High energy hadronic interactions in QCD and applications to heavy ion collisions

V - Calculating observables in the CGC

François Gelis

CEA / DSM / SPhT

General outline

- Lecture I: Introduction and phenomenology
- Lecture II : Lessons from Deep Inelastic Scattering
- Lecture III : QCD on the light-cone
- Lecture IV : Saturation and the Color Glass Condensate
- Lecture V : Calculating observables in the CGC

Lecture V : Calculating observables

■ Field theory coupled to time-dependent sources

- Generating function for the probabilities

■ Average particle multiplicity

■ Numerical methods for nucleus-nucleus collisions

- Gluon production
- Quark production

Introduction

- In the Color Glass Condensate framework, hadronic projectiles are described by a bunch of color sources flying at the speed of light :

$$
J^{\mu}=\delta^{\mu+} \delta\left(x^{-}\right) \rho\left(\overrightarrow{\boldsymbol{x}}_{\perp}\right)
$$

- In the previous lecture, we have studied properties of the statistical distribution $W_{Y}[\rho]$ of these sources, in particular its evolution under changes of the rapidity Y
- Now, we focus on another aspect of the problem:
given the sources, how do we calculate observable quantities for hadronic collisions ?

Introduction

- The case of the interaction between a proton or nucleus described by the CGC and an "elementary" probe is fairly simple. The archetype of this situation is Deep Inelastic Scattering (the elementary probe being a virtual photon)
- At lowest order, one simply considers the interaction with the proton of a $Q \bar{Q}$ fluctuation of the virtual photon :

■ More complicated Fock states should in principle be considered as well at higher orders :

Introduction

■ Interactions between two hadrons described by the CGC are treated by coupling the fields to a source which is the sum of two terms :

$$
J^{\mu}=\delta^{\mu+} \delta\left(x^{-}\right) \rho_{1}\left(\overrightarrow{\boldsymbol{x}}_{\perp}\right)+\delta^{\mu-} \delta\left(x^{+}\right) \rho_{2}\left(\overrightarrow{\boldsymbol{x}}_{\perp}\right)
$$

■ If one of the sources is weak (i.e. the corresponding hadron has a parton density much smaller than the other hadron), the problem is again rather easy to study

- In this case, one computes the transition amplitudes at lowest order in the weak source, which is much easier than keeping both of them to all orders

■ In this lecture, I will consider only the collision of two very dense hadrons, for which no such approximation is possible

Introduction

Scattering theory

- Introduction
- Power counting
- Asymptotic free fields

In and out states, S-matrix

- Reduction formulas
- Perturbative expansion
- Vacuum-vacuum diagrams
- In short, our goal is to say something useful about this...

Introduction

- From now on, we assume that $j=j_{1}+j_{2}$, with j_{1} and j_{2} of comparable strengths
- The sources can be as strong as $1 / g$ in the saturated regime: \triangleright corrections in $(g j)^{n}$ must be summed to all orders, which makes the evaluation of physical quantities very complicated - even at "leading order"
- In fact, very few physical quantities are calculable by simple methods when this resummation is necessary, and it is important to know which ones...
- To avoid encumbering the discussion with unessential (for now) details, we first consider a scalar field theory with a ϕ^{3} coupling, coupled to a source $j(x)$:

$$
\mathcal{L} \equiv \frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} m^{2} \phi^{2}-\frac{g}{3!} \phi^{3}+j \phi
$$

Counting the powers of g

- Consider a diagram with :
- n_{E} external lines
- n_{I} internal lines
- n_{V} vertices
- n_{J} sources
- n_{L} independent loops

■ These numbers are related by :

$$
\begin{aligned}
& 3 n_{V}+n_{J}=n_{E}+2 n_{I} \\
& n_{L}=n_{I}-n_{J}+1
\end{aligned}
$$

- Therefore, the order of the diagram in g and j is :

$$
g^{n_{V}} j^{n_{J}}=g^{n_{E}+2\left(n_{L}^{-1)}\right.}(g j)^{n_{J}}
$$

- After resummation of all the powers of $g j$, the order of a diagram depends only on its number of loops and external legs

Counting the powers of h

- To calculate the order of a diagram in \hbar, remember that the evolution operator is in fact $\exp (S / \hbar)$, with :

$$
\frac{S}{\hbar}=\int d^{4} x\left[-\frac{1}{2} \phi \frac{\square+m^{2}}{\hbar} \phi-\frac{g}{3!\hbar} \phi^{3}+\frac{j}{\hbar} \phi\right]
$$

- Therefore, the powers of \hbar come as follows :
- a power of \hbar for each propagator
- a power of $1 / \hbar$ for each vertex
- a power of $1 / \hbar$ for each source
- The order in \hbar of a diagram is :

$$
\hbar^{n_{E}+n_{I}-n_{V}-n_{J}}=\hbar^{n_{E}+n_{L}-1}
$$

- When one resums the corrections in $(g j)^{n}$, all the included terms have the same order in \hbar

Asymptotic free fields

■ From the Heisenberg field operator $\phi(x)$, one can define two free fields $\phi_{\text {in }}(x)$ and $\phi_{\text {out }}(x)$, which coincide with $\phi(x)$ respectively at $t=-\infty$ and $t=+\infty$:

$$
\begin{aligned}
\phi(x) & =U\left(-\infty, x^{0}\right) \phi_{\text {in }}(x) U\left(x^{0},-\infty\right) \\
\phi(x) & =U\left(+\infty, x^{0}\right) \phi_{\text {out }}(x) U\left(x^{0},+\infty\right)
\end{aligned}
$$

with $\quad U\left(t_{2}, t_{1}\right) \equiv \mathcal{P} \exp i \int_{t_{1}}^{t_{2}} d^{4} x \mathcal{L}_{\text {int }}\left(\phi_{\text {in } / \text { out }}(x)\right)$
■ These free fields have a simple Fourier decomposition :

$$
\phi_{\text {in } / \text { out }}(x)=\int \frac{d^{3} \overrightarrow{\boldsymbol{k}}}{(2 \pi)^{3} 2 E_{k}}\left[a_{\text {in } / \text { out }}(\overrightarrow{\boldsymbol{k}}) e^{-i k \cdot x}+a_{\text {in/out }}^{\dagger}(\overrightarrow{\boldsymbol{k}}) e^{+i k \cdot x}\right]
$$

- The in and out creation/annihilation operators are related by :

$$
\begin{aligned}
& a_{\text {out }}^{\dagger}(\overrightarrow{\boldsymbol{k}})=U(-\infty,+\infty) a_{\mathrm{in}}^{\dagger}(\overrightarrow{\boldsymbol{k}}) U(+\infty,-\infty) \\
& a_{\text {out }}(\overrightarrow{\boldsymbol{k}})=U(-\infty,+\infty) a_{\mathrm{in}}(\overrightarrow{\boldsymbol{k}}) U(+\infty,-\infty)
\end{aligned}
$$

In and out states, S-matrix

Scattering theory

- Introduction
- Power counting
- To the in and out creation/annihilation operators, one associates in and out states :

$$
\begin{array}{ll}
\text { vacuum state : } & \left|0_{\text {in }}\right\rangle,\left|0_{\text {out }}\right\rangle \\
\text { 1-particle states : } & \left|\overrightarrow{\boldsymbol{p}}_{\text {in }}\right\rangle=a_{\text {in }}^{\dagger}(\overrightarrow{\boldsymbol{p}})\left|0_{\text {in }}\right\rangle \\
& \left|\overrightarrow{\boldsymbol{p}}_{\text {out }}\right\rangle=a_{\text {out }}^{\dagger}(\overrightarrow{\boldsymbol{p}})\left|0_{\text {out }}\right\rangle
\end{array}
$$

- From the relationship between $a_{\text {in }}^{\dagger}$ and $a_{\text {out }}^{\dagger}$, one gets :

$$
\left|\alpha_{\text {in }}\right\rangle=U(+\infty,-\infty)\left|\alpha_{\text {out }}\right\rangle \quad \text { for any state } \alpha
$$

$\square U(+\infty,-\infty)$ is the S-matrix. Indeed :

$$
S_{\beta \alpha} \equiv\left\langle\beta_{\text {out }} \mid \alpha_{\text {in }}\right\rangle=\left\langle\beta_{\text {in }}\right| S\left|\alpha_{\text {in }}\right\rangle=\left\langle\beta_{\text {in }}\right| U(+\infty,-\infty)\left|\alpha_{\text {in }}\right\rangle
$$

- Even if the fields are not self-interacting, the S-matrix differs from 1 because of the source j : particles can scatter off the external field. If j is time-dependent, it can even create particles

Reduction formulas

Scattering theory

- Vacuum-vacuum diagrams
- In order to express transition amplitudes in terms of field operators, we need the following relations :

$$
a_{\text {in } / \text { out }}(\overrightarrow{\boldsymbol{k}})=i \int d^{3} \overrightarrow{\boldsymbol{x}} e^{i k \cdot x}\left[\partial_{0}-i E_{k}\right] \phi_{\text {in } / \mathrm{out}}(x)
$$

- Production of a single particle :

$$
\left\langle p_{\text {out }} \mid 0_{\text {in }}\right\rangle=\frac{1}{Z^{1 / 2}} \int d^{4} x e^{i p \cdot x}\left(\square_{x}+m^{2}\right)\left\langle 0_{\text {out }}\right| \phi(x)\left|0_{\text {in }}\right\rangle
$$

- Production of a two particles :

$$
\begin{aligned}
\left\langle\vec{p} \vec{q}_{\text {out }} \mid 0_{\text {in }}\right\rangle= & \frac{1}{Z} \int d^{4} x d^{4} y e^{i q \cdot y} e^{i p \cdot x} \\
& \quad \times\left(\square_{x}+m^{2}\right)\left(\square_{y}+m^{2}\right)\left\langle 0_{\text {out }}\right| T \phi(x) \phi(y)\left|0_{\text {in }}\right\rangle
\end{aligned}
$$

Perturbative expansion

- In order to calculate $\left\langle 0_{\text {out }}\right| T \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\left|0_{\text {in }}\right\rangle$ in perturbation theory, we must write :

$$
\begin{aligned}
& \left\langle 0_{\text {out }}\right| T \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\left|0_{\text {in }}\right\rangle= \\
& =\left\langle 0_{\text {in }}\right| U(+\infty,-\infty) T U\left(-\infty, x_{1}^{0}\right) \phi_{\text {in }}\left(x_{1}\right) U\left(x_{1}^{0}, x_{2}^{0}\right) \cdots \\
& \cdots U\left(x_{n-1}^{0}, x_{n}^{0}\right) \phi_{\text {in }}\left(x_{n}\right) U\left(x_{n}^{0},-\infty\right)\left|0_{\text {in }}\right\rangle \\
& =\left\langle 0_{\text {in }}\right| T \phi_{\text {in }}\left(x_{1}\right) \cdots \phi_{\text {in }}\left(x_{n}\right) e^{i \int_{-\infty}^{+\infty} d^{4} x \mathcal{L}_{\text {int }}\left(\phi_{\text {in }}\right)}\left|0_{\text {in }}\right\rangle
\end{aligned}
$$

- Now that everything has been rewritten in terms of the free field $\phi_{\text {in }}$, it is just a matter of expanding the exponential to the desired order
- Note that this expansion generates vacuum-vacuum diagrams, whose sum appears as a multiplicative prefactor. If $j=0$, the sum of the vacuum-vacuum diagrams, $\left\langle 0_{\text {out }} \mid 0_{\text {in }}\right\rangle$, is a pure phase and can be disregarded from squared amplitudes. This is not the case here

Vacuum-vacuum diagrams

- A source $j(x)$ that describes a single projectile does not produce particles. Indeed, it is static in the rest-frame of this projectile, and therefore can only have space-like modes
- A source $j(x) \equiv j_{1}(x)+j_{2}(x)$ describing two projectiles moving in opposite directions can produce particles
- If the transition amplitudes $\left\langle\vec{p} \cdots{ }_{\text {out }} \mid 0_{\text {in }}\right\rangle$ are non-zero, then the vacuum-to-vacuum transition amplitude $\left\langle 0_{\text {out }} \mid 0_{\text {in }}\right\rangle$ is non trivial. Indeed,

$$
\sum_{\alpha}\left|\left\langle\alpha_{\text {out }} \mid 0_{\mathrm{in}}\right\rangle\right|^{2}=1 \quad \text { (unitarity) }
$$

implies $\left|\left\langle 0_{\text {out }} \mid 0_{\text {in }}\right\rangle\right|^{2}<1$ if at least one of the $\left\langle\vec{p} \cdots\right.$ out $\left.\mid 0_{\text {in }}\right\rangle$ is non-zero

- On the contrary, when $j(x)$ cannot produce particles, then the vacuum-to-vacuum amplitude is a pure phase

Vacuum-vacuum diagrams

Scattering theory

- The sum of all the vacuum-vacuum diagrams in $\left\langle 0_{\text {out }} \mid 0_{\text {in }}\right\rangle$ is equal to the exponential of the sum of the connected ones

$$
\left\langle 0_{\text {out }} \mid 0_{\text {in }}\right\rangle=e^{i \sum_{\text {conn }} V}
$$

■ Let us denote :

$$
i j=\bullet \quad G=-\quad-i g=--\underset{\sim}{i}
$$

■ The perturbative expansion of $i \sum_{\text {conn }} V$ starts with :

Vacuum-vacuum diagrams

Scattering theory

- The sum of all the vacuum-vacuum diagrams in $\left\langle 0_{\text {out }} \mid 0_{\text {in }}\right\rangle$ is equal to the exponential of the sum of the connected ones

$$
\left\langle 0_{\text {out }} \mid 0_{\text {in }}\right\rangle=e^{i \sum_{\text {conn }} V}
$$

■ Let us denote :

$$
i j=\bullet \quad G=\square \quad-i g=\ldots
$$

■ The perturbative expansion of $i \sum_{\text {conn }} V$ starts with :

Vacuum-vacuum diagrams

Scattering theory

- The sum of all the vacuum-vacuum diagrams in $\left\langle 0_{\text {out }} \mid 0_{\text {in }}\right\rangle$ is equal to the exponential of the sum of the connected ones

$$
\left\langle 0_{\text {out }} \mid 0_{\text {in }}\right\rangle=e^{i \sum_{\text {conn }} V}
$$

■ Let us denote :

$$
i j=\bullet \quad G=\square \quad-i g=\ldots
$$

■ The perturbative expansion of $i \sum_{\text {conn }} V$ starts with :

Vacuum-vacuum diagrams

Scattering theory

- The sum of all the vacuum-vacuum diagrams in $\left\langle 0_{\text {out }} \mid 0_{\text {in }}\right\rangle$ is equal to the exponential of the sum of the connected ones

$$
\left\langle 0_{\text {out }} \mid 0_{\text {in }}\right\rangle=e^{i \sum_{\text {conn }} V}
$$

■ Let us denote :

$$
i j=\bullet \quad G=-\quad-i g=--\downarrow
$$

■ The perturbative expansion of $i \sum_{\text {conn }} V$ starts with :

Vacuum-vacuum diagrams

Scattering theory

- Introduction
- Power counting
- Asymptotic free fields
- In and out states, S-matrix
- Reduction formulas
- Perturbative expansion

■ The sum of all the vacuum-vacuum diagrams in $\left\langle 0_{\text {out }} \mid 0_{\text {in }}\right\rangle$ is equal to the exponential of the sum of the connected ones

$$
\left\langle 0_{\text {out }} \mid 0_{\text {in }}\right\rangle=e^{i \sum_{\text {conn }} V}
$$

■ Let us denote :

$$
i j=\bullet \quad G=-\quad-i g=-\quad \text { 人 }
$$

■ The perturbative expansion of $i \sum_{\text {conn }} V$ starts with :

Note : each graph Γ comes with a symmetry factor $1 / S_{\Gamma}$, where S_{Γ} is the order of its symmetry group

Vacuum-vacuum diagrams

Scattering theory

- Introduction
- Power counting
- Asymptotic free fields
- In and out states, S-matrix
- Reduction formulas
- Perturbative expansion
- The sum of all the vacuum-vacuum diagrams in $\left\langle 0_{\text {out }} \mid 0_{\text {in }}\right\rangle$ is equal to the exponential of the sum of the connected ones

$$
\left\langle 0_{\text {out }} \mid 0_{\text {in }}\right\rangle=e^{i \sum_{\text {conn }} V}
$$

■ Let us denote :

$$
i j=\bullet \quad G=-\quad-i g=-\quad \text { 人 }
$$

■ The perturbative expansion of $i \sum_{\text {conn }} V$ starts with :

Note : each graph Γ comes with a symmetry factor $1 / S_{\Gamma}$, where S_{Γ} is the order of its symmetry group

- Note : $\left\langle 0_{\text {out }} \mid 0_{\text {in }}\right\rangle$ can be seen as a generating functional :

$$
\left\langle 0_{\text {out }}\right| T \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\left|0_{\text {in }}\right\rangle=\frac{\delta}{i \delta j\left(x_{1}\right)} \cdots \frac{\delta}{i \delta j\left(x_{n}\right)}\left\langle 0_{\text {out }} \mid 0_{\text {in }}\right\rangle
$$

Definitions

- The probability of producing exactly n particles in the collision of the two hadrons (in addition to the fragments of the incoming hadrons) is given by :

$$
P_{n}=\frac{1}{n!} \int \frac{d^{3} \overrightarrow{\boldsymbol{p}}_{1}}{(2 \pi)^{3} 2 E_{1}} \cdots \frac{d^{3} \overrightarrow{\boldsymbol{p}}_{n}}{(2 \pi)^{3} 2 E_{n}}\left|\left\langle\overrightarrow{\boldsymbol{p}}_{1} \cdots \overrightarrow{\boldsymbol{p}}_{n \text { out }} \mid 0_{\text {in }}\right\rangle\right|^{2}
$$

- One can define a generating function : $F(x) \equiv \sum_{n=0}^{+\infty} P_{n} e^{n x}$
- The sum of all the P_{n} must be 1 , hence $F(0)=1$
- From $F(x)$, it is very easy to obtain the moments of the distribution :

$$
\left\langle n^{p}\right\rangle=\sum_{n=0}^{+\infty} n^{p} P_{n}=F^{(p)}(0)
$$

- Note : connected moments, e.g. $\left\langle n^{2}\right\rangle-\langle n\rangle^{2}$, are obtained by differentiating $\ln (F(x))$ instead of $F(x)$

Probability Pn

- Denote $\exp (i V[j])$ the sum of all vacuum-vacuum diagrams
- The reduction formula can be written as :

$$
\left\langle\overrightarrow{\boldsymbol{p}}_{1} \cdots \overrightarrow{\boldsymbol{p}}_{n \text { out }} \mid 0_{\text {in }}\right\rangle=\frac{1}{Z^{n / 2}} \int\left[\prod_{i=1}^{n} d^{4} x_{i} e^{i p_{i} \cdot x_{i}}\left(\square_{i}+m^{2}\right) \frac{\delta}{i \delta j\left(x_{i}\right)}\right] e^{i V[j]}
$$

$$
\text { and we have } \quad P_{n}=\left.\frac{1}{n!} \mathcal{D}^{n}\left[j_{+}, j_{-}\right] e^{i V\left[j^{+}\right]} e^{-i V^{*}\left[j j^{\prime}\right]}\right|_{j_{+}=j_{-}=j}
$$

with

$$
\begin{aligned}
& \mathcal{D}\left[j_{+}, j_{-}\right] \equiv \frac{1}{Z} \int_{x, y} G_{+-}^{0}(x, y)\left(\square_{x}+m^{2}\right)\left(\square_{y}+m^{2}\right) \frac{\delta}{\delta j_{+}(x)} \frac{\delta}{\delta j_{-}(y)} \\
& G_{+-}^{0}(x, y) \equiv \int \frac{d^{3} \overrightarrow{\boldsymbol{p}}}{(2 \pi)^{3} 2 E_{p}} e^{i p \cdot(x-y)}
\end{aligned}
$$

- Therefore, we have :

$$
F(x)=\left.e^{e^{x} \mathcal{D}\left[j_{+}, j_{-}\right]} e^{i V\left[j_{+}\right]} e^{-i V^{*}\left[j_{-}\right]}\right|_{j_{+}=j_{-}=j}
$$

Action of D［j＋，j－］

■ Action of $\mathcal{D}\left[j_{+}, j_{-}\right]$：

$$
\begin{aligned}
& \int_{x, y} G_{+-}^{0}(x, y)\left(\square_{x}+m^{2}\right)\left(\square_{y}+m^{2}\right) \frac{\delta}{\delta j+(x)} \frac{\delta}{\delta j-(y)} \cdot \underbrace{\circ}_{\bullet} \cdot)_{0}^{\circ} \cdot{ }_{0}^{\circ} \\
& =\int_{x, y} G_{+-}^{0}(x, y)\left(\square_{x}+m^{2}\right)\left(\square_{y}+m^{2}\right) \\
& \text { 需家 } \\
& =\int_{x, y} G_{+-}^{0}(x, y) \cdot 0_{0}^{0} \cdot{ }_{0}^{x} \cdot{ }_{0}^{0} \cdot \\
& =\cdot \overbrace{0}^{0} \cdot \overbrace{!}^{G_{+}^{o}} \cdot
\end{aligned}
$$

Cutting rules

- In order to interpret $F(x)$ in terms of diagrams, we need to discuss the "cutting rules" that give the imaginary part of a diagram
- Decompose the free time ordered propagator, G_{++}^{0}, as :

$$
G_{++}^{0}(x, y)=\theta\left(x^{0}-y^{0}\right) G_{-+}^{0}(x, y)+\theta\left(y^{0}-x^{0}\right) G_{+-}^{0}(x, y)
$$

- Define also :

$$
G_{--}^{0}(x, y) \equiv \theta\left(x^{0}-y^{0}\right) G_{+-}^{0}(x, y)+\theta\left(y^{0}-x^{0}\right) G_{-+}^{0}(x, y)
$$

■ Consider a diagram in $i \sum_{\text {conn }} V$, before performing the space-time integrations: $i V\left(x_{1} \cdots x_{n}\right)$. The x_{i} are the locations of the sources j and vertices g. For instance :

$$
i V\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\stackrel{e_{1}}{x_{4}}{\underset{x}{x_{2}}}_{x_{3}}^{x_{3}}
$$

Cutting rules

■ The diagrams $i V$ are made only of the propagator G_{++}^{0}
■ For each diagram $i V\left(x_{1} \cdots x_{n}\right)$, construct 2^{n} diagrams $i V_{\epsilon_{1} \cdots \epsilon_{n}}\left(x_{1} \cdots x_{n}\right)$ where ϵ_{i} is a sign attached to the vertex i :

- Connect a vertex of type ϵ to a vertex of type ϵ^{\prime} by $G_{\epsilon \epsilon^{\prime}}^{0}$
- For vertices of type -, substitute $i g \rightarrow-i g, i j \rightarrow-i j$

■ Largest time equation : if x_{i}^{0} is the largest time in the diagram :

$$
i V_{\cdots \epsilon_{i} \cdots}\left(x_{1} \cdots x_{n}\right)+i V \cdots-\epsilon_{i} \cdots\left(x_{1} \cdots x_{n}\right)=0
$$

(the indices hidden in the dots are the same for both terms)
■ Therefore, the sum of all the $i V_{\epsilon_{1} \cdots \epsilon_{n}}$ is zero :

$$
\sum_{\left\{\epsilon_{i}= \pm\right\}} i V_{\epsilon_{1} \cdots \epsilon_{n}}\left(x_{1} \cdots x_{n}\right)=0
$$

(group the terms in pairs, and use the previous result)

Cutting rules

- In momentum space, the propagators $G_{\epsilon \epsilon^{\prime}}^{0}$ read :

$$
\begin{array}{ll}
G_{++}^{0}(p)=\frac{i}{p^{2}-m^{2}+i \epsilon} & G_{--}^{0}(p)=\left[G_{++}^{0}(p)\right]^{*} \\
G_{-++}^{0}(p)=2 \pi \theta\left(p^{0}\right) \delta\left(p^{2}-m^{2}\right) & G_{+-}^{0}(p)=2 \pi \theta\left(-p^{0}\right) \delta\left(p^{2}-m^{2}\right)
\end{array}
$$

- Therefore, $i V_{++\cdots+}$ is the original diagram and $i V_{-\ldots \ldots}$ is its complex conjugate
- By isolating these two terms from the sum over the 2^{n} terms, we get :

$$
2 \operatorname{Im} V=\sum_{\left\{\epsilon_{i}= \pm\right\}^{\prime}} i V_{\epsilon_{1} \cdots \epsilon_{n}}
$$

where the prime indicates that the sum over the ϵ_{i} 's does not have the $++\cdots+$ and $--\cdots-$ terms

Cutting rules

- Definitions

- Probability Pn
- Action of $D[j+, j-]$ - Cutting rules
- Interpretation of $F(x)$ - Multiplicity distribution
- Calculation of the moments

Average multiplicity

■ For each term in $\sum_{\left\{\epsilon_{i}= \pm\right\}^{\prime}} i V_{\epsilon_{1} \cdots \epsilon_{n}}$, draw a line ("cut") separating the + from the - vertices

■ The simplest terms in $2 \operatorname{Im} \sum_{\text {conn }} V$ are given by :

- Cuts through vacuum-vacuum diagrams are non-zero because of the coupling to the source j
- A cut going through r propagators will be called a r-particle cut

Interpretation of $F(x)$

- The generating function has the following interpretation :
$F(x)$ is the sum of all the cut vacuum-vacuum diagrams (including the terms with only + or only -), in which each term is weighted by a power of e^{x} equal to the number of particles on the cut

■ Note: this implies automatically that $F(0)=1$ (from the largest time equation)

- Let us denote b_{r} / g^{2} the sum of all the r-particle cut connected vacuum-vacuum diagrams. Then, we have :

$$
\ln (F(x))=\sum_{r=1}^{+\infty} \frac{b_{r}}{g^{2}}\left(e^{r x}-1\right)
$$

- This leads to the following formula for the connected moment of order p :

$$
\left\langle n^{p}\right\rangle_{\text {conn }}=\left.\frac{d^{p}}{d x^{p}} \ln (F(x))\right|_{x=0}=\sum_{r=1}^{+\infty} r^{p} \frac{b_{r}}{g^{2}}
$$

Interpretation of $F(x)$

- Definitions

- Probability Pn
- Action of $D[j+, j-]$
- Cutting rules
- Lowest order diagrams in $b_{1} / g^{2}, b_{2} / g^{2}, b_{3} / g^{2}$:

$$
\frac{b_{1}}{g^{2}}=
$$

$$
\frac{y}{x}=\frac{1}{2}+\cdots
$$

Multiplicity distribution

- From the generating function, one obtains the following formula for the probability of producing n particles :

$$
P_{n}=e^{-\sum_{r} b_{r} / g^{2}} \sum_{p=1}^{n} \frac{1}{p!} \sum_{\alpha_{1}+\cdots+\alpha_{p}=n} \frac{b_{\alpha_{1}} \cdots b_{\alpha_{p}}}{g^{2 p}}
$$

- Note : in this formula, p is the number of disconnected subdiagrams producing the n particles, and α_{i} is the number of particles produced in the i-th subdiagram
- This is not a Poisson distribution
- In order to have a Poisson distribution, we would need :

$$
b_{r}=0 \quad \text { for } \quad r \geq 2
$$

i.e. all the particles produced in separate subdiagrams (if a subdiagram can produce more than one particle, this introduces correlations)

Multiplicity distribution

- Example : contribution to P_{11} with a bit of b_{5} and b_{6} :

- At tree level, all the disconnected graphs are of order $1 / g^{2}$ \triangleright therefore, no truncation is possible
■ The uncut vacuum-vacuum diagrams on both sides exponentiate into : $\exp \left(i \sum_{\text {conn }} V\right) \exp \left(-i \sum_{\text {conn }} V^{*}\right)=\exp \left(-\sum_{r} b_{r} / g^{2}\right)$

Multiplicity distribution

- Assume for a moment that we know the generating function $F(x)$. We can get the probability distribution as follows :

$$
P_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta e^{-i n \theta} F(i \theta)
$$

Note : this is trivial to evaluate numerically by a FFT :

Multiplicity distribution

- So far, no practical method is known for calculating the generating function $F(x)$ given the current j, not even at tree level...
- How are we ever going to calculate some physical quantities in this theory?
- Even if $\exp (i V[j]) \exp \left(-i V^{*}[j]\right)$ is not calculable, we have :

$$
\left.e^{\mathcal{D}\left[j_{+}, j_{-}\right]} e^{i V\left[j_{+}\right]} e^{-i V^{*}\left[j_{j}\right]}\right|_{j_{+}=j_{-}=j}=1
$$

- Any quantity for which we can exploit this cancellation is going to be much easier to calculate :
- This is not the case of the individual P_{n} 's
- But this simplification happens for the moments

Calculation of the moments

■ The formula $\left\langle n^{p}\right\rangle_{\text {conn }}=\sum_{r} r^{p} b_{r} / g^{2}$ is very impractical

- Instead, go back to :

$$
F(x)=\left.e^{e^{x} \mathcal{D}\left[j_{+}, j_{-}\right]} e^{i V\left[j_{+}\right]} e^{-i V^{*}\left[j_{-}\right]}\right|_{j_{+}=j_{-}=j}
$$

■ The average multiplicity is given by :

$$
\langle n\rangle=F^{\prime}(0)=\left.\mathcal{D}\left[j_{+}, j_{-}\right] e^{i V_{c}\left[j_{+}, j_{-}\right]}\right|_{j_{+}=j_{-}=j}
$$

where $i V_{c}\left[j_{+}, j_{-}\right]$is the sum of all the cut connected vacuum-vacuum diagrams, with j_{+}on the + side of the cut and j_{-} on the - side of the cut

■ More explicitly, this reads :

$$
\langle n\rangle=\frac{1}{Z} \int_{x, y} G_{+-}^{0}(x, y)\left(\square_{x}+m^{2}\right)\left(\square_{y}+m^{2}\right)\left[\frac{\delta i V_{c}}{\delta j_{+}(x)} \frac{\delta i V_{c}}{\delta j_{-}(y)}+\frac{\delta^{2} i V_{c}}{\delta j_{+}(x) \delta j_{-}(y)}\right]
$$

Calculation of the moments

■ The functional derivatives of $i V_{c}\left[j_{+}, j_{-}\right]$with respect to $j_{ \pm}$ give Green's functions that are calculated like cut diagrams, but with external legs of type + or - . Let us denote :

$$
\begin{aligned}
& \left.\Gamma_{ \pm}(x) \equiv \frac{\square_{x}+m^{2}}{Z} \frac{\delta i V_{c}}{\delta j_{ \pm}(x)}\right|_{j_{+}=j_{-}=j} \\
& \left.\Gamma_{+-}(x, y) \equiv \frac{\left(\square_{x}+m^{2}\right)\left(\square_{y}+m^{2}\right)}{Z^{2}} \frac{\delta^{2} i V_{c}}{\delta j_{+}(x) \delta j_{-}(y)}\right|_{j_{+}=j_{-}=j}
\end{aligned}
$$

■ Therefore, we have :

$$
\langle n\rangle=\int_{x, y} Z G_{+-}^{0}(x, y)\left[\Gamma_{+}(x) \Gamma_{-}(y)+\Gamma_{+-}(x, y)\right]
$$

■ Or, diagrammatically :

$$
\langle n\rangle=\bigcirc+-\bigcirc+\bigcirc_{+}^{+}
$$

- $\langle n\rangle$ is a sum of simply connected graphs

Calculation of the moments

- The same method can be applied to the calculation of the variance :

$$
\begin{aligned}
\left\langle n^{2}\right\rangle-\langle n\rangle^{2} & =\frac{d^{2}}{d x^{2}} \ln (F(x))_{x=0} \\
& =\left.\left[\mathcal{D}\left[j_{+}, j_{-}\right]+\mathcal{D}^{2}\left[j_{+}, j_{-}\right]\right] e^{i V_{c}\left[j_{+}, j_{-}\right]}\right|_{\substack{j_{+}=j_{-}=j \\
\text { connected }}}
\end{aligned}
$$

- In terms of diagrams :

$$
\begin{aligned}
& \left\langle n^{2}\right\rangle-\langle n\rangle^{2}=\langle n\rangle \\
& +\mathrm{O}^{+} \mathrm{O}^{+} \mathrm{O}+\mathrm{O}^{+} \mathrm{O}^{+} \mathrm{O}+\mathrm{O}^{+} \mathrm{O}^{+} \mathrm{O} \\
& +\mathrm{O}+\mathrm{O}+\mathrm{O} \pm \mathrm{O}+2(\mathrm{O}+\mathrm{O}+2 \mathrm{O}+\mathrm{O} \\
& +0
\end{aligned}
$$

Leading Order

- At leading order - i.e. $\mathcal{O}\left(1 / g^{2}\right)$ - the shaded blobs in the formula for $\langle n\rangle$ must be evaluated at tree level (and the second diagram does not contribute) :

- For all the vertices except the two which are labelled explicitly, we must sum over the indices +/-
- We must also sum over all the topologies for the tree diagrams on the left and on the right of the G_{+-}^{0} propagator

Leading Order

- The sum over the \pm indices attached to the vertices in each of the tree diagrams can be performed by noting that :

$$
\text { For } \epsilon=+,-\quad, \quad G_{\epsilon+}^{0}(x, y)-G_{\epsilon-}^{0}(x, y)=G_{R}^{0}(x, y)
$$

where $G_{R}^{0}(x, y)$ is the free retarded propagator, denoted

- Starting from the "leaves" of the trees, use this property recursively to replace all the $G_{ \pm \pm}^{0}$ propagators by retarded propagators :

Leading Order

- The sum over the \pm indices attached to the vertices in each of the tree diagrams can be performed by noting that :

$$
\text { For } \epsilon=+,-\quad, \quad G_{\epsilon+}^{0}(x, y)-G_{\epsilon-}^{0}(x, y)=G_{R}^{0}(x, y)
$$

where $G_{R}^{0}(x, y)$ is the free retarded propagator, denoted

- Starting from the "leaves" of the trees, use this property recursively to replace all the $G_{ \pm \pm}^{0}$ propagators by retarded propagators :

Leading Order

- The sum over the \pm indices attached to the vertices in each of the tree diagrams can be performed by noting that :

$$
\text { For } \epsilon=+,-\quad, \quad G_{\epsilon+}^{0}(x, y)-G_{\epsilon-}^{0}(x, y)=G_{R}^{0}(x, y)
$$

where $G_{R}^{0}(x, y)$ is the free retarded propagator, denoted

- Starting from the "leaves" of the trees, use this property recursively to replace all the $G_{ \pm \pm}^{0}$ propagators by retarded propagators :

Leading Order

- The sum over the \pm indices attached to the vertices in each of the tree diagrams can be performed by noting that :

$$
\text { For } \epsilon=+,-\quad, \quad G_{\epsilon+}^{0}(x, y)-G_{\epsilon-}^{0}(x, y)=G_{R}^{0}(x, y)
$$

where $G_{R}^{0}(x, y)$ is the free retarded propagator, denoted

- Starting from the "leaves" of the trees, use this property recursively to replace all the $G_{ \pm \pm}^{0}$ propagators by retarded propagators :

Leading Order

- The sum over the \pm indices attached to the vertices in each of the tree diagrams can be performed by noting that :

$$
\text { For } \epsilon=+,-\quad, \quad G_{\epsilon+}^{0}(x, y)-G_{\epsilon-}^{0}(x, y)=G_{R}^{0}(x, y)
$$

where $G_{R}^{0}(x, y)$ is the free retarded propagator, denoted

- Starting from the "leaves" of the trees, use this property recursively to replace all the $G_{ \pm \pm}^{0}$ propagators by retarded propagators :

Leading Order

- The sum over the \pm indices attached to the vertices in each of the tree diagrams can be performed by noting that :

$$
\text { For } \epsilon=+,-\quad, \quad G_{\epsilon+}^{0}(x, y)-G_{\epsilon-}^{0}(x, y)=G_{R}^{0}(x, y)
$$

where $G_{R}^{0}(x, y)$ is the free retarded propagator, denoted

- Starting from the "leaves" of the trees, use this property recursively to replace all the $G_{ \pm \pm}^{0}$ propagators by retarded propagators :

- After having done the same transformation on the other half of the diagram, all the propagators except the intermediate one have been replaced by retarded propagators

Classical solution

- The classical equation of motion reads :

$$
\left(\square+m^{2}\right) \phi(x)+\frac{g}{2} \phi^{2}(x)=j(x)
$$

- The retarded solution of this equation, with the boundary condition $\phi(x)=0$ when $x_{0} \rightarrow-\infty$, can be found iteratively in $g: \phi=\phi_{(0)}+\phi_{(1)}+\cdots$, by rewriting the EOM as :

$$
\phi(x)=\int d^{4} y G_{R}^{0}(x-y)\left[-i \frac{g}{2} \phi^{2}(y)+i j(y)\right]
$$

where $G_{R}^{0}(x-y)$ is the retarded Green's function for the operator $\square+m^{2}$, normalized by :

$$
\left(\square_{x}+m^{2}\right) G_{R}^{0}(x-y)=-i \delta(x-y)
$$

or, in momentum space, $G_{R}^{0}(p)=\frac{i}{p^{2}-m^{2}+i p_{0} \epsilon}$

Classical solution

- Order g^{0} :
- Order g^{1} :

$$
\phi_{(0)}(x)+\phi_{(1)}(x)=\int d^{4} y G_{R}^{0}(x-y)\left[-i \frac{g}{2} \phi_{(0)}^{2}(y)+i j(y)\right]
$$

i.e.

$$
\phi_{(1)}(x)=-i \frac{g}{2} \int d^{4} y G_{R}^{0}(x-y)\left[\int d^{4} z G_{R}^{0}(y-z) i j(z)\right]^{2}
$$

- One can construct the solution iteratively, by using in the r.h.s. the solution found in the previous orders

Classical solution

- Therefore, the classical solution can be represented as :

Classical solution

- Therefore, the classical solution can be represented as :

Classical solution

- Therefore, the classical solution can be represented as :

Classical solution

- Therefore, the classical solution can be represented as :

Classical solution

- Therefore, the classical solution can be represented as :

Classical solution

- Therefore, the classical solution can be represented as :

■ The classical solution is given by the sum of all the tree diagrams with retarded propagators. It resums all the powers of g that are accompanied by a source j

- The quantity that appears in $\langle n\rangle_{L O}$ does not have the last retarded propagator. Therefore, it is :

$$
\left(\square_{x}+m^{2}\right) \phi_{c}(x)
$$

Leading Order (cont.)

- Finally, one gets $\langle n\rangle_{L O}$ in terms of the retarded solution ϕ_{c} of the EOM :

$$
\left.E_{p} \frac{d\langle n\rangle}{d^{3} \overrightarrow{\boldsymbol{p}}}\right|_{L O}=\frac{1}{16 \pi^{3}}\left|\left(p^{2}-m^{2}\right) \phi_{c}(p)\right|^{2}
$$

- $\left(p^{2}-m^{2}\right) \phi_{c}(p)$ is given by a 4-dim Fourier transform :

$$
\left(p^{2}-m^{2}\right) \phi_{c}(p)=-\int d^{4} x e^{i p \cdot x}\left(\square_{x}+m^{2}\right) \phi_{c}(x)
$$

- This formula is cumbersome in practice because it requires to store the solution of the EOM at all times. Instead, write :

$$
e^{i p \cdot x}\left[\partial_{x_{0}}^{2}+E_{p}^{2}\right] \phi_{c}(x)=\partial_{x_{0}} e^{i p \cdot x}\left[\partial_{x_{0}}-i E_{p}\right] \phi_{c}(x)
$$

from which one can obtain :

$$
\left(p^{2}-m^{2}\right) \phi_{c}(p)=\lim _{x^{0} \rightarrow+\infty} \int d^{3} \overrightarrow{\boldsymbol{x}} e^{i p \cdot x}\left[\partial_{x_{0}}-i E_{p}\right] \phi_{c}(x)
$$

Next to Leading Order

■ There are two types of corrections at NLO :

- They both contribute at order g^{0}. The first type of NLO topologies would in fact be the leading contribution for quark production
Δ we consider only this one in the following (but the other one can be calculated as well)

Next to Leading Order

- We need to calculate the sum of the following tree diagrams :

Next to Leading Order

- We need to calculate the sum of the following tree diagrams :

- One can perform a partial resummation of all the sub-diagrams that correspond to the classical solution :

Next to Leading Order

■ We need to calculate the sum of the following tree diagrams :

- One can perform a partial resummation of all the sub-diagrams that correspond to the classical solution :

- Thus, we need the full tree level propagator $G_{-+}(x, y)$ in the presence of the retarded background field ϕ_{c}. Note : the classical field insertion is the same for the + and - indices

Next to Leading Order

■ The summation of all the classical field insertions can be done via a Lippmann-Schwinger equation :
$G_{\epsilon \epsilon^{\prime}}(x, y)=G_{\epsilon \epsilon^{\prime}}^{0}(x, y)-i g \sum_{\eta, \eta^{\prime}= \pm} \int d^{4} z G_{\epsilon \eta}^{0}(x, z) \phi_{c}(z) \sigma_{\eta \eta^{\prime}}^{3} G_{\eta^{\prime} \epsilon^{\prime}}(z, y)$

- This equation is rather non-trivial to solve in this form, because of the mixing of the 4 components of the propagator. Perform a rotation on the \pm indices :

$$
\begin{array}{lll}
G_{\epsilon \epsilon^{\prime}} & \rightarrow & G_{\alpha \beta} \equiv \sum_{\epsilon, \epsilon^{\prime}= \pm} U_{\alpha \epsilon} U_{\beta \epsilon^{\prime}} G_{\epsilon \epsilon^{\prime}} \\
\boldsymbol{\sigma}_{\epsilon \epsilon^{\prime}}^{3} & \rightarrow & \Sigma_{\alpha \beta}^{3} \equiv \sum_{\epsilon, \epsilon^{\prime}= \pm} U_{\alpha \epsilon} U_{\beta \epsilon^{\prime}} \sigma_{\epsilon \epsilon^{\prime}}^{3}
\end{array}
$$

- A useful choice for the rotation matrix U is $U=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$

Next to Leading Order

- Under this rotation, the matrix propagator and field insertion become :

$$
G_{\alpha \beta}=\left(\begin{array}{cc}
0 & G_{A} \\
G_{R} & G_{S}
\end{array}\right), \quad \boldsymbol{\Sigma}_{\alpha \beta}^{3}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

where $G_{S}^{0}(p)=2 \pi \delta\left(p^{2}-m^{2}\right)$

- The main simplification comes from the fact that $G^{0} \Sigma^{3}$ is the sum of a diagonal matrix and a nilpotent matrix
- One finds that G_{R} and G_{A} do not mix, i.e. they obey the equations :

$$
G_{R, A}(x, y)=G_{R, A}^{0}(x, y)-i g \int d^{4} z G_{R, A}^{0}(x, z) \phi_{c}(z) G_{R, A}(z, y)
$$

- One can express G_{S} in terms of G_{R} and G_{A} :

$$
G_{S}=G_{R} * G_{R}^{0-1} * G_{S}^{0} * G_{A}^{0-1} * G_{A}
$$

Next to Leading Order

- In order to go back to G_{-+}, invert the rotation :

$$
G_{-+}=\frac{1}{2}\left[G_{A}-G_{R}+G_{S}\right]
$$

- Split $G_{R, A}$ into free propagators and a scattering matrix :

$$
G_{R, A} \equiv G_{R, A}^{0}+G_{R, A}^{0} * T_{R, A} * G_{R, A}^{0}
$$

Note : the retarded/advanced scattering matrices $T_{R, A}$ obey :

$$
T_{R}-T_{A}=T_{R} *\left[G_{R}^{0}-G_{A}^{0}\right] * T_{A}
$$

■ Wrapping up everything, in momentum space, gives :

$$
\left.E_{p} \frac{d\langle n\rangle}{d^{3} \overrightarrow{\boldsymbol{p}}}\right|_{N L O}=\frac{1}{16 \pi^{3}} \int \frac{d^{3} \overrightarrow{\boldsymbol{q}}}{(2 \pi)^{3} 2 E_{q}}\left|T_{R}(p,-q)\right|^{2}
$$

\triangleright One has to obtain the retarded propagator in the classical field ϕ_{c}, amputate the external legs, square and integrate over the (on-shell) momentum at one end

Next to Leading Order

- $T_{R}(p,-q)$ can be obtained from retarded solutions of the EOM of a small fluctuation on top of ϕ_{c}

$$
\left(\square+m^{2}+g \phi_{c}(x)\right) \eta(x)=0
$$

- Start from Green's formula for the retarded solution $\eta(x)$:

$$
\eta(x)=\int d^{3} \overrightarrow{\boldsymbol{y}} G_{R}(x, y) \stackrel{\partial_{y_{0}}}{ } \eta(y)
$$

- From there, it is straightforward to verify that :

$$
T_{R}(p,-q)=\lim _{x^{0} \rightarrow+\infty} \int d^{3} \overrightarrow{\boldsymbol{x}} e^{i p \cdot x}\left[\partial_{x_{0}}-i E_{p}\right] \eta(x)
$$

with $\quad \eta(x)=e^{i q \cdot x}$ when $x^{0} \rightarrow-\infty$

- In other words, one must solve the equation of propagation of small fluctuations on top of the classical field, with a plane wave as the initial condition

Gluon production

Krasnitz, Venugopalan (1998), Lappi (2003)

- At tree level, the gluon spectrum is given directly by the retarded solution of Yang-Mills equations:

$$
E_{p} \frac{d\left\langle n_{\mathrm{g}}\right\rangle}{d^{3} \overrightarrow{\boldsymbol{p}}}=\frac{1}{16 \pi^{3}} \sum_{\lambda}\left|\lim _{x^{0} \rightarrow+\infty} \int d^{3} \overrightarrow{\boldsymbol{x}} e^{i p \cdot x}\left[\partial_{x_{0}}-i E_{p}\right] \epsilon_{\mu}^{(\lambda)}(\overrightarrow{\boldsymbol{p}}) A^{\mu}(x)\right|^{2}
$$

- The calculation is usually done in the gauge :

$$
A^{\tau}=x^{+} A^{-}+x^{-} A^{+}=0
$$

- This gauge interpolates between two light-cone gauges: $A^{-}=0$ on the trajectory $z=t$ and $A^{+}=0$ on the trajectory $z=-t$
- This implies that the produced gauge field does not make the currents J^{+}, J^{-}precess in color space
■ In this gauge, it is easy to find the field at $\tau=0^{+}$, and then let it evolve according to the vacuum Yang-Mills equations (because the currents are zero at $\tau>0$)

Classical color field

- Space-time structure of the classical color field:

-Region 1 : no causal relation to either nuclei
-Region 2 : causal relation to the 1st nucleus only
- Region 3 : causal relation to the 2nd nucleus only
- Region 4 : causal relation to both nuclei

Classical color field

- Propagation through region 1:

\triangleright trivial : the classical field is entirely determined by the initial condition, i.e.

$$
A^{\mu}=0
$$

Classical color field

- Propagation through region 2:

\triangleright the Yang-Mills equation can be solved analytically when there is only one nucleus:

$$
\begin{aligned}
& A^{+}=A^{-}=0 \quad, \quad A^{i}=\theta\left(x^{-}\right) \frac{i}{g} U_{1}\left(\vec{x}_{\perp}\right) \partial^{i} U_{1}^{\dagger}\left(\vec{x}_{\perp}\right) \\
& \text { with } \quad U_{1}\left(\overrightarrow{\boldsymbol{x}}_{\perp}\right)=T_{+} \exp i g \int d x^{+} T^{a} \frac{1}{\nabla_{\perp}^{2}} \rho_{1}^{a}\left(x^{+}, \vec{x}_{\perp}\right)
\end{aligned}
$$

Classical color field

- Propagation through region 3:

\triangleright the Yang-Mills equation can be solved analytically when there is only one nucleus:

$$
\begin{aligned}
& A^{+}=A^{-}=0 \quad, \quad A^{i}=\theta\left(x^{+}\right) \frac{i}{g} U_{2}\left(\vec{x}_{\perp}\right) \partial^{i} U_{2}^{\dagger}\left(\vec{x}_{\perp}\right) \\
& \text { with } U_{2}\left(\vec{x}_{\perp}\right)=T_{-} \exp i g \int d x^{-} T^{a} \frac{1}{\nabla_{\perp}^{2}} \rho_{2}^{a}\left(x^{-}, \vec{x}_{\perp}\right)
\end{aligned}
$$

Classical color field

- Propagation through region 4:

\triangleright one must solve numerically the Yang-Mills equations with the following initial condition at $\tau_{i}=0^{+}$:

$$
\begin{aligned}
& A^{i}\left(\tau=0, \overrightarrow{\boldsymbol{x}}_{\perp}\right)=\frac{i}{g}\left(U_{1}\left(\overrightarrow{\boldsymbol{x}}_{\perp}\right) \partial^{i} U_{1}^{\dagger}\left(\overrightarrow{\boldsymbol{x}}_{\perp}\right)+U_{2}\left(\overrightarrow{\boldsymbol{x}}_{\perp}\right) \partial^{i} U_{2}^{\dagger}\left(\overrightarrow{\boldsymbol{x}}_{\perp}\right)\right) \\
& A^{\eta}\left(\tau=0, \overrightarrow{\boldsymbol{x}}_{\perp}\right)=-\frac{i}{2 g}\left[U_{1}\left(\overrightarrow{\boldsymbol{x}}_{\perp}\right) \partial^{i} U_{1}^{\dagger}\left(\overrightarrow{\boldsymbol{x}}_{\perp}\right), U_{2}\left(\overrightarrow{\boldsymbol{x}}_{\perp}\right) \partial^{i} U_{2}^{\dagger}\left(\overrightarrow{\boldsymbol{x}}_{\perp}\right)\right]
\end{aligned}
$$

Energy per unit rapidity

Gluon spectrum

- Gluon spectra for 512^{2} and 256^{2} lattices:

- Lattice artifacts at large momentum (does not affect much the overall number of gluons)
- Important softening at small k_{\perp} compared to pQCD

Quark production

FG, Kajantie, Lappi $(2004,2005)$

$$
E_{p} \frac{d\left\langle n_{\mathrm{q}}\right\rangle}{d^{3} \overrightarrow{\boldsymbol{p}}}=\frac{1}{16 \pi^{3}} \int \frac{d^{3} \overrightarrow{\boldsymbol{q}}}{(2 \pi)^{3} 2 E_{q}}\left|\bar{u}(\overrightarrow{\boldsymbol{p}}) T_{R}(p,-q) v(\overrightarrow{\boldsymbol{q}})\right|^{2}
$$

- Alternate representation of the retarded amplitude:

$$
\begin{aligned}
& \bar{u}(\overrightarrow{\boldsymbol{p}}) T_{R}(p,-q) v(\overrightarrow{\boldsymbol{q}})=\lim _{x^{0} \rightarrow+\infty} \int d^{3} \overrightarrow{\boldsymbol{x}} e^{i p \cdot x} u^{\dagger}(\overrightarrow{\boldsymbol{p}}) \psi_{\boldsymbol{q}}(x) \\
& \left(i \not_{x}-g A(x)-m\right) \psi_{\boldsymbol{q}}(x)=0, \psi_{\boldsymbol{q}}\left(x^{0}, \overrightarrow{\boldsymbol{x}}\right) \underset{x^{0} \rightarrow-\infty}{\rightarrow} v(\overrightarrow{\boldsymbol{q}}) e^{i q \cdot x}
\end{aligned}
$$

Background field

- Space-time structure of the classical color field:

- Region 1: $A^{\mu}=0$
- Region 2: $A^{ \pm}=0$, $A^{i}=\frac{i}{g} U_{1} \nabla_{\perp}^{i} U_{1}^{\dagger}$
- Region 3: $A^{ \pm}=0$, $A^{i}=\frac{i}{g} U_{2} \nabla_{\perp}^{i} U_{2}^{\dagger}$
- Region 4: $A^{\mu} \neq 0$
- Notes:
- In the region 4, A^{μ} is known only numerically
- We will have to solve the Dirac equation numerically as well

Quark propagation

- Propagation through region 1:

\triangleright trivial because there is no background field

$$
\psi_{\boldsymbol{q}}(x)=v(\overrightarrow{\boldsymbol{q}}) e^{i q \cdot x}
$$

Quark propagation

- Propagation through region 2:

\triangleright Pure gauge background field
$\triangleright \psi_{\boldsymbol{q}}^{-}\left(\tau_{i}\right)$ can be obtained analytically

Quark propagation

- Propagation through region 3:

\triangleright Pure gauge background field
$\triangleright \psi_{\boldsymbol{q}}^{+}\left(\tau_{i}\right)$ can be obtained analytically

Quark propagation

- Propagation through region 4:

\triangleright One must solve the Dirac equation :

$$
[i \not \partial-g \not A-m] \psi_{\boldsymbol{q}}\left(\tau, \eta, \overrightarrow{\boldsymbol{x}}_{\perp}\right)=0
$$

\triangleright initial condition: $\psi_{\boldsymbol{q}}\left(\tau_{i}\right)=\psi_{\boldsymbol{q}}^{+}\left(\tau_{i}\right)+\psi_{\boldsymbol{q}}^{-}\left(\tau_{i}\right)$
($\tau_{i}=0^{+}$in practice)

Time dependence

Spectra for various quark masses

- $g^{2} \mu=2 \mathrm{GeV}, \tau=0.25 \mathrm{fm}$:

Mass dependence of dN/dy

■ Number of quarks at $\tau=0.25 \mathrm{fm}$:

g2mu dependence of dN/dy

■ Number of quarks at $\tau=0.25 \mathrm{fm}$:

