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General outline

■ Lecture I : Gluon saturation, Color Glass Condensate

■ Lecture II : DIS and proton-nucleus collisions

■ Lecture III : Saturation in nucleus-nucleus collisions
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Lecture I : Gluon saturation, CGC

■ Testing QCD - Factorization

■ Parton model

■ Parton saturation

■ Phenomenology of saturation
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Quarks and gluons

■ Electromagnetic interaction : Quantum electrodynamics
◆ Matter : electron , interaction carrier : photon
◆ Interaction :

∼ e (electric charge of the electron)

■ Strong interaction : Quantum chromo-dynamics
◆ Matter : quarks , interaction carriers : gluons
◆ Interactions :

a

i

j

∼ g (ta)ij
a

b

c

∼ g (T a)bc

◆ i, j : colors of the quarks (3 possible values)
◆ a, b, c : colors of the gluons (8 possible values)
◆ (ta)ij : 3 × 3 matrix , (T a)bc : 8 × 8 matrix
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QCD Lagrangian

■ QCD Lagrangian :

L = −1

2
tr (FµνF

µν) + ψ(i/D −m)ψ

◆ the gauge field Aµ belongs to SU(3)

◆ Dµ ≡ ∂µ − igAµ is the covariant derivative
◆ Fµν ≡ i[Dµ, Dν ]/g = ∂µAν − ∂νAµ − ig[Aµ, Aν ]

■ The Lagrangian is invariant under gauge transformations :

Aµ(x) → Ω(x)Aµ(x)Ω−1(x) +
i

g
Ω(x)∂µΩ−1(x)

ψ(x) → Ω(x)ψ(x)

where Ω(x) ∈ SU(3)

◆ Note: the field strength is not invariant but transforms as :

Fµν(x) → Ω(x)Fµν(x)Ω−1(x)
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Asymptotic freedom

■ Running coupling : αs = g2/4π

αs(r) =
2πNc

(11Nc − 2Nf ) log(1/rΛ
QCD

)

■ The effective charge seen at large distance is screened by
fermionic fluctuations (as in QED)
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Asymptotic freedom

■ Running coupling : αs = g2/4π

αs(r) =
2πNc

(11Nc − 2Nf ) log(1/rΛ
QCD

)

■ The effective charge seen at large distance is screened by
fermionic fluctuations (as in QED)

■ But gluonic vacuum fluctuations produce an anti-screening
(because of the non-abelian nature of their interactions)

■ As long as Nf <11Nc/2 = 16.5, the gluons win...
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Quark confinement

■ The quark potential increases linearly with distance
■ Color singlet hadrons : no free quarks and gluons in nature
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How to test QCD?

■ QCD is the fundamental theory of strong interactions among
quarks and gluons

■ Experiments involve hadrons in their initial and final states,
not quarks and gluons

■ Hadrons cannot be described perturbatively in QCD

■ Scattering amplitudes with time-like on-shell momenta
cannot be computed on the lattice

⊲ How can we compare theory and experiments?

⊲ Factorization : separation of short distances
(perturbative) and long distance (non perturbative)
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Factorization

■ At a superficial level, factorization means that :

Ohadrons = F ⊗ Opartons

◆ F = parton distribution
◆ Opartons = observable at the partonic level

(calculable in perturbation theory)

■ For this to be useful, F must be universal
(i.e. independent of the observable O)

■ In order to test QCD experimentally, measure as many
observables as possible, and try to find common F ’s that fit
all the data
Note : at this stage, by looking at only one observable, it is
impossible to perform any meaningful test, since it is always
possible to adjust F so that it works
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Factorization

■ Some loop corrections in Opartons are enhanced by large
logarithms, e.g.

αs ln

(

M2

m2
H

)

, αs ln
( s

M2

)

∼ αs ln

(

1

x

)

Note : the log that occurs depends on the details of the kinematics
◆ Bjorken limit: s,M2 → +∞ with s/M2 fixed
◆ Regge limit: s→ +∞, M2 fixed

■ These logs upset a naive application of perturbation theory
when αs ln(·) ∼ 1 ⊲ they must be resummed

■ This resummation can be performed analytically

◆ the result of the resummation is universal

◆ all the leading logs can be absorbed in F

⊲ the factorization formula remains true
⊲ this summation dictates how F evolves with M2 or x
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Factorization

■ These logarithms tell us that the relevant parton distributions
depend on the resolution scales (in time and in transverse
momentum) associated to a given process

■ Calculation of some process at LO :





(M⊥  , Y )

x1

x2

{

x1 = M⊥ e+Y /
√

s

x2 = M⊥ e−Y /
√

s
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Factorization

■ These logarithms tell us that the relevant parton distributions
depend on the resolution scales (in time and in transverse
momentum) associated to a given process

■ Radiation of an extra gluon :





(M⊥  , Y )

x1

x2

z,k⊥

=⇒ αs

∫

x1

dz

z

M⊥
∫

d2~k⊥

k2
⊥

■ Practical consequence : pQCD predicts not only Opartons but
also the evolution ∂

M
F (or ∂xF )

⊲ the only required non-perturbative input is F (x,M0) or F (x0,M)
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Collinear factorization

■ Logs of M⊥ =⇒ DGLAP. Important when :
◆ M⊥ ≫ Λ

QCD
, while x1, x2 are rather large

■ Cross-sections read :

dσ

dY d2 ~P ⊥

∝ F (x1,M
2
⊥) F (x2,M

2
⊥) |M|2

with x1,2 = M⊥ exp(±Y )/
√
s

■ Note : there are convolutions in x1 and x2 if some particles
are integrated out in the final state

■ The factorization of logarithms has been proven to all orders
for sufficiently inclusive quantities
(see Collins, Soper, Sterman, 1984–1985)
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Kt-factorization

Collins, Ellis (1991), Catani, Ciafaloni, Hautmann (1991)

■ Logs of 1/x =⇒ BFKL. Important when :
◆ M⊥ remains moderate, while x1 or x2 (or both) are small

■ The BFKL equation is non-local in transverse momentum
⊲ it applies to non-integrated gluon distributions ϕ(x, ~k⊥)

xG(x,Q2) =

Q2
Z

d2~k⊥

(2π)2
ϕ(x, ~k⊥)

⊲ the matrix element is calculated for (off-shell) gluons with ~k⊥ 6= ~0

■ In this framework, cross-sections read :

dσ

dY d2 ~P ⊥

∝
Z

~k1⊥,~k2⊥

δ(~k1⊥+~k2⊥− ~P ⊥) ϕ1(x1, k1⊥) ϕ2(x2, k2⊥)
|M|2
k2
1⊥k

2
2⊥

(x1,2 = M⊥ e±Y /
√
s)
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Multi-parton interactions?

■ Collinear or kt-factorization : only one parton in each
projectile take part in the process of interest
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Multi-parton interactions?

■ Collinear or kt-factorization : only one parton in each
projectile take part in the process of interest

■ If multiparton interactions are important : the above forms of
factorization cannot work anymore, because the only
information they retain about the distribution of partons is
their 2-point correlations (i.e. the number of partons)
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Parton model
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Nucleon at low energy

■ A nucleon at rest is a very complicated object...
■ Contains fluctuations at all space-time scales smaller than its

own size
■ Only the fluctuations that are longer lived than the external

probe participate in the interaction process
■ The only role of short lived fluctuations is to renormalize the

masses and couplings
■ Interactions are very complicated if the constituents of the

nucleon have a non trivial dynamics over time-scales
comparable to those of the probe
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Nucleon at high energy

■ Dilation of all internal time-scales for a high energy nucleon
■ Interactions among constituents now take place over

time-scales that are longer than the characteristic time-scale
of the probe
⊲ the constituents behave as if they were free

■ Many fluctuations live long enough to be seen by the probe.
The nucleon appears denser at high energy (the gluon
distribution grows at small x)
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Parton model

■ At the time of the interaction, the nucleon can be seen as a
collection of free constituents, called partons

■ It can be described by non-perturbative parton distributions
that depend on the momentum fraction x of the partons and
on some transverse resolution scale

■ One can separate the perturbative hard scattering from the
non-perturbative distribution functions, because the strong
interactions that are responsible for these non-perturbative
aspects occur on much larger timescales (factorization)

■ All these properties are based only on kinematics and
causality, and should remain true in the saturation regime
◆ what we use as the “parton distribution” must contain information

about multiparton configurations
◆ the calculation of the “hard process”” will be more involved
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Gluon saturation
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Parton evolution at small x

⊲ assume that the projectile is big, e.g. a nucleus, and has
many valence quarks (only two are represented)

⊲ on the contrary, consider a small probe, with few partons

⊲ at low energy, only valence quarks are present in the hadron
wave function
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Parton evolution

⊲ when energy increases, new partons are emitted

⊲ the emission probability is αs

∫

dx
x ∼ αsln( 1

x ), with x the
longitudinal momentum fraction of the gluon

⊲ at small-x (i.e. high energy), these logs need to be
resummed



Testing QCD

Parton model

Gluon saturation

● Parton evolution at small x

● Multiple scatterings

● Color Glass Condensate

● Deep Inelastic Scattering

Phenomenology of saturation

CERN

François Gelis – 2007 Lecture I / III – School on QCD, low-x physics, saturation and diffraction, Copanello, July 2007 - p. 23/40

Parton evolution

⊲ as long as the density of constituents remains small, the
evolution is linear: the number of partons produced at a given step
is proportional to the number of partons at the previous step (BFKL)
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Parton evolution

⊲ eventually, the partons start overlapping in phase-space

⊲ parton recombination becomes favorable

⊲ after this point, the evolution is non-linear:
the number of partons created at a given step depends non-linearly
on the number of partons present previously
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Saturation criterion

Gribov, Levin, Ryskin (1983)

■ Number of gluons per unit area:

ρ ∼ xG
A
(x, Q2)

πR2
A

■ Recombination cross-section:

σgg→g ∼ αs

Q2

■ Recombination happens if ρσgg→g & 1, i.e. Q2 . Q2
s, with:

Q2
s ∼ αsxG(x, Q2

s)

πR2
A

∼ A1/3 1

x0.3

■ At saturation, the phase-space density is:

dNg

d2~x⊥d2~p⊥

∼ ρ

Q2
∼ 1

αs
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Saturation domain

log(Q 2)

log(x -1)

Λ
QCD
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Multiple scatterings

■ Single scattering :

⊲ 2-point function in the projectile ⊲ gluon number
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Multiple scatterings

■ Single scattering :

⊲ 2-point function in the projectile ⊲ gluon number

■ Multiple scatterings :

⊲ 4-point function in the projectile ⊲ higher correlation
⊲ multiple scatterings in the projectile
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Multiple scatterings

■ Power counting : rescattering corrections are suppressed by
inverse powers of the typical mass scale in the process :

»

µ2

M2
⊥

–n

■ The parameter µ2 has a factor of αs, and a factor
proportional to the gluon density ⊲ rescatterings are
important at high density

■ Relative order of magnitude :

2 scatterings
1 scattering

∼ Q2
s

M2
⊥

with Q2
s ∼ αs

xG(x,Q2
s)

πR2

■ When this ratio becomes ∼ 1, all the rescattering corrections
become important ⊲ one must resum all

[

Qs/M⊥

]n

■ These effects are not accounted for in DGLAP or BFKL
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Color Glass Condensate

■ The fast partons (large x) are frozen by time dilation
⊲ described as static color sources on the light-cone :

Jµ
a = δµ+δ(x−)ρa(~x⊥) (x− ≡ (t − z)/

√
2)

■ Slow partons (small x) are radiated by the fast ones. They
have a large occupation number ⊲ described by a classical
color field Aµ that obeys Yang-Mills’s equation:

[Dν , F νµ]a = Jµ
a

■ The color sources ρa are random, and described by a
distribution functional W

Y
[ρ], with Y the rapidity that

separates “soft” and “hard”
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Color Glass Condensate

■ Evolution equation (JIMWLK, 2001) :

∂W
Y

[ρ]

∂Y
= H[ρ] W

Y
[ρ]

H[ρ] =

Z

~x⊥

σ(~x⊥)
δ

δρ(~x⊥)
+

1

2

Z

~x⊥,~y⊥

χ(~x⊥, ~y⊥)
δ2

δρ(~x⊥)δρ(~y⊥)

■ σ and χ are non-linear functions of ρ

■ When the source density ρ is small, one can expand σ and χ

⊲ JIMWLK simplifies into BFKL provided one defines

ϕ(x, k⊥) ∼ g2

Z

~r⊥

e−i~k⊥·~r⊥

k2
⊥

Z

[Dρ] W
Y =ln( 1

x
)
[ρ] ρa(0)ρa(~r⊥)

■ To recover k
T

-factorization, |M|2 must be calculated at order ρ2
1 ρ

2
2
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Deep Inelastic Scattering

■ Reactions involving a hadron or nucleus and an “elementary”
projectile are fairly straightforward to study

■ The archetype is the forward DIS amplitude :

〈T (~x⊥, ~y⊥)〉 =

Z

[Dρ] W
Y

[ρ]

»

1 − 1

Nc
tr(U(~x⊥)U†(~y⊥))

–

⊲ this formula resums all the [αs ln(1/x)]m[Qs/p⊥]n for the
inclusive DIS cross-section
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Deep Inelastic Scattering



Testing QCD

Parton model

Gluon saturation

● Parton evolution at small x

● Multiple scatterings

● Color Glass Condensate

● Deep Inelastic Scattering

Phenomenology of saturation

CERN

François Gelis – 2007 Lecture I / III – School on QCD, low-x physics, saturation and diffraction, Copanello, July 2007 - p. 32/40

Deep Inelastic Scattering



Testing QCD

Parton model

Gluon saturation

● Parton evolution at small x

● Multiple scatterings

● Color Glass Condensate

● Deep Inelastic Scattering

Phenomenology of saturation

CERN

François Gelis – 2007 Lecture I / III – School on QCD, low-x physics, saturation and diffraction, Copanello, July 2007 - p. 32/40

Deep Inelastic Scattering
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Deep Inelastic Scattering
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Deep Inelastic Scattering
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Deep Inelastic Scattering

10 configurations
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Deep Inelastic Scattering

100 configurations
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Phenomenology of saturation
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Initial condition - MV model

■ The JIMWLK equation must be completed by an initial
condition, given at some moderate x0

■ As with DGLAP, the problem of finding the initial condition is
non-perturbative

■ The McLerran-Venugopalan model is often used as an initial
condition at moderate x0 for a large nucleus :

z

◆ partons distributed randomly
◆ many partons in a small area
◆ no correlations at different ~x⊥

■ The MV model assumes that the density of color charges
ρ(~x⊥) has a Gaussian distribution :

Wx0 [ρ] = exp

»

−
Z

d2~x⊥
ρa(~x⊥)ρa(~x⊥)

2µ2(~x⊥)

–
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Color correlation length

■ In a nucleon at low energy, the typical correlation length
among color charges is of the order of the nucleon size,
i.e. Λ−1

QCD
∼ 1 fm. This is because the typical color screening

distance is Λ−1
QCD

. At low energy, color screening is due to
confinement, and thus non-perturbative

■ At high energy (small x), partons are much more densely
packed, and it can be shown that color neutralization occurs
in fact over distances of the order of Q−1

s ≪ Λ−1
QCD

Qs
-1

■ This implies that all hadrons, and nuclei, behave in the same
way at high energy. In this sense, the small x regime
described by the CGC is universal
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Multiple scatterings

■ Single scattering dominates at high p⊥ :

◆ Differential cross-sections between a parton and a nucleus at
high p⊥ should scale like the atomic number A (volume scaling)
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Multiple scatterings

■ Multiple scatterings at low p⊥ :

◆ One of the scatterings “produces” the final state, while the others

merely change its momentum
◆ Each extra scattering corresponds to a correction αsA

1/3Λ2/p2
⊥

⊲ important correction at low p⊥, despite the αs suppression
◆ When this effect is extremal, differential cross-sections at low p⊥

scale like A2/3 (area scaling)
◆ Multiple scatterings only affect the momentum distribution of the

final states, not the yield ⊲ the suppression at low p⊥ is
compensated by an increase at higher p⊥ (Cronin effect)
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Shadowing

■ Interactions among the partons in the nuclear target
(shadowing) :

◆ Modification of the single scattering contribution due to the

non-linear interactions of partons inside the target
◆ At low x, this effect induces a suppression of the differential

cross-section : dσpA/d
2~p⊥ ∼ Aα with α < 1
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Lecture II : DIS and pA collisions

■ Eikonal scattering

■ Energy dependence

■ Geometrical scaling

■ Fits of DIS data

■ Proton-Nucleus collisions
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Lecture III : Nucleus-nucleus collisions

■ Introduction to nucleus-nucleus collisions

■ Power counting and bookeeping

■ Inclusive gluon spectrum

■ Loop corrections, factorization, unstable modes
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