a Wilson line that represents the scattering at high
energy between a quark and the color field of the nucleus
(moving in the −z direction) :

U(~x⊥) ≡ P+ exp ig

∫ +∞

−∞

dz+ A−(z+, ~x⊥)

with
− ~∇

2

⊥ A−(x+, ~x⊥) = δ(x+)ρ(~x⊥)

■ The scattering of the antiquark is represented by U †(~y⊥)
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Balitsky-Kovchegov equation

■ The bare scattering amplitude of a color singlet QQ dipole
can be written as :

∝ tr
h
U(~x⊥)U†(~y⊥)

i

Note : this bare dipole amplitude is independent of energy.
The energy dependence comes from higher-order
corrections

■ At one loop, the following diagrams must be evaluated :

+ h.c.
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Balitsky-Kovchegov equation

■ The NLO corrections lead to an equation that drives the
dependence of T (~x⊥, ~y⊥) ≡ 1− 1

Nc
tr (U(~x⊥)U †(~y⊥)) with

respect to Y ∼ ln(
√

s) :

∂ T (~x⊥, ~y⊥)

∂Y
=
αsNc

2π2

Z
d2~z⊥

(~x⊥ − ~y⊥)2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
n

T (~x⊥, ~z⊥) + T (~z⊥, ~y⊥)− T (~x⊥, ~y⊥)−T (~x⊥, ~z⊥)T (~z⊥, ~y⊥)
o

(Balitsky-Kovchegov equation)

■ Both T = 0 and T = 1 are fixed points of this equation

T = ǫ : r.h.s. > 0 ⇒ T = 0 is unstable

T = 1− ǫ : r.h.s. > 0 ⇒ T = 1 is stable

■ Without the non-linear term (underlined), one would have the
BFKL equation, that has only an unstable fixed point at T = 0
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JIMWLK equation

■ An alternate – equivalent – point of view is to keep the bare
Wilson lines, and to say that one boosts the target so that
the distribution of its color sources changes

■ Evolution equation for W
Y
[ρ] (JIMWLK) :

∂W
Y

[ρ]

∂Y
= H[ρ] W

Y
[ρ]

H[ρ] =

Z

~x⊥

σ(~x⊥)
δ

δρ(~x⊥)
+

1

2

Z

~x⊥,~y⊥

χ(~x⊥, ~y⊥)
δ2

δρ(~x⊥)δρ(~y⊥)

■ σ and χ are non-linear functionals of ρ

■ Note : this point of view is more general because it also
applies to situations where the observable cannot be written
as a certain combination of Wilson lines – e.g. the gluon
inclusive spectrum in AA collisions
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Initial condition - MV model

■ The JIMWLK equation must be completed by an initial
condition, given at some moderate x0

■ As with DGLAP, the problem of finding the initial condition is
in general non-perturbative

■ The McLerran-Venugopalan model is often used as an initial
condition at moderate x0 for a large nucleus :

z

◆ partons distributed randomly
◆ many partons in a small tube
◆ no correlations at different ~x⊥

■ The MV model assumes that the density of color charges
ρ(~x⊥) has a Gaussian distribution :

Wx0
[ρ] = exp

»
−

Z
d2~x⊥

ρa(~x⊥)ρa(~x⊥)

2µ2(~x⊥)

–
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Phenomenology of saturation
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Color correlation length

■ In a nucleon at low energy, the typical correlation length
among color charges is of the order of the nucleon size,
i.e. Λ−1

QCD
∼ 1 fm. This is because the typical color screening

distance is Λ−1
QCD

. At low energy, color screening is due to
confinement, and thus non-perturbative

■ At high energy (small x), partons are much more densely
packed, and it can be shown that color neutralization occurs
in fact over distances of the order of Q−1

s ≪ Λ−1
QCD

Qs
-1

■ This implies that all hadrons, and nuclei, behave in the same
way at high energy. In this sense, the small x regime
described by the CGC is universal
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Multiple scatterings

■ Single scattering dominates at high p⊥ :

◆ Differential cross-sections between a parton and a nucleus at
high p⊥ should scale like the atomic number A (volume scaling)
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Multiple scatterings

■ Multiple scatterings at low p⊥ :

◆ One of the scatterings “produces” the final state, while the others

merely change its momentum
◆ Each extra scattering corresponds to a correction αsA

1/3Λ2/p2
⊥

⊲ important correction at low p⊥, despite the αs suppression
◆ When this effect is extremal, differential cross-sections at low p⊥

scale like A2/3 (area scaling)
◆ Multiple scatterings only affect the momentum distribution of the

final states, not the yield ⊲ the suppression at low p⊥ is
compensated by an increase at higher p⊥ (Cronin effect)



General introduction

Introduction to QCD

Parton model

Gluon saturation

Color Glass Condensate

Phenomenology of saturation

● Color correlation length

● Multiple scatterings

● Shadowing

CERN

François Gelis – 2007 Lecture I / IV – Advanced School on QGP, IIT, Mumbai, July 2007 - p. 44

Shadowing

■ Interactions among the partons in the nuclear target
(shadowing) :

◆ Modification of the single scattering contribution due to the

non-linear interactions of partons inside the target
◆ At low x, this effect induces a suppression of the differential

cross-section : dσpA/d
2~p⊥ ∼ Aα with α < 1
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Lecture II : Initial particle production

■ Introduction to nucleus-nucleus collisions

■ Power counting and bookkeeping

■ Inclusive gluon spectrum

■ Loop corrections and factorization
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Lecture III : Instabilities, thermalization

■ Reminder on initial gluon production

■ Glasma instabilities

■ Instabilities in anisotropic plasmas

■ Thermalization ?
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Lecture IV : Kinetic theory

■ Collisionless kinetic equations

■ Boltzmann equation

■ Transport coefficients

■ From kinetic theory to hydrodynamics
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Complements
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Light-cone coordinates

■ Light-cone coordinates are defined by choosing a privileged
axis (generally the z axis) along which particles have a large
momentum. Then, for any 4-vector aµ, one defines :

a+ ≡ a0 + a3

√
2

, a− ≡ a0 − a3

√
2

a1,2 unchanged. Notation : ~a⊥ ≡ (a1, a2)

■ Under a Lorentz boost in the z direction :

a+ → Λ a+ , a− → Λ−1 a− , a1,2 → a1,2

■ Some useful formulas :

x · y = x+y− + x−y+ − ~x⊥ · ~y⊥

d4x = dx+dx−d2~x⊥

� = 2∂+∂− − ~∇
2

⊥ Notation : ∂+ ≡ ∂

∂x−
, ∂− ≡ ∂

∂x+
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Solution of Yang Mills eq. for 1 nucleus

■ The Yang-Mills equations are the classical equations that
give the color field induced by a given current. They are the
analogue in QCD of the Maxwell equations in
electrodynamics : [

Dµ, Fµν
]

= Jν

where
◆ Dµ ≡ ∂µ − igAµ is the covariant derivative
◆ Fµν ≡ i[Dµ, Dν ]/g = ∂µAν − ∂νAµ − ig[Aµ, Aν ]

■ For a single nucleus moving in the +z direction

Jν = δν+δ(x−)ρ(~x⊥)

■ This current must be covariantly conserved :
[
Dν , Jν

]
= 0

⊲ the formula for Jν may have higher order corrections in ρ
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Solution of Yang Mills eq. for 1 nucleus

■ Reminder: in QED, we would simply have :

�Aν − ∂ν(∂µAµ) = Jν

which in the gauge ∂µAµ = 0 (Lorenz) simplifies into
�Aν = Jν

■ For QCD in the Lorenz gauge, one can first rewrite the
Yang-Mills equations as :

�Aν − ig
[
Aµ, Fµν + ∂µAν

]
= Jν

■ It is useful to expand all the quantities in powers of the color
density ρ :

Aµ ≡
∞∑

n=0

Aµ
(n) , Jµ ≡

∞∑

n=0

Jµ
(n)

where Aµ
(n) ∼ Jµ

(n) ∼ ρn
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Solution of Yang Mills eq. for 1 nucleus

■ At the order n = 1, the equations are simply :

∂νJν
(1) = 0 , �Aν

(1) = Jν
(1)

and their solution reads

Jν
(1) = δν+δ(x−)ρ(~x⊥)

Aν
(1) = δν+δ(x−)α(~x⊥) , − ~∇

2

⊥α(~x⊥) = ρ(~x⊥)

■ At this order, the only non-zero component of Fµν is
F i+ = −F+i = ∂iA+

(1)

■ By writing the equations for the corrections of order ρ2, we
find that all the non-linear terms cancel and that all these
corrections are zero

■ This feat can be repeated to all orders in ρ ⊲ the complete
solution of the non-linear Yang-Mills equations is linear in ρ!
Note : this result is only valid for Lorenz gauge and for the kind of
current we have considered
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Eikonal scattering

■ Consider the scattering amplitude off an external potential :

Sβα ≡
〈
βout

∣∣αin

〉
=

〈
βin

∣∣U(+∞,−∞)
∣∣αin

〉

where U(+∞,−∞) is the evolution operator from t = −∞ to
t = +∞

U(+∞,−∞) = T exp
h
i

Z
d4x Lint(φin(x))

i

Note : Lint contains the self-interactions of the fields and their
interactions with the external potential

■ We want to calculate its high energy limit :

S
(∞)
βα ≡ lim

ω→+∞

〈
βin

∣∣eiωK3

U(+∞,−∞)e−iωK3∣∣αin

〉

where K3 is the generator of boosts in the +z direction
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Eikonal scattering in a nutshell

■ In a scattering at high energy, the collision time goes to zero
as s−1/2

■ With scalar interactions, this implies a decrease of the
scattering amplitude as s−1/2

■ With vectorial interactions, this decrease is compensated by
the growth of the component J+ of the vector current

⊲ the eikonal approximation gives the finite limit of the
scattering amplitude in the case of vectorial interactions
when s→ +∞
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Eikonal limit

■ Consider an external vector potential, that couples via
eAµ(x)Jµ(x) (Jµ is the Noether current associated to some
conserved charge)

■ We will assume that the external potential is non-zero only in
a finite range in x+, x+ ∈ [−L, +L]

■ The action of K3 on states and (scalar) fields is :

e−iωK3 ˛̨
~p · · · in

¸
=

˛̨
(eωp+, ~p⊥) · · · in

¸

eiωK3

φin(x)e−iωK3

= φin(e−ωx+, eωx−, ~x⊥)

■ K3 does not change the ordering in x+. Hence,

eiωK3

U(+∞,−∞)e−iωK3

= T+ exp i

Z
d4x Lint(e

iωK3

φin(x)e−iωK3

)

where Lint = Lself(φ)− eAµJ
µ
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Eikonal limit

■ Split the evolution operator U(+∞,−∞) into three factors :

U(+∞,−∞) = U(+∞,+L)U(+L,−L)U(−L,−∞)

Upon application of K3, this becomes :

eiωK3

U(+∞,−∞)e−iωK3

= eiωK3

U(+∞,+L)e−iωK3

×eiωK3

U(+L,−L)e−iωK3

eiωK3

U(−L,−∞)e−iωK3

■ The external potential Aµ(x) is unaffected by K3

■ The components of Jµ(x) are changed as follows :

eiωK3

J i(x)e−iωK3

= J i(e−ωx+, eωx−, ~x⊥)

eiωK3

J−(x)e−iωK3

= e−ω J−(e−ωx+, eωx−, ~x⊥)

eiωK3

J+(x)e−iωK3

= eω J+(e−ωx+, eωx−, ~x⊥)
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Eikonal limit

■ The factors U(+∞, +L) and U(−L,−∞) do not contain the
external potential. In order to deal with these factors, it is
sufficient to change variables : e−ωx+ → x+, eωx− → x−.
This leads to :

lim
ω→+∞

eiωK3

U(+∞,+L)e−iωK3

= Uself(+∞, 0)

lim
ω→+∞

eiωK3

U(−L,−∞)e−iωK3

= Uself(0,−∞)

where Uself is the same as U , but with the self-interactions only

■ For the factor U(L,−L), the change eωx− → x− leads to :

eiωK3

U(+L,−L)e−iωK3

=

= T+exp i

Z +L

−L

d4x e−ω
h
eA−(x+, e−ωx−, ~x⊥)

×eωJ+(e−ωx+, x−, ~x⊥) +O(1)
i
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Eikonal limit

■ Therefore, in the limit ω → +∞, we have :

lim
ω→+∞

eiωK3

U(+L,−L)e−iωK3

= exp
h
ie

Z
d2~x⊥χ(~x⊥)ρ(~x⊥)

i

with





χ(~x⊥) ≡
∫

dx+ A−(x+, 0, ~x⊥)

ρ(~x⊥) ≡
∫

dx− J+(0, x−, ~x⊥)

■ The high-energy limit of the scattering amplitude is :

S
(∞)
βα =

˙
βin

˛̨
Uself(+∞, 0) exp

h
ie

Z

~x⊥

χ(~x⊥)ρ(~x⊥)
i
Uself(0,−∞)

˛̨
αin

¸

◆ Only the − component of the vector potential matters
◆ The self-interactions and the interactions with the external

potential are factorized ⊲ parton model
◆ This is an exact result when s→ +∞
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Eikonal limit

■ The previous formula still contains all the self-interactions of
the fields. In order to perform the perturbative expansion, it is
convenient to write first :

S
(∞)
βα =

X

γ,δ

˙
βin

˛̨
Uself(+∞, 0)

˛̨
γin

¸

×
˙
γin

˛̨
exp

h
ie

Z

~x⊥

χ(~x⊥)ρ(~x⊥)
i˛̨
δin

¸˙
δin

˛̨
Uself (0,−∞)

˛̨
αin

¸

■ The factor X

δ

˛̨
δin

¸˙
δin

˛̨
Uself(0,−∞)

˛̨
αin

¸

is the Fock expansion of the initial state: the state prepared
at x+ = −∞ may have fluctuated into another state before it
interacts with the external potential
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Eikonal limit

■ We need to calculate matrix elements such as
〈
γin

∣∣F
∣∣δin

〉
,

with :

F ≡ exp ie

Z
χa(~x⊥)ρa(~x⊥)

◆ having QCD in mind, we have reinstated the color indices
◆ the contribution of quarks and antiquarks to ρa(~x⊥) is :

ρa(~x⊥) = taij

Z
dp+

4πp+

d2~p⊥

(2π)2
d2~q⊥

(2π)2

n
b†in(p+, ~p⊥; i)bin(p+, ~q⊥; j)ei(~p⊥−~q⊥)·~x⊥

−d†in(p+, ~p⊥; i)din(p+, ~q⊥; j)e−i(~p⊥−~q⊥)·~x⊥

o

◆ Note : one should keep the ordering of the exponential in x+

◆ the contribution of gluons is similar, with a color matrix in the
adjoint representation

■ The action of F on a state
∣∣δin

〉
gives a state with the same

particle content, the same + components for the momenta,
but modified transverse momenta and colors
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Light-cone wavefunction

■ For each intermediate state
〈
δin

∣∣ ≡
〈
{k+

i , ~ki⊥}
∣∣, define the

corresponding light-cone wave function by :

Ψδα({k+
i , ~xi⊥}) ≡

Y

i

Z
d2~ki⊥

(2π)2
e−i~ki⊥·~xi⊥

˙
δin

˛̨
Uself(0,−∞)

˛̨
αin

¸

■ Each charged particle going through the external field
acquires a phase proportional to its charge (antiparticles get
an opposite phase) :

Ψδα({k+
i , ~xi⊥}) −→ Ψδα({k+

i , ~xi⊥})
Y

i

Ui(~x⊥)

Ui(~x⊥) ≡ T+ exp
h
igi

Z
dx+ A−

a (x+, 0, ~x⊥)ta
i
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Light-cone wavefunction

■ We have seen that the number and the nature of the particles
is unchanged under the action of the operator F . Moreover,
in terms of the transverse coordinates, we simply have

˙
γin

˛̨
F

˛̨
δin

¸
= δ

NN′

Y

i

h
4πk+

i δ(k
+
i − k+′

i )δ(~xi⊥ − ~x′
i⊥)U

Ri
(~xi⊥)

i

where U
R
(~x⊥) is a Wilson line operator, in the representation R

appropriate for the particle going through the target

■ Therefore, the high energy scattering amplitude can be
written as :

S
(∞)
βα =

X

δ

Z h Y

i∈δ

dΦi

i
Ψ†

δβ({k+
i , ~xi⊥})

h Y

i∈δ

U
Ri

(~xi⊥)
i
Ψδα({k+

i , ~xi⊥})

■ As we shall see shortly, some loop corrections are enhanced
by logs of the energy. They must be resummed and drive the
energy evolution of the amplitude
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Light-cone wave function

■ The calculation of
〈
δin

∣∣Uself(0,−∞)
∣∣αin

〉
is similar to that of

scattering amplitudes in the vacuum. The only difference is
that the integration over x+ at each vertex runs only over half
of the real axis [−∞, 0]
◆ In Fourier space, this means that the − component of the

momentum is not conserved at the vertices
◆ Instead of a δ function, one gets an energy denominator

■ Example with a single interaction :

p
k1

k2

k3

˙
~k1
~k2
~k3in

˛̨
U(0,−∞)

˛̨
~pin

¸
= −ig

Z 0

−∞

d4x ei(k1+k2+k3−p)·x

= −g (2π)3δ(~k1⊥ + ~k2⊥ + ~k3⊥ − ~p⊥)δ(k+
1 + k+

2 + k+
3 − p+)

k−1 + k−2 + k−3 − p− − iǫ
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Scattering of a dipole

■ Assume that the initial and final states are a color singlet QQ
dipole. The bare scattering amplitude can be written as :

∝
˛̨
˛Ψ(0)(~x⊥, ~y⊥)

˛̨
˛
2

tr
h
U(~x⊥)U†(~y⊥)

i

■ At one loop, the following diagrams must be evaluated :

+ h.c.
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Scattering of a dipole

■ In the gauge A+ = 0, the emission of a gluon of momentum
k by a quark can be written as :

= 2gta
~ǫλ · ~k⊥

k2
⊥

■ In coordinate space, this reads :
Z

d2~k⊥

(2π)2
ei~k⊥·(~x⊥−~z⊥) 2gta

~ǫλ · ~k⊥

k2
⊥

=
2ig

2π
ta
~ǫλ · (~x⊥ − ~z⊥)

(~x⊥ − ~z⊥)2

■ When connecting two gluons, one must use :
X

λ

~ǫi
λ~ǫ

j
λ = −gij
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Virtual corrections

■ Consider first the loop corrections inside the wavefunction of
the incoming or outgoing dipole

■ Examples :

=
∣∣∣Ψ(0)(~x⊥, ~y⊥)

∣∣∣
2

tr
[
tataU(~x⊥)U †(~y⊥)

]

×− 2αs

∫
dk+

k+

∫
d2~z⊥

(2π)2
(~x⊥ − ~z⊥) · (~x⊥ − ~z⊥)

(~x⊥ − ~z⊥)2(~x⊥ − ~z⊥)2

=
∣∣∣Ψ(0)(~x⊥, ~y⊥)

∣∣∣
2

tr
[
taU(~x⊥)U †(~y⊥)ta

]

×4αs

∫
dk+

k+

∫
d2~z⊥

(2π)2
(~x⊥ − ~z⊥) · (~y⊥ − ~z⊥)

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

■ Reminder : tata = (N2
c − 1)/2Nc ≡ CF
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Virtual corrections

■ The sum of all virtual corrections is :

−CF
αs

π2

Z
dk+

k+

Z
d2~z⊥

(~x⊥ − ~y⊥)2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
˛̨
˛Ψ(0)(~x⊥, ~y⊥)

˛̨
˛
2

tr
h
U(~x⊥)U†(~y⊥)

i

■ The integral over k+ is divergent. It should have an upper
bound at p+ :

Z p+

dk+

k+
= ln(p+) = Y

⊲ When Y is large, αsY may not be small. By differentiating
with respect to Y , we will get an evolution equation in Y
whose solution resums all the powers (αsY )n

■ The integral over ~z⊥ is divergent when ~z⊥ = ~x⊥ or ~y⊥
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Real corrections

■ There are also real corrections, for which the state that
interacts with the target has an extra gluon

■ Example :

=
∣∣∣Ψ(0)(~x⊥, ~y⊥)

∣∣∣
2

tr
[
taU(~x⊥)tbU †(~y⊥)

]

×4αs

∫
dk+

k+

∫
d2~z⊥

(2π)2
Ũab(~z⊥)

(~x⊥ − ~z⊥) · (~x⊥ − ~z⊥)

(~x⊥ − ~z⊥)2(~x⊥ − ~z⊥)2

◆ eUab(~z⊥) is a Wilson line in the adjoint representation

■ In order to simplify the color structure, first recall that :

ta eUab(~z⊥) = U(~z⊥)tbU†(~z⊥)

■ Then use the SU(Nc) Fierz identity :

tbijt
b
kl =

1

2
δilδjk −

1

2Nc
δijδkl
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Real corrections

■ The Wilson lines can be rearranged into :

tr
h
taU(~x⊥)tbU†(~y⊥)

i
eUab(~z⊥) =

1

2
tr

h
U†(~z⊥)U(~x⊥)

i
tr

h
U(~z⊥)U†(~y⊥)

i

− 1

2Nc
tr

h
U(~x⊥)U†(~y⊥)

i

◆ The term in 1/2Nc cancels against a similar term in the virtual

contribution
◆ All the real terms have the same color structure

■ When we sum all the real terms, we generate the same
kernel as in the virtual terms :

(~x⊥ − ~y⊥)2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

■ In order to simplify the notations, let us denote :

S(~x⊥, ~y⊥) ≡ 1

Nc
tr

h
U(~x⊥)U†(~y⊥)

i
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Evolution equation

■ The 1-loop scattering amplitude reads :

−αsN
2
c Y

2π2

˛̨
˛Ψ(0)(~x⊥, ~y⊥)

˛̨
˛
2

Z
d2~z⊥

(~x⊥ − ~y⊥)2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
n

S(~x⊥, ~y⊥)− S(~x⊥, ~z⊥)S(~z⊥, ~y⊥)
o

■ Reminder: the bare scattering amplitude was :
˛̨
˛Ψ(0)(~x⊥, ~y⊥)

˛̨
˛
2

Nc S(~x⊥, ~y⊥)

■ Hence, we have :

∂S(~x⊥, ~y⊥)

∂Y
= −αsNc

2π2

Z
d2~z⊥

(~x⊥ − ~y⊥)2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
n

S(~x⊥, ~y⊥)− S(~x⊥, ~z⊥)S(~z⊥, ~y⊥)
o

◆ since S(~x⊥, ~x⊥) = 1, the integral over ~z⊥ is now regular
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BFKL equation

Kuraev, Lipatov, Fadin (1977), Balitsky, Lipatov (1978)

■ The BFKL equation can be obtained by linearizing the
previous equation

■ Write S(~x⊥, ~y⊥) ≡ 1− T (~x⊥, ~y⊥) and assume that we are in
the dilute regime, so that the scattering amplitude T is small.
Drop the terms that are non-linear in T :

∂ T (~x⊥, ~y⊥)

∂Y
=
αsNc

2π2

Z
d2~z⊥

(~x⊥ − ~y⊥)2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
n

T (~x⊥, ~z⊥) + T (~z⊥, ~y⊥)− T (~x⊥, ~y⊥)
o
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BFKL equation

■ Note : T (~x⊥, ~y⊥) is independent on the frame. In particular,
it depends only on the rapidity difference between the dipole
and the target
⊲ in a frame where the dipole is held fixed, the target has to
evolve in such a way as to reproduce the Y dependence of T











dipole

target











dipole

target

■ The corresponding evolution in the target is the radiation of a
gluon
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Unitarity problem

■ The solution of this equation grows exponentially when
Y → +∞ ⊲ serious unitarity problem...

■ In perturbation theory, the forward scattering amplitude
between a small dipole and a target made of gluons reads :

T (~x⊥, ~y⊥) ∝ |~x⊥ − ~y⊥|2 xG(x, |~x⊥ − ~y⊥|−2)

where Y ≡ ln(1/x)

■ Therefore, the exponential behavior of T implies an increase
of the gluon distribution at small x

T ∼ eλY ←→ xG(x,Q2) ∼ 1

xλ
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Non-linear evolution equation

■ In fact, the first evolution equation we derived has a bounded
solution. The unbounded solutions of BFKL are due to
dropping the non-linear term. The full equation reads :

∂ T (~x⊥, ~y⊥)

∂Y
=
αsNc

2π2

Z
d2~z⊥

(~x⊥ − ~y⊥)2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
n

T (~x⊥, ~z⊥) + T (~z⊥, ~y⊥)− T (~x⊥, ~y⊥)−T (~x⊥, ~z⊥)T (~z⊥, ~y⊥)
o

(Balitsky-Kovchegov equation)

■ The r.h.s. vanishes when T reaches 1, and the growth stops.
The non-linear term lets both dipoles interact after the
splitting of the original dipole

■ Both T = 0 and T = 1 are fixed points of this equation

T = ǫ : r.h.s. > 0 ⇒ T = 0 is unstable

T = 1− ǫ : r.h.s. > 0 ⇒ T = 1 is stable
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Caveats and improvements

■ So far, we have studied the scattering amplitude between a
color dipole and a “god given” patch of color field. This is too
naive to describe any realistic situation

■ We need to improve the treatment of the target

■ An experimentally measured cross-section is an average
over many collisions, and there is no reason why these fields
should be the same in different collisions :

T →
〈
T

〉

˙
· · ·

¸
denotes the average over the target configurations, i.e.

˙
· · ·

¸
=

Z ˆ
Dρ

˜
W

Y
[ρ] · · ·
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Balitsky hierarchy

■ Because of this average over the target configurations, the
evolution equation we have derived should be written as :

∂ 〈T (~x⊥, ~y⊥)〉
∂Y

=
αsNc

2π2

Z
d2~z⊥

(~x⊥ − ~y⊥)2

(~x⊥ − ~z⊥)2(~y⊥ − ~z⊥)2

×
n
〈T (~x⊥, ~z⊥)〉+ 〈T (~z⊥, ~y⊥)〉 − 〈T (~x⊥, ~y⊥)〉− 〈T (~x⊥, ~z⊥)T (~z⊥, ~y⊥)〉

o

■ As one can see, the equation is no longer a closed equation,
since the equation for 〈T 〉 depends on a new object, 〈T T 〉

■ One can derive an evolution equation for 〈T T 〉. Its right
hand side contains 〈T T T 〉. And so on...

■ There is in fact an infinite hierarchy of nested evolution
equations : Balitsky hierarchy

Note : this hierarchy is equivalent to the JIMWLK equation
for W

Y
[ρ]
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Balitsky-Kovchegov equation

■ In order to truncate the hierarchy of equations, one may
assume the following simplification

〈T T 〉 ≈ 〈T 〉 〈T 〉

■ This approximation gives for 〈T 〉 the same evolution equation
as the one we had for a fixed configuration of the target
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Analogy with reaction-diffusion

Munier, Peschanski (2003,2004)

■ Assume rotation invariance, and define :

N(Y, k⊥) ≡ 2π

Z
d2~x⊥ ei~k⊥·~x⊥

〈T (0, ~x⊥)〉
Y

x2
⊥

■ From the Balitsky-Kovchegov equation for 〈T 〉
Y

, we obtain
the following equation for N :

∂N(Y , k⊥)

∂Y
=
αsNc

π

h
χ(−∂L)N(Y , k⊥)−N2(Y , k⊥)

i

with

L ≡ ln(k2
⊥/k

2
0)

χ(γ) ≡ 2ψ(1)− ψ(γ)− ψ(1− γ)
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Analogy with reaction-diffusion

■ Expand the function χ(γ) to second order around its
minimum γ = 1/2

■ Introduce new variables :

t ∼ Y
z ∼ L+

αsNc

2π
χ′′(1/2) Y

■ The equation for N becomes :

∂tN = ∂2
zN +N −N2

(known as the Fisher-Kolmogorov-Petrov-Piscounov equation)
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Analogy with reaction-diffusion

■ Interpretation : this equation is typical for all the diffusive
systems in which a reaction A←→ A + A takes place

◆ ∂2
zN : diffusion term (the quantity under consideration can

hop from a site to the neighboring sites)

◆ +N : gain term corresponding to A→ A + A

◆ −N2 : loss term corresponding to A + A→ A

■ Note : this equation has two fixed points :
◆ N = 0 : unstable
◆ N = 1 : stable

■ The stable fixed point at N = 1 exists only if one keeps the
loss term. In other words, one would not have it from the
BFKL equation
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Traveling waves

■ Assume an initial condition N(t0, z) that goes smoothly from
1 at z = −∞ to 0 at z = +∞, and behaves like exp(−βz)
when z ≫ 1

N(t,z)

z

■ The solution of the F-KPP equation is known to behave like a
traveling wave at asymptotic times (Bramson, 1983) :

N(t, z) ∼
t→+∞

N(z −mβ(t))

with mβ(t) = 2t− 3 ln(t)/2 +O(1) if β > 1

⊲ universal front velocity
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Geometrical scaling in DIS

Iancu, Itakura, McLerran (2002)

Mueller, Triantafyllopoulos (2002)
Munier, Peschanski (2003)

■ In QCD, the initial condition is of the required form, with β > 1
⊲ front velocity independent of the initial condition

■ Going back to the original variables, one gets :

N(Y, k⊥) = N (k⊥/Qs(Y ))

with

Q2
s(Y ) = k2

0 Y
−δ eλY

■ Going from N(Y, k⊥) to 〈T (0, ~x⊥)〉
Y

, we obtain :

〈T (0, ~x⊥)〉
Y

= T (Qs(Y )x⊥)
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Geometrical scaling in DIS

■ The total γ∗p cross-section, measured in Deep Inelastic
Scattering, can be written in terms of N :

σtot
γ∗p(Y ,Q2) = 2πR2

Z
d2~x⊥

Z 1

0

dz
˛̨
ψ(z, x⊥, Q

2)
˛̨2 〈T (0, ~x⊥)〉

Y

◆ The photon wavefunction ψ is calculable in QED. It depends on

the dipole size x⊥ only via

˛̨
ψ(z, x⊥, Q

2)
˛̨2

= f(Qfx⊥)

with Q
2

f ≡ m2
f +Q2z2(1− z2)

■ If one neglects the quark masses, the scaling properties of
〈T 〉

Y
imply that σγ∗p depends only on the ratio Q2/Q2

s(Y ),
rather than on Q2 and Y separately
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Geometrical scaling in DIS

■ HERA data as a function of Q2 and x :
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Geometrical scaling in DIS

Stasto, Golec-Biernat, Kwiecinski (2000)
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